Title of Invention

FLEXIBLE LAMINATE STRUCTURES HAVING ENCLOSED DISCRETE REGIONS OF A MATERIAL

Abstract A flexible laminate structure that is formed from a first substrate, a second substrate, and discrete regions of a functional material sandwiched therebetween is provided. In particular, the first and second substrates contain thermoplastic polymers that are fused together at certain portions such that fused portions and unfused portions are formed. The unfused portions form pockets that contain the functional material and are relatively small in size. In some embodiments, for example, the pockets have an approximate width to height ratio of less than about 10.
Full Text

FLEXIBLE LAMINATE STRUCTURES HAVING ENCLOSED
DISCRETE REGIONS OF A MATERIAL
Related Applications
The present application claims priority to U.S. Provisional Application Serial No. 60/259,129, filed on December, 28, 2000.
Background of the Invention
In order to enhance the functionality of a laminate material, it is often desired to enclose certain discrete functional materials within the laminate. For example, to enhance the absorbency of a disposable diaper, discrete regions of super absorbent particles can be enclosed within pockets formed by a laminate material of the diaper to inhibit undesirable shifting, channeling, gel blocking, dusting, or settling during use. To accomplish such discrete particle deposition within pockets, a variety of techniques have been developed. For instance. U.S. Patent Nos. 4,327,728 to Elias and 4.381,783 to Ellas describe an absorbent article that includes at least one pocket containing a uniform admixture of discrete superabsorbent particles and discrete particles.
One problem with such conventional techniques is that the pockets often provide inadequate performance, i.e., inefficient use of the functional material, inadequate containment, etc. As a result, other techniques for forming pockets containing discrete regions of a functional material have also been developed. For example, U.S. Pat. Nos. 4,715,918 to Lang; 4,994,053 to Lang, and 5,030,314 to Lang, which are owned by the assignee of the present application, describe an apparatus that includes a roll having discrete indentations for receiving particulate material and selectively transferring the material to a web. For example, in one embodiment, a heat-sealable polymer sheet is deposited with a discrete pile of material and then fused to a cover web that is also formed from a heat-fusible material. The webs are fused together, forming fused areas surrounding pocket areas containing the particulate matter.

Moreover. U.S. Patent Nos. 5,425.725 to Tanzer, etal.: 5.433,715 to Tanzen etal.: and 5,593,399 to Tanzer. et al.. which are also owned by the assignee of the present application, describe an absorbent article that contains pocket regions. For instance, in one embodiment, a water-sensitive attaching means secures together carrier layers to provide substantially attached zones and substantially unattached zones. The substantially unattached zones provide a plurality of pocket regions that contain particles of a superabsorbent material.
Despite the improvements provided by the techniques described above, a need for further improvement nevertheless remains. For example, some conventional laminate structures containing pockets with discrete regions of a functional material are not always suitable for use in applications where flexibility of the structure is required (e.g.. a flexible body wrap designed to be wrapped around a human body part). Specifically, the functional material incorporated into the pockets of such laminate structures can sometimes be relatively inflexible, which may inhibit the overall flexibility of the laminate structure.
As such, a need currently exists for a laminate structure that is capable of containing discrete regions of a functional material within pockets, while also having improved flexibility.
Summary of the Invention
In accordance with one embodiment of the present invention, a flexible laminate structure is provided that includes a first substrate containing a thermoplastic polymer and a second substrate containing a thermoplastic polymer. In some instances, one or more of the substrates can be a nonwoven web having a thickness less than about 0.1 inches. In other instances, one or more of the substrates can be a film having a thickness less than about 0.05 inches. Typically, the thermoplastic polymers of each substrate are fused together to form fused portions and unfused portions located between the fused portions. The unfused

portions define pockets that contain discrete regions of a functional material, such as particles and/or liquids. For example, in some embodiments, the functional material can be initially deposited onto the first substrate utilizing a deposition technique, such as template, vacuum plate, adhesive, textured substrates, electrostatic, xerographic, printing (e.g.. gravure), patterned transfer roll (vacuum or adhesive), and the like.
In most embodiments, the pockets have an approximate width to height ratio less than about 10, in some embodiments between about 1 to about 8, and in some embodiments, between about 1 to about 5. Besides having a certain weight to height ratio, other approximate dimensions of the pockets may also fall within a certain range. For example, in some embodiments, the pockets can have an approximate length-to-width ratio of less than about 20.
In general, the substrates of the flexible laminate structure can be made from a variety of different materials. For example, the substrates can contain nonwoven webs, films, or combinations thereof. If desired, the permeability of one or more of the substrates can be selected to provide certain characteristics to the resulting laminate structure. For example, in one embodiment, a film can be utilized that is substantially impermeable to liquids, but substantially permeable to gases. Moreover, in some embodiments, one or more of the substrates can contain an elastomeric component.
Other features and aspects of the present invention are discussed in greater detail below.
Brief Description of the Drawings
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth more particularly in the remainder of the specification, which makes reference to the appended figures in which:
Fig. 1 is a schematic view of the steps for forming one embodiment

