Title of Invention | "PROCESS FOR RECYCLING USED OILS AND OBTAINING BASE OILS" |
---|---|
Abstract | Process for recycling used oils and obtaining base oils, comprising the following steps: A) distilling the used oil to ramove low-boiling organic fractions and drying tha used oil by removing water, by treating the usad oil to ba recycled with concentrated aqueous potassium hydroxide solution as a reagent and adding the alkali in the coursa of the distillation:B) distilling the used oil obtained by step (A) under reduced pressure to remove heating oil and diesel fractions having a boiling range from about 170 to 3890C; C) gently distilling the distillation residue from step B) by means of thin-film evaporation under high vacuum to obtain a lubricant oil fraction which has a typical viscosity range and can be separated by a subquent distillative fractionation step, optionally under reduced pressure, into boiling ranges of different viscosity values;D) optionally gently distilling the bottom product from step C) to obtain a lubricant oil fraction having a relatively high viscosity value from the relatively high-boiling range which can be separated by a subsequent distillative fractionation step, optionally under reduced pressure; and E) extracting the fraction or fractions in tha form of lubricant oil fractions or boiling ranges of different viscosity values from step C) and optionally D) with N-methyl-2- pyrrolidone (NMP) and/or N-formylmorpholine (NMF) as axtractants to obtain very high—value base oils. |
Full Text | 1 The present invention relates to a method for reprocessing waste oils, whereby waste oil is treated by means of distillation- and extraction method, base oils obtained according to said method and their use thereof These days, disposal of waste products is becoming increasingly more important, in particular the elimination of environmentally noxious substances, such as halogenated hydrocarbons, aromatic compounds and similar. These represent acute and latent risks to human health and to other environmental resources, such as water, soil, air, plants and animals. In order to evaluate the actual risk potentials, it is necessary to examine and appraise material compounds and their concentrations. Such data serve as basis for type and scope of the disposal measures that need to be taken. Of immense interest is hereby the disposal of products burdened with noxious substances, which occur in larger volume, such as waste oils, fonexample. Disposing these can be done either by elimination of the loaded products or by utilization of same, whereby utilization is basically to be preferred. Utilization is generally possible via two routes: the product can be materially utilized, i.e. it can be reprocessed, or it can be utilized energetically as fuel. Certain criteria must be observed in such endeavor, which depend upon the product involved and the respective noxious matter burden. Waste oils, for example, are subject to the so-called Waste Oil Ordinance (AltolV) of 2 October 27, 1987, which ffegulates the reprocessing, registration, identification, collection and disposal of waste oils. Waste oils to be reprocessed are, as a rule, prohibited fr exceeding a maximal value of 20 ppm of polychlorinated biphenylene (PCB) and a total halogen contents of 0.2%. Exceptions, however, are quite possible, depending upon the chosen reprocessing method. Several methods for reprocessing of waste oils or of used oils are known in the state of the art. US Patent 4 021 333 fi-om the year 1977 describes, for example, a method for reprocessing waste- or used oils, which includes the following steps: A) Distillation of the oil for eliminating a pre-fi"actionation with a viscosity essentially below that of lubricating oil and a flash point below 1210, ascertained according to the Tag- or Pensky-Martens Method; B) Continued distillation in order to obtain a distillate having, in essence, the viscosity of lubricating oil; C) Extraction of impurities fi"om the distillate of step B) with an organic, liquid extraction agent, which is essentially non-mixable with the distillate, and D) Segregation fi-om the distillate of the organic solvent and the impurities dissolved therein. Named as organic extraction agents are, in particular: ethanol, diacetone-alcohol, ethylene- glycol-mono(low-alkyl)ether, diethylene-glycol, diethylene-glycolmono(low-alkyl)ether, o-chlorophenol, furfural, acetone, formic acid, 4-butyrolacetone, low-alkyl-ester of low mono-and dicarbonic acids, dimethylformamide, 2-pyrrolidone and N-(low-alkyl)2-pyrrolidone, epi-chlorohydrin, dioxane, morpholine, low-alkyl- and amino(low-alkyl)morpholine, benzonitrile and di-(low-alkyl)sulfoxide and -phosphonate. Preferred