Title of Invention

VEHICLE BODY CONFIGURATIONS

Abstract VEHICLE BODY CONFIGURATIONS (355/chenp-2004) ABSTRACT OF THE DISCLOSURE Various body configurations and vehicle body business processes are described which capitalize upon the interchangeability of vehicle bodies on a flat rolling chassis. The ability to interchange vehicle bodies and exchange modular interior components enables substantial freedom and variation in the types of automobile, trucks, heavy equipment, machinery, RV bodies, etc. that can be interchanged on a rolling chassis. Various seating arrangements may be provided as well as enhanced space utilization, and different types of interior and exterior environments, aesthetics and functionality, including sound, lighting, and other technology enhancements may be provided on a body. Methods and structures are described for facilitating the exchange of modular body components, such as via a removable body floor.
Full Text TECHNICAL FIELD-
The present invention relates to vehicle body configurations
and vehicle body business methods which stem from a flat rolling chassis design with interchangeable bodies.
BACKGROUND OF THE INVENTION
Mobility, being capable of moving from place to place or of
moving quickly from one state to another, has been one of the ultimate goals of humanity throughout recorded history. The automobile has likely done more in helping individuals achieve that goal than any other development. Since its inception, societies around the globe have experienced rates of change in their manner of living that are directly related to the percentage of motor vehicle owners among the population.
Prior art automobiles and light trucks include a body, the
function of which is to contain and protect passengers and their belongings. Bodies are connected to the numerous mechanical, electrical, and structural components that, in combination with a body, comprise a fully functional vehicle. The nature of the prior art connections between a vehicle body and vehicular componentry may result in certain inefficiencies in the design, manufacture, and use of vehicles. Three characteristics of prior art body connections that significantly contribute to these inefficiencies are the quantity of connections; the mechanical nature of many of the connections; and the locations of the connections on the body and on the componentry.

In the prior art, the connections between a body and componentry are numerous. Each connection involves at least one assembly step when a vehicle is assembled; it is therefore desirable to reduce the number of connections to increase assembly efficiency. The connections between a prior art body and prior art vehicular componentry include multiple load-bearing connectors to physically fasten the body to the other components, such as bolts and brackets; electrical connectors to transmit electrical energy to the body from electricity-generating components and to transmit data from sensors that monitor the status of the componentry; mechanical control linkages, such as the steering column, throttle cable, and transmission selector; and ductwork and hoses to convey fluids such as heated and cooled air from an HVAC unit to the body for the comfort of passengers.
Many of the connections in the prior art, particularly those
connections that transmit control signals, are mechanical linkages. For
example, to control the direction of the vehicle, a driver sends control
signals to the steering system via a steering column. Mechanical linkages
result in inefficiencies, in part, because different driver locations in different
vehicles require different mechanical linkage dimensions and packaging.
Thus, new or different bodies often cannot use "off-the-shelf components
and linkages. Componentry for one vehicle body configuration is typically
not compatible for use with other vehicle body configurations. Furthermore,
if a manufacturer changes the design of a body, a change in the design of the
mechanical linkage and the component to which it is attached may be
required. The change in design of the linkages and components requires
modifications to the tooling that produces the linkages and components.
[0006] The location of the connections on prior art vehicle bodies and
componentry also results in inefficiencies. In prior art body-on-frame architecture, connection locations on the body are often not exposed to an

exterior face of the body, and are distant from corresponding connections on the componentry; therefore, long connectors such as wiring harnesses and cables must be routed throughout the body from componentry. The vehicle body of a fully-assembled prior art vehicle is intertwined with the componentry and the connection devices, rendering separation of the body from its componentry difficult and labor-intensive, if not impossible. The use of long connectors increases the number of assembly steps required to attach a vehicle to its componentry.
Furthermore, prior art vehicles typically have internal
combustion engines that have a height that is a significant proportion of the overall vehicle height. Prior art vehicle bodies are therefore designed with an engine compartment that occupies about a third of the front (or sometimes the rear) of the body length. Compatibility between an engine and a vehicle body requires that the engine fit within the body's engine compartment without physical part interference. Moreover, compatibility between a prior art chassis with an internal combustion engine and a vehicle body requires that the body have an engine compartment located such that physical part interference is avoided. For example, a vehicle body with an engine compartment in the rear is hot compatible with a chassis with an engine in the front.
SUMMARY OF THE INVENTION
A self-contained chassis has substantially all of the
mechanical, electrical, and structural componentry necessary for a frilly functional vehicle, including at least an energy conversion system, a suspension and wheels, a steering system, and a braking system. The chassis has a simplified, and preferably standardized, interface with connection components to which bodies of substantially varying design can be attached. X-by-wire technology is utilized to eliminate mechanical control linkages.

As a result, the amount of time and resources required to
design and manufacture new vehicle bodies are reduced. Body designs need
only conform to the simple attachment interface of the chassis, eliminating
the need to redesign or reconfigure expensive components.
[0010] Further, a multitude of body configurations share a common
chassis, enabling economies of scale for major mechanical, electrical, and structural components.
[06411, Connection components, exposed and unobstructed, increase
manufacturing efficiency because attachment of a body to the chassis
requires only engagement of the connection components to respective
complementary connection components on a vehicle body.
Vehicle owners can increase the functionality of their vehicles
at a lower cost than possible with the prior art because a vehicle owner need
buy only one chassis upon which to mount a multitude of body styles.
A vehicle body in accordance with the invention may be
configured for attachment to a chassis and include a body floor configured to extend substantially the entire length of the chassis. A seat assembly is attached to the body floor, and a driver interface is supported with respect to the floor adjacent the seat assembly to communicate vehicle control signals to a chassis from a driver. An interface is exposed on a bottom surface of the floor and configured for attachment to the chassis. The body may further comprise an enclosure connected to the floor for sheltering occupants within the body, wherein the enclosure is connected to opposing ends of the floor such that the enclosure extends substantially the entire length of the floor so that substantially the entire length of the floor is accessible and usable space for occupants. The body enclosure may be selected from the group consisting of sedans, pick-up trucks, convertibles, coupes, vans, station wagons, sport-utility vehicles, and other types of transports.

The interface is preferably configured to conform to a
standardized interface system wherein mechanical and electrical connection
components of the body and chassis complement each other and are
sufficiently aligned such that any conforming body may be mated to any
conforming chassis without need for modification to either the chassis or
body to facilitate attachment, thereby enabling a variety of different styles of
bodies to be attached to the chassis.
The body enclosure may include a body skeleton structure
having body openings formed therein, each of which is covered by a non-
metal close-out panel. The non-metal close-out panels may comprise
materials selected from the group consisting of fabric, wood, plastic, rubber,
nylon, webbing, canvas and mylar. The non-metal close-out panels are
preferably removably attached over the body openings to facilitate
interchangeability. It is particularly notable that the hood and fenders may
include such materials because there is no engine under the hood.
A method of conducting a vehicle business transaction with a
customer in accordance with the present invention includes: A) granting
possession of a body floor to the customer in a financial transaction
separately from a chassis; and B) attaching individual vehicle body
components to the body floor after the step of granting possession of the
body floor. Possession of the body floor may be granted with or without an
attached body enclosure. The modular individual body components may be
installed or exchanged by a mobile body parts service unit at a remote
location selected by a customer, such as the customer's home.
The modular individual body components may be attached to
the floor or elsewhere on the body. The modular individual body components may include interior components, such as pre-validated seats, consoles, driver interfaces, steering devices, drive-by-wire input devices, entertainment systems, and communication systems. The modular individual

body components may further include exterior components such as pre-validated doors, fenders, hoods, windows, quarter panels, bumpers and body structural members.
The individual body components may be rented, sold, leased,
financed, or provided through a club membership.
A method is further provided in accordance with the present
invention for remanufacturing a vehicle including a floor, a body enclosure supported above the floor, and modular individual body components connected to the floor. The method includes detaching the floor from the body enclosure to facilitate removal of a modular individual body components; and installing replacement body components on the body. The installing step may include installing a replacement floor having the replacement body components therein. Alternatively, the installing step may include installing the replacement components on the floor after the floor has been attached, and re-installing the same floor with the replacement body components thereon. The detaching and installing steps may be performed by a mobile service unit at a remote location selected by a customer, or in a specialized service station.
[0020] The above objects; features, advantages, and other objects,
features, and advantages of the present invention are readily apparent from the following detailed description of the best modes for carrying out the invention when taken in connection with the accompanying drawings.

