Title of Invention

"A PROCESS FOR THE PRODUCTION OF PYRAZOLOPYRIMIDINONES"

Abstract A process for the production of a compound of general formula I: wherein A represents CH or N; R1 represents H, C1-6 alkyl (which alkyl group is optionally interrupted by O), Het, alkylHet, aryl or alkylaryl, which latter five groups are all optionally substituted (and/or, in the case of C1-6 alkyl, optionally terminated) by one or more substituents selected from halo, cyano, nitro, lower alkyl, OR5, C(0)R6, C(0)OR7, C(0)NR8R9, NR10aR10b and S02NR11aR11b; R2 and R4 independently represent C1-6 alkyl; R3 represents C1-6 alkyl, which alkyl group is optionally interrupted by oxygen; Het represents an optionally substituted four- to twelve-membered heterocyclic group, which group contains one or more heteroatoms selected from nitrogen, oxygen and sulfur; R5, R6, R7, R6, R9, Rlla and Rllb independently represent H or C1-6 alkyl; R10a and R10b either independently represent, H or C1-6 alkyl or, together with the nitrogen atom to which they are attached, represent azetidinyl, pyrollidinyl or piperidinyl, which process comprises the dehydrogenation of a compound of general formula II, wherein A, R1, R2, R3 and R4 are as defined above.
Full Text FORM 2
THE PATENTS ACT 1970
[39 OF 1970]
COMPLETE SPECIFICATION
[See Section 10]
" A PROCESS FOR THE PRODUCTION OF PYRAZOLOPYRIMIDINONES"
PFIZER INC., a corporation organised under the laws of the State of Delaware, United States of America., of 235 East 42nd Street, New York, New York, 10017, United States of America,
The following specification particularly describes the nature of the invention and the manner in which it is to be performed:-

The present invention relates to a process for the production pyrazolopyrimidinones.
This invention relates to a novel process for the production of 4-alkylpiperazmylsulfonylphenyl- and 4-alkylpiperazinylsulfonyl pyridinyl-'dihydropyrazolo[4,3-d]pyrinidin-7-one derivatives, and, in particular, the anti-impotence drug, sildenafil and analogues thereof.
Sildenafil (5-[2-ethoxy-5-(4-methylpiperazin- l-ylsulfonyl)phenyl]-1-metliyl-3-n-propyl-l,6-dmydro-7if-pyrazolo[4,3-d]pyrimidin-7-one),

is the active ingredient in Viagra™. The compound, which was originally disclosed in European patent application EP 463 756, has been found to be particularly useful in the treatment of inter alia male erectile dysfunction (see international patent application WO 94/28902).
Multi-step syntheses for the production of sildenafil are described in EP 463 756. An improved process for its production is described in a later application (European patent application EP 812 845), the final step of


which involves an internal cyclisation under basic, neutral or acidic conditions.
We have now found that sildenafil and analogues thereof may be made via a novel process, as described hereinafter, which process has advantages over the processes described in the above-mentioned prior art documents.
According to a first aspect of the invention, there is provided a process for the production of compounds of general formula I:

wherein
A represents CH or N;
R1 represents H, lower alkyl (which alkyl group is optionally interrupted by
O), Het, alkylHet, aryl or alkylaryl, which latter five groups are all
optionally substituted (and/or, in the case of lower alkyl, optionally
terminated) by one or more substituents selected from halo, cyano, nitro,


lower alkyl, OR5, C(0)R6, C(0)OR7, C(0)NRsR9, NR10aR10b and S02NRllaRllb;
R2 and R4 independently represent lower alkyl;
R3 represents lower alkyl, which alkyl group is optionally interrupted by 5 oxygen;
Het represents an optionally substituted four- to twelve-membered heterocyclic group, which group contains one or more heteroatoms selected from nitrogen, oxygen and sulfur;
R5, R6, R7, Rs, R9, RIIa and Rllb independently represent H or lower alkyl; JO R10a and R10b either independently represent, H or lower alkyl or, together with the nitrogen atom to which they are attached, represent azetidinyl, pyroUidinylor piperiduxyl,
which process comprises the dehydrogenation of a compound of general formula II,

15
wherein A, R1, R2, R3 and R4 are as defined above,
which process is referred to hereinafter as "the process of the invention'

According to a second aspect of the invention, there is provided a process for the production of compounds of general formula I:

wherein
A represents CH or N;
R1 represents H, lower alkyl (which alkyl group is optionally interrupted by 10 O), Het, alkylHet, aryl or alkylaryl, which latter five groups are all
optionally substituted (and/or, in the case of lower alkyl, optionally
terminated) by one or more substiruents selected from halo, cyano, nitro,
lower alkyl, OR5, C(0)R6, C(0)OR7, C(0)NR8R9, NR10aR10b and
S02NRllaRllb; 15 R2 and R4 independently represent lower alkyl;
R3 represents lower alkyl, which alkyl group is optionally interrupted by
oxygen;


10

Het represents an optionally substituted four- to twelve-membered
heterocyclic group, which group contains one or more heteroatoms selected
from nitrogen, oxygen and sulfur;
R5, R6, R7, R8, R9, Rlla and Rllb independently represent H or lower alkyl;
RIOa and R10b either independently represent, H or lower alkyl or, together
with the nitrogen atom to which they are attached, represent azetidhryl,
pyrollidinyl or piperidinyl;
with the proviso that the compound of formula I is not sildenafil;
which process comprises the dehydrogenation of a compound of general
formula II,


wherein A, R1, R2, R3 and R4 are as defined above,
which process is referred to hereinafter as "the process of the invention".
15 According to a third aspect of the invention, there is provided a process for the production of compounds of general formula I:


wherein 5 A represents CH;
R1 represents H, lower alkyl (which alkyl group is optionally interrupted by
O), Het, alkylHet, aryl or alkylaryl, which latter five groups are all
optionally substituted (and/or, in the case of lower alkyl, optionally
terminated) by one or more substituents selected from halo, cyano, nitro, 10 lower alkyl, OR5, C(0)R6, C(0)OR7, C(0)NR8R9, NR10aR10b and
S02NRllaRllb;
R2 and R4 independently represent lower alkyl;
R3 represents lower alkyl, which alkyl group is optionally interrupted by
oxygen; 15 Het represents an optionally substituted four- to twelve-membered
heterocyclic group, which group contains one or more heteroatoms selected
from nitrogen, oxygen and sulfur;
R5, R6, R7, R8, R9, Rlla and R1Ib independently represent H or lower alkyl;


R1 a and R10b either independently represent, H or lower alkyl or, together
with the nitrogen atom to which they are attached, represent azetidinyl,
pyrollidinyl or piperidinyl;
with the proviso that the compound of formula I is not sildenafil;
which process comprises the dehydrogenation of a compound of general
formula II,




10

wherein A, R1, R2, R3 and R4 are as defined above,
which process is referred to hereinafter as "the process of the invention".
According to a fourth aspect of the invention, there is provided a process for the production of compounds of general formula I:


wherein 5 A represents N;
R1 represents H, lower alkyl (which alkyl group is optionally interrupted by
O), Het, altylHet, aryl or alkylaryl, which latter five groups are all
optionally substituted (and/or, in the case of lower alkyl, optionally
terminated) by one or more substituents selected from halo, cyano, nirro, 10 lower alkyl, OR5, C(0)R6, C(0)OR7, C(0)NR8R9, NR10aR10b and
S02NRllaRllb;
R2 and R4 independently represent lower alkyl;
R3 represents lower alkyl, which alkyl group is optionally interrupted by
oxygen; 15 Het represents an optionally substituted four- to twelve-membered
heterocyclic group, which group contains one or more heteroatoms selected
from nitrogen, oxygen and sulfur;
R5, R6, R7, R8, R9, Rlla and Rllb independently represent H or lower alkyl;


R10a and R10b either independently represent, H or lower alkyl or, together with the nitrogen atom to which they are attached, represent azetidinyl, pyrollidinyl or piperidinyl,
which process comprises the dehydrogenation of a compound of general formula II,

wherein A, R1, R2, R3 and R4 are as defined above,
which process is referred to hereinafter as "the process of the invention'
10 The compounds of general formulae I and II can be represented by the formulae IA and IB and IIA and IIB as detailed hereinafter. The novel process according to the present invention includes compounds of the formulae IA, IB, IIA and IIB.