extraction agents are ethyleneglycol-monomethyl-ether, dimethylformamid or N-methyl-2~pyrrolidon. In addition, in 3 step C), 20 to 50 parts by Weight of extraction agents are employed for 100 parts of weight of obtained distillate from step B). Distillation is to be performed without fractionating column or similar equipment. It is possible to remove, in a prior step, bothersome components, by means of a thinning agent, in form or an organic solvent, which step, additionally, may be preceded by heating the waste oil with a watery, highly alkaline solution. This method, however, does not always produce satisfactory results with respect to the quality of the reprocessed oils, which contain, as before, high loads of noxious substances after the reprocessing. The present invention is therefore based on the object of further improving the initially described method so that the obtained base oils have the lowest possible load of noxious matter, such as aromatic compounds and specifically polycyclic aromatic hydrocarbons. In addition, design of method control and potential starter materials should be flexible. At the same time, notwithstanding high quality of the obtainable base oils, good yields should be attained. According to the invention, the above object is solved by a method for re-processing of waste oils and production of high-grade base oils comprising the following steps: A) Distillation of the waste oil for removal of low-boiling organic fractions, as well as drying of the waste oil by removal of water; B) Distillation of waste oil obtained according to step A) under vacuum for separation of fuel oil and diesel fractions, with boiling cut of approximately 170 to 385°C, in form of high-grade heating fuels; C) Non-destructive distillation of the distillation residue from step B) by means of thin-film evaporation in high vacuum for obtaining a lubricating oil fraction with a standard 4 viscosity range, which may be followed, if needed, by a subsequent distillative fractionating step, possibly under vacuum, which can be divided into boiling fractions of different viscosity states; D) If applicable, non-destructive distillation of the bottom product from step C) for obtaining a lubricating oil fraction of higher viscosity state from the higher boiling range, which, depending upon requirement, can be divided into a subsequent distillative fractionating step, possibly under vacuum; and E) Extraction effraction or fractions in the form of lubricating oil fractions or boiling cuts of different viscosity from step C) and,pptionally from step D) with N-methyl-2-pyrrolidon (NMP) and/or N-formylmorpholine (NMF) as extraction agent for obtaining extremely high-grade base oils, whereby the extraction is undertaken in such manner that undesirable constituents are removed in almost quantitative manner and the contents of polycyclic aromatic hydrocarbons (PAK) and polychlorinated biphenylenes (PCB) respectively, is clearly below 1 mg/kg. The term "waste oil" in the present invention shall have the meaning of any used semi-liquid or liquid substance, which is composed in total or in part of mineral oils or synthetic oil, as well as any oil-containing residue, including water-oil mixtures or similar. Thus, it is possible to use all waste oils suitable for re-processing into lubricating oils, in particular used combustion engine and transmission oils, mineral machine oils, turbine oils and hydraulic oils, including their synthetic and semi-synthetic constituents on mineral hydrocarbon basis. The mventive method for reprocessing said v.'aste oils is described in detail below; 5 In a first step A), water fractions as well as fractions of low-boiling constituents are distilled off, such as fractions of gasoline or solvents. This is preferably done at normal pressure or under light vacuum (up to approximately 600 mbar) at a temperature of approximately 140 to 1500C. It is possible to facultatively employ in the inventive method, in particularly beneficial manner, a concentrated watery potassium hydroxide solution. Said solution is already employed in this first step in order to avoid, during subsequent distillation steps, that generation of the vacuum is additionally being burdened with water to be separated from the potassium hydroxide solution. The potassium hydroxide solution is preferably highly concentrated, specifically approximately 5 to 50%. At the same time one obtains, by means of the dehydration process executed in the initial step A) the concentration of the potassium hydroxide as an extremely homogeneously distributed, highly concentrated and therefore highly effectively acting reagent for binding acid constituents in the charged waste oil, including