Accordingly the present invention provides a vehicle body attachable to a chassis, the body comprising a body floor extending substantially the entire length of the chassis; a seat assembly supported by the floor; a driver interface supported with respect to the floor adjacent the seat assembly to communicate vehicle control signals to the chassis from a seated driver; and an interface on a bottom surface of the floor at which the body is attachable to the chassis.
With reference to the accompanying drawings in which
Figure 1 is a schematic illustration in perspective view of a vehicle rolling platform according to an embodiment of the present invention;
Figure 2 is a top view schematic illustration of the vehicle rolling platform shown in Figure 1;

FIGURE 3 is a bottom view schematic illustration of the
vehicle rolling platform shown in Figures 1 and 2;
FIGURE 4 is a schematic illustration in side view of a vehicle
body pod and rolling platform attachment scenario according to the present
invention that is useful with the embodiment of Figures 1-3;
FIGURE 5 is a schematic illustration of a vehicle body pod
and rolling platform attachment scenario, wherein body pods of differing
configurations are each attachable to identical rolling platforms;
FIGURE 6 is a schematic illustration of a steering system for
use with the rolling platform and body pod shown in Figure 4;
FIGURE 7 is a schematic illustration of an alternative steering
system for use in the rolling platform and body pod of Figure 4;
FIGURE 8 is a schematic illustration of a braking system for
use with the rolling platform and body pod of Figure 4;
FIGURE 9 is a schematic illustration of an alternative braking
system for use with the rolling platform and body pod of Figure 4;
FIGURE 10 is a schematic illustration of an energy
conversion system for use with the rolling platform and body pod of Figure 4;
FIGURE 11 is a schematic illustration of an alternative energy
conversion system for use with the rolling platform and body pod of Figure
4;
FIGURE 12 is a schematic illustration of a suspension system
for use with the rolling platform of Figures 1-5;
FIGURE 13 is a schematic illustration of an alternative
suspension system for use with the rolling platform and body pod of Figure 4;

FIGURE 14 is a schematic illustration of a chassis computer
and chassis sensors for use with the rolling platform and body pod of Figure 4;
FIGURE 15 is a schematic illustration of a master control unit
with a suspension system, braking system, steering system, and energy conversion system for use with the rolling platform and body pod of Figure 4;
FIGURE 16 is a perspective illustration of a skinned rolling
platform according to a further embodiment of the present invention;
FIGURE 17 is a perspective illustration of a skinned rolling
platform according to another embodiment of the present invention;
FIGURE 18 is a side schematic illustration of arolling
platform with an energy conversion system including an internal combustion engine, and gasoline tanks;
FIGURE 19 is a side schematic illustration of a rolling
platform according to another embodiment of the invention, with a
mechanical steering linkage and passenger seating attachment couplings;
[0040] FIGURES 20 and 20a show partial exploded perspective
schematic illustrations of a rolling platform according to a further
embodiment of the invention in an attachment scenario with a body pod, the
rolling platform having multiple electrical connectors engageable with
complementary electrical connectors in the body pod;
~fG04]J. FIGURE 21 is a perspective schematic illustration of a
skinned rolling platform according to yet another embodiment of the
invention, the rolling platform having a movable control input device;
FIGURE 22 is an illustration of a body selection grouping
showing perspective views of vehicles according to various aspects of the present invention;

FIGURE 23 is a process diagram illustrating a body inventory
and a chassis with a removable body in accordance with the invention;
FIGURE 24 is a process diagram illustrating body and chassis
manufacturing operations;
FIGURE 25 is a flow chart illustrating interchangeability of
vehicle bodies with a single chassis over an extended period of time and including software and hardware upgrades;
FIGURE 26 is a schematic illustration of a business process in
accordance with the invention;
FIGURE 27 is a schematic partially exploded side view of a
body and chassis in accordance with an aspect of the invention; and
FIGURE 28 is a schematic exploded side view of a vehicle in
accordance with a further aspect of the invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Referring to Figure 1, a vehicle chassis 10 in accordance with
the invention, also referred to as the "rolling platform," includes a structural frame 11. The structural frame 11 depicted in Figure 1 comprises a series of interconnected structural elements including upper and lower side structural elements 12 and 14 that comprise a "sandwich"-like construction. Elements 12 and 14 are substantially rigid tubular (or optionally solid), members that extend longitudinally between the front and rear axle areas 16, 18, and are positioned outboard relative to similar elements 20, 22. The front and rear ends of elements 12, 14 are angled inboard, extending toward elements 20 and 22 and connecting therewith prior to entering the axle areas 16, 18. For added strength and rigidity a number of vertical and angled structural elements extend between elements 12, 14, 20 and 22. Similar to the elements 12, 14, 20 and 22, which extend along the left side of the rolling

.platform 10, a family of structural elements 26, 28, 30 and 32 extend along the right side thereof.
Lateral structural elements 34, 36 extend between elements
20, 30 and 22, 32, respectively nearer the front axle area 16 and lateral structural elements 38, 40 extend between elements 20, 30 and 22, 32, respectively nearer the rear axle area 18, thereby defining a mid-chassis space 41. The front axle area 16 is defined in and around structural elements 43, 44 at the rear and front, and on the sides by structural elements 46, 48 which may be extensions of the elements 20, 22, 30, 32 or connected therewith. Forward of the front axle area, a forward space is defined between element 44 and elements 50, 52. The rear axle area 18 is defined in and around structural elements 53, 54 at the front and rear, and on the sides by structural elements 56, 58, which may be extensions of the elements 20, 22, 30, 32 or connected therewith. Rearward of the rear axle area 18, a rearward space is defined between element 54 and elements 60, 62. Alternatively, the rear axle area 18 or the rearward space may be elevated relative to the rest of the structural frame 11 if necessary to accommodate an energy conversion system, and the frame may include other elements to surround and protect an energy conversion system. The frame defines a plurality of open spaces between the elements described above. Those skilled in the art will recognize materials and fastening methods suitable for use in the structural frame. For example, the structural elements may be tubular, aluminum, and welded at their respective connections to other structural elements.
The structural frame 11 provides a rigid structure to which an
energy conversion system 67, energy storage system 69, suspension system 71 with wheels 73, 75, 77, 79 (each wheel having a tire 80), steering system 81, and braking system 83 are mounted, as shown in Figures 1-3, and is configured to support an attached body 85, as shown in Figure 4. A person

or ordinary skill in the art will recognize that the structural frame 11 can take
many different forms, in addition to the cage-like structure of the
embodiment depicted in Figures 1-3. For example, the structural frame 11
can be a traditional automotive frame having two or more longitudinal
structural members spaced a distance apart from each other, with two or
more transverse structural members spaced apart from each other and
attached to both longitudinal structural members at their ends. Alternatively,
the structural frame may also be in the form of a "belly pan," wherein
integrated rails and cross members are formed in sheets of metal or other
suitable material, with other formations to accommodate various system
components. The structural frame may also be integrated with various
chassis components.
Referring to Figure 2, a body attachment interface 87 is
defined as the sum of all body connection components, i.e., connective
elements that function to operably mate a vehicle body to the chassis 10.
The body connection components of the preferred embodiment include a
plurality of load-bearing body-retention couplings 89 mounted with respect
to the structural frame 11 and a single electrical connector 91.
As shown in Figure 4, the load-bearing body-retention
couplings 89 are engageable with complementary attachment couplings 93 on a vehicle body 85 and function to physically fasten the vehicle body 85 to the chassis 10. Those skilled in the art will recognize that a multitude of fastening and locking elements may be used and fall within the scope of the claimed invention. The load-bearing body-retention couplings 89 are preferably releasably engageable with complementary couplings, though non-releasably engageable couplings such as weld flanges or riveting surfaces may be employed within the scope of the claimed invention. Ancillary fastening elements may be used as lock downs in conjunction with the load-bearing body-retention couplings. Load-bearing surfaces without locking or

.fastening features on the chassis 10 may be used with the load-bearing body-
retention couplings 89 to support the weight of an attached vehicle body 85.
In the preferred embodiment, the load-bearing body-retention couplings 89
include support brackets with bolt holes. Rubber mounts (not shown)
located on the support brackets dampen vibrations transmitted between the
body and the chassis. Alternatively, hard mounts may be employed for
body-retention couplings.
The electrical connector 91 is engageable with a
complementary electrical connector 95 on a vehicle body 85. The electrical connector 91 of the preferred embodiment may perform multiple functions, or select combinations thereof. First, the electrical connector 91 may function as an electrical power connector, i.e., it may be configured to transfer electrical energy generated by components on the chassis 10 to a vehicle body 85 or other non-chassis destination. Second, the electrical connector 91 may function as a control signal receiver, i.e., a device configured to transfer control signals from a non-chassis source to controlled systems including the energy conversion system, steering system, and braking system. Third, the electrical connector 91 may function as a feedback signal conduit through which feedback signals are made available to a vehicle driver. Fourth, the electrical connector 91 may function as an external programming interface through which software containing algorithms and data may be transmitted for use by controlled systems. Fifth, the electrical connector may function as an information conduit through which sensor information and other information is made available to a vehicle driver. The electrical connector 91 may thus function as a communications and power "umbilical" port through which all communications between the chassis 10 and an attached vehicle body 85 are transmitted. Electrical connectors include devices configured to operably connect one or more electrical wires with other electrical wires. The wires

