Title of Invention | A COMPRESSED TABLET |
---|---|
Abstract | A tablet comprising: antibacterial oxazolidinone as linezolid, in the range of 400mg to 600mg, starch, as corn starch in the range of 36.0 mg to 66 mg, microcrystalline cellulose in the range of 70.5 mg to 129.36 mg, binder selected from the group consisting of hydroxypropylmethylcellulose, povidone and corn starch paste and hydroxypropylcellulose, in the range of 7.2 mg to 13.2 mg, disintegrants selected from the group consisting of crosscarmellose sodium, crospovidone and low substituted hydroxypropylcellulose and sodium starch glycolate in the range of 25.2 mg to 46.2 mg, lubricant selected from the group consisting of stearic acid, hydrogenated vegetable oil, metallic salts of stearic acid of the kind such as herein described , as magnesium stearate in the range of 5.04 mg to 9.24 mg, talc and optionally Opadry White YS-1-18202-A in the range of 11.2 mg to 33.6 mg and Carnaba Wax in the range of .0024 mg to .0336 mg. |
Full Text | FORM 2 THE PATENTS ACT 1970 [39 OF 1970] & THE PATENTS RULES, 2003 OMPLETE SPECIFICATION [See Section 10; rule 13] "A compressed tablet" PHARMACIA & UPJOHN COMPANY, a Delaware corporation, 301 Henrietta Street, Kalamazoo, Michigan 49001, United States of America. The following specification particularly describes the invention and the manner in which it is to be performed: IN/PCT/2002/01181/MUM BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a novel tablet formulation which permits high drug load and does not use lactose. . 2. Description of the Related Art Oxazolidinones are well known to those skilled in the art as gram positive anti-bacterial agents, see, for example, US Patents 5.688.792. 5.529.99S. 5.547.950. 5,627,181, 5,700,799, 5,843.967.5.792.765.5,684,023.5.861,413,5,827,857, 5,869,659, 5,698,574, 5,968,962 and 5,981,528. Various tablet formulations are very well known to those skilled in the art which contain starch, microcrystalline cellulose, hydroxypropylcellulose and other' ingredients. However, it is very difficult to get high drug load and blood levels similar to IV administration. SUMMARY OF INVENTION Disclosed is a compressed tablet containing the following ingredients: antibacterial oxazolidinone, starch, microcrystalline cellulose, binder selected from the group consisting of hydroxypropylcellulose, hydroxypropylmethylcellulose, povidone and com starch paste, disintegrants selected from the group consisting of sodium starch glycolate, crosscarmellose sodium, crospovidone and low substituted hydroxypropylcellulose and lubricant selected from the group consisting of stearic acid, metalic salts of stearic acid, hydrogenated vegetable oil and talc. . Also disclosed is a method for providing blood levels of an antibacterial oxazolidinone by oral administration medically equivalent to the blood levels produced by IV administration of the same antibacterial oxazolidinone which comprises administration of a compressed tablet of the formulation: antibacterial oxazolidinone, 00168.PCT1 starch, microcrystalline cellulose, binder selected from the group consisting of hydroxypropylcellulose, hydroxypropylmethylcellulose, povidone and com starch paste, hydroxypropylcellulose, disintegrants selected from the group consisting of sodium starch glycolate, crosscarmellose sodium, crospovidone and low substituted hydroxypropylcellulose and lubricant selected from the group consisting of stearic acid, metalic salts of stearic acid, hydrogenated vegetable oil and talc. DETAILED DESCRIPTION OF THE INVENTION Oxazolidinones are a new class of gram positive antibacterial agents which are known to those skilled in the art, see for example US 5,688,792. (S)-N-[[3-[3-fluoro-4-(4-morpholinyl)phenyl]-2-oxo-5-oxazolidinyl]methyl]acetamide, known as linezolid, the