The term "aryr", when used herein, includes six- to ten-membered 5 carbocyclic aromatic groups, such as phenyl and naphthyl and the like.
Het groups may be fully saturated, partly unsaturated, wholly aromatic,
partly aromatic and/or bicyclic in character. Het groups that may be
mentioned include groups such, as optionally substituted azetidinyl,
10 pyirolidinyl, imidazolyl, indolyl, oxadiazolyl, thiadiazolyl, triazolyl,

tetrazolyl, oxatriazolyl, thiatriazolyl, pyridazinyl, morpholinyl, pyrimidinyl, pyrazinyl, pyridyl, quinolinyl, isoquinolinyl, piperidinyl, pyrazolyl, imidazopyridinyl, piperazinyl, thienyl and furanyl.
5 The point of attachment of any Het group may be via any atom in the ring system including (where appropriate) a heteroatom. Het groups may also be present in the N- or S-oxidised form.
The term "lower alkyl" (which includes the alkyl part of alkylHet and alkylaiyl groups), when used herein, includes C1-6 alkyl (e.g. C1-4 alkyl). Unless otherwise specified, alkyl groups may, when there is a sufficient number of carbon atoms, be linear or branched, be saturated or unsaturated, be cyclic, acyclic or part cyclic/acyclic, and/or be substituted by one or more halo atoms.
15
As defined herein, the term "halo" includes fluoro, chloro, bromo and iodo.
Compounds of formulae I, IA and IB may contain one or more asymmetric carbon atoms and may therefore exhibit optical and/or diastereoisomerism.
20 The process of the invention thus also relates to the formation of stereoisomers of compounds of formulae I, IA and IB and mixtures thereof. Stereoisomers may be separated using conventional techniques, e.g. chromatography or fractional crystallisation. The various stereoisomers may be isolated by separation of a racemic or other mixture of the compounds
25 using conventional, e.g. fractional crystallisation or HPLC, techniques. Alternatively the desired optical isomers may be made by reaction of the appropriate optically active starting materials under conditions which will not cause racemisation or epimerisation, or by derivatisation, for example with a


homocbiral acid followed by separation of the diastereomeric esters by conventional means (e.g. HPLC, crystallisation, chromatography over silica or, for example, via classical resolution with a homochiral acid salt). The formation of all stereoisomers is included within the scope of the invention. 5
Preferred compounds of formulae I, IA and IB include those in which: R1 represents C1-4 alkyl, which alkyl group is optionally interrupted by an oxygen atom, and/or is optionally terminated by a Het group (such as a pyridmyl group); 10 R2 represents C1-4 alkyl;
. R3 represents C1-5 alkyl, which alkyl group is optionally interrupted by an oxygen atom; R4 represents C1-3 alkyl.
15 More preferred compounds of formulae I, IA and IB mclude those in which: R1 represents linear C1-3alkyl, which alkyl group is optionally interrupted by an oxygen atom, or is optionally terminated by a 2-pyridinyl group (e.g. to form a 2-pyridinylmethyl group); R2 represents linear C2-3 alkyl;
20 R3 represents linear or branched C2-4 alkyl, which alkyl group is optionally interrupted by an oxygen atom; R4 represents C1-2 alkyl.
Particularly preferred compounds that may be formed in the process of the 25 invention include sildenafil, and the following four compounds:




The process of the invention may be carried out in accordance with reaction conditions known to those skilled in the art in the presence of a suitable dehydrogenation agent (for example: a catalyst such as palladium on carbon (e.g. 5% Pd/C or 10% Pd/C), preferably in the presence of a hydrogen acceptor such as cyclohexene or maleic acid and/or an acid such as


trifluoroacetic acid, HC1 or H2S04; a high oxidation potential quinone such as 2,3,5,6-tetracrdoro-l,4~benzoquinone or 2,3-dichloro-5,6-dicyano-l,4-benzoquinone; (atmospheric) oxygen; Mn02; or triphenylmethanol in trifluoroacetic acid). A hydrogen sulfite salt such as sodium hydrogen 5 sulfite may also serve to effect removal of hydrogen from the compound of general formula II (HA and HB). Preferred dehydrogenation agents include catalysts such as 5% Pd/C or 10% Pd/C, preferably in the presence of a hydrogen acceptor such as cyclohexene or maleic acid and/or an acid such as trifluoroacetic acid. The reaction may be carried out in an appropriate 10 organic solvent system, which solvent system should not significantly react chemically with, or significantly give rise to stereochemical changes in, the reactants or product once formed, or significantly give rise to other side reactions. Preferred solvent systems include aromatic hydrocarbons, such toluene and xylene.
15
The process of the invention may be carried at above room temperature (e.g. between 125 and 250°C, preferably 150 and 230°C, more preferably 175 and 220°C, depending upon the solvent system that is employed), and/or at high pressure (e.g. between 13.8 and 68.9 kPa (2 and 10 psi), preferably 20 between 27.6 and 41.4 kPa (4 and 6 psi), such as around 34.5 kPa (5 psi)), and/or, optionally, in an inert atmosphere (i.e. in the presence of an inert gas, such as nitrogen or argon).
Appropriate reaction times and reaction temperatures depend upon the 25 solvent system that is employed, as well as the compound that is to be formed, but these may be determined routinely by the skilled person.


We have found that compounds of general formula II (and IIA and KB) hereinbefore defined may be prepared, advantageously, by way of reaction of an aldehyde compound of formula HI,

wherein A, R3 and R4 are as hereinbefore defined, with a compound of formula IV,

wherein R and R2 are as hereinbefore defined.
10 This condensation/cyclisation reaction may be carried out at above room temperature (e.g. at around the reflux temperature of the solvent that is employed) in the presence of a suitable solvent (for example: an aromatic hydrocarbon, such as toluene or xylene; chlorobenzene; or diphenylether). This reaction may also be carried out under pressure at a higher temperature
15 than the reflux temperature of the relevant solvent that is employed.

The compounds of general formula IV may be represented by the formulae IVAandlVB.