•may be spaced a distance apart to avoid any one wire causing signal interference in another wire operably connected to an electrical connector or for any reason that wires in close proximity may not be desirable.
If one electrical connector performing multiple functions is
not desirable, for example, if a cumbersome wire bundle is required, or power transmission results in control signal interference, the body attachment interface 87 may include a plurality of electrical connectors 91 engageable with a plurality of complementary electrical connectors 95 on a vehicle body 85, with different connectors performing different functions. A complementary electrical connector 95 performs functions complementary to the function of the electrical connector with which it engages, for example, functioning as a control signal transmitter when engaged with a control signal receiver.
Referring again to Figures 1-3, the energy conversion system
67, energy storage system 69, steering system 81, and braking system 83, are configured and positioned on the chassis 10 to minimize the overall vertical height of the chassis 10 and to maintain a substantially horizontal upper chassis face 96. A face of an object is an imaginary surface that follows the contours of the object that face, and are directly exposed to, a particular direction. Thus, the upper chassis face 96 is an imaginary surface that follows the upwardly facing and exposed contours of the chassis frame 11 and systems mounted therein. Matable vehicle bodies have a corresponding lower body face 97 that is an imaginary surface that follows the downwardly facing and exposed contours of the body 85, as shown in Figure 4.
Referring again to Figures 1-3, the structural frame 11 has a
height defined as the vertical distance between its highest point (the top of structural element 20) and its lowest point (the bottom of structural element
22). In the preferred embodiment, the structural frame height is

approximately 11 inches. To achieve a substantially horizontal upper chassis face 96, the energy conversion system 67, energy storage system 69, steering system 81, and braking system 83 are distributed throughout the open spaces and are configured, positioned, and mounted to the structural frame 11 such that no part of the energy conversion system 67, energy storage system 69, steering system 81, or braking system 83, extends or protrudes above the structural frame 11 more than 50% of the structural frame's 11 height, or above the top of any of the tires 80. The substantially horizontal upper chassis face 96 enables the attached vehicle body 85 to have a passenger area that extends the length of the chassis, unlike prior art bodies that have an engine compartment to accommodate a vertically-protruding internal combustion engine.
Most of the powertrain load is evenly distributed between the
front and rear of the chassis so there is a lower center of gravity for the
whole vehicle without sacrificing ground clearance, thereby enabling
improved handling while resisting rollover forces.
Referring again to Figure 4, the preferred embodiment of the
rolling platform 10 is configured such that the lower body face 97 of a matable vehicle body 85 is positioned closely adjacent to the upper chassis face 96 for engagement with the rolling platform 10. The body connection components have a predetermined spatial relationship relative to one another, and are sufficiently positioned, exposed, and unobstructed such that when a vehicle body 85 having complementary connection components (complementary attachment couplings 93 and a complementary electrical connector 95) in the same predetermined spatial relationship as the body connection components is sufficiently positioned relative to the upper chassis face 96 of a chassis 10 of the invention, the complementary connection components are adjacent to corresponding body connection components and ready for engagement, as depicted in Figure 4. In the context of the present

.invention, a body connection component having a protective covering is exposed and unobstructed if the protective covering is removable or retractable.
Each.body connection component has a spatial relationship
relative to each of the other body connection components that can be
expressed, for example, as a vector quantity. Body connection components
and complementary connection components have the same predetermined
spatial relationship if the vector quantities that describe the spatial
relationship between a body connection component and the other body
connection components to be engaged also describe the spatial relationship
between a corresponding complementary connection component and the
other complementary connection components to be engaged. For example,
the spatial relationship may be defined as follows: a first body connection
component is spaced a distance Ax + By from a reference point; a second
body connection component is spaced a distance Cx + Dy from the
reference point; a third body connection component is spaced a distance Ex
+ Fy from the reference point; etc. Corresponding complementary
connection components in the same predetermined spatial relationship are
spaced in a mirror image relationship in the lower body face, as depicted in
Figures 4 and 5. A protective covering (not shown) may be employed to
protect any of the body connection components.
The body connection components and the complementary
connection components are preferably adjacent without positional modification when a vehicle body 85 is sufficiently positioned relative to a chassis 10 of the invention; however, in the context of the present invention, the body connection components may be movable relative to each other within a predetermined spatial relationship to accommodate build tolerances or other assembly issues. For example, an electrical connector may be positioned and operably connected to a signal-carrying cable. The cable may

•be fixed relative to the structural frame at a point six inches from the electrical connector. The electrical connector will thus be movable within six inches of the fixed point on the cable. A body connection component is considered adjacent to a complementary connection component if one or both are movable within a predetermined spatial relationship so as to be in contact with each other.
Referring to Figure 5, the body-attachment interface of the
claimed invention enables compatibility between the chassis 10 and different types of bodies 85, 85', 85" having substantially different designs. Bodies 85, 85', 85" having a common base 98 with complementary attachment couplings 93 and complementary electrical connectors 95 in the same predetermined spatial relationship with one another as the predetermined spatial relationship between body connection components on the body-attachment interface 87, are each matable with the chassis 10 by positioning the body 85, 85', 85" relative to the chassis 10 such that each complementary attachment coupling 93 is adjacent to a load-bearing body-retention coupling 89, and the complementary electrical connector 95 is adjacent to the electrical connector 91. In accordance with the preferred embodiment of the present invention, all bodies and chassis comply with this common, standardized interface system, thereby enabling a wide array of different body types and styles to be attached to a single chassis design. The substantially horizontal upper chassis face 96 also facilitates compatibility between the rolling platform 10 and a multitude of differently-configured body styles. The common base 98 functions as a body structural unit and forms the lower body face 97 in the preferred embodiment. Figure 5 schematically depicts a sedan 85, a van 85', and a pickup truck 85" each having a common base 98.
[0063] The body connection components are preferably sufficiently
exposed at a chassis face to facilitate attachment to complementary

connection components on a matable vehicle body. Similarly, complementary connection components on a matable vehicle body are sufficiently exposed at a body face to facilitate attachment to body connection components on a vehicle chassis. In the preferred embodiment of the invention, the body connection components are located at or above the upper chassis face for engagement with complementary connection components located at or below a lower body face.
It is within the scope of the claimed invention to employ a
connection device to engage or operably connect a body connection
component with a distant complementary connection component, in the
situation where a vehicle body does not have complementary connection
components in the same predetermined spatial relationship as the body
connection components on a vehicle chassis. For example, a cable having
two connectors, one connector engageable with the electrical connector on a
body attachment interface and the other connector engageable with a
complementary connector on a matable vehicle body, may be used to
operably connect the electrical connector and the complementary connector.
The bodies 85, 85', 85" shown schematically in Figure 5 each
use all of the body connection components on the vehicle chassis 10. However, within the scope of the claimed invention, a chassis may have more body connection components than are actually mated with a vehicle body. For example, a chassis may have ten load-bearing body-retention couplings, and be matable with a body that engages only five of the ten load-bearing body-retention couplings. Such an arrangement is particularly useful when an attachable body is of a different size than the chassis. For example, a matable body may be smaller than a chassis. Similarly, and within the scope of the claimed invention, a body may be modular such that separate body components are independently connected to the vehicle chassis by the load-bearing body-retention couplings.

A body may have more complementary connection
components than are engageable with the body connection components of a
particular chassis. Such an arrangement may be employed to enable a
particular body to be matable to multiple chassis each having a different
predetermined spatial relationship among its body connection components.
The load-bearing body-retention couplings 89 and the
electrical connector 91 are preferably releasably engageable without damage to either an attached body 85 or the chassis 10, thereby enabling removal of one body 85 from the chassis 10 and installation of a different body 85', 85" on the chassis 10. .
In the preferred embodiment, the body-attachment interface 87
is characterized by the absence of any mechanical control signal-transmission linkages and any couplings for attaching mechanical control signal-transmission linkages. Mechanical control linkages, such as steering columns, limit the compatibility between a chassis and bodies of different configurations.
Referring to Figure 1, the steering system 81 is housed in the
front axle area 16 and is operably connected to the front wheels 73, 75. Preferably, the steering system 81 is responsive to non-mechanical control signals. In the preferred embodiment, the steering system 81 is by-wire. A by-wire system is characterized by control signal transmission in electrical form. In the context of the present invention, "by-wire" systems, or systems that are controllable "by-wire," include systems configured to receive control signals in electronic form via a control signal receiver on the body attachment interface 87, and respond in conformity to the electronic control signals.
Referring to Figure 6, the by-wire steering system 81 of the
preferred embodiment includes a steering control unit 98, and a steering actuator 99. Sensors 100 are located on the chassis 10 and transmit sensor

•signals 101 carrying information concerning the state or condition of the
chassis 10 and its component systems. The sensors 100 may include position
sensors, velocity sensors, acceleration sensors, pressure sensors, force and
torque sensors, flow meters, temperature sensors, etc. The steering control
unit 98 receives and processes sensor signals 101 from the sensors 100 and
electrical steering control signals 102 from the electrical connector 91, and
generates steering actuator control signals 103 according to a stored
algorithm. A control unit typically includes a microprocessor, ROM and
RAM and appropriate input and output circuits of a known type for receiving
the various input signals and for outputting the various control commands to
the actuators. Sensor signals 101 may include yaw rate, lateral acceleration,
angular wheel velocity, tie-rod force, steering angle, chassis velocity, etc.
The steering actuator 99 is operably connected to the front
wheels 73, 75 and configured to adjust the steering angle of the front wheels
73, 75 in response to the steering actuator control signals 103. Actuators in a
by-wire system transform electronic control signals into a mechanical action
or otherwise influence a system's behavior in response to the electronic
control signals. Examples of actuators that may be used in a by-wire system
include electromechanical actuators such as electric servomotors,
translational and rotational solenoids, magnetorheological actuators,
electrohydraulic actuators, and electrorheological actuators. Those skilled in
the art will recognize and understand mechanisms by which the steering
angle is adjusted. In the preferred embodiment, the steering actuator 99 is
an electric drive motor configured to adjust a mechanical steering rack.
[0n7?] Referring again to Figure 6, the preferred embodiment of the
chassis 10 is configured such that it is steerable by any source of compatible electrical steering control signals 102 connected to the electrical connector 91. Figure 6 depicts a steering transducer 104 located on an attached vehicle body 85 and connected to a complementary electrical connector 95.