compound of Example 5 of US Patent 5,688,792 is known and has the following chemical structural formula: (S)-N-[[3-[3-fluoro-4-[4-(hydroxyacetyl)-l-piperazinyl]-phenyl]-2-oxo-5- oxazolidinyl]methyl]acetamide, known as eperezolid, the compound of Example 8 of US Patent 5,837,870 is known and has the following chemical structural formula: (S)-N-[[3-[3-fluoro-4-(tetrahydro-2H-thiopyran-4-yl)phenyl]-2-oxo-5-oxazolidinyl]methyl]acetamide S,S-dioxide the compound of Example 51 of US Patent 5,968,962 has the following chemical structural formula: 00168.PCT1 Linezolid and eperezolid can be produced by the processes set forth in US Patents 5,688,791 and 5,837,870 as well as that of International Publication W099/24393. They are preferably produced by the process of US Patent 5,837,870. (S)-N-[[3-[3-fluoro-4-(tetrahydro-2H-thiopyran-4-yl)phenyl]-2-oxo-5-oxazolidinyl]methyl]acetamide S,S-dioxide can be produced by the process of US Patent 5,968,962 or the process of US Patent application Serial No. 60/118,150; it is preferred that it be produced by the process of US Patent application Serial No. 60/118,150. When the antibacterial oxazolidinone is linezolid, it is preferred that linezolid produced be used in crystal form n, which has the characteristics set forth in CHART A. Once linezolid is synthesized, crystal Form H is prepared by starting with linezolid of high enantiomeric purity. It is preferred that the linezolid be more than 98% enantiomerically pure, it is more preferred that the linezolid be more than 99% pure and it is even more preferred that the linezolid be 99.5% pure. The linezolid of greater than 98% enantiomeric purity to be used to form crystal form II can either be in solution or be a solid. The linezolid starting material, solid or solution, is mixed with a solvent selected from the group consisting of compounds of the formula: water, acetonitrile, chloroform, methylene chloride, R1-OH where R1 is C1-C6 alkyl; R1-CO-R2 where R2 is C1-C6 alkyl and R1 is as defined above; phenyl substituted with 1 thru 3 R1 where R1 is as defined above; R1-CO-O-R2 where R1 is C\-Cs alkyl and R1 is as defined above; R1-O-R2 where R1 is C1-C6 alkyl and Ri is as defined above. It is preferred that the solvent be selected from the group consisting of water, ethyl acetate, methanol, ethanol, propanol, isopropanol, butanol, acetonitrile, acetone, methyl ethyl ketone, chloroform, methylene chloride, toluene, xylene, diethyl ether, or methyl-t-butyl ether. It is more preferred that the solvent be ethyl acetate, acetone, acetonitrile, propanol, or isopropanol. It is most preferred that the solvent be ethyl acetate. The mixture of linezolid in the solvent is agitated at a temperature below 80° until crystals 00168.PCT1 of Form II are formed and crystals of other solid forms, such as Form I, disappear. It . is preferred to dissolve the linezolid in ethyl acetate at a temperature near the boiling point of the solvent. This mixture is cooled to a temperature of about 70°. The mixture may be seeded with crystals of Form II to facilitate crystallization. It is preferred that the solid product is cooled and agitated at a temperature between about 45° and about 60° until the solids consist only of Form II crystals. It is most preferred to maintain the slurry at a temperature of about 55°. It is preferred to mix the linezolid and solvent for at least 10 min, it is even more preferred to mix the linezolid and solvent for at least 20 min and it is most preferred to mix the linezolid and solvent for at least 30 min. The time and temperature will vary depending on the solvent selected. With ethyl acetate it is preferred to mix for not less that 60 minutes. The crystalline slurry may be further cooled to improve yield, and the solid Form II product may be isolated. The mixture may be further