Title of Invention

"AN APPARATUS AND A METHOD FOR PROVIDING TRANSMIT DIVERSITY IN A WIRELESS COMMUNICATION SYSTEM"

Abstract An apparatus for providing transmit diversity in a wireless communication system, said apparatus comprising: a radio channel unit and delay element for delaying a signal to be transmitted and providing a delayed signal; said apparatus characterized by a transformer matrix for transforming said signal and said delayed signal into a first and a second transformed signals; a plurality of amplifiers for amplifying said first and second transformed signals; and an inverse transform matrix for transforming said first and second transformed signals received from said plurality of amplifiers into a modified signal and a modified delayed signal.
Full Text The present invention relates to an apparatus and a method for providing transmit diversity in a wireless communication system.
The present invention relates, in general, to communication systems and, more particularly, to a method and apparatus for providing transmit diversity in a wireless communication system.
Background of the Invention
Presently, in wireless communications systems, such as a Code Division Multiple Access (CDMA) cellular communication system, a design such as that shown in FIG. 1 is used. In FIG. 1, the infrastructure side (100) of a communication system is illustrated. This infrastructure design is shown in a three sector configuration. Each sector 101 consists of one or more radio channel units 102. The signal to be transmitted is output from radio channel units 102 to amplifiers 103. When more than one radio channel unit 102 is present, the outputs from amplifiers 103 are fed to combiner 104 The output from combiner 104 is then transmitted using antenna 105. This would be replicated for each of sectors 101.
In CDMA systems the signal transmitted from antenna 105 will be received by a receiver (not shown). During transmission, the signal will be reflected off of various objects (buildings, bridges, etc.) before arriving at the receiver. This creates the multi-path phenomena. The receiver is designed to take the multi-path signals and use them to recover the best estimate of the originally transmitted signal. The benefit in receiving several copies of the same signal is that something that caused interference with a portion of one signal would have a longer statistical probability of interfering with the same portion of a multi-path copy of the signal. The receiver uses the multiple copies of the signal received to reconstruct a single higher quality signal.
A related advantage is that the power of each of the various received multi-path signals is combined to provide a signal for
processing that has a power level higher than, and therefore easier to decode, any one single copy of the signal.
This use of multi-path signals in processing a received signal has disadvantages in many rural applications. In rural areas, the obstructions that cause multi-path reflections are not available. In these cases, only one copy of the signal is received. If the signal was interfered with, the ability of the receiver to recover the correct signal is greatly reduced. This same problem also arises in applications which have smaller cell sizes (often referred to as microcells). In microcells, while there may be strict multi-path fading, the size of the cell is so small that each of the multi-path signals arrive too close together to derive the benefits of receiving multi-path signals. The lack of effective multi-path signals can result in a loss of sensitivity of 6-10 dB (deciBles). *
It has been found that delays in the multi-path signals of approximately one chip or more are needed for the receiver to be able to utilize the advantages of receiving multi-path copies of the transmitted signal. A "chip" delay refers to the chip rate of the transmitter of a CDMA signal. The signal to be transmitted is spread using orthogonal spreading codes in a semiconductor chip that has a processing rate. The term "chip" rate has been used to refer to this spreading rate.
One way to artificially generate multiple copies of a signal is to use multiple antennas which are spatially separated. Since any fading is independent on each signal path, this technique is useful in environments where fading is possible. However, this increases the complexity and cost of a system by having redundant transmissions.
It is also possible to compensate for the loss of multi-path signals by increasing the power of the transmitter. However, this would be contrary to the ongoing efforts in wireless communications to reduce the amount of power being used to transmit a signal in order to provide additional capacity such that more signals may be transmitted.
Therefore, a problem exists in present communication designs that results in less accurate processing of received signals in many proposed applications.
According to the present invention there is provided an apparatus for providing transmit diversity in a wireless communication system, said apparatus comprising:
a radio and delay element for delaying a signal to be transmitted and providing a delayed signal; said apparatus characterized by
a transform matrix or transforming said signal and said delayed signal into a first and a second transformed signals;
a plurality of amplifiers for amplifying said first and second transformed signals; and
an inverse transform matrix for transforming said first and second transformed signals received from said plurality of amplifiers into a modified signal and a modified delayed signal.
According to the present invention there is also provided a method of providing transmit diversity in a wireless communication system using the apparatus, said method characterized by the steps of :
receiving a signal to be transmitted;
delaying a copy of said signal, forming a delayed signal;
transforming said signal and said delayed signal into first and second transformed signals, said first and second transformed signals each containing a portion of said signal and said delayed signal;
amplifying said first and second transformed signals, forming a first and a second amplified signal;
inverse transforming said first and second amplified signals forming a first transmit signal derived from said signal and a second transmit signal derived from said delayed signal.