Transducers convert the mechanical control signals of a vehicle driver to
non-mechanical control signals. When used with a by-wire system,
transducers convert the mechanical control signals to electrical control
signals usable by the by-wire system. A vehicle driver inputs control signals
in mechanical form by turning a wheel, depressing a pedal, pressing a
button, or the like. Transducers utilize sensors, typically position and force
sensors, to convert the mechanical input to an electrical signal. In the
preferred embodiment, a +/-20 degree slide mechanism is used for driver
input, and an optical encoder is used to read input rotation.
[6073] The complementary electrical connector 95 is coupled with the
electrical connector 91 of the body attachment interface 87. The steering transducer 104 converts vehicle driver-initiated mechanical steering control signals 105 to electrical steering control signals 102 which are transmitted via the electrical connector 91 to the steering control unit 98. In the preferred embodiment, the steering control unit 98 generates steering feedback signals 106 for use by a vehicle driver and transmits the steering feedback signals 106 through the electrical connector 91. Some of the sensors 100 monitor linear distance movement of the steering rack and vehicle speed. This information' is processed by the steering control unit 98 according to a stored algorithm to generate the steering feedback signals 106. A torque control motor operably connected to the slide mechanism receives the steering feedback signals 106 and is driven in the opposite direction of the driver's mechanical input.
In the context of the present invention, a "by-wire" system
may be an actuator connected directly to an electrical connector in the body attachment interface. An alternative by-wire steering system 81' within the scope of the claimed invention is depicted schematically in Figure 7, wherein like reference numbers refer to like components from Figure 6. A steering actuator 99 configured to adjust the steering angle of the front wheels 73, 75

.is connected directly to the electrical connector 91. In this embodiment, a steering control unit 98' and a steering transducer 104 may be located in an attached vehicle body 85. The steering transducer 104 would transmit electrical steering control signals 102 to the steering control unit 98', and the steering control unit 98' would transmit steering actuator control signals 103 to the steering actuator 99 via the electrical connector 91. Sensors 100 positioned on the chassis 10 transmit sensor signals 101 to the steering control unit 98' via the electrical connector 91 and the complementary electrical connector 95.
Examples of steer-by-wire systems are described in U.S.
Patent Nos. 6,176,341, issued January 23, 2001 to Delphi Technologies, Inc; 6,208,923, issued March 27, 2001 to Robert Bosch GmbH; 6,219,604, issued April 17, 2001 to Robert Bosch GmbH; 6,318,494, issued November 20, 2001 to Delphi Technologies, Inc.; 6,370,460, issued April 9, 2002 to Delphi Technologies, Inc.; and 6,394,218, issued May 28, 2002 to TRW Fahrwerksysteme GmbH & Co. KG.
The steer-by-wire system described in U.S. Patent No.
6,176,341 includes a position sensor for sensing angular position of a road wheel, a hand-operated steering wheel for controlling direction of the road wheel, a steering wheel sensor for sensing position of the steering wheel, a steering wheel actuator for actuating the hand-operated steering wheel, and a steering control unit for receiving the sensed steering wheel position and the sensed road wheel position and calculating actuator control signals, preferably including a road wheel actuator control signal and a steering wheel actuator control signal, as a function of the difference between the sensed road wheel position and the steering wheel position. The steering control unit commands the road wheel actuator to provide controlled steering of the road wheel in response to the road wheel actuator control signal. The steering control unit further commands the steering wheel actuator to provide

. feedback force actuation to the hand-operated steering wheel in response to
the steering wheel control signal. The road wheel actuator control signal and
steering wheel actuator control signal are preferably scaled to compensate for
difference in gear ratio between the steering wheel and the road wheel. In
addition, the road wheel actuator control signal and steering wheel actuator
control signal may each have a gain set so that the road wheel control
actuator signal commands greater force actuation to the road wheel than the
feedback force applied to the steering wheel.
The steer-by-wire system described in U.S. Patent No.
6,176,341 preferably implements two position control loops, one for the
road wheel and one for the hand wheel. The position feedback from the
steering wheel becomes a position command input for the road wheel control
loop and the position feedback from the road wheel becomes a position
command input for the steering wheel control loop. A road wheel error
signal is calculated as the difference between the road wheel command input
(steering wheel position feedback) and the road wheel position. Actuation of
the road wheel is commanded in response to the road wheel error signal to
provide controlled steering of the road wheel. A steering wheel error signal
is calculated as the difference between the steering wheel position command
(road wheel position feedback) and the steering wheel position. The hand-
operated steering wheel is actuated in response to the steering wheel error
signal to provide force feedback to the hand-operated steering wheel.
The steering control unit of the '341 system could be
configured as a single processor or multiple processors and may include a general-purpose microprocessor-based controller, that may include a commercially available off-the-shelf controller. One example of a controller is Model No. 87C196CA microcontroller manufactured and made available from Intel Corporation of Delaware. The steering control unit preferably includes a processor and memory for storing and processing software

.algorithms, has a clock speed of 16 MHz, two optical encoder interfaces to
read position feedbacks from each of the actuator motors, a pulse width
modulation output for each motor driver, and a 5-volt regulator.
U.S. Patent No. 6,370,460 describes a steer-by-wire control
system comprising a road wheel unit and a steering wheel unit that operate together to provide steering control for the vehicle operator. A steering control unit may be employed to support performing the desired signal processing. Signals from sensors in the road wheel unit, steering wheel unit, and vehicle speed are used to calculate road wheel actuator control signals to control the direction of the vehicle and steering wheel torque commands to provide tactile feedback to the vehicle operator. An Ackerman correction may be employed to adjust the left and right road wheel angles correcting for errors in the steering geometry to ensure that the wheels will track about a common turn center.
Referring again to Figure 1, a braking system 83 is mounted
to the structural frame 11 and is operably connected to the wheels 73, 75, 77, 79. The braking system is configured to be responsive to non-mechanical control signals. In the preferred embodiment, the braking system 83 is by-wire, as depicted schematically in Figure 8, wherein like reference numbers refer to like components from Figures 6 and 7. Sensors 100 transmit sensor signals 101 carrying information concerning the state or condition of the chassis 10 and its component systems to a braking control unit 107. The braking control unit 107 is connected to the electrical connector 91 and is configured to receive electrical braking control signals 108 via the electrical connector 91. The braking control unit 107 processes the sensor signals 101 and the electrical braking control signals 108 and generates braking actuator control signals 109 according to a stored algorithm. The braking control unit 107 then transmits the braking actuator control signals 109 to braking actuators 110, 111, 112, 113 which act to

. reduce the angular velocity of the wheels 73, 75, 77, 79. Those skilled in the art will recognize the manner in which the braking actuators 110, 111, 112, 113 act on the wheels 73, 75, 77, 79. Typically, actuators cause contact between friction elements, such as pads and disc rotors. Optionally, an electric motor may function as a braking actuator in a regenerative braking system.
The braking control unit 107 may also generate braking
feedback signals 114 for use by a vehicle driver and transmit the braking
feedback signals 114 through the electrical connector 91. In the preferred
embodiment, the braking actuators 110, 111, 112, 113 apply force through a
caliper to a rotor at each wheel. Some of the sensors 100 measure the
applied force on each caliper. The braking control unit 107 uses this
information to ensure synchronous force application to each rotor.
Referring again to Figure 8, the preferred embodiment of the
chassis 10 is configured such that the braking system is responsive to any source of compatible electrical braking control signals 108. A braking transducer 115 may be located on an attached vehicle body 85 and connected to a complementary electrical connector 95 coupled with the electrical connector 91. The braking transducer 115 converts vehicle driver-initiated mechanical braking control signals 116 into electrical form and transmits the electrical braking control signals 106 to the braking control unit via the electrical connector 91. In the preferred embodiment, the braking transducer 115 includes two hand-grip type assemblies. The braking transducer 115 includes sensors that measure both the rate of applied pressure and the amount of applied pressure to the hand-grip assemblies, thereby converting mechanical braking control signals 116 to electrical braking control signals 108. The braking control unit 107 processes both the rate and amount of applied pressure to provide both normal and panic stopping.