cooled and agitated. Other measures which can be used to facilitate crystallization include, but are not limited to, cooling, concentration of the solution by evaporation or distillation, or through addition of other solvents. The crystals are isolated by procedures known to those skilled in the art. The preferred solid oral dosage form is a tablet. The composition of the tablets of the present invention can vary but includes the following essential features: antibacterial oxazolidinone, starch, microcrystalline cellulose, binder selected from the group consisting of hydroxypropylcellulose, hydroxypropylmethylcellulose, povidone and corn starch paste, disintegrants selected from the group consisting of sodium starch glycolate, crosscarmelldse sodium, crospovidone and low substituted hydroxypropylcellulose and lubricant selected from the group consisting of stearic acid, metalic salts of stearic acid, hydrogenated vegetable oil and talc. It is preferred that the antibacterial oxazolidinone is selected from the group consisting of linezolid, eperezolid and (S)-N-[[3-[3-fluoro-4-(tetrahydro-2H-thiopyran-4-yl)phenyl]-2-oxo-5-oxazolidinyl]methyl]acetamide S,S-dioxide. It is more preferred that the antibacterial oxazolidinone is linezolid. It is preferred that the 00168.PCT1 linezolid is in crystal form II. It is preferred that the starch is corn starch. It is preferred that the binder is hydroxypropylcellulose and that the disintegrant is sodium starch glycolate. It is preferred that the lubricant is magnesium sterarte. It is preferred that the tablet is film coated. It is also preferred that the tablet has a hardness range is from about 18 to about 30 Strong Cobb units; it is more preferred that the tablet has a hardness range is from about 20 to about 25 Strong Cobb units. When the antibacterial agent is linezolid it is preferred that the linezolid be present in 400 mg or 600 mg amounts; more preferably 600 mg. When linezolid is present in 400 mg, a preferred formulation is: Linezolid 400.0 mg Corn starch 36.0-44.0 mg Microcrystalline cellulose (intragranular) 14.4-17.6 mg **-"' Hydroxypropylcellulose (intragranular) 5.32 - 6.52 mg 7 Hydroxypropylcellulose (binder solution) 1.9- 2.3 mg Microcrystalline cellulose (extragranular) 56.1-68.6 mg -"- Sodium starch glycolate 25.2-30.8 mg Magnesium stearate 5.04-6.16 mg It is more preferred that the 400 mg tablet be coated and have the following formulation: Linezolid 400.0 mg Corn starch 36.0-44.0 mg Microcrystalline cellulose (intragranular) 14.4-17.6 mg Hydroxypropylcellulose (intragranular) 5.32 - 6.52 mg Hydroxypropylcellulose (binder solution) 1.9- 2.3 mg Microcrystalline cellulose (extragranular) 56.1-68.6 mg Sodium starch glycolate 25.2-30.8 mg Magnesium stearate 5.04-6.16 mg Opadry White YS-1-18202-A 11.2-22.4 mg Carnaba Wax 0-0.224 mg It is even more preferred that the 400 mg tablet formulation be: Linezolid 400.0 mg Corn starch 40.0 mg Microcrystalline cellulose (intragranular) 16.0 mg 00168.PCT1 Hydroxypropylcellulose (intragranular) 5.92 mg Hydroxypropylcellulose (binder solution) 2.08 mg Microcrystalline cellulose (extragranular) 62.4 mg Sodium starch glycolate 28.0 mg Magnesium stearate 5.6 mg It is most preferred that the 400 mg linezolid tablet formulation above be coated: Linezolid 400.0 mg Corn starch 40.0 mg Microcrystalline cellulose (intragranular) 16.0 mg Hydroxypropylcellulose (intragranular) 5.92 mg Hydroxypropylcellulose (binder solution) 2.08 mg Microcrystalline cellulose (extragranular) 62.4 mg Sodium starch glycolate 28.0 mg Magnesium stearate 5.6 mg Opadry White YS-1-18202-A 16.8 mg Carnaba Wax 0.224 mg When linezolid it present in 600 mg, a preferred tablet formulation is: Linezolid 600.0 mg Corn starch 54-66 mg Microcrystalline cellulose (intragranular) 21.6-26.4 mg Hydroxypropylcellulose (intragranular) 7.98-9.78 mg Hydroxypropylcellulose (binder solution) 2.82-3.42 mg Microcrystalline cellulose (extragranular) 84.24-102.96 mg Sodium starch glycolate 37.8-46.2 mg Magnesium stearate 7.56-9.24 mg It is more preferred that the 600 mg linezolid tablet formulation be coated: Linezolid 600.0 mg Corn starch 54-66 mg Microcrystalline cellulose (intragranular) 21.6-26.4 mg Hydroxypropylcellulose (intragranular) 7.98-9.78 mg Hydroxypropylcellulose (binder solution) 2.82-3.42 mg Microcrystalline cellulose (extragranular) 84.24-102.96 mg Sodium starch glycolate 37.8-46.2 mg 00168.PCT1 Magnesium stearate 7.56-9.24 mg . Opadry White YS-1-18202-A 16.8-33.6 mg Camaba Wax 0-0.336 mg It is also preferred that the 600 mg linezolid tablet formulation be: Linezolid 600.0 mg Com starch 60.0 mg Microcrystalline cellulose (intragranular) 24.0 mg Hydroxypropylcellulose (intragranular) 8.88 mg Hydroxypropylcellulose (binder solution) 3.12 mg Microcrystalline cellulose (extragranular) 93.6 mg Sodium starch glycolate 42.0 mg Magnesium stearate 8.4 mg It is most preferred that the 600 mg linezolid tablet be coated: Linezolid 600.0 mg Corn starch " 60.0 mg Microcrystalline cellulose (intragranular) 24.0 mg Hydroxypropylcellulose (intragranular) 8.88 mg Hydroxypropylcellulose (binder solution) 3.12 mg Microcrystalline cellulose (extragranular) 93.6 mg Sodium starch glycolate 42.0 mg Magnesium stearate 8.4 mg Opadry White YS-1-18202-A 25.2 mg Carnaba Wax 0.0336 mg The above tablet formulations are prepared by methods well known to those skilled iri the art. It is preferred that the tablet formulations of the present invention be prepared as follows. The binder solution is prepared by adding part of the hydroxypropylcellulose to the purified water and mixing in an appropriate container until dissolved. The granulation is performed by adding the antibacterial oxazolidinone, corn starch, microcrystalline cellulose (intragranular, 24.0 mg), and the remaining hydroxypropylcellulose into a high shear mixer and mixing until adequately mixed. Then add the binder solution while mixing, and if needed, add an additional sufficient quantity of water while mixing, to form the granulation. Wet screen the granulation using appropriate equipment as is well known to those skilled in the art, 00168.PCT1 for example, a Comil. Following granulation the granulation is dried using suitable equipment, such as a fluid bed dryer. After the granulation is dried, dry screen the granulation using appropriate equipment, such as aComil. The lubrication portion is formed by mixing microcrystalline cellulose (extragranular, 93.6 mg) and sodium starch glycolate with the dry screened granulation in a suitable blender, such as a diffusion (tumble) type V-blender, until adequately blended. Next remove a portion of the blended material and combine with the magnesium stearate. Add the magnesium stearate mixture back into the blender, such as a diffusion (tumble) type V-blender, and mix until adequately blended. Finally, collect the lubricated powder mixture in appropriate containers. Alternatively, no binder solution need be used. All the hydroxypropylcellulose can be added as powder. In that situation, the antibacterial oxazolidinone, starch and microcrystalline cellulose and hydroxypropylcellulose are combined, mixed and then the water is added. It is preferred that a binder solution be used. The compressed tablets are formed using a suitable rotary compresion machine and compression tooling. The lubricated powder mixture is compressed into tablets of proper weight, hardness, size and shape. It is preferred to coat and wax the tablets. The Opadry White YS-1 -18202-A and purified water are mixed to prepare the coating suspension. The coating mixture should be continuously stirred until the mixture is