extensive de-metallization of the charged waste oils. Furthermore, the use of potassium hydroxide solution, which causes formation of specific "soaps", produces in the subsequently described thin-film evaporation in Step C) a particularly free-flowing and homogeneous distillation residue. In contrast thereto, other alkalies, such as sodium compounds described, in US-PS 4 021 333, for example, tend to produce precipitations and agglomerations, which can significantly interfere with the further process sequence. By utilizing potassium hydroxide solution it is possible to further improve the purity of the lubricating oil distillates and during the subsequent extraction, additional benefits are obtained with respect to process mode and chemical effect. In addition, by way of this type of alkaline treatment, it is possible to do away with a further step for mechanical separation of solid precipitations. 6 After separation of water and solvents, the obtained fuel oil and diesel fractions with boiling average of approximately 170 to 3850C are removed from the waste oil in Step B) by distillation in vacuum. The thus obtained residue is subjected, according to Step C) to non-destructive thin film evaporation in high vacuum, in which one obtains the lubricating oil fraction proper. For realizing desired viscosity states, the latter can subsequently be fractionated once again. The residue from the thin film evaporation (bottom product) still contains highly viscous and very valuable lubricating oil constituents, which can be obtained in Step D) and also fractionated, if applicable, by non-destructive distillation, such as a subsequently added second thin film evaporation, with correspondingly higher distillation temperatures or lower pressure. Needless to say, Step D) is not always necessary, but if used, will improve the yield of base oil and thereby the economic efficiency of the process. The lubricating oil fractions produced from the above described and (if applicable) fractionating steps (Steps C) and D)), are subsequently extracted with N -methyI-2-pyrrolidon (hereinafter identified as NMP), whereby qualitatively very high-grade base oils are obtained for the production of lubricants. N-formyhnorpholine (hereinafter identified as NMF) has proven itself as particularly suitable as an alternative extraction medium, under the same conditions and with results comparable to the extraction with NMP. Of course, the lubricating oils or fractions from Step C) and D) can, individually, be further processed or also partially added to each other and then processed further. Extraction can preferably be done in a column (screen bottom, filling body). One preferable works with counter-flow process. The use of filling bodies aSbrds higher soundness regarding 7 process control and presefits benefits relative to potential through-puts (volume flows) and extraction agent distribution of NMP or NMP in the oil. The ratio of NMP/oil or NMF/oil ranges between 0.5 and 2.0 (v/v) depending upon quality requirements of the base oils to be produced. In contrast to standard practice, the use of NMP and/or NMP as continuous phase, surprisingly, proved detrimental, inasmuch as unstable conditions set in very quickly inside the column. The extraction agent must therefore be selected as disperse phase. The extraction can basically be performed within a temperature range of approximately 20 to 900C. The process method can be used with employment of a temperature gradient in the column. Temperatures ideally range between approximately 50 to 900C at the column head (run-off raffinate) and approximately 10 to 500C at the column bottom (extract run-off)- Higher selectivity regarding the extraction agent is of benefit in this case (for example NMP) with lower temperatures, so that base oil constituents dissolved in the extraction medium are re-dissolved , while the undesirable, to be removed, constituents remain dissolved. As a result, it is possible to attain a significantly higher yield of refined base oil. Excellent results can also be achieved with a, process mode using unchanging temperature over the entire column path (isotherm) The optimal temperature range lies between approximately 50 to 90°C; depending upon requirements as to yield and quality, other ranges, however, are also possible. This is in contrast to the customary process method of first refining of paraffin-base 8 crude oil distillates,'where' still high paraffin fractions exist in the components to be extracted, which may already lead to precipitations at lower temperatures ( that, vis-a-vis the process variation with temperature gradients, a lower yield is realized, inasmuch as there is no re-dissolution of the raffinate, as ;ilready described. One proceeds as follows: the extraction phase is cooled down and the thereby segregating oil phase with lower extraction medium contents is again put into the oil feed of the column. This can also be called "external feedback". The NMP and/or NMF existing in the raffinate phase and the extract can be reclaimed in standard method via succeeding distillation processes and returned to the process. As a resuh of the in Step A) performed concentration of the potassium hydroxide solution, an alkalinity reserve for extraction is established in the oil feed, which prevents the otherwise partly irreversible formation of acid reaction products of the extraction medium. According to this method one obtains, as a result, very high-grade base oils, whereby undesirable constituents are removed in an almost quantitative manner, i.e. the contents of polycyclic aromatic hydrocarbons (abbreviated PAK) and of polychorinated biphenylenes (abbreviated PCB) lies respectively clearly below 1 mg/kg. 9 The base oils obtainable according to the above described method are also the object of the invention. Depending upon viscosity state of the distillate fractions produced according to Step C) and Step D), base oil qualities according to ASTM are obtained with color value between 0.5 and 3.0. The neutralizing figure (abbreviated NZ) as measure of acid residual components in the base oil lies between 0.01 and 0.03 mg/KOH/g. In contrast to the employed lubricating oil distillates according to Step C) or Step D), due to the extraction, an increase occurs in the viscosity index (abbreviate VI) by 6 to 10 points. It is noteworthy in this respect that the viscosity index of the lubricating oil distillates is clearly higher than that of the usual first rafiSnate base oils, due to the existing synthetic oil fractions (polyalpha-olefins (PAO), hydro-crack oil (HC-oils). By means of the inventive process, the aromatic fraction (abbreviated CA) in the base oil is clearly lowered. In particular, polycyclic aromatic hydrocarbons (PAK) are removed in an almost quantitative manner (sum of PAK according to Grimmer - sum of a specified number of individual substances « 1 mg/kg, benzopyrene « 0.1 mg/kg.) These are formed in part during utilization of the lubricating oils, in particular during the combustion processes in passenger car /truck engines, and they play a significant role due to their health-endangering properties, i.e. their cancer-causing effect. This is particularly the case with respect to benzopyrene, which is regarded as the principal PAK substance and which was included in the Ordinance of Hazardous Substances (GefStoffv)- The contents of these compounds in oil components and oil preparations will clearly be assigned greater significance in future public debate. 10 Among the currently known methods for re-processing waste oils into base oils, there is presently no method that is capable of removing the PAK to the extent as it is possible with the method or combinations of the method according to the invention. Surprisingly, not only are the already earlier mentioned waste oils being considered for re-processing according to the method. Tests liave shown that highly contaminated waste oils can also be employed. Thus, it is also possible to re-process oil burdened with polychlorinated biphenylene (PCB) or PCB-substitutes, with contents of up to 50 mg/kg according to DIN 51527-1 (Total contents according to LAGA 250 mg/kg, [LAGA = Country Working Group Waste]. Polychlorinated biphenylenes are a group of compoundls with different toxicities depending upon chlorination contents. They are classified, based on documented suspicion, according to their cancer-causing potential (MAK: appendix IIIB), as a result of which segregation of these compounds is required from a toxicological aspect. Waste oils re-processed according to the inventive method with the above mentioned PCB contents present a PCB contents in the base oils obtained according to the invention which lies below the detection limits of the analytical method. This is of importance to the extent that both National as well as the European Regulations with respect to re-processing of such burdened waste oils will explicitly allow such processes only in individual instances when high qualitative standards are reached for the obtained base oil. The inventive method fulfills these requirements. In addition, waste oils can also be re-processed with a contents of vegetable oils, so-called readily decomposable oils. Up to approximately 5% of such oils can be contained in the waste oil without detrimentally affecting the quality of the base oil. 11 Needless to say, the obtained base oils have multiple applications, for