An alternative brake-by-wire system 83' within the scope of
the claimed invention is depicted in Figure 9, wherein like reference
numbers refer to like components from Figures 6-8. The braking actuators
110, 111, 112, 113 and sensors 100 are connected directly to the electrical
connector 91. In this embodiment, a braking control unit 107' may be
located in an attached vehicle body 85. A braking transducer 115 transmits
electrical braking control signals 108 to the braking control unit 107', and
the braking control unit 107' transmits braking actuator signals 109 to the
braking actuators 110, 111, 112, 113 via the electrical connector 91.
Examples of brake-by-wire systems are described in U.S.
Patent Nos. 5,366,281, issued November 22, 2994 to General Motors Corporation; 5,823,636, issued October 20, 1998 to General Motors Corporation; 6,305,758, issued October 23, 2001 to Delphi Technologies, Inc.; and 6,390,565, issued May 21, 2002 to Delphi Technologies, Inc.
The system described in U.S. Patent No. 5,366,281 includes
an input device for receiving mechanical braking control signals, a brake actuator and a control unit coupled to the input device and the brake actuator. The control unit receives brake commands, or electrical braking control signals, from the input device and provides actuator commands, or braking actuator control signals, to control current and voltage to the brake actuator. When a brake command is first received from the input device, the control unit outputs, for a first predetermined time period, a brake torque command to the brake actuator commanding maximum current to the actuator. After the first predetermined time period, the control unit outputs, for a second predetermined time period, a brake torque command to the brake actuator commanding voltage to the actuator responsive to the brake command and a first gain factor. After the second predetermined time period, the control unit outputs the brake torque command to the brake actuator commanding current to the actuator responsive to the brake

command and a second gain factor, wherein the first gain factor is greater than the second gain factor and wherein brake initialization is responsive to the brake input.
[0086] U.S. Patent No. 6,390,565 describes a brake-by-wire system
that provides the capability of both travel and force sensors in a braking
transducer connected to a brake apply input member such as a brake pedal
and also provides redundancy in sensors by providing the signal from a
sensor responsive to travel or position of the brake apply input member to a
first control unit and the signal from a sensor responsive to force applied to a
brake apply input member to a second control unit. The first and second
control units are connected by a bi-directional communication link whereby
each controller may communicate its received one of the sensor signals to the
other control unit. In at least one of the control units, linearized versions of
the signals are combined for the generation of first and second brake apply
command signals for communication to braking actuators. If either control
unit does not receive one of the sensor signals from the other, it nevertheless
generates its braking actuator control signal on the basis of the sensor signal
provided directly to it. In a preferred embodiment of the system, a control
unit combines the linearized signals by choosing the largest in magnitude. Referring again to Figure 1, the energy storage system 69
stores energy that is used to propel the chassis 10. For most applications, the stored energy will be in chemical form. Examples of energy storage systems 69 include fuel tanks and electric batteries. In the embodiment shown in Figure 1, the energy storage system 69 includes two compressed gas cylinder storage tanks 121 (5,000 psi, or 350 bars) mounted within the mid-chassis space 41 and configured to store compressed hydrogen gas. Employing more than two compressed gas cylinder storage tanks may be desirable to provide greater hydrogen storage capacity. Instead of compressed gas cylinder storage tanks 121, an alternate form of hydrogen storage may be

.employed such as metal or chemical hydrides. Hydrogen generation or reforming may also be used.
[0088] The energy conversion system 67 converts the energy stored
by the energy storage system 69 to mechanical energy that propels the
chassis 10. In the preferred embodiment, depicted in Figure 1, the energy
conversion system 67 includes a fuel cell stack 125 located in the rear axle
area 18, and an electric traction motor 127 located in the front axle area 16.
The fuel cell stack 125 produces a continuously available power of 94
kilowatts.
The fuel cell stack 125 is operably connected to the
compressed gas cylinder storage tanks 121 and to the traction motor 127. The fuel cell stack 125 converts chemical energy in the form of hydrogen from the compressed gas cylinder storage tanks 121 into electrical energy, and the traction motor 127 converts the electrical energy to mechanical energy, and applies the mechanical energy to rotate the front wheels 73, 75. Optionally, the fuel cell stack 125 and traction motor 127 are switched between the front axle area 16 and rear axle area 18. Optionally, the energy conversion system includes an electric battery (not shown) in hybrid combination with the fuel cell to improve chassis acceleration. Other areas provided between the structural elements are useful for housing other mechanisms and systems for providing the functions typical of an automobile as shown in Figures 2 and 3. Those skilled in the art will recognize other energy conversion systems 67 that may be employed within the scope of the present invention.
The energy conversion system 67 is configured to respond to
non-mechanical control signals. The energy conversion system 67 of the preferred embodiment is controllable by-wire, as depicted in Figure 10. An energy conversion system control unit 128 is connected to the electrical connector 91 from which it receives electrical energy conversion system

control signals 129, and sensors 100 from which it receives sensor signals 101 carrying information about various chassis conditions. In the preferred embodiment, the information conveyed by the sensor signals 101 to the energy conversion system control unit 128 includes chassis velocity, electrical current applied, rate of acceleration of the chassis, and motor shaft speed to ensure smooth launches and controlled acceleration. The energy conversion system control unit 128 is connected to an energy conversion system actuator 130, and transmits energy conversion system actuator control signals 131 to the energy conversion system actuator 130 in response to the electrical energy conversion system control signals 129 and sensor signals 101 according to a stored algorithm. The energy conversion system actuator 130 acts on the fuel cell stack 125 or traction motor 127 to adjust energy output. Those skilled in the art will recognize the various methods by which the energy conversion system actuator 130 may adjust the energy output of the energy conversion system. For example, a solenoid may alternately open and close a valve that regulates hydrogen flow to the fuel cell stack. Similarly, a compressor that supplies oxygen (from air) to the fuel cell stack may function as an actuator, varying the amount of oxygen supplied to the fuel cell stack in response to signals from the energy conversion system control unit.
An energy conversion system transducer 132 may be located
on a vehicle body 85 and connected to a complementary electrical connector 95 engaged with the electrical connector 91. The energy conversion system transducer 132 is configured to convert mechanical energy conversion system control signals 133 to electrical energy conversion system control signals 129.
In another embodiment of the invention, as shown
schematically in Figure 11, wherein like reference numbers refer to like components from Figures 6-10, wheel motors 135, also known as wheel hub

.motors, are positioned at each of the four wheels 73, 75, 77, 79. Optionally, wheel motors 135 may be provided at only the front wheels 73, 75 or only the rear wheels 77, 79. The use of wheel motors 135 reduces the height of the chassis 10 compared to the use of traction motors, and therefore may be desirable for certain uses.
Referring again to Figure 2, a conventional heat exchanger
137 and electric fan system 139, operably connected to the fuel cell stack 125 to circulate coolant for waste heat rejection, is carried in an opening that exists between the rear axle area 18 and the structural elements 54, 60. The heat exchanger 137 is set at an inclined angle to reduce its vertical profile, but to provide adequate heat rejection it also extends slightly above the top of elements 12, 26 (as seen in Figure 4). Although the fuel cell stack 125, heat exchanger 137 and electric fan system 139 extend above the structural elements, their protrusion into the body pod space is relatively minor when compared to the engine compartment requirements of a conventionally designed automobile, especially when the chassis height of the preferred embodiment is approximately a mere 15 inches (28 centimeters). Optionally, the heat exchanger 137 is packaged completely within the chassis' structure with airflow routed through channels (not shown).
- [0094] Referring again to Figure 1, the suspension system 71 is
mounted to the structural frame 11 and is connected to four wheels 73, 75, 77, 79. Those skilled in the art will understand the operation of a suspension system, and recognize that a multitude of suspension system types may be used within the scope of the claimed invention. The suspension system 71 of the preferred embodiment of the invention is electronically controlled, as depicted schematically in Figure 12.
Referring to Figure 12, the behavior of the electronically
controlled suspension system 71 in response to any given road input is determined by a suspension control unit 141. Sensors 100 located on the

chassis 10 monitor various conditions such as vehicle speed, angular wheel velocity, and wheel position relative to the chassis 10. The sensors 100 transmit the sensor signals 101 to the suspension control unit 141. The suspension control unit 141 processes the sensor signals 101 and generates suspension actuator control signals 142 according to a stored algorithm. The suspension control unit 141 transmits the suspension actuator control signals 142 to four suspension actuators 143, 144, 145, 146. Each suspension actuator 143, 144, 145, 146 is operably connected to a wheel 73, 75, 77, 79 and determines, in whole or in part, the position of the wheel 73, 75, 77, 79 relative to the chassis 10. The suspension actuators of the preferred embodiment are variable-force, real time, controllable dampers. The suspension system 71 of the preferred embodiment is also configured such that chassis ride height is adjustable. Separate actuators may be used to vary the chassis ride height.
In the preferred embodiment, the suspension control unit 141
is programmable and connected to the electrical connector 91 of the body-
attachment interface 87. A vehicle user is thus able to alter suspension
system 71 characteristics by reprogramming the suspension control unit 141
with suspension system software 147 via the electrical connector 91.
In the context of the claimed invention, electronically-
controlled suspension systems include suspension systems without a suspension control unit located on the chassis 10. Referring to Figure 13, wherein like reference numbers are used to reference like components from Figure 12, suspension actuators 143, 144, 145, 146 and suspension sensors 100 are connected directly to the electrical connector 91. In such an embodiment, a suspension control unit 14 V located on an attached vehicle body 85 can process sensor signals 101 transmitted through the electrical connector 91, and transmit suspension actuator control signals 142 to the suspension actuators 143, 144, 145, 146 via the electrical connector 91.