10
15

Advantageously, we have found that compounds of general formula I (and IA and IB) hereinbefore defined may be formed directly from corresponding compounds of formula III in a "one pot" procedure, in which a compound of formula III is reacted with a compound of general formula IV at high temperature, and under pressure, using an appropriate reaction vessel. Following this reaction, the dehydrogenation agent(s) may be added to the reaction vessel and the dehydrogenation reaction performed on the intermediate compound of formula IIA or IIB, formed in situ, under similar conditions to those described hereinbefore.
Without wishing to be bound by a particular theory, it is believed that the reaction between compounds III and IV proceeds via either an imine intermediate of general structure:

20


or an aminol intennediateof general structure:

to form the compound of general formula II as hereinbefore defined.

Compounds of formula III may be prepared by known techniques. For example:
(a) Compounds of formula III in which A represents CH may be prepared 5 from readily available starting materials of formula V,

wherein R3 is as hereinbefore defined, in analogous fashion to the techniques described in German patent application DE 24 44 720, the disclosure in which document is hereby incorporated by reference.
10
(b) Compounds of formula HI in which A represents CH may alternatively be prepared by oxidation of a compound of formula VI,




15

wherein R3 and R4 are as hereinbefore defined, in the presence of a suitable oxidising agent (for example: Mn02; tetra-7?-propylammomum perruthenate (catalytic) combined with 4-methylmorpholine N-oxide; or oxafyl chloride combined with dimefhylsulfoxide and triethylamine) and an appropriate organic solvent (for example: acetone; dichloromethane; an aromatic

hydrocarbon (e.g. toluene or xylene); chlorobenzene; or an aliphatic hydrocarbon (e.g. pentane, hexane or petroleum ether)).
Compounds of formula VI may be prepared directly by reduction of a 5 corresponding carboxylic acid of formula VH,

wherein R3 and R4 are as hereinbefore defined, under conditions known to those skilled in the art (for example, using: L1AIH4; borane; NaBH4, added after activation with iodine; diisobutylaiuminium hydride; or NaBH4 10 combined with an acid activating agent (e.g. carbonyldiimidazole, thionyl chloride or methyl chloroformate)). Compounds of formula VII may be prepared according to, or by analogy with, methods described in European patent application EP 812 845.
15 However, in order to prepare compounds of formula VI more conveniently, we prefer that a compound of formula VII is first esterified under standard conditions to form a compound of formula VIIIA,


wherein Ra represents lower alkyl (e.g. C1-6, such as linear or branched C1-4, alkyl (e.g. methyl, ethyl or n- or j-propyl)) and R3 and R4 are as hereinbefore defined, followed by reduction of the ester using techniques known to those 5 skilled in the art (e.g. catalytic hydrogenation or, more preferably, chemical reduction). Appropriate chemical reducing agents include, for example, Red-Al®, DIBAL-H or L1AIH4. When the reducing agent is, for example, Red-Al®, the reduction may be carried out in the presence of a suitable organic solvent (for example: an aromatic hydrocarbon (e.g. toluene or 10 xylene); chlorobenzene; an aliphatic hydrocarbon (e.g. pentane, hexane or petroleum ether); THF; diisopropyl ether; or dichloromethane), under a positive pressure of inert gas (e.g. nitrogen or argon), for example at or around room temperature.
15 (c) Compounds of formula HI in which A represents N may be prepared by reduction of a corresponding compound of formula "VTEB,


wherein Ra, R3 and R4 are as hereinbefore defined, in the presence of a suitable reducing agent, for example, Red-Al® or DIBAL-H. When the reducing agent is DIBAL-H, this reduction may be performed, for example, 5 at low temperature (e.g. at -78°C) in the presence of an appropriate solvent (for example: an aromatic hydrocarbon (e.g. toluene or xylene); chlorobenzene; an aliphatic hydrocarbon (e.g. pentane, hexane or petroleum ether); THF; diisopropyl ether; or dichloromethane).
10 Preferred compounds of formula III include those in which A represents N.
Compounds of formula VIIIB may be prepared in accordance with the methods detailed in the preparation section herein and by known techniques. For example, compounds of formula VIIIB may be prepared according to or 15 by analogy with the procedures described in WO 99/54333 (in particular the procedures described in Preparations 18 and 19 of that document), the disclosures in which document are hereby incorporated by reference.
Compounds of formulae IV and V, and derivatives thereof, when not 20 commercially available or not subsequently described, may be obtained by

conventional synthetic procedures or by analogy with the processes described herein, in accordance with standard techniques, from readily available starting materials using appropriate reagents and reaction conditions.
5
Compounds may be isolated from reaction mixtures using known techniques.
Substituents on the aryl (e.g. phenyl), and (if appropriate) heterocyclic, 10 group(s) in compounds defined herein may be converted to other substituents using techniques well known to those skilled in the art. For example, amino may be converted to amido, amido may be hydrolysed to amino, hydroxy may be converted to alkoxy, alkoxy may be hydrolysed to hydroxy etc.
15 It will be appreciated by those skilled in the art that, in the processes described above, the functional groups of intermediate compounds may be, or may need to be, protected by protecting groups.
Functional groups which it is desirable to protect thus include hydroxy, amino 20 and carboxyiic acid. Suitable protecting groups for hydroxy include nialkylsilyl and diarylalkylsilyl groups (e.g. rert-butyldimethylsilyl, tert-butyldiphenylsilyl or trimethylsilyl), tetrahydropyranyl, benzyl and alkylcarbonyl groups (e.g. methyl- and ethylcarbonyl groups). Suitable protecting groups for amino include benzyl, rert-butyloxycarbonyl, 9-25 fluorenylmethoxycarbonyl or benzyloxycarbonyl. Suitable protecting groups for carboxyiic acid include C1-6 alkyl, allyl or benzyl esters.


The protection and deprotection of functional groups ma.y take place before or after any of the reaction steps described hereinbefore.
Protecting groups may be removed in accordance with techniques which are 5 well known to those skilled in the art and as described hereinafter.
The use of protecting groups is fully described in "Protective Groups in Organic Chemistry", edited by JWF McOmie, Plenum Press (1973), and "Protective Groups in Organic Synthesis", 3rd edition, TW Greene Persons skilled in the art will appreciate that, in order to obtain compounds of formulae IT, HA or DB in an alternative, and, on some occasions, more convenient, manner, the individual process steps, mentioned herein may be
15 performed in a different order, and/or the individual reactions may be performed at a different stage in the overall route, (i.e... substituents may be iadded to ■ and/or chemical transformations performed, upon, different intermediates, to .those, associated hereinbefore with a particular reaction). This will depend inter alia on factors such as the nature of other functional
20 groups present in a particular substrate, the avaHability of key intermediates and the protecting group strategy (if any) to be adopted. Clearly, the type of chemistry involved will influence the choice of reagent that is used in the said synthetic, steps, the need, and type, of ^protecting groups that .are employed, and the sequence for accomplishing the synthesis.
25
Certain .intermediates that are employed in. the processes described herein are .novel. According to the invention there is further provided compounds .of formulae HA, IT8, HI,. VI and VTUA as defined hereinbefore,