example as starter products for lubricants or for products in the petrochemical field, inasmuch as - based on the excellent quality - no restrictions exist within the scope of the invention. The benefits related to the invention are multi-layered. The inventive method is far superior to the state of the art of standard processes of clay treatment, chemical treatment or hydration, as well as the known distillation methods. The inventive method can be performed without waste, since the extraction media NMP or NMF can be reclaimed and employed again, and the extract is utilized as fuel oil or fuel oil equivalent. In contrast thereto, with the clay treatment method oil-contaminated bleached earth remains behind, and with the hydration it becomes necessary to dispose of the spent catalysts, and the reaction gases (H2S HCI) need to be rendered harmless. The energy balance according to invention-specific method is very favorable. It is possible to operate almost without pressure. For overcoming interior fluid fiiction and pipe line resistances during transport, pressures are only needed in the range of max. 5 bar.. The maximum temperature range lies at 2300C in order to guiirantee recuperation of the extraction medium for renewed use. In other processes, raffination effects set in only after temperatures have been reached between 290 and 3000C (clay treatment), or it is necessary to employ, in addition, high pressures (hydration: temperatures up to 350°C and operating pressures between 30 and 200 bar). The inventive method also affords benefits with respect to operating safety, since the extraction media NMP or NMF are classified as non-toxic (classified as Xi: irritating according to Toxic 12 Matter Ordinance, Risk Category A III, WGK 1). With standard hydration methods, on the other hand, hydrogen, being an easily flammable gas, demands high safety requirements. In addition, H2S is formed as a highly toxic gas as well as hydrochloric acid as a highly corrosive gas. Of special significance is the base oil quality achievable with the invention, as it is obtained via the NMP - or NMF extraction. The base oils have extraordinarily good color values, a low neutralizing figure (NZ) and a high viscosity index (VI). As a result of the inventive method, the aromatic fraction in the base oil is clearly reduced. Specifically, polycyclic aromatic hydrocarbons (PAK) are removed in an almost quantitative majiner (total PAK according to Grimmer « 1 mg/kg, benzopyrene «: 0.1 mg/kg). The contents of polychlorinated biphenylene (PCB) also lies below the limit of detection in the obtained base oil. With respect to the waste oils to be re-processed, there are almost no restrictions. It is possible to reprocess oil burdened with polychlorinated biphenylene (PCB) or PCB substitutes, with contents of up to 50 mg/kg according to DIN 51527-1 (total contents according to LAGA 250 mg/kg). The PCB-contents in the base oils obtained according to the invention also lies in this instance below the detection limit of the analytical method, i.e. the strict National and European Regulations concerning reprocessing of waste oils are observed, In addition, contents of vegetable, biologically readily decomposable oils of up to 5% may be present in the waste oil to be re-processed, without resulting in any detrimental mfiuence upon the quality of the base oil. With the state of the art methods, it is impossibile to achieve said outstanding quality of the base oil according to the invention. For example, with the bleached earth process, poorer color values are reached, combined with unpleasant odor, a clearly higher NZ, a lower VI, a clearly poorer 13 aging behavior, as Well as'inadequate removal of polycyclic aromatic hydrocarbons. Hydration methods do, in fact, offer better yields with lower viscosity index (VI) and otherwise comparable values, but a quantitative removal of polycyclic aromatic hydrocarbons is possible only under extreme hydration conditions and employment of rare metal catalysts, which is not customary in the practice of lubrication- / base oil production. Not one of the currently known methods of reprocessing of waste oils into base oils, including the known distillation and extraction methods, is capable of removing the polycyclic aromatic hydrocarbons to the extent as it is possible with the here described method. In the following, the invention is explained with the aid of examples, which shall not limit the scope of teaching according to the invention. To the person skilled in the art, additional specific embodiments are obvious within the scope of the inventive disclosure. Example 1 : Waste oil of category I according to Waste Oil V is distilled, while adding 