Examples of electronically controlled suspension systems are
described in U.S. Patent Nos. 5,606,503, issued February 25, 1997 to General Motors Corporation; 5,609,353, issued March 11, 1997 to Ford Motor Company; and 6,397,134, issued May 28, 2002 to Delphi Technologies, Inc.
U.S. Patent No. 6,397,134 describes an electronically
controlled suspension system that provides improved suspension control
through steering crossover events. In particular, the system senses a vehicle
lateral acceleration and a vehicle steering angle and stores, for each direction
of sensed vehicle lateral acceleration, first and second sets of enhanced
suspension actuator control signals for the suspension actuators of the
vehicle. Responsive to the sensed vehicle lateral acceleration and sensed
vehicle steering angle, the system applies the first set of enhanced actuator
control signals to the suspension actuators if the sensed steering angle is in
the same direction as the sensed lateral acceleration and alternatively applies
the second set of enhanced actuator control signals to the suspension
actuators if the sensed steering angle is in the opposite direction as the sensed
lateral acceleration.
U.S. Patent No. 5,606,503 describes a suspension control
system for use in a vehicle including a suspended vehicle body, four un-suspended vehicle wheels, four variable force actuators mounted between the vehicle body and wheels, one of the variable force actuators at each corner of the vehicle, and a set of sensors providing sensor signals indicative of motion of the vehicle body, motion of the vehicle wheels, a vehicle speed and an ambient temperature. The suspension control system comprises a microcomputer control unit including: means for receiving the sensor signals; means, responsive to the sensor signals, for determining an actuator demand force for each actuator; means, responsive to the vehicle speed, for determining a first signal indicative of a first command maximum; means,

responsive to the ambient temperature, for determining a second signal indicative of a second command maximum; and means for constraining the actuator demand force so that it is no greater than a lesser of the first and second command maximums.
Electrically conductive wires (not shown) are used in the
preferred embodiment to transfer signals between the chassis 10 and an attached body 85, and between transducers, control units, and actuators. Those skilled in the art will recognize that other non-mechanical means of sending and receiving signals between a body and a chassis, and between transducers, control units, and actuators may be employed and fall within the scope of the claimed invention. Other non-mechanical means of sending and receiving signals include radio waves and fiber optics.
The by-wire systems are networked in the preferred
embodiment, in part to reduce the quantity of dedicated wires connected to the electrical connector 91. Those skilled in the art will recognize various networking devices and protocols that may be used within the scope of the claimed invention, such as SAE J1850 and CAN ("Controller Area Network"). A TTP ("Time Triggered Protocol") network is employed in the preferred embodiment of the invention for communications management.
Some of the information collected by the sensors 100, such as
chassis velocity, fuel level, and system temperature and pressure, is useful to a vehicle driver for operating the chassis and detecting system malfunctions. As shown in Figure 14, the sensors 100 are connected to the electrical connector 91 through a chassis computer 153. Sensor signals 101 carrying information are transmitted from the sensors 100 to the chassis computer 153, which processes the sensor signals 101 according to a stored algorithm. The chassis computer 153 transmits the sensor signals 101 to the electrical connector 91 when, according to the stored algorithm, the sensor information is useful to the vehicle driver. For example, a sensor signal 101 carrying

temperature information is transmitted to the electrical connector 91 by the chassis computer 153 when the operating temperature of the chassis 10 is unacceptably high. A driver-readable information interface 155 may be attached to a complementary electrical connector 95 coupled with the electrical connector 91 and display the information contained in the sensor signals 101. Driver-readable information interfaces include, but are not limited to, gauges, meters, LED displays, and LCD displays. The chassis may also contain communications systems, such as antennas and telematics systems, that are operably connected to an electrical connector in the body-attachment interface and configured to transmit information to an attached vehicle body.
One control unit may serve multiple functions. For example,
as shown in Figure 15, a master control unit 159 functions as the steering control unit, braking control unit, suspension control unit, and energy conversion system control unit.
Referring again to Figure 15, the energy conversion system 67
is configured to transmit electrical energy to the electrical connector 91 to provide electric power for systems located on an attached vehicle body, such as power windows, power locks, entertainment systems, heating, ventilating, and air conditioning systems, etc. Optionally, if the energy storage system 69 includes a battery, then the battery may be connected to the electrical connector 91. In the preferred embodiment, the energy conversion system 67 includes a fuel cell stack that generates electrical energy and is connected to the electrical connector 91.
Figure 16 shows a chassis 10 with rigid covering, or "skin,"
161 and an electrical connector or coupling 91 that functions as an umbilical port. The rigid covering 161 may be configured to function as a vehicle floor, which is useful if an attached vehicle body 85 does not have a lower surface. In Figure 17 a similarly equipped chassis 10 is shown with an

optional vertical fuel cell stack 125. The vertical fuel cell stack 125 protrudes significantly into the body pod space which is acceptable for some applications. The chassis 10 also includes a manual parking brake interface 162 that may be necessary for certain applications and therefore is also optionally used with other embodiments.
Figure 18 depicts an embodiment of the invention that may be
advantageous in some circumstances. The energy conversion system 67 includes an internal combustion engine 167 with horizontally-opposed cylinders, and a transmission 169. The energy storage system 69 includes a gasoline tank 171.
Figure 19 depicts an embodiment of the invention wherein the
steering system 81 has mechanical control linkages including a steering column 173. Passenger seating attachment couplings 175 are present on the body attachment interface 87, allowing the attachment of passenger seating assemblies to the chassis 10.
Figures 20 and 20a depict a chassis 10 within the scope of the
invention and a body 85 each having multiple electrical connectors 91 and multiple complementary electrical connectors 95, respectively. For example, a first electrical connector 91 may be operably connected to the steering system and function as a control signal receiver. A second electrical connector 91 may be operably connected to the braking system and function as a control signal receiver. A third electrical connector 91 may be operably connected to the energy conversion system and function as a control signal receiver. A fourth electrical connector 91 may be operably connected to the energy conversion system and function as an electrical power connector. Four multiple wire in-line connectors and complementary connectors are used in the embodiment shown in Figures 20 and 20a. Figure 20a depicts an assembly process for attaching corresponding connectors 91, 95.

Referring to Figure 21, a further embodiment of the claimed
invention is depicted. The chassis 10 has a rigid covering 161 and a
plurality of passenger seating attachment couplings 175. A driver-operable
control input device 177 containing a steering transducer, a braking
transducer, and an energy conversion system transducer, is operably
connected to the steering system, braking system, and energy conversion
system by wires 179 and movable to different attachment points.
The embodiment depicted in Figure 21 enables bodies of
varying designs and configurations to mate with a common chassis design. A vehicle body without a lower surface but having complementary attachment couplings is matable to the chassis 10 at the load-bearing body retention couplings 89. Passenger seating assemblies may be attached at passenger seating attachment couplings 175.
Figure 22 illustrates a range of body pods (a.k.a. bodies) 211-
214 that may be employed on a single chassis or rolling platform 215. The
owner of the rolling platform 215 can adapt to seasonal changes or lifestyle
changes by simply changing vehicle body pods. The rolling platform
comprises most of the durable hardware, meaning body pods require far less
material and energy to produce than complete vehicles.
Referring to Figure 23, the process of securing optional
bodies or body pods is depicted. Body pods can be hot swapped on a random time interval basis according to the whim of the driver or on a scheduled basis according to the guidelines of the vehicle pod provider. This aspect provides a business model of how a vehicle body can be rented, leased, exchanged, or sold. The process of vehicle body interchangeability provides that the consumer can disconnect and connect vehicle bodies quickly without headaches of complexity. Just lift off and drop pods with mechanical and electrical common interface connections as described previously. Initially, the driver secures the use of a rolling chassis 241 and a

body pod 242. A body pod service provider 245 maintains an inventory of body pods 246 that are either available on site, ordered to specification, or in use by other drivers and rotated among a group of drivers according to schedule. Each body pod carries a chip that may communicate parameters to the rolling chassis to set fuel cell performance or engine performance to match the body pod, adjusts suspension performance, adjusts steering performance and communicates other specifications.
The manufacture of chassis or rolling platforms and body pods
is depicted in Figure 24. In the conventional manufacturing processes, the
automobile is manufactured as a single unitary system. According to the
present invention, the rolling platform system is manufactured independently
of the vehicle body pods. The rolling platform, which contains a majority of
the technological and mechanical content, is exported from central
manufacturing locations to any location around the world. The vehicle
bodies are manufactured in the same central locations or in local
environments incorporating local materials and tailored to the needs of the
local market. The bodies may also be exported from the local market.
Engineering of the rolling platform enables the vehicle body
to be designed and produced independently. Bodies are manufactured and designed substantially independently anywhere in the world to meet different consumer desires. Local manufacturers, using locally available materials, can build vehicle bodies according to local tastes. Without a coupled body, the rolling platform manufacturing process is streamlined for production at key manufacturing sites around the world for exportation to points of purchase. Designers have the ability to redesign vehicle bodies without reengineering the entire vehicle.
According to the embodiment shown in Figure 24, a factory
250 manufactures body pods according to a plurality of body types or styles 251-253. The body pods are complete, or essentially complete, ready to be

interconnected with a rolling chassis. All body pod styles 251-253 are designed to be connected to a rolling chassis having common connection points. A second factory 255 which can be located remote from the factory 250, or can be the same factory, produces rolling chassis 256. The rolling chassis 256 each have common connection points for connecting to a plurality of body pods.
Turning to Figure 25, a business process model is illustrated
wherein an owner secures a rolling chassis 220 for x years by means such as a purchase, with or without financing, or under a lease. The rolling chassis may be mortgaged for 20 years, for example, wherein the expense is spread out over the expected reasonable serviceability life of the unit. The terms of the transaction include certain software upgrades 221 and hardware/software upgrades 222 that are provided without additional charge and other upgrades 223 that are secured by the owner/lessee (driver) at their option and at additional cost. At the end of the 20 year span (or other term), the rolling chassis is owned with no security obligation remaining to the original financing entity.
During the life of the rolling chassis, the vehicle is used
according to their changing tastes or needs. For example, a scenario wherein a driver starts with a small, sporty body pod 226, advances to a utilitarian type body pod 228, then to a sport-utility type body pod 230, a van type body pod 232 and onto a station wagon type body pod 234 is possible. Of course, the type of body pods chosen and the time to change is completely discretionary.
The ability to interchange vehicle bodies provides freedom in
the types of automobile, trucks, heavy equipment, machinery and RV bodies that can be interchanged on a chassis (a.k.a. rolling platform, rolling sandwich, skateboard, rolling chassis). Also, bodies can take full advantage of space utilization from the front to the rear of the rolling chassis as a result