The process of the invention possesses the advantage that sildenafil and
analogues thereof may be prepared from commercially-available starting
materials in fewer steps than in processes described in the prior art, without
5 concomitant losses in terms of yield of key intermediates and of final
compounds. The process of the invention has the further advantage that
sildenafil and analogues thereof may be made directly from readily available
intermediates described herein (i.e. .compounds of formula HI) in a
convenient one-pot procedure.
10
Further, the process of the invention may .have the advantage that sildenafil and analogues thereof may be prepared in less.time, more conveniently, and at a lower cost, than when prepared in processes described in the prior.art.
15 The invention is illustrated, but,in no, way limited,, by the following examples.
All ,!H NMR spectra were recorded using a Varian Unity 300 MHz machine.
20 Example A
l-(4-Ethoxy-3-formylphenylsulfonyl)-4-methylpiperazine
(a) Ethyl 2-ethoxy-5-(4-methyl-l-piperazinvlsurfonyl)benzoate To. a suspension-of 2-emoxy-5-(4-methyl-l-piperazinylsulfonyl)berizoic acid 25 (16.4 g, 0.05 mol, see EP 812 845) in ethanol (160 mL) was added concentrated hydrochloric acid (12.5 mL, 0.15 mol), which gave a solution on stirring. The solution was heated to reflux.for 25 hours, and then allowed to cool. It was concentrated under vacuum to give an orange oil which gave


crystals on cooling. These were collected by filtration to give 13.7 g of crude product, which was purified by recrystallisation in acetonitrile to give 8.1 g of product as fine white crystals (45.5%).
5 mp 182-183°C
lH NMR (CDC13) 5 1.39 (3H, t), 1.51 (3H, t), 2.80 (3H, s), 3.08 (2H, s), 3.17 (2H, s), 3.48 (2H, s), 3.86 (2H, s), 4.19 (2H, q), 4.38 (2H, q), 7.08 (1H, d), 7.78 (1H, d), 8.17 (1H, s)
m/z found 357 [M+H+] 100%, C16H25N2S05 requires 357 10
(b) 1 -(4-Ethoxy-3-hydroxymethylphenylsulfony)-4-methylpiperazine A solution, of ethyl 2-ethoxy-5-(4-methyl-l-piperazinylsulfonyl)benzoate (2.0 g, 0.006 mol, from step (a) above) in toluene (40 mL) was prepared. Under, a positive pressure of nitrogen, Red-Al® (4.3 mL, 0.01 mol) was 15 transferred to.a dropping funnel and added dropwise over 30 minutes. The reaction was quenched with water/THF, which was followed with a NaOH wash. DCM was added and the phases were separated. The DCM was removed in- vacuo to give crude product, which was recrystallised from toluene to give the sub-title compound as yellow crystals (40.5 g, 92%). 20
mp 120°C.
^H NMR (CDCI3) 6 1.46 (3H, t),.2.23 (3H, s), 2.49. (4H, m), 3.02 (4H, m), 442.(2H,.m), 4.69 (2H, s), 6.92 (1H, d), 7.63 (1H, d), 7-72 (1H, s) . . ..m/z found 315 [M+H1] 100%., C14H23N204S requires 315
25
(c)-l-(4-Ethoxy-3-formylphenvlsulfonvl)-4-methypiperazine



-2-r-

and the organic solvent removed in vacuo to give 4.2 g of crude product, which was purified by trituration in methyl ethyl ketone (MEK). This yielded 3.3 g (53%) of the title compound as an off-white solid.
5 mpl84-185°C
JH NMR (CDC13) 5 0.98 (3H, t), 1.62 (3H , t), 1.86 (2H, m), 2.27 (3H, s), 2.47 (4H, m), 2.94 (2H, t), 3.09 (4H, m), 4.25 (3H, s), 4.27 (2H, q), 7.17 (1H, d), 7.80 (1H, d), 8.68 (1H, s) m/z found 475 [M+H*] 100%, C22H31N604S requires 475
10
According to a highly preferred .aspect of the present :invention .there is provided a process for the preparation of sildenafil .as defined herein and in particular according to Example 1 by the reaction of l-(4-ethoxy-3-formylphenylsulfonyl)-4-methylpiperazine and 4-amino-1 ~metb.3'l-3-propyl- 1H-
15 pyjazole-5-carboxarnide at elevated temperature and pressure, optionally in an appropriate solvent. In a preferred aspect said reaction is performed at 200 °C and 34.5 .kPa (5 psi) for up to about 46 hours. In a further preferred aspect the reaction mixture is further treated with a suitable catalyst under elevated temperature and pressure conditions, in a yet further preferred aspect such further 20 treatment comprises the addition of 10% Pd/C and heating at 200°C under 34.5 kPa (5 psi) of pressure for up to about a further 12 hours in xylene.
Example 2
4-{6-Ethoxy-5,-[3-emyl-6,7-dihydro-7-oxo-2-(2-pyridylmethyl)-2H-25 pyrazolor413-d]pyrimidin-5-yl1-3-pyridinylsulfonyl}-1-ethylpiperazine
(a) l-r6-Ethoxy-5-formyl-3-pyridylsulfonyl)-4-ethylpiperazine


DIBAL-H (14.8 mL) was added dropwise to a solution of ethyl 2-ethoxy-5-(4-emyl-l-piperazmylsulfonyl)nicotinate (5.0 g, 13.5 mmol; prepared as described in WO 99/54333) in toluene (100 mL) at -78°C under nitrogen. The mixture was held at -78°C for 1 hour and then water (20 mL) was added dropwise. The mixture was allowed to warm to room temperature and then water (200 mL) and ethyl acetate (200 mL) were added. The organic layer was separated and the aqueous phase re-extracted. The combined organics were washed with brine and concentrated under vacuum to give the product as a brown oil (1.64 g, 36%).
lH.NMR. (CDCW8 1.26 (3H, t), 1.47 (3E, t), 2.52 (4H, m), 3.06 (4H,-m), 4.09 (2H, m), .4.59, (2H, m), 8,35 (1H, d), 8.70 (1H, d), 10.35 (1H, s)
(b) 4-f 6-Ethoxy-5-r3-ethyl-4.5,6,7-tetrahydro-7~oxo-2-(2-pyridvlmemyl)-. 2H-pyrazolor4,3-]1pyrimidin-5-yl]-3-pyridinilsulfony}-1-ethylpiperazine
A solution -of. .,'l lB NMR (CDC13) 5 1.02 .(3H, t), 1.14 (3H, t), 1.45 (3H, t), 2.40 ,(2H„ m), 2.52 (411, m), 2.78 ,(2H, m), 3.09 (4H, m), 4.55 (2H, m), 5,40 (2H,.s), 7.01 (1H, d), 7.23 (1H, m), 7.65 (2H, m), 8.56 (3H, m),9.25 (1H, s),
(c) 4-(6-Ethoxy-5-r3-ethyl-6.7-dihydro-7-oxo-2-( 2-pyridylmetthyly2H- ..