Brief Description of the Accompanying Drawings
FIG. 1 is a block diagram of a prior art infrastructure system used for wireless communication;
FIG. 2 is a block diagram of a first embodiment of an infrastructure system designed to utilize the present invention;
FIG. 3 is a block diagram of a second embodiment of an infrastructure system designed to utilize the present invention;
FIG. 4 is a block diagram of a radio channel unit of FIG. 3;
FIG. 5 is graphical representation of the power dissipation versus the transmit diversity improvements obtainable when utilizing the present invention; and
FIG. 6 is a flow chart of a method of operation of the systems of FIGS. 2 or 3,
Detailed Description of the Drawings
Referring initially to FIG. 2, a block diagram of a first embodiment of an infrastructure system, generally designated 200, designed to utilize the present invention is illustrated. Infrastructure system 200 is illustrated as a three sector (201-203) design with transmit diversity. Each sector 201-203 consists of at least one transmitting means, such as radio channel unit 205, each having two outputs; with one of the outputs being coupled to a delay 206. The signals are processed through a statistical averaging device such as transforming means (e.g. transform matrix 207), amplifiers 208, and inverse transform matrix 209 before being transmitted from antennas 210.
In operation, a signal to be transmitted arrives at one or more radio channels units 205 over bus 213. Radios 205 prepare the signal for transmission by performing the required modulation, coding, interleaving, etc. The resulting signal to be transmitted is then output to a first portion of the inputs of transform matrix 207 and to a radio frequency (RF) delay means 206 for delaying an RF representation of the signal. Transform matrix 207 would preferably be a Fourier Transform Matrix (FTM) matrix
or a Butler transform matrix. Delay 206 will be used to add the desired amount of delay. In this embodiment, a one chip delay is used. Delays 206 are shown having a control input from control line 212. This control input can be used to adjust the amount of delay added to improve performance of the system as needed. The output from each delay 206 is then input to a second portion of the inputs of transform matrix 207.
In this embodiment, an 8x8 transform matrix 207 is illustrated having the first and eighth inputs coupled to loads 211. However, it should be noted that, since only six inputs are needed, the inputs used could be any six of the eight inputs with the two remaining inputs coupled to an appropriate load 211. An example of a transform matrix is described in W. A. Sandrin, "The Butler matrix transponder", Comsat Technical Review, vol. 4, no. 2 (Fall 1974). In matrix 207, each of the signals input at the eight inputs is divided equally by the number of inputs. These are then combined with a portion of each signal input to matrix 207 to provide modified signals at each of the outputs from matrix 207. In this particular embodiment, each modified signal contains one-eighth of the signals input to matrix 207. The result is that matrix 207 performs a statistical average of the input signals. This average serves to reduce the peak value of the higher signals input to matrix 207.
Each of the outputs of transform matrix 207 is input to amplifying means 208 which, in one example, would be single tone amplifiers. By using the statistical average of the signals, smaller, lower power, and less expensive power amplifiers 208 may be utilized. The outputs from power amplifiers 208 are then input to an inverse statistical averaging device such as inverse transform matrix 209 (e.g. an inverse Fourier Transform Matrix or a inverse Butler Transform Matrix). In inverse transform matrix 209, the signals are again divided and combined to form the original signals. The result is that a signal having the same power level is present at the output of inverse transform matrix 209 as is present at the output of power amplifiers 103 of FIG. 1, but with amplifiers that require a lower peak power rating.
in this embodiment, six of the eight outputs are coupled to antennas 210. The remaining two outputs are coupled to loads 211. The two antennas 210 within sector 201 transmit the signal and delayed signal from radio 205. This provides, at a receiver, two signals separated in time by a sufficient amount to perform multi-path processing. In addition, this configuration provides the advantage of being able to compensate for the loss of a power amplifier. If one of the power amplifiers is lost, then only one-eighth of the power of each signal wi!! be lost, rather than losing an entire signal as in the prior art configurations.
As will be understood by those of skill in the art, if transmit diversity is not desired, then additional radio units can be added to system 200. The three additional radio units would provide inputs to transform matrix 207 which are currently provided by delays 206. This will enable the use of a six sector configuration instead of three sectors.
Referring now to FIG. 3, a block diagram of a second embodiment
of an infrastructure system, generally designated 300, is illustrated.
Infrastructure system 300 is also illustrated as a three sector (301-303)
design with transmit diversity. Each sector 301-303 consists of at least
two radio channel units 305 and 306. Radio 305 outputs a signal to be
transmitted and radio 306 outputs the same signal delayed by,
preferably, one chip time. The delay through radio 306 is caused by a
digital delay means 320 for delaying a digital representation of the
signal. The signals are then processed through a transform matrix 307,
amplifiers 308, and inverse transform matrix 309 before being transmitted
from antennas 310.
In operation, a signal to be transmitted arrives at radio channel units 305 and 306 over bus 312. Radios 305 and 306 prepare the signal for transmission by performing the required modulation, coding, interleaving, etc. The resulting signals are then output to transform matrix 307. Radios 306 are shown having a control input from control line 312. This control input can be used to adjust the amount of delay used.
In this embodiment, an 8x8 transform matrix 307 is also illustrated. Again, the first and eighth inputs are illustrated as having loads 311