of the elimination of the traditional engine compartment. Body variations can range from a single center seat body with technology enhancements like voice controls and interactive communication features to a passenger bus body holding ten people and offering services like music and movie entertainment. The differences between bodies can encompass customer-themed environments of sound, lighting, and seating, to exterior and interior shapes, to technology enhancements and features like computer animation to holograms, depending on the desired driver and passenger experience. Potential body options, benefits, and upgrades include
telematics and entertainment options such as: matching telematics having an intelligent control and use of power, X-by-wire systems, and internal communications with the chassis to external communications with the world that may be automatically combined to give relevant situation and location-based functionality.
Further potential body options, benefits, and upgrades include
different vehicle body themes such as: interiors representing global and
futuristic environments; a Chinese (reality) living room, a Star Trek ( T.V.
show) control room, a cocoon safety featured body, a full featured
entertainment (movies, sound, games, etc.) body, to a Tron (movie) like
single person transporter, etc. Other traditional examples could include body
characteristics like Sporting, Off-Road, Monday-Friday Commuter, Family
Weekender, Office and Business Use, Bus, etc. Some bodies could be
traditional vehicle bodies that have been updated and modified, like a '57
Chevy convertible body on the rolling platform, or the body could address
extreme cultural needs and use materials like bamboo and transport bananas.
- Additionally, vehicle platform dynamics and body content
may be changed and upgraded to match consumer desires and demands. As new technology, functionality, etc. becomes available the body interior and exterior may be modified. Interior layouts, driving positions, and driver

controls may change in response to customer needs. Customer interior needs may encompass storage options, seating layouts, entertainment enhancements, etc. Further, exterior needs may include storage, access, etc. Body upgrades may include changes to ride and drive characteristics to varying degrees of communications by software and hardware enhancements and modifications of the rolling platform.
Further body options, benefits, and upgrades include
interchangeable interior adaptability, such as changes in seats, lighting,
sound, color, architecture, access, storage, plug and play modularity,
retractable shelves and trays, footrests, beds, docking port, visual screens,
reconfigurable displays, vehicle controls, pop-up book interior features, and
plug and play interior components that can clip or snap on and off, etc.
Referring to Figure 26, a business flow process 26
schematically illustrates business method steps which may be performed in
various combinations in accordance with the present invention. Of course,
these steps need not all be performed together or by a single business entity.
Rather, different business entities may perform certain combinations of the
method steps described, as recited in the claims.
As shown, the business method 260 includes installing
individual modular body components on a body in a factory (step 262). The individual modular body components may be installed on a body floor or a body enclosure. The body components may be selected by a customer to personalize the vehicle to that particular customer's tastes or functional needs. After body components are installed on the body floor and/or body enclosure, the body enclosure may be attached to the body floor (step 264) before granting possession of the vehicle in a financial transaction (step 266), which may comprise a lease, sale, rental, financing arrangement, or club membership. Alternatively, the body components may be installed on the body (step 262) and possession of the vehicle granted (step 266) without an

intermediate step of attaching the body enclosure to the body floor. In this instance, the body enclosure would have been attached to the body floor prior to the step of installing body components in the factory (step 262). Accordingly, the various steps may be selectively performed by different business entities.
Another option is to grant possession of the body floor in a
financial transaction (step 268) separately from the body enclosure. Similarly, possession of the body enclosure may be granted in a financial transaction (step 270) separately from a body floor. Thereafter, the body floor may be attached to the body enclosure (step 272) at a specialized mobile or stationary service station.
Access to replacement modular body components may be
offered via lease, sale, rental, financing arrangement, or club membership (step 274). In this manner, the factory-installed modular (exchangeable) body components may be exchanged with replacement modular body components (step 276). This exchange may be performed by a mobile body parts service unit at a remote location selected by the customer, such as the customer's driveway or place of business (step 278), or in a specialized garage (step 280).
The replacement body components may include interior
components, such as prevalidated seats, consoles, driver interfaces, steering
devices, by-wire controls, entertainment systems, communications systems,
etc. (step 282). The modular body components to be exchanged may further
include exterior components, such as prevalidated doors, fenders, hoods,
windows, quarter panels, bumpers, structural members, etc. (step 284).
As further illustrated in Figure 26, different methods are
available for exchanging the modular body components. For example, the body floor may be detached from the body enclosure (step 286), the modular body components may be exchanged on the detached floor (step 288), and

the floor may then be re-attached with replacement components thereon (step 290). Alternatively, after the floor is detached from the enclosure (step 286), a different floor may be installed having different components thereon (step 292). Further, replacement components may be installed into the body enclosure through the floor opening (from which the floor was removed), and the floor re-attached thereafter. To facilitate the removal and reattachment of the body floor to and from the body enclosure, the body floor may be connected to the enclosure by releasable connectors, or simply by nuts and bolts. The releasable connectors may alternatively be configured as snap-in releasable locks (somewhat similar to a seat belt buckle latching structure), or perhaps a releasable structure similar to train coupling devices, or other available mechanisms.
Further, as shown in Figure 26, the factory installed body components may be removed through body openings, such as door openings, etc. (step 294), and the replacement components may be installed through the same body openings (step 296).
The ability to load the body interior through a body opening
or remove the body floor structure and replace it with a different floor structure with the new interior provides several benefits. It increases throughput of the vehicles due to the modularity of the manufacturing components, and also enables vehicles to be provided more quickly in the market place and provides a means to adjust for fluctuation in market demand. It also reduces assembly time due to the modular design for manufacturing, increases interior component flexibility and enables the customer to change the interior to meet their needs. It also enables a customer to inexpensively update vehicle features rather than purchasing a new vehicle.
An enabling technology for manufacturing the above
described detachable body floor and enclosure, as well as a body skeleton

structure or other components, is the so-called "quick plastic forming" technology, such as that described in U.S. Patent No. 6,253,588, which is hereby incorporated by reference. Using quick plastic forming, a large AA 5083 type aluminum-magnesium alloy sheet stock may be formed into a complex three-dimensional shape with high elongation regions, at high production rates. The magnesium containing aluminum sheet is heated to a forming temperature in the range of about 400° C to 510° C (750° F to 950° F). The heated sheet is stretched against a forming tool and into conformance with the forming surface of the tool by air or gas pressure against the back surface of the sheet. The gas pressure is preferably increased continuously or step-wise from 0 p.s.i. gauge at initial pressurization to a final pressure of about 250-500 p.s.i. (gauge pressure, i.e. above ambient pressure) or higher. During the first several seconds of the process up to about 1 minute of increasing pressure application, the sheet accommodates itself on the tool surface. After this initial period of pressurization to initiate stretching of the sheet, the pressure can then be increased at an even faster rate. Depending upon the size and complexity of the panel to be formed, such forming can normally be completed in a period of about 2-12 minutes.
Referring to Figure 27, a particular body configuration is
shown adjacent to a chassis, wherein the body configuration, particularly the manufacture of the body floor, is enabled by the above described quick plastic forming technology. As shown by way of example, Figure 27 illustrates a type of body which may be designed and manufactured in accordance with various aspects of the invention. As shown, the body 360 is configured for attachment to the chassis 362, which includes a frame 364 and wheels 366, 368. The body 360 includes a body floor 370 having a floor length Lf which is substantially equal to the length of the chassis Lc. Accordingly, the body floor 370 provides usable floor space over the entire

length of the chassis, particularly because there is no engine or engine compartment in the front end.
[00134] The floor 370 includes a seat assembly 372 supported thereon
and a driver interface 374 adjacent the seat assembly to communicate vehicle
control signals to the chassis 362 from a seated driver. Alternatively, the
driver interface may be wireless or attached to a loose cable, like a joystick.
The body is also manufactured to include an enclosure 376
which is connected to opposing ends 378, 380 of the floor 370 so that substantially the entire length of the floor is accessible and usable space for occupants. In this configuration, usable floor space is provided on the floor forward and rearward of all wheels on the vehicle (i.e. end-to-end). The enclosure is configured to shelter a vehicle occupant. The enclosure may be a fiberglass structure.
The floor 370 is substantially flat for cooperation with the
substantially flat upper surface 382 of the chassis 362. The floor 370 may be
one piece or may be installed in different pieces.
As further shown in Figure 27, a chassis attachment interface
387 is provided on the bottom surface of the floor 370 for attachment to the chassis 362. The chassis attachment interface 387 is configured to conform to the previously described standardized interface system wherein mechanical and electrical connection components of the body and chassis complement each other and are sufficiently aligned such that any conforming body may be mated to any conforming chassis without modification to either the chassis or body at the interface. Accordingly, an interface is formed between the body 360 and chassis 362, such as the interface 87 described previously with respect to Figures 1-15.
[00138] Turning to Figure 28, a further concept of the invention is
illustrated wherein non-metal materials are used for all close-out panels on a body. The materials could be cloth, plastic, fabric, rubber, nylon, webbing,