pyrazolor4,3-d]pyrimidm-5-vI]-3-PYridinvlsulfonvl}-l-ethvipii)erazine To a .solution of 4-{6-ethoxy-5-[3-ethyl-4J5!6,7-tetrah3fdro-7-oxo-2-(2-Pyridylmethyl)-2H-pyrazolo[4,3-d]pyrirmd^-5-yl]-3-pyridinylsulfonyl} -1 -ethylpiperazioe (50 mg, 0.09 mmol, from step (b) above) in toluene 5 (1 mL), was added 10% Pd/C (25 mg, 50% w/w) and trifluoroacetic acid (14 JIL). The mixture was heated to 200°C under nitrogen at 34.5 kPa (5 psi) for 6 hours. The resulting mixture was filtered and concentrated in vacuo to a pale yellow oil. This was dissolved in DCM (5 mL) and washed with NaHC03 (2 mL), dried over MgS04 and concentrated to give a brown 10 oil (42.-mg, 84%) as product.
lR,NMR,(CDCh) 8 1.02 (3H, t), 1.30 (3H, t), 1.58 (3H,, t), 2,41 (2H, q), 2,55.(4H, m),.3.04 (2H, q), 3.10 (4H, m), 4.75, (2H, q), 5.69 (2H, s,), 7.10 (1H, d), 7-22 (lH,;m),.7,63 (1H, m), 8.57 (1H, d), 8.6,3 (1H, d), 9.02 (1H, d).
15
Preparation 1 2-Ethyl-2-ethoxy-5-(4-ethyl-l -piperazinvlsulfony]pyridinoate - Compound
vIIIB
20
(la) 2-Hvdroxv-5-sulfonicotimc acid
2-HytiYoxyiucotinic acid (27Kg, 194.2moI)>was added portionwise to 30% oleum (58.1Kg);at50°C over'Ihr. This caused an,exotherm to-82°C. The 25 reaction mixture was heated further to 140°C. After mamtarning this temperature for 12nrs the reactor contents were cooled to 15C and filtered. The filter cake was then re-smrried.'with acetone (33Kg) at room temperature,.filtered and dried to afford the.title compound■(35'.3Kg,...83%)


as a white solid. Decomposition pt 273°C. 6 (DMSOd6): 7.93 (1H, d), 8.42 (1H, d). m/z (Found:220 [M+H]+, 100%. C6H6NO6S requires 220.17).
(lb) Ethyl 2-hydroxy-5-sulfonicotinoate
2~Hydroxy-5-sulfonicotinic acid (500g, 2.28mol) was dissolved in ethanol (2.5L) with stirring and heated to 80°C. After 30mins 0.5L of solvent was distilled off, then replaced with fresh ethanol (0.5L) and taken back to 80°C. After a further 60rrrins l.OL of solvent was distilled off, then replaced with fresh ethanol (l.OL) and taken back to 80°C. After a further 60mins l.OL of solvent was distilled off, the reaction cooled to 22°C and-stirred for 16hr. The precipitated'.product was filtered, washed with-ethanol (0.5L) and dried at 50°C under vacuum to afford the title compound (416g, 74%) as a white solid. D.ecompbsitionpt2370C. 5 (DMSOd6): 1.25 (3H, t), 4.19 (2H,q), 7.66 (,1H, d), 8.13 (1H, d). m/z.(Found:248 [M+H]+, 100%. C8H10NO6S requires 248.22).
(1c) Ethyl 2-chloro-5-chlorosulfonicotinoate
Ethyl 2rhydroxy-.5-sulfonicptino.ate (24.7g, O.lmol) was slurried in tbipnyl chloride (238g, 2,0mol) and dirnethylforrnamide (1.0mL) with stirring. The reaction mixture was then heated to reflux for 2.5hr, The bulk of the.;thionyl chloride was removed.under vacuum/with residual thionyl chloride removed with:a toluene, azeotrope tp afford the.crude title compound (30.7g, .108%) as a yellow oil. 5 (CDC13): 1.46 (3H, t), 4.5.0 (2H, q), 8.72 (1H, d), 9.09 (1H, d). This was taken directly onto the next step.
(Id) Ethyl 2-chloro-5-(4-ethyl-1 -piperazinvlsulfonyl)nicotinoate Crude emyl 2-chloro-5-chlorosulfomcotinoate ((.30.7,g, O.lmol assumed) was


dissolved in ethyl acetate (150mL) with stirring then ice cooled. To this was
added a solution of N-ethylpiperazine (11.4g, O.lmol) and triethylamine
(22.5g, 0.22mol) in etthyl acetate (50mL), carefully over 30mins, keeping the
internal temperature, below 10°C. Once the addition was complete the
5 reaction was allowed to warm to 22°C and stir for lhr. The solid was
filtered off and the remaining filtrate was concentrated under vacuum to
afford the crude title compound (37.Ig, 103%) as a crude yellow gum. 5
(CDC13): 1.10 (3H, t), 1.42 (3H, m), 2.50 (2H, m), 2.60 (4H, m), 3.19 (4H,
m), 4.43 (2H, q), 8.40 (1H, d), 8.80 (1H, d). m/z (Found;362 [M+H]+,
10 ,100%..C14H21CIN3O4S. requires 362.85).
(le) Ethyl 2-ethoxy-5-(4-ethyl-l -piperazinylsulfony)nicotinoate
A.- solution of ethyl. 2-chloro-5-(4-emyl-l-piperazmylsulfonyl):rucotino,ate 15 (36.Ig, 0Tlmol). in ethanol (180mL) was. cooled. to lp°C.with stirring. Sodium ethoxide (10,2g, 0.15mol) was. added .portion wise keeping, the temperature below 2Q°C. The reaction mixture was then stirred at ambient temperature for,18 hours. The precipitate, was filtered off and4.water (ISOmL) added, to the filtrate. The filtrate was then heated;to, 40°C. for 1 20 hour. Ethanol (180mL) was then distilled off at ambient pressure and the remaining aqueous solution allowed to cool to ambient temperature. The precipitated product-was then filtered.off,-, washed.- with water and dried under vacuo at 50°C to afford the title qompound (12,6g, 34%) as a.light brown solid. M,p. 66-68°C, 5 (CDC13): 1.04 (3H„ t), 1.39, (3H,_t),; 1.45. (3H, 25 t),>2,4,l(2H,..q), 2.52 .(4H, m), 3.08 (4H, m>, 4.38 (2H, q),2.57 (2H, q), 8.38 (1H, d), 8.61 (1H, d).. .m/z (Found: 372 .[M+H]+,. 100%. C16H26N3p5S requires., 372.46).
(If) '2-Etthoxy-5-(4-ethyl-1 -piperaznylsulfony)mcotinic' acid


Ethyl 2-ethoxy-5-(4^thyl-l-pipera2inylsulfonyl)nicotinoate (10.2g, 0.0275mol) was dissolved in toluene (50mL) and a solution of sodium hydroxide (l.lg, 0.0275mol) in water (20mL) added to it. This two phase mixture was then stirred vigorously at ambient temperature overnight. The aqueous phase was separated off and adjusted to pH=5.6 by addition of cone, hydrochloric acid. The precipitated product was slurried with ice cooling for 15minutes, filtered, water washed and dried under vacuo at 50°C to afford the title compound (4.1g, 43%) as an off-white solid. Mpt 206-207°C. 8 (CDC13): 1.25 (3H, t), 1.39 (3H, t), (2H, q), 3.03 (4H, m), 3.25 (4H,-m), 4,50.,(2H, q), 8,25 .(lH,.d),.8.56. (1H, d), mlz (Bound:344 [M*H]+, 100%. CI4H22N305)S requires 34438).
This step is. a simple hydrolysis and the yield of 43% is not optimum. The same hydrolysis was,carried out in preparation 23-of PCT/IB99/0051.9 (which is incorporated herein by reference) and a more optimised. .yieldi of 8J%.,wasAobtained for the hydrolysis.
Preparation 2
2-Emoxy-5-|4-ethyl-l-piperazmylsulfonyl)nicotinic acid - Telescoped-process in toluene from ethyl 2-hydr6xy-5-sulfonicotinoate
Ethyl 2-hydroxy-5-sulfonicotinoate (441.5g, 1.79mol) was dissolved in toluene. . (1.77L) .and ,. thionyl , chloride .(1.06Kg, 8.93mol) _ and dimemylformarnide (71.3mL) were then added. The. stirred suspension was then heated to reflux for 3 hours to yield a yellow solution. Thionyl chloride (2.87L) was then distilled with continual replacement with toluene (2.15L). The pale yellow solution was then cooled to 10°C and a stirred solution of N-ethylpiperazine (198'.9g, 1.66mol) and triemylamine (392.2g, 3.88mol) in