free of lumps and the Opadry is in suspension. Prior to using, the film coating suspension should be screened through an appropriate screen. The desired quantity of tablets is loaded into the appropriately sized perforated coating pans (such as an Accela-Cota or Glatt coating pan) equipped with baffles, spray guns and pumping system. The appropriate amount of aqueous film coating is sprayed on the moving tablets until tablets are evenly coated. After the coating is complete, the appropriate amount of carnauba wax is weighed and added to the bed of tablets to polish the film coated tablets. It is preferred to print the tablets with identifying information as is known to those skilled in the art. A flow chart of the manufacturing process is provided in CHART B. The present invention also includes a method for providing blood levels of an antibacterial oxazolidinone by oral administration medically equivalent to the blood 00168.PCT1 levels produced by IV administration of the same antibacterial oxazolidinone which comprises administration of a compressed tablet of the formulation: antibacterial oxazolidinone, starch, microcrystalline cellulose, binder selected from the group consisting of hydroxypropylcellulose, hydroxypropylmethylcellulose, povidone and corn starch paste, disintegrants selected from the group consisting of sodium starch glycolate, crosscarmellose sodium, crospovidone and low substituted hydroxypropylcellulose and lubricant selected from the group consisting of stearic acid, metalic salts of stearic acid, hydrogenated vegetable oil and talc. All the preferences above with regard to the tablet formulation/composition are preferences for the method of providing blood levels of an antibacterial oxazolidinone by oral administration medically equivalent to the blood levels produced by IV administration of the same antibacterial oxazolidinone. It is well known to those skilled in the art how to use the oxazolidinone tablets of the present invention. See for example, US Patents 5,688,792, 5,547,950 and 5,968,962.. DEFINITIONS AND CONVENTIONS The definitions and explanations below are for the terms as used throughout this entire document including both the specification and the claims. DEFINITIONS Linezolid refers to (S)-N-[[3-[3-fluoro-4-(4-morpholinyl)phenyl]-2-oxo-5-oxazolidinyl] methyl] acetamide is the compound of formula: Eperezolid refers to (S)-N-[[3-[3-fluoro-4-[4-(hydroxyacetyl)-l-piperazinylj-phenyl]-2-oxo-5-oxazolidinyl]methyl]acetamide is the compound of formula: 00168.PCT1 All temperatures are in degrees Celsius. USP refers to the United States Pharmacopiea. NF refers to the National Formulary. Pharmaceutically acceptable refers to those properties and/or substances which are acceptable to the patient from a pharmacological/toxicological point of view and to the manufacturing pharmaceutical chemist from a physical/chemical point of view regarding composition, formulation, stability, patient acceptance and bioavailability. When solvent pairs are used, the ratios of solvents used are volume/volume (v/v). When the solubility of a solid in a solvent is used the ratio of the solid to the solvent is weight/volume (wt/v). Opadry White refers to Colorcon's tablet coating product. The product code YS-1-18202-A refers to a specific tablet coating formula. EXAMPLES Without further elaboration, it is believed that one skilled in the art can, using the preceding description, practice the present invention to its fullest extent. The following detailed examples describe how to prepare the various compounds and/or perform the various processes of the invention and are to be construed as merely illustrative, and not limitations of the preceding disclosure in any way whatsoever. Those skilled in the art will promptly recognize appropriate variations from