coupled thereto, but these loads may be coupled to any two of the inputs. In matrix 307, each of the signals input at the eight inputs is divided equally by the number of inputs and combined with a portion of each signal input to matrix 307.
Each of the outputs of transform matrix 307 is input to an amplifying means 308, such as single tone power amplifiers. As with system 300, using the statistical average of the signals allows the use of, smaller, lower power, less expensive power amplifiers 308. The outputs from power amplifiers 308 are then input to inverse transform matrix 309 where the signals are again divided and combined to form the original signals input to transform matrix 307.
Six of the eight outputs are coupled to antennas 310. The remaining two outputs are coupled to loads 311. The two antennas 310 within sector 301 transmit the signal and delayed signal from radios 305 and 306, respectively. This then provides, at a receiver, two signals separated in time by a sufficient amount to perform multi-path processing.
In FIG. 4, a block diagram of radio 304 used in FIG. 3 is illustrated. Radio 304 receives an input signal to be transmitted along bus 317. The signal is then divided into I and Q components using mixers 401 and
402, oscillator 403, and a 90° phase shifter 404. The I and Q signals are filtered in low pass filters 405 and 406. The filtered signals are then combined in mixer 407 and output to transform matrix 307. The I and Q signals are also coupled to means delay 408 where a delay of one chip time can be added. The delayed signals are then combined in mixer 409 and the output provided to transform matrix 307.
As discussed previously, the use of transmit diversity permits the transmit power of the individual signals to be reduced. This provides an increase in the link margin of approximately 3.0 dB. A graph of the power amplifier dissipation versus the transmit diversity improvement is shown in FIG. 5. If the power amplifier dissipation is reduced from 27 W to 15 W, the margin link improves by 3 dB. This type of increase in the link margin can be used to increase the cell sizes which results in less
equipment required on a system wide basis. This can provide substantial saving to a system operator.
Referring now to FIG. 6, a flow chart of a method, generally designated 600, of operation of the systems of FIGS. 2 or 3 is illustrated. Method 600 commences at step 601 when a signal to be transmitted is received. The signal is then converted into a transmission format, step 602. A copy of the signal is then delayed, step 603, by approximately 1 chip time. The formatted signal and delayed formatted signals are transformed, step 604, into statistical average signals. The transformed signals are then amplified, step 605. The amplified signals are inverse transformed, step 606, to recombine the original signals. The signals and delayed signals are then transmitted, step 607. This provides at least two signals to a receiver on which multi-path signal processing may be conducted to extract the original signal.
The above described apparatus and method provides for transmit diversity in a wireless communication system.
While the invention has been described in conjunction with specific embodiments thereof, it is evident that many alterations, modifications, and variations will be apparent to those skilled in the art in light of the foregoing description. Accordingly, it is intended to embrace all such alterations, modifications, and variations in the appended claims.