toluene (700mL) added dropwise over 90 minutes keeping the reaction mixture below 10°C . The reaction was stirred at ambient temperature for 18 hours then washed with water (2 x 700mL) and brine (2 x 350mL). The toluene phase was azeotropically dried by distilling off 1750mL which was continuously replaced by dry toluene (1750mL). The remaining brown solution was cooled to 10°C and sodium ethoxide (178.0g, 2.62mol) was added portionwise keeping the temperature below 10DC. The reaction was then stirred at 10°C for 1 hour then allowed to warm to ambient temperature and stirred for 18 hours. Sodium hydroxide (34.9g, *mol) dissolved in water (1.5L) was then added to the toluene mixture and the 2 phase mixture .was vigorously stirred for 18 hours at 40°C. Once cooled .to ambient temperature the aqueous phase was. separated off.-To this was added cone, hydrochloric, acid to pH=3. which precipitated a light brown solid which, was granulated for.2 hour with ice cooling. The precipitate was filtered washed with water
(300mL).'and .dried under vacuo, at 50°C to afford the title compound (338.4g, 57,4%) as an. pff-white solid. Mpt206-207°C. 8 (CDC13): l.-25.(3H, t)„ I,3.9..(3H,:t), 2.82.(2H, q), 3.03 (4H, m), 3.25;.(4H, m), 4,50 (2H, q), 8.25 (1H,. d), .8.56 (1H, d). m/z (Found:344 [M+H]+, 1.00%., C14H22N3O5S requires 344.3,8);
■Preparations,.3 and 4,provide alternative routes . by which two of( the additional compounds can be prepared.
Preparation 3
2(Memoxvemyl)-5-[2-ethoxy"5"r4-emylpiperazm-l-ylsulphonyl)pyridin-3-
yl]-3-ethyl-2,6-dihvdro-7H-Pyazolor43-d1pvrimidin-7-one


A mixture of the product from stage i) below (0.75mmol), potassium bis(trimethylsiiyl)amid.e (298mg, 1.50mmol) and ethyl acetate (73 microlitres, 0.75mmol) in ethanol (10ml) was heated at 120°C in a sealed vessel for 12 hours. The cooled mixture was partitioned between ethyl acetate and aqueous sodium bicarbonate solution,' and the layers separated. The organic phase was dried (MgS04), and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using dichloromethane:methanol (98:2) as eluant to afford the title compound, 164mg; Found : C, 53.18; H, 6.48; N, 18.14; C23H33N7.O5S;0.20C2H5CO2CH3 requires C, 53.21; H,-6.49.; .N, 18.25%;.5 (CDGI3) :.1.04. (3JI, t),1.40. (3ft t), 1.58 (3ft t), 2,41 (2H, q), 2.57 (4ft m), 3,08 (2ft.q), 3.14.(4ft m),3:30 (3ft s),.3.92.(2ft,t), 4.46.(2ft t), 4.75. (2ft q), 8,62 (lft d), 9.04 (1ft d), 1.0.61 (1H, s); LRMS.: m/z 520 (M+l)+; mp 161:-162°C.
Preparation of Starting Materials for Example 1 a) , Pyridine-2-amino-5"Sulphonic acid:


2-Aminopyridine (80g, 0.85mol) was added portionwise over 30 minutes to oleum (320g) and the resulting solution heated at 140°C for 4 hours. On cooling, the reaction was poured onto ice (200g) and the mixture stirred in an ice/salt bath for a further 2 hours. The resulting suspension was filtered, the solid washed with ice water (200ml) and cold IMS (200ml) and dried under suction to afford the title compound as a solid, 111.3g; LRMS : m/z 175 (M+l)+
b) Pvridine-2-amino-3-bromo--5-sulphonic acid

Bromine (99g,0,62mol) was added dropwise over .an hour, .to a not solution .of the. product from stage a) (108g, 0.62mol) in: water (600ml) so as to maintain a steady reflux. Once the addition was complete the reaction was cooled and the resulting mixture filtered. The solid was washed with water and dried under suction to afford the title compound, 53.4$; 5 (DMSOd6, 360MHz):"'8'.08 (1H, sj,'8.14 (1H, s); LRMS : m/z 253 (M)+.
c) Pvridine-3-bromo-2-chloro-5-sulphonvl chloride

A solution of sodium nitrite (7.6g, 11O.Ommol) in water (30ml) was added dropwise to an ice-cooled solution of the product from stage b) (25.3g, 100.0mmol) in aqueous hydrochloric acid (115ml, 20%), so as to maintain

the temperature below 6°C. The reaction was stirred for 30 minutes at 0°C
and for a further hour at room temperature. The reaction mixture was
evaporated under reduced pressure and the residue dried under vacuum at
70°C for 72 hours. A mixture of this solid, phosphorus pentachloride (30.Og,
144mmol) and phosphorus oxychloride (1ml, 10.8mmol) was heated at
125°C for 3 hours, and then cooled. The reaction mixture was poured onto
ice (lOOg) and the resulting solid filtered, and washed with water. The
product was dissolved in dichloromethane, dried (MgS04), and evaporated
under reduced pressure to afford the title compound as a yellow solid,
26.58g; 5 (CDCl3, 300MHz): 8.46. (1H, s), 8,92 (lH,..s).,
d) ., 3-Bromo-2-chloro-5-(4-ethylpiperazrn- 1 -ylsulphony)pyridine

A'solutibn' of T-ethylpiperazihe" (11.3ml, 89.0inmdl) and triemylamine (l-2.5ml;.8'9:0mmol) in' dicbloromettiahe (150ml)'was added dropwise to an ice-cooled solution of the product from stage c) (23.Og, 79.0mmol) in dichloromethahb (150ml)-'and the' reaction -stirred, at -0QC fop -an hour. The reaction mixture was concentrated under..reduced pressure and the residual brown oil was purified by column .chromatography on silica gel, using an eiution gradient of dichloromethanermethanol (99:1 to 97:3) to afford the title compound as'an orange solid, 14.5g; 5 (CDC13, 300MHz): 1.05 (3H, t), 2.42 (2H, q), 2.55 .(4H, m), 3.12 (4H, m), 8.24 (1H, s), 8.67 (1H, s)_



e) 3-Bromo-2-ethaoxy-5-( 4-ethylpiperazin-1 -ylsulphonypyridine
A mixture of the product from stage d) (6.60g, 17.9mmoI) and sodium
ethoxide (6.09g, 89.55mmoI) in ethanol (100ml) was heated under reflux for
5 18 hours, then cooled. The reaction mixture was concentrated under reduced
pressure, the residue partitioned between water (100ml) and ethyl acetate
(100ml), and the layers separated.' The aqueous phase was extracted with
ethyl acetate (2x100ml), the combined organic solutions dried (MgS04) and
evaporated under reduced pressure to afford the title compound as a brown
10 solid, 6.41g; Found : C, 41.27; H, 5.33; N, 11.11. C13H20BrN3O3S requires
C, 41.35; H, 5.28; N, 10.99%; 5 (CDC13, 300MHz) : 1.06 (3H, t), 1.48 (3H,
t), 2.42 (2H, q), 2.56,(4H, m), 3.09 (4H, m), 4.54 (2H, q), 8.10 (IH, s), 8.46
(IH, s); LRMS : m/z 378, 380 (M+l)+.
15 f) Pyridine 2-ethoxy-5-(4-ethylpiperazin-l-ylsulphonyl)-3'Carboxylic acid ethyl ester