glass, canvas, mylar, etc. This concept provides several advantages,
including low cost of assembly and the ability to provide vehicles more
quickly to the marketplace and means to adjust for fluctuation in market
demand. It reduces assembly time which may provide a competitive
advantage to win orders in the marketplace. It increases design flexibility,
provides the customer the ability to change exterior panels to meet their
needs, and reduces overall cost by the use of low cost close-out panels. It
also enables vehicle designs to include higher priced close-out panels, such
as designer-labeled close-out panels or other high-end panels. It is notable
that non-metal panels may form the hood and fender because there is no
traditional front end engine compartment requiring a metal panel thereover.
As shown in Figure 28, the vehicle 410 includes a chassis 412
which supports a body skeleton structure 414. Further, a body floor may be provided between the chassis 412 and the body skeleton structure 414, such as the floor illustrated in Figure 27. As shown in Figure 28, the body skeleton structure 414 has a plurality of openings 416, 418, 420, 422 formed therein. Each of the openings 416, 418, 420, 422 is covered by a non-metal close-out panel. For example, the opening 416 is covered by a rubber side panel 424, the opening 418 is covered by plastic door 426, the opening 420 is covered by a wood door 428, and the opening 422 is covered by a fabric fender or hood 430. Accordingly, the body skeleton structure 414 in combination with the close-out panels 424, 426, 428, 430 form a body enclosure 432, which may conform to any body type, such as a sedan, pickup truck, convertible, coupe, van, station wagon, sport-utility vehicles, or other type of transport. Further, the enclosure 432 may be connected to opposing ends of the chassis 412 or body floor such that the enclosure extends substantially the entire length of the chassis so that substantially the entire length of the chassis has accessible and usable space there above for the occupants, as described previously with reference to Figure 27.

The non-metal close-out panels 424, 426, 428, 430 are
preferably removably attached over the body openings 416, 418, 420, 422 to facilitate interchangeability. The close-out panels may be removably attached by snaps, buttons, clasps, ties, removable fasteners such as screws, etc. Alternatively, more permanent attachments such as welds or adhesives may be used.
Further, any of the previously described body components
may be provided within the enclosure 432, such as seats, driver
communication interface, drive-by-wire control devices, etc.
Further benefits of this technology include readily available
materials, such as localized materials, low cost for small production runs, low inventories, no need for mechanical windows, etc. Example applications may include a work truck in an emerging market, such as Africa, a military Jeep, a golf cart, personal transporter, etc.
- A further feature of the invention is that seats may be
positioned virtually anywhere on the body floor or chassis, including end-to-end and side-to-side. The driver may sit at the forward end of the vehicle where an engine compartment would traditionally be, in the middle of the vehicle, right side, left side, etc., and passenger seating may be provided wherever desired within the vehicle, end-to-end and side-to-side.
While the best modes for carrying out the invention have been
described in detail, those familiar with the art to which this invention relates will recognize various alternative designs and embodiments for practicing the invention within the scope of the appended claims. As set forth in the claims, various features shown and described in accordance with the various
different embodiments of the invention illustrated may be combined.



WE CLAIM:
1. A vehicle body attachable to a chassis, the body comprising a body floor extending substantially the entire length of the chassis; a seat assembly supported by the floor; a driver interface supported with respect to the floor adjacent the seat assembly to communicate vehicle control signals to the chassis from a seated driver; and an interface on a bottom surface of the floor at which the body is attachable to the chassis.
2. The body as claimed in claim 1, wherein the said interface comprises mechanical and electrical connection components that complement and are sufficiently aligned with mechanical and electrical components on the chassis such that different styles of conforming bodies may be mated to any conforming chassis without need for modification to either the chassis or body to facilitate attachment.
3. The body as claimed in claim 2, comprising an enclosure connected to the floor for sheltering occupants within the body, wherein the enclosure is connected to opposing ends of the floor such that the enclosure extends substantially the entire length of the floor so that substantially the entire length of the floor is accessible and usable space for occupants.
4. The vehicle body comprising an enclosure configured to shelter a vehicle occupant; a driver communication interface positioned within the enclosure to communicate vehicle control signals to the chassis from a vehicle driver; and a chassis-attachment interface connected to the enclosure and configured for selective attachment to the chassis, said chassis-attachment interface comprising mechanical and electrical connection components of the body and chassis attached complementarity to each other and are sufficiently aligned such that any conforming

body may be mated to any conforming chassis without modification to either a chassis or body at the interface.
5. The body as claimed in claim 4, wherein the chassis-attachment interface includes a single umbilical electrical connector through which all electrical communication signals pass from the body to a corresponding single electrical connector on the chassis.
6. The body as claimed in claim 4, wherein the enclosure is supported by a floor which extends substantially the entire length of the body, so that substantially the entire length of the floor is accessible and usable space for occupants.
7. The body as claimed in claim 6, wherein the floor is substantially flat.
8. The body as claimed in claim 6, comprising at least one seat supported on the floor.
9. The body as claimed in claim 4, wherein the driver communication interface includes a drive-by-wire control input device, wherein the input device is configured to selectively generate electrical steering control signals, and wherein the interface comprises an electrical connector that is sufficiently connected to the input device to receive the electrical steering control signals.
10. The body of claim 4, wherein the chassis-attachment interface includes a
plurality of load-transmitting chassis-attachment couplings positioned for attachment
to corresponding load-bearing couplings on the chassis.

11. A vehicle body comprising a body skeleton structure having body openings formed therein; and each of said body openings being covered by non-metal closeout panels.
12. The vehicle body as claimed in claim 11, wherein said non-metal closeout panels comprise materials selected from the group consisting of fabric, wood, plastic, rubber, nylon, webbing, canvas and mylar.
13. The vehicle body as claimed in claim 12, wherein said non-metal closeout panels are removably attached over the body openings to facilitate interchangeability.
14. The vehicle body as claimed in claim 11, wherein said body skeleton structure and closeout panels form an enclosure for sheltering occupants within the body, wherein the enclosure is connected to opposing ends of a body floor such that the enclosure extends substantially the entire length of the floor so that substantially the entire length of the floor is accessible and usable space for occupants.
15. The vehicle body as claimed in claim 11, comprising a substantially flat body floor.
16. The vehicle body as claimed in claim 11, comprising at least one seat within the enclosure.
17. The vehicle body as claimed in claim 15, comprising a driver communication interface connected to the floor and including a drive by-wire control input device.

18. The vehicle body as claimed in claim 12, wherein one of said non-metal close-out panels forms a hood offender of the body.
19. A vehicle comprising a chassis, wherein the chassis includes a structural frame; a body attachment interface having body connection components, the body connection components including at least one load-bearing body-retention coupling mounted with respect to the structural frame and at least one control signal receiver; a suspension system mounted with respect to the structural frame; at least three wheels rotatably mounted with respect to the suspension system, each of the at least three wheels having an attached tyre; a steering system operably connected to at least one wheel and operably connected to a control signal receiver; a braking system operably connected to at least one wheel and to a control signal receiver; and an energy conversion system operably connected to at least one wheel and to a control signal receiver; wherein each of the steering system braking system, and energy conversion system is responsive to non-mechanical control signals; and a body, wherein the body includes a body structural unit; at least one complementary attachment coupling mounted with respect to the body structural unit and engaged with the at least one load-bearing body-retention coupling; at least one control signal transmitter mounted with respect to the body structural unit and engaged with the at least one control signal receiver; and a passenger enclosure partially defining a passenger space; wherein the passenger space extends forward and rearward in the vehicle from each of the wheels when the wheels are positioned for forward travel of the vehicle.
20. The vehicle as claimed in claim 19, wherein the body further comprises at least one driver-operable control input device operably connected to a control signal transmitter.

21. The vehicle as claimed in claim 20, wherein the steering system, braking system, and energy conversion system are controllable by wire, and wherein the at least one control signal receiver is an electrical connector, and wherein the at least one control signal transmitter is an electrical connector.
22. The vehicle as claimed in claim 21, wherein the energy conversion system includes a fuel cell.
23. The vehicle as claimed in claim 21, wherein the energy conversion system includes a plurality of wheel motors.
24. A vehicle body attachable to a chassis substantially as herein described with reference to the accompanying drawings.


Documents:


Patent Number 202950
Indian Patent Application Number 355/CHENP/2004
PG Journal Number 05/2007
Publication Date 02-Feb-2007
Grant Date 15-Nov-2006
Date of Filing 20-Feb-2004
Name of Patentee M/S. GENERAL MOTORS CORPORATION
Applicant Address LEGAL STAFF-MAIL CODE 482-C23-B21, P O BOX 300, DETROIT, MI 48265-3000, USA
Inventors:
# Inventor's Name Inventor's Address
1 BORRONI-BIRD, CHRISTOPHER, E 4080 HOLLY LSNR, OSKLAND TOWNSHIP, MI 48306, USA
2 CHERNOFF, ADRIAN, B 3112 CLAWSON AVENUE, ROYAL OAK, MI 48073, USA
3 VITALE, ROBERT, LOUIS 46213 KEYSTONE DRIVE, MACOMB TOWNSHIP, MI 48044, USA
4 SHABANA, MOHSEN D 3188 BIRCHWOOD COURT, ANN ARBOR, MI 48105, USA
PCT International Classification Number B60G13/14
PCT International Application Number PCT/US02/26146
PCT International Filing date 2002-08-16
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 10/202,455 2002-07-24 U.S.A.
2 60/337,994 2001-12-07 U.S.A.
3 10/205,501 2002-07-24 U.S.A.
4 60/314,501 2001-08-23 U.S.A.
5 10/202,444 2002-07-24 U.S.A.