the procedures both as to reactants and as to reaction conditions and techniques. EXAMPLE 1 Linezolid (400 mg) Tablet Formulation Ingredients Amount Linezolid 400.0 mg Corn starch NF 40.0 mg 00168.PCT1 Microcrystalline cellulose NF 16.0 mg Hydroxypropylcellulose (intragranular) NF 5.92 mg Hydroxypropylcellulose (binder solution) NF 2.08 mg Microcrystalline cellulose NF 62.4 mg Sodium starch glycolate NF 28.0 mg Magnesium stearate NF 5.6 mg Purified water USP 22.0% uncoated tablet wt Film Coating Phase Opadry White YS-1-18202-A 16.8 mg Purified Water USP 129.2 mg Polishing Phase Carnauba Wax NF 0.0224 mg The binder solution is prepared by adding part of the hydroxypropylcellulose to the purified water and mixing in an appropriate container until dissolved. The granulation is performed by adding the antibacterial oxazolidinone', corn starch, microcrystalline cellulose (intragranular, 24.0 mg), and the remaining hydroxypropylcellulose into a high shear mixer and mixing until adequately mixed. Then add the binder solution while mixing, and if needed, add an additional sufficient quantity of water while mixing, to form the granulation. Wet screen the granulation using appropriate equipment as is well known to those skilled in the art, for example, a Comil. Following granulation the granulation is dried using suitable equipment, such as a fluid bed dryer. After the granulation is dried, dry screen the granulation using appropriate equipment, such as a Comil. The lubrication portion is formed by mixing microcrystalline cellulose (extragranular, 93.6 mg) and sodium starch glycolate with the dry screened granulation in a suitable blender, such as a diffusion (tumble) type V-blender, until adequately blended. Next remove a portion of the blended material and combine with the magnesium stearate. Add the magnesium stearate mixture back into the blender, such as a diffusion (tumble) type V-blender, and mix until adequately blended. Finally, collect the lubricated powder mixture in appropriate containers. The compressed tablets are formed using a suitable rotary compression machine and compression tooling. The lubricated powder mixture is compressed into tablets of proper weight, hardness, size and shape. 00168.PCT1 It is preferred to coat and wax the tablets. The Opadry White YS-1-18202-A and purified water are mixed to prepare the coating suspension. The coating mixture should be continuously stirred until the mixture is free of lumps and the Opadry is in suspension. Prior to using, the film coating suspension should be screened through an appropriate screen. The desired quantity of tablets is loaded into the appropriately sized perforated coating pans (such as an Accela-Cota or Glatt coating pan) equipped with baffles, spray guns and pumping system. The appropriate amount of aqueous film coating is sprayed on the moving tablets until tablets are evenly coated. After the coating is complete, the appropriate amount of carnauba wax is weighed and added to the bed of tablets to polish the film coated tablets. It is preferred to print the tablets with identifying information as is known to those skilled in the art. A flow chart of the manufacturing process is provided in CHART B. EXAMPLE 2 Linezolid (600 mg) Tablet Formulation Ingredients Amount Linezolid 600.0 mg Corn starch NF 60.0 mg Microcrystalline cellulose NF 24.0 mg Hydroxypropylcellulose (intragranular) NF 8.88 mg Hydroxypropylcellulose (binder solution) NF 3.12 mg Microcrystalline cellulose NF 93.6 mg Sodium starch glycolate NF 42.0 mg Magnesium stearate NF 8.4 mg Purified water USP 22.0% uncoated tablet wt Film Coating Phase Opadry White YS-1 -18202-A 25.2 mg Purified Water USP 193.9 mg Polishing Phase Carnauba Wax NF 0.0336 mg Following the general procedure of EXAMPLE 1 and making non-critical variations but using the amounts of ingredients above Linezolid 600 mg tablets are produced. 