A mixture of the product from stage e) (6.40g, 16.92mmol), triethylamine (12ml, 86.1mmol), and palladium (0) tris(triphenylphosphine) in ethanol (60ml) was heated at 100°C and 200 psi, under a carbon monoxide atmosphere, for 18 hours, then cooled. The reaction mixture was evaporated 5 under reduced pressure and the residue purified by column chromatography on silica gel, using an elution gradient of dichloromethanermethanol (100:0 to 97:3) to afford the .title compound as an orange oil, 6.2g; 5 (CDC13-300MHz) : 1.02 (3H, t), 1.39 (3H3 t), 1.45 (3H, t), 2.40 (2H, q), 2.54 (4H, m), 3.08 (4H, m), 4.38 (2H, q), 4.55 (2H, q), 8.37 (1H, s), 8.62 (1H, s); 10 LRMS.:.m/z372(M+l)+-
g): . Pyridine , 2-emoxy-5-(4-ethylpiperazin-l--ylsulphonyl)-3-carboxvlic acid

15 A mixture of the- product HErom -stage1 -f) (4.96g,' 13'35minoi) and aqueous sodium "hydroxide solution (25ml, 2N, 50.0mmol) in ethanol (25ml) was stirred at room temperature for 2 hours. The reaction mixture was concentrated under reduced pressure to half it's volume, washed with ether and acidified to pH 5 using 4N hydrochloric acid. The aqueous solution was
20 extracted with dichloromethane (3x30ml), the combined organic extracts dried (MgS04) and evaporated under reduced pressure to afford the. title

compound as a tan coloured solid, 4.02g; 5 (DMSOd6i 300MHz) : 1.18 (3H, t), 1.37 (3H, t), 3.08 (2H, q), 3.17-3.35 (8H, m), 4.52 (2H, q), 8.30 (1H, s), 8.70 (1H, s).
h) 4-f2-Ethoxv-5-(4-ethylpiperazin-l-ylsulphonyl)pmdin-3-ylcarboxamido]-lH-3-emylpyrazole-5-carboxamide

A solution of 4-amino-3-ethyl-lH-pyrazole-5-carboxaiQide (WO 9849166, preparation. 8). (9.2g, 59^8-mmol) in N,Nrdimemylfqrmamide (60ml) was
10 added to absolution, of, the product from .stage g). (21.7g, 62.9mmol), 1-hydroxybenzotriazole hydrate (10. lg, 66.0mmol) and txiethylamine (13.15ml, 94.3mmol) in dichloromethane (240ml). l-(3-Dimethylaminopropyl)-3-eth3'lcarbodiimide hydrochloride (13.26g, 69.2mmol) was added and the reaction stirred at room temperature for 6
15 hours. The dichloromethane was. removed under reduced pressure, the remaining solution poured into' ethyl acetate (400ml), and this mixture washed with aqueous sodium, bicarbonate solution (400ml). The resulting crystalline. precipitate was filtered, washed with .ethyl acetate and dried under vacuum, to afford the title compound, as a white powder,..22g; .5 20 (CDCI3+-I..drop PMSOde) 0.96 (3H,.t), 1.18. (3H, t), 1.50 .(3H,. t), 2.25~2; .56 (6H5.m),:2.84 (2H, q), 3.00 (4H, m), 4.70 (2H, q),;5.60 (lH>:br s), 6.78 ,(1H, br s)„8,56 (lH,.d),,8.76(lH, d), 10.59 (1H, s), 12.1.0-12.30,.(l.H, s); LRMS:


m/z4S0(M+l)+.
i) 2-Methoxyeth yl-4- [2-ethoxv-5-(4-ethvlpiperazin-1 -
ylsulphonyl)pvridin-3-ylcarboxarnidol-3--ethylpyra2ole-5-carboxamide


OMe

l-Bromo-2-methoxyethane (L72mmol) w.as added, to a solution of the product from stage h) (750mg, 1.56mmol) and caesium carbonate (1.12g, 3.44rnmpl) in N2N-dimethylforinamide (15ml) and the reaction stirred at 60° 10 C for 18 hours. The cooled mixture was partitioned between water and ethyl acetate, and the layers separated. The organic layer was dried. (MgS04), concentrated under reduced, pressure and azeotroped with toluene to give a solid. This product was recrystallised from ether, to afford the title compound as a white solid.
15


WE CLAIM:
1. A process for the production of a compound of general formula I:

wherein
A represents CH or N;
R1 represents H, C1-6 alkyl (which alkyl group is optionally
interrupted by O), Het, alkylHet, aryl or alkylaryl, which latter five
groups are all optionally substituted (and/or, in the case of C1-6
alkyl, optionally terminated) by one or more substituents selected
from halo, cyano, nitro, lower alkyl, OR5, C(0)R6, C(0)OR7,
C(0)NR8R9, NR10aR10b and S02NR11aR11b;
R2 and R4 independently represent C1-6 alkyl;
R3 represents C1-6 alkyl, which alkyl group is optionally interrupted
by oxygen;
Het represents an optionally substituted four- to twelve-membered
heterocyclic group, which group contains one or more heteroatoms
selected from nitrogen, oxygen and sulfur; R5, R6, R7, R6, R9, Rlla
and Rllb independently represent H or C1-6 alkyl;
R10a and R10b either independently represent, H or C1-6 alkyl or,

together with the nitrogen atom to which they are attached, represent azetidinyl, pyrollidinyl or piperidinyl, which process comprises the dehydrogenation of a compound of general formula II,

wherein A, R1, R2, R3 and R4 are as defined above.
2. A process as claimed in claim 1, wherein, in the compound of general formula I, R1 represents C1-4 alkyl, which alkyl group is optionally interrupted by an oxygen atom, and/or is optionally terminated by a Het group.
3. A process as claimed in claim 2, wherein R1 represents linear C1-3 alkyl, which alkyl group is optionally interrupted by an oxygen atom, or is optionally terminated by a 2-pyridinyl group.
4. A process as claimed in any one of the preceding claims, wherein, in the compound of general formula I, R2 represents C1-4 alkyl.
5. A process as claimed in claim 4, wherein R2 represents linear C2-3 alkyl.


A process as claimed in any one of the preceding claims, wherein, in the compound of general formula I, R3 represents C1-5 alkyl, which alkyl group is optionally interrupted by an oxygen atom.
A process as claimed in claim 6, wherein R3 represents linear or branched C2-4 alkyl, which alkyl group is optionally interrupted by an oxygen atom.
A process as claimed in any one of the preceding claims, wherein, in the compound of general formula I, R4 represents C1-3 alkyl.
A process as claimed in claim 8, wherein R4 represents C1-2 alkyl.
A process as claimed in any one of the preceding claims, wherein the compound is selected from sildenafil, or any one of the following four compounds



11. A process as claimed in any one of the preceding claims, wherein the reaction is carried out in the presence of a dehydrogenation agent selected from: palladium on carbon; palladium on carbon in the presence of a hydrogen acceptor and/or an acid; a high oxidation potential quinone; oxygen; Mn02j or triphenylmethanol in trifluoroacotic acid.
12. A process as claimed in claim 11, wherein the palladium on carbon is 5% Pd/C or 10% Pd/C.