0.5% of a 50% potassium hydroxide solution, in an apparatus, under vacuum of 600 mbar, in a temperature range of I400C, for purposes of expelling water and the low boiling constituents. The obtained dry oil, in a subsequent middle oil distillation is liberated, in a vacuum of 60 mbar and at a temperature in the sludge of the column of 2600C, from the middle distillate cut - boiling finish 380°C. The sludge product of the middle oil distillafion column reaches a thin film evaporation unit, in which the non-destructive separation takes place, at a vacuum of 3 mbar and thermal carrier oil temperature of 384°C, of charged feed batch, into a lubricating oil distillate mixture and a bottom product. The lubricating oil distillate mixture is separated in a subsequent 14 fractionation into two boiling cuts, at process conditions of 80 mbar and 280° C distillation temperature. The thus obtained boiling cuts in viscosity state, at a viscosity of 40°C = 22 mm2/s and a viscosity of V40 at 38 mm2/s, are alternately extracted in a succeeding selective raffination with the solvent NMP. With a solvent-oil ratio of 1.5 : 1, and an isothermal extraction temperature over the entire column path of 800C, the employed oil (feed) is transported in counter-flow to the utilized solvent NMP. During this process, the undesirable components, among others the polycyclic aromatic hydrocarbons dissolve from the charged feed, resulting, concurrently, in improvement in the quality of the charged lubricating oil distillate. The raffinate-NMP-mixture leaving at the head of the column in accordance with the alternating operating mode, is subsequently transmitted to an NMP solvent medium reclaiming device, in order to once again employ said solvent in the process. The attained lubricating oil distillate or lubricating oil raffinate of the respectively employed viscosity category V40, either 20 mm2/s or 36mm2/s is subsequently used for the formulation of new lubricating oils, such as for example engine oils, transmission oils, hydraulic oils and other applications. The resulting extract also passes through a solvent reclaiming plant in order to be able to reclaim the solvent NMP present in the extract for another new application. The resulting extract can be utilized as heating fuel oil or a fuel oil diluent in heating oil mixtures. The bottom product from the thin film evaporation is subjected to a succeeding further thin film evaporation stage with higher vacuum - 0.1 mbar and a temperature of 4100C. During this step there takes place a separation into a highly viscous lubricating oil fraction having a viscosity of 253 mm2/s and a remaining residue, which is used as heating oil mix-in component, for example 15 as reduction oil in heating oil mixtures for the steel industry. The obtained highly viscous lubricating oil distillate is likewise subjected to extraction with NMP in a succeeding selective raffination, with isothermal reaction conditions in the column at 90°C and a ratio of solvent oil of 2 : 1. One obtains a qualitatively high-grade highly viscous raffinate with a viscosity of 217 mn2/s and an extract which can also serve as mix-in material for heating oil components or as heating oil itself for combustions, i.e. as charging material for generating heat or other purposes. The obtained properties of the reclaimed base oil are as follows: 17 Example 2: The same procedure was followed as in Example 1, with the selected extraction conditions and the attained properties of the reclaimed base oils being represented in the Table below: 18 Example 3 to 5: The same procedure was followed as in Example 1, with the selected extraction conditions and the attained properties of the reclaimed base oils being represented in Table 3 below: 19 As is apparent from Table 3, it is possible to achieve excellent yields with both inventive process variations, i.e. with isothermal operation or with extraction with temperature gradients. The obtained base oils have, in addition, good color values, low neutralizing figures (NZ) and a high viscosity index (VI). The aromat percentage is in each instance clearly lowered, the contents of polycyclic aromatic hydrocarbons (PAK) lies far below 1 mg/kg and the contents of benzopyrene could be reduced to a range of less than 0.1 mg/kg. The contents of polychlorinated biphenylene (BCP) was below the detection limit of the analytical process. Consequently, the base oils attainable with the invention have an excellent iquality. -20- WE CLAIM: 1. Process for recycling used oils and obtaining base oils, comprising the following steps: A) distilling the used oil to remove low-boiling organic fractions and drying the used oil by removing watar, by treating the used