00168.PCT1 CHART A Linezolid, (S)-N-[[3-[3-fluoro-4-(4-morpholinyl)phenyl]-2-oxo-5- oxazolidinyljmethyljacetarriide, crystal "Form II" has the powder X-ray diffraction spectrum of: d-Spacing (A) Two-Theta Angle (°) Relative Intensity (°i 12.44 7.10 2 9.26 . 9.54 9 6.37 13.88 6 6.22 14.23 24 5.48 16.18 3 5.28 16.79 100 5.01 17.69 2 4.57 19.41 4 4.50 19.69 2 4.45 19.93 6 4.11 21.61 15 3.97 22.39 23 3.89 22.84 4 3.78 23.52 7 3.68 24.16 1 3.52 25.28 13 3.34 26.66 1 3.30 27.01 3 3.21 27.77 1 and an infrared (IR) spectrum (mineral oil mull) of 3364,1748, 1675, 1537, 1517, 1445, 1410, 1401, 1358, 1329, 1287, 1274, 1253, 1237, 1221, 1145, 1130, 1123, 1116, 1078, 1066, 1049, 907, 852 and 758 cm"1. 00168.PCT1 CHART B Linezolid Tablet Manufacturing Flowchart 00168.PCTI WE CLAIM : 1. A tablet comprising: antibacterial oxazolidinone as linezolid, in the range of 400mg to 600mg, starch, as corn starch in the range of 36.0 mg to 66 mg, microcrystalline cellulose in the range of 70.5 mg to 129.36 mg, binder selected from the group consisting of hydroxypropylmethylcellulose, povidone and corn starch paste and hydroxypropylcellulose, in the range of 7.2 mg to 13.2 mg, disintegrants selected from the group consisting of crosscarmellose sodium, crospovidone and low substituted hydroxypropylcellulose and sodium starch glycolate in the range of 25.2 mg to 46.2 mg, lubricant selected from the group consisting of stearic acid, hydrogenated vegetable oil, metallic salts of stearic acid of the kind such as herein described , as magnesium stearate in the range of 5.04 mg to 9.24 mg, talc and optionally Opadry White YS-1-18202-A in the range of 11.2 mg to 33.6 mg and Carnaba Wax in the range of .0024 mg to .0336 mg. 2. A tablet as claimed in claim 1, where the linezolid is in crystal form II. 3. A tablet as claimed in claim 1, where the said binder is hydroxypropylcellulose. 4. A tablet as claimed in claim 1, where the said disintegrant is sodium starch glycolate. 5. A tablet as claimed in claim 1, where the said lubricant is magnesium stearate. 6. A tablet as claimed in claim 1, where the tablet is film coated. 7. A tablet as claimed in claim 1, where the tablet has a hardness range is from about 18 to about 30 Strong Cobb units wherein 1.4 Strong Cobb units = lkg SI 8. A tablet as claimed in claim 7, where the tablet has a hardness range is from about 20 to 25 Strong Cobb units. 9. A tablet as claimed in claim 1, wherein it comprises: linezolid 400.Omg corn starch 36.0-44.0mg microcrystalline cellulose 70.5-86.2mg hydroxypropylcellulose 7.2-8.8mg sodium starch glycolate 25.2-30,8mg Magnesium stearate 5.04-6.16 mg 10. A tablet as claimed in claim 9, wherein it comprises: linezolid 400.0mg corn starch 36.0-44.0mg microcrystalline cellulose 70.5-86.2mg hydroxypropylcellulose 7.2-8.8mg sodium starch glycolate 25.2-30.8mg Magnesium stearate 5.04-6.16 mg Opadry White YS-1-18202-A 16.8-25.2 mg Carnaba Wax 0-0.0224 mg 11. A tablet as claimed in claim 9, wherein it comprises: Linezolid 400.0 mg Corn starch 40.0 mg Microcrystalline cellulose 78.4 mg Hydroxypropylcellulose 8.00 mg Sodium starch glycolate 28.0 mg Magnesium stearate 5.6 mg 12. A tablet as claimed in claim 1, wherein it comprises: Linezolid 400.0 mg Corn starch 40.0 mg Microcrystalline cellulose 78.4 mg Hydroxypropylcellulose 8.00 mg Sodium starch glycolate 28.0 mg Magnesium stearate 5.6 mg Opadry White YS-1-18202-A 16.8 mg CarnabaWax 0.0224 mg 13. A tablet as claimed in claim 1, wherein it comprises: Linezolid 600.0 mg Corn starch 54-66 mg Microcrystalline cellulose 105.84-129.36 mg Hydroxypropylcellulose 10.8-13.2 mg Sodium starch glycolate 37.8-46.2 mg Magnesium stearate 7.56-9.24 mg 14. A tablet as claimed in claim 13, wherein it comprises: Linezolid 600.0 mg Corn starch 54-66 mg Microcrystalline cellulose 105.84-129.36 mg Hydroxypropylcellulose 10.8-13.2 mg Sodium starch glycolate 37.8-46.2 mg Magnesium stearate 7.56-9.24 mg Opadry White YS-1-18202-A 16.8-33.6 mg CarnabaWax 0-0.0336 mg 15. A tablet as claimed in claim 13, wherein it comprises: Linezolid 600.0 mg Corn starch 60.0 mg Microciystalline cellulose 117.6 mg Hydroxypropylcellulose 12.00 mg Sodium starch glycolate 42.0 mg Magnesium stearate 8.4 mg 16. A tablet as claimed in claim 15, wherein it comprises: Linezolid 600.0 mg Corn starch 60.0 mg Macrocrystalline cellulose 117.6 mg Hydroxypropylcellulose 12.00 mg Sodium starch glycolate 42.0 mg Magnesium stearate 8.4 mg Opadry White YS-M8202-A 25.2 mg Carnaba Wax 0.0336 mg Dated this 28th day of August, 2002. [RANJNA MEHTA-DUTT] OF REMFRY AND SAGAR ATTORNEY FOR THE APPLICANTS |
---|
in-pct-2002-01181-mum-abstract(complete)-(28-8-2002).pdf
in-pct-2002-01181-mum-abstract(granted)-(26-12-2006).pdf
in-pct-2002-01181-mum-cancelled pages(24-4-2006).pdf
in-pct-2002-01181-mum-claims(amended)-(20-1-2006).pdf
in-pct-2002-01181-mum-claims(amended)-(24-3-2006).pdf
in-pct-2002-01181-mum-claims(amended)-(24-4-2006).pdf
in-pct-2002-01181-mum-claims(complete)-(28-8-2002).pdf
in-pct-2002-01181-mum-claims(granted)-(26-12-2006).pdf
IN-PCT-2002-01181-MUM-CORRESPONDENCE(9-5-2006).pdf
in-pct-2002-01181-mum-correspondence(ipo)-(28-2-2007).pdf
in-pct-2002-01181-mum-description(complete)-(28-8-2002).pdf
in-pct-2002-01181-mum-description(granted)-(26-12-2006).pdf
in-pct-2002-01181-mum-form 1(16-10-2002).pdf
in-pct-2002-01181-mum-form 1(28-8-2008).pdf
in-pct-2002-01181-mum-form 2(complete)-(28-8-2002).pdf
in-pct-2002-01181-mum-form 2(granted)-(26-12-2006).pdf
in-pct-2002-01181-mum-form 2(title page)-(complete)-(28-8-2002).pdf
in-pct-2002-01181-mum-form 2(title page)-(granted)-(26-12-2006).pdf
IN-PCT-2002-01181-MUM-POWER OF AUTHORITY(11-11-2002).pdf
in-pct-2002-01181-mum-specification(amended)-(10-1-2006).pdf
in-pct-2002-01181-mum-specification(amended)-(18-1-2006).pdf
in-pct-2002-01181-mum-wo international publication report(28-8-2002).pdf
in-pct-2002-1181-mum-cancelled page(24-04-2006).pdf
in-pct-2002-1181-mum-claim(granted)-(24-04-2006).doc
in-pct-2002-1181-mum-claim(granted)-(24-04-2006).pdf
in-pct-2002-1181-mum-correspondence(24-04-2006).pdf
in-pct-2002-1181-mum-correspondence(ipo)-(20-04-2006).pdf
in-pct-2002-1181-mum-form 1(10-01-2006).pdf
in-pct-2002-1181-mum-form 1(28-08-2002).pdf
in-pct-2002-1181-mum-form 18(31-03-2005).pdf
in-pct-2002-1181-mum-form 2(granted)-(24-04-2006).doc
in-pct-2002-1181-mum-form 2(granted)-(24-04-2006).pdf
in-pct-2002-1181-mum-form 3(10-01-2006).pdf
in-pct-2002-1181-mum-form 3(28-08-2002).pdf
in-pct-2002-1181-mum-form 4(20-01-2006).pdf
in-pct-2002-1181-mum-form 5(28-08-2002).pdf
in-pct-2002-1181-mum-pct-ipea-409(28-08-2002).pdf
in-pct-2002-1181-mum-pct-isa-210(28-08-2002).pdf
in-pct-2002-1181-mum-petition under rule 137(10-01-2006).pdf
in-pct-2002-1181-mum-petition under rule 138(10-01-2006).pdf
in-pct-2002-1181-mum-power of authority(10-01-2006).pdf
in-pct-2002-1181-mum-power of authority(16-08-2002).pdf
Patent Number | 204096 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Indian Patent Application Number | IN/PCT/2002/01181/MUM | |||||||||
PG Journal Number | 21/2007 | |||||||||
Publication Date | 25-May-2007 | |||||||||
Grant Date | 26-Dec-2006 | |||||||||
Date of Filing | 28-Aug-2002 | |||||||||
Name of Patentee | PHARMACIA & UPJOHN COMPANY | |||||||||
Applicant Address | 301 HENRIETTA STREET, KALAMAZOO, MICHIGEN 49001, | |||||||||
Inventors:
|
||||||||||
PCT International Classification Number | A61K 009/20, A 61K 009/12, A61K 009/14 | |||||||||
PCT International Application Number | N/A | |||||||||
PCT International Filing date | 2001-03-15 | |||||||||
PCT Conventions:
|