13. A process as claimed in claim 11 or claim 12, wherein the hydrogen acceptor is cyclohexene or maleic acid.
14. A process as claimed in any one of claims 11 to 13, wherein the acid is trifluoroacetic acid, HCI or H2SO4.
15. A process as claimed in any one of the preceding claims, wherein the reaction is carried out in the presence of an aromatic hydrocarbon as solvent.
16. A process as claimed in claim 15, wherein the solvent is toluene or xylene.
17. A process as claimed in any one of the preceding claims, wherein the reaction is carried out at between 125 and 250°C, at a pressure of between 13.8 and 68.9 kPa (2 and 10 psi), and/or, optionally, in an inert atmosphere.
18. A process as claimed in any one of the preceding claims, wherein the compound of general formula II is prepared by reaction of a compound of formula III,




wherein A, R3 and R4 are as defined in any one of Claims 1 and 6 to 10 (as appropriate), with a compound of general formula IV,

IV wherein R1 and R2 are as defined in any one of Claims 1 to 5 and 10.
19. A process as claimed in claim 18, wherein the compound of general formula I is formed in a "one pot" procedure, in which a compound of formula III is reacted with a compound of general formula IV, after which the dehydrogenation reaction is performed directly on the intermediate compound of general formula II, formed in situ.
20. A process as claimed in claim 18 or claim 19, wherein, in the compound of formula III, A represents CH, and that compound is prepared by oxidation of a compound of formula VI,


VI

wherein R3 and H4 are as defined in any one of claims 1 and 6 to 10 (as appropriate).
21. A process as claimed in claim 20, wherein the compound of formula VI is prepared by reduction of a corresponding carboxylic acid of formula VII,


Vll

wherein R3 and R4 are as defined in any one of claims 1 and 6 to 10 (as appropriate).
22. A process as claimed in claim 20, wherein the compound of formula VI is prepared by esterification of a compound of formula VII as defined in Claim 21 to form a compound of formula VIIIA,



VII

wherein Ra represents C1-6 alkyl and R3 and R4 are as defined in any one of Claims 1 and 6 to 10 (as appropriate), followed by reduction of the ester of formula VIIIA.
23. A process as claimed in claim 18 or claim 19, wherein, in the compound of formula III, A represents N, and that compound is prepared by reduction of a corresponding compound of formula VIIIB,


V.IIIB

wherein Ra is as defined in claim 22, and R3 and R4 are as defined in any one of claims 1 and 6 to 10 (as appropriate).
24. A compound of general formula II as claimed in claim 1.

25. A compound of formula III, as claimed in claim 18, wherein A represents N.
26. A compound of general formula VI, as claimed in claim 20.
27. A process as claimed in claim 1 for the production of compounds of
general formula I:

wherein
A represents CH or N;
R1 represents H, lower alkyl (which alkyl group is optionally interrupted by O), Het, alkylHet, aryl or alkylaryl, which later five groups are all optionally substituted (and/or, in the case of lower alkyl, optionally terminated) by


one or more substituents selected from the selected from halo, cyano,
nitro, lower alkyl, OR5 , C(0)R6, C(0)R7, C(0)NR8R9, NR10aR10b and
S02NR11aR11b;
R2 and R4 independently represent lower alkyl;
R3 represents lower alkyl, which alkyl group is optionally interrupted by
oxygen;
Het represents an optionally substituted four to twelve-membered
hetrocyclic group, which group contains one or more heteroatoms selected
from nitrogen, oxygen and sulfur;
R5, R6, R7, R8, R9, Rlla and Rllb independently represents H or lower
alkyl;
R10a and R10b either independently represent, H or lower alkyl or, together
with the nitrogen atom to which they are attached, represent azetidinyl,
pyrollidinyl or piperidinyl;
with the proviso that the compound of formula I is not sildenafil;
which process comprises the dehydrogenation of a compound of general

formula II,

Documents:

in-pct-2002-01583-mum-cancelled pages(27-9-2005).pdf

in-pct-2002-01583-mum-claims(granted)-(27-9-2005).doc

in-pct-2002-01583-mum-claims(granted)-(27-9-2005).pdf

in-pct-2002-01583-mum-correspondence(ipo)-(19-1-2007).pdf

in-pct-2002-01583-mum-correspondence(ipo)-(30-6-2009).pdf

in-pct-2002-01583-mum-correspondence1(14-12-2005).pdf

in-pct-2002-01583-mum-correspondence2(18-12-2006).pdf

in-pct-2002-01583-mum-form 1(11-11-2002).pdf

in-pct-2002-01583-mum-form 18(28-2-2005).pdf

in-pct-2002-01583-mum-form 2(granted)-(27-9-2005).doc

in-pct-2002-01583-mum-form 2(granted)-(27-9-2005).pdf

in-pct-2002-01583-mum-form 3(11-11-2002).pdf

in-pct-2002-01583-mum-form 3(27-9-2005).pdf

in-pct-2002-01583-mum-form 4(14-12-2005).pdf

in-pct-2002-01583-mum-form 4(19-12-2005).pdf

in-pct-2002-01583-mum-form 5(11-11-2002).pdf

in-pct-2002-01583-mum-form-pct-ipea-409(11-11-2002).pdf

in-pct-2002-01583-mum-form-pct-isa-210(11-11-2002).pdf

in-pct-2002-01583-mum-petition under rule 137(27-9-2005).pdf

in-pct-2002-01583-mum-petition under rule 138(27-9-2005).pdf

in-pct-2002-01583-mum-power of authority(27-9-2005).pdf


Patent Number 204182
Indian Patent Application Number IN/PCT/2002/01583/MUM
PG Journal Number 23/2007
Publication Date 08-Jun-2007
Grant Date 17-Jan-2007
Date of Filing 11-Nov-2002
Name of Patentee PFIZER INC.
Applicant Address 235 EAST 42ND STREET, NEW YORK, NEW YORK 10017, UNITED STATES OF AMERICA.
Inventors:
# Inventor's Name Inventor's Address
1 MARK EDWARD BUNNAGE PFIZER GLOBAL RESEARCH AND DEVELOPMENT, RAMSGATE ROAD, SANDWICH, KENT, CT13 9NJ, UNITED KINGDOM.
2 PHILIP CHARLES LEVETT PFIZER GLOBAL RESEARCH AND DEVELOPMENT, RAMSGATE ROAD, SANDWICH, KENT, CT13 9NJ, UNITED KINGDOM.
3 NICHOLAS MURRAY THOMSON PFIZER GLOBAL RESEARCH AND DEVELOPMENT, RAMSGATE ROAD, SANDWICH, KENT, CT13 9NJ, UNITED KINGDOM.
PCT International Classification Number N/A
PCT International Application Number PCT/IB01/01038
PCT International Filing date 2001-06-07
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 0015462.5 2000-06-22 U.K.
2 0105878.3 2001-03-09 U.K.