oil to be racycled with concantratad aqueous potassium hydroxide solution as a reagent and adding the alkali in the course of tha distillation; B) distilling the used oil obtainad by stap A) under reduced pressure to remov e heating oil and diesol fractions having a bailing range from about 170 to 3850 C; C) gently distilling the distillation residue from step B) by means of thin-film evaporation under high vacuum to obtain a lubricant oil fraction which has a typical viscosity range and can be separated by a subsequent distillativa fraction step, optionlly under reduced presure, into boiling ranges of different viscosity values; D) optionally gently distilling the bottom product from step C) to obtain a lubricant oil fraction having a relatively high viscosity value fro« the relatively highHb»oiling range which can be separated by a subsequent distillativa fractionation step, optionally under reduced pressure! and E) extracting the fraction or fractions in the form of lubricant oil fractions or boiling ranges of different viscosity -21- values from step C) and optionally D) with N-methyl-2-pyrrolidone (NMP) and/or N-foraylmorpholine (NMF) is extractants to obtain very high-value base oils. 2. Process as claimed in claim 1 wherein the potasaium hydroxide solution is highly concentrated, and is in particular about 5 to 50X potassium hydroxide solution. 3. Process as claimed in claim 2, wherein the feed (input to the extraction) is providad with an alkalinity reserve which prevents the otherwise typical, sometimes even irreversibla, acidification of the racovered extractant. 4. Process as claimed in claim 1, wherein the distillation in step A) is carried out at atmospheric pressure or slightly reduced pressure down to about 600 t and at temperature of about 140 to 1500 C. 5. process as climed in at least one of the preceding claims wherein the extraction is carried out in a countercurrent process in an extraction column. 6. Process as claimed in at least one of tha preceding claims, wherein the extraction is carried out isothermally at a temperature in the range from about 90 to 90 C. 7. Process as claimed in claim 6 wherain the extract phase is cooled and the oil phase which sattles out is added again to the feed. —22- 8. Process as claimed in at least one of claims 1 to 3. wherein the extraction is carried out with a temperature gtadient, in which case the temperature at the top of the column (raffinate discharge) is not to about 50 to 900c and at the end of the column (extract discharge) to about 10 to 500 C. Process for recycling used oils and obtaining base oils, comprising the following steps: A) distilling the used oil to ramove low-boiling organic fractions and drying tha used oil by removing water, by treating the usad oil to ba recycled with concentrated aqueous potassium hydroxide solution as a reagent and adding the alkali in the coursa of the distillation:B) distilling the used oil obtained by step (A) under reduced pressure to remove heating oil and diesel fractions having a boiling range from about 170 to 3890C; C) gently distilling the distillation residue from step B) by means of thin-film evaporation under high vacuum to obtain a lubricant oil fraction which has a typical viscosity range and can be separated by a subquent distillative fractionation step, optionally under reduced pressure, into boiling ranges of different viscosity values;D) optionally gently distilling the bottom product from step C) to obtain a lubricant oil fraction having a relatively high viscosity value from the relatively high-boiling range which can be separated by a subsequent distillative fractionation step, optionally under reduced pressure; and E) extracting the fraction or fractions in tha form of lubricant oil fractions or boiling ranges of different viscosity values from step C) and optionally D) with N-methyl-2- pyrrolidone (NMP) and/or N-formylmorpholine (NMF) as axtractants to obtain very high—value base oils. |
---|
Patent Number | 203860 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Indian Patent Application Number | IN/PCT/2001/00497/KOL | |||||||||||||||
PG Journal Number | 11/2007 | |||||||||||||||
Publication Date | 16-Mar-2007 | |||||||||||||||
Grant Date | 16-Mar-2007 | |||||||||||||||
Date of Filing | 08-May-2001 | |||||||||||||||
Name of Patentee | MINERALOL RAFFINERIE DOLLBERGEN GMBH, | |||||||||||||||
Applicant Address | BAHNHOF-STRASSE 22, D-31311 UETZE-DOLLBERGEN | |||||||||||||||
Inventors:
|
||||||||||||||||
PCT International Classification Number | C 10 M 175/00 | |||||||||||||||
PCT International Application Number | PCT/EP99/08667 | |||||||||||||||
PCT International Filing date | 1999-11-11 | |||||||||||||||
PCT Conventions:
|