WE CLAIM:
1. An apparatus for providing transmit diversity in a wireless communication system, said apparatus comprising:
a radio channel unit (205) and delay (206) element for delaying a signal to be transmitted and providing a delayed signal; said apparatus characterized by
a transform matrix (207) for transforming said signal and said delayed signal into a first and a second transformed signals;
a plurality of amplifiers (208) for amplifying said first and second transformed signals; and
an inverse transform matrix (209) for transforming said first and second transformed signals received from said plurality of amplifiers into a modified signal and a modified delayed signal.
2. The apparatus as claimed in claim 1 wherein said wireless communication system is a code division multiple access communication system.
3. The apparatus as claimed in claim 1 wherein said delay (206) is a radio frequency, RF, delay for delaying an RF representation of the signal or digital delay means(320) for delaying a digital representation of the signal.
4. The apparatus as claimed in claim 1 wherein said transform matrix is a statistical averaging device.
5. The apparatus as claimed in claim 1 wherein said statistical averaging device is one of the Fourier Transform Matrix and a Butler Transform Matrix.
6. The apparatus as claimed in claim 1 comprising:
an additional radio channel unit and delay element (304) for delaying an additional signal to be transmitted and providing an additional delayed signal;
said apparatus comprising:
an additional amplifier for amplifying a first and second additional transformed signals, wherein the first and second additional transformed signals are said additional signal and said additional delayed signal as transformed by the transform matrix; and
a first antenna for transmitting a modified signal and a modified delayed signal that result from transformation by the inverse transform matrix of the amplified first and second transformed signals; and
an additional antenna for transmitting an additional modified signal and an additional modified delayed signal that result from transformation by the inverse transform matrix of the amplified first and second additional transformed signals, wherein the transform matrix is a Fourier transform matrix and wherein the inverse transform matrix is an inverse Fourier transform matrix.
7. The apparatus as claimed in claim 6, wherein said wireless communication system is a code division multiple access communication system having a plurality of sectors, each sector having at least two antennas of said plurality of antennas.
8. A method of providing transmit diversity in a wireless communication system using the apparatus as claimed in claim 1, said method consisting the steps of :
receiving a signal to be transmitted;
delaying a copy of said signal, forming a delayed signal;
transforming said signal and said delayed signal into first and second transformed signals, said first and second transformed signals each containing a portion of said signal and said delayed signal;
amplifying said first and second transformed signals, forming a first and a second amplified signal;
inverse transforming said first and second amplified signals forming a first transmit signal derived from said signal and a second transmit signal derived from said delayed signal.
9. The method of claim 8 further comprising the step of converting said signal into a transmission format prior to said step of delaying a copy of said signal.
10. An apparatus for providing transmit diversity in a wireless communication system substantially as hereinbefore described with reference to an as illustrated in the accompanying drawings.
11. A method of providing transmit diversity in a wireless communication system substantially as hereinbefore described with reference to an as illustrated in the accompanying drawings.

Documents:

1089-del-1997-abstract.pdf

1089-del-1997-Assignment-(23-12-2011).pdf

1089-del-1997-claims.pdf

1089-del-1997-complete specification (granded).pdf

1089-DEL-1997-Correspondence Others-(22-03-2011).pdf

1089-del-1997-Correspondence Others-(23-12-2011).pdf

1089-del-1997-correspondence-others.pdf

1089-del-1997-correspondence-po.pdf

1089-del-1997-description (complete).pdf

1089-del-1997-drawings.pdf

1089-del-1997-form-1.pdf

1089-del-1997-form-13.pdf

1089-del-1997-Form-16-(23-12-2011).pdf

1089-del-1997-form-19.pdf

1089-del-1997-form-2.pdf

1089-DEL-1997-Form-27-(22-03-2011).pdf

1089-del-1997-form-3.pdf

1089-del-1997-form-4.pdf

1089-del-1997-form-6.pdf

1089-del-1997-GPA-(23-12-2011).pdf

1089-del-1997-pa.pdf

1089-del-1997-petition-137.pdf

1089-del-1997-petition-138.pdf


Patent Number 196840
Indian Patent Application Number 1089/DEL/1997
PG Journal Number 29/2008
Publication Date 26-Sep-2008
Grant Date 05-Jan-2007
Date of Filing 28-Apr-1997
Name of Patentee Motorola, Inc
Applicant Address 1303 East Algonquin Road, Schaumburg, Illinois 60196,U.S.A.
Inventors:
# Inventor's Name Inventor's Address
1 Ralph A. Kamin, Jr. 2700 Pin Creek Court, Bedford, Texas 76021,u.s.a
PCT International Classification Number H04B 7/02
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 08/657,925 1996-05-31 U.S.A.