of a laminate structure of the present invention in which Fig. 1A illustrates particles deposited onto a first substrate, Fig. 1B illustrates a second substrate placed over the particles, and Fig. 1C illustrates the two substrates fused together;
Fig. 2 is a side view of one embodiment of a pocket formed in accordance with one embodiment of the present invention;
Fig. 3 is a plan view of the pocket illustrated in Fig. 2;
Fig. 4 is a schematic illustration of one technique that can be utilized to form one embodiment of a laminate structure of the present invention; and
Fig. 5 is a plan view of another embodiment of a laminate structure formed in accordance with the present invention.
Repeat use of reference characters in the present specification and drawings is intended to represent sanne or analogous features or elements of the invention.
Detailed Description of Representative Embodinnents
Definitions
As used herein . the phrase "bonded carded web" refers to webs that are made from staple fibers which are sent through a combing or carding unit, which separates or breaks apart and aligns the staple fibers to form a nonwoven web. Once the web is formed, it then is bonded by one or more of several known bonding methods. One such bonding method is powder bonding, wherein a powdered adhesive is distributed through the web and then activated, usually by heating the web and adhesive with hot air. Another suitable bonding method is pattern bonding, wherein heated calender rolls or ultrasonic bonding equipment are used to bond the fibers together, usually in a localized bond pattern, though the web can be bonded across its entire surface if so desired. Another suitable and well-known bonding method, particularly when using bicomponent staple fibers, is through-air bonding.

As used herein, "meltblown fibers" refers to fibers formed by extruding a molten thermoplastic material through a plurality of fine, usually circular, die capillaries as molten threads or filaments into converging high velocity, usually hot gas (e.g.. air) streams which attenuate the filaments of thermoplastic material to reduce their diameter, which may be to microfiber diameter. Thereafter, the meltblown fibers are carried by the high velocity gas stream and are deposited on a collecting surface to form a web of nearly randomly disbursed meltblown fibers. Such a process is disclosed, for example, in U.S. Patent No. 3,849,241 to Butin et al. For example, meltblown fibers may be microfibers that are continuous or discontinuous and have a diameter smaller than 10 microns.
As used herein, the term "nonwoven web" or "nonwoven" refers to a web having a structure of individual fibers or threads which are interlaid, but not in an identifiable manner as in a knitted fabric. Nonwoven webs or fabrics have been formed from many processes, such as, for example, meltblowing processes, spunbonding processes, and bonded carded web processes.
As used herein, the phrases "pattern unbonded", "point unbonded", or "PUB" generally refer to a fabric pattern having continuous thermally-bonded areas defining a plurality of discrete unbonded areas. The fibers or filaments within the discrete unbonded areas are dimensionally stabilized by the continuously bonded areas that encircle or surround each unbonded area. The unbonded areas are specifically designed to afford spaces between fibers or filaments within the unbonded areas. A suitable process for forming the pattern-unbonded nonwoven material of this invention, such as described in U.S. Patent No. 5,962,117, includes passing a heated nonwoven fabric (e.g., nonwoven web or multiple nonwoven web layers) between calendar rolls, with at least one of the rolls having a bonding pattern on its outermost surface comprising a continuous pattern of land areas defining a plurality of discrete openings,

indentations, apertures, or holes. Each of the openings in the roll (or rolls) defined by the continuous land areas forms a discrete unbonded area in at least one surface of the resulting nonwoven fabric in which the fibers or filaments are substantially or completely unbonded. Alternative embodiments of the process include pre-bonding the nonwoven fabric or web before passing the fabric or web within the nip formed by the calender rolls.
As used herein, "spunbond fibers" refers to small diameter fibers which are formed by extruding molten thermoplastic material as filaments from a plurality of fine, usually circular capillaries of a spinneret with the diameter of the extruded filaments then being rapidly reduced as by, for example, in U.S. Patent Nos. 4.340.563 to Appel etal.. 3,692,618 to Dorschneretal., 3,802,817 to Matsukietal., 3,338,992 to Kinney, 3.341.394 to Kinney. 3.502.763 to Hartman, and 3,542,615 to Doboetal.. Spunbond fibers are generally not tacky when they are deposited on a collecting surface. Spunbond fibers are generally confinuous and have diameters larger than about 7 microns, and more particularly, between about 10 and 40 microns.
As used herein, the term "superabsorbent material" (SAM) generally refers to any substantially water-swellable, water-insoluble material capable of absorbing, swelling, or gelling, at least about 10 times its weight, and in some embodiments at least about 30 times its weight, in an aqueous solution, such as water. Moreover, a superabsorbent material can generally absorb at least about 20 grams of an aqueous solution per gram of the SAM, particulariy at least about 50 grams, more specifically at least about 75 grams, and more particulariy between about 100 grams to about 350 grams of aqueous solution per gram of SAM. Some suitable superabsorbent materials that can be used include inorganic and organic materials. For example, some suitable inorganic superabsorbent materials can include absorbent clays and silica gels. Moreover, some

suitable superabsorbent organic materials include natural materials, such as agar, pectin, guar gum, etc., as well as synthetic materials, such as synthetic hydrogel polymers. For example, one suitable superabsorbent material is FAVOR 880 available from Stockhausen. Inc.. located in Greensboro, North Carolina,
As used herein, the phrase "thermal point bonding" generally refers to passing a fabric (e.g., fibrous web or multiple fibrous web layers) or webs to be bonded between heated calendar rolls. One roll is usually patterned in some way so that the entire fabric is not bonded across its entire surface, and the other roll is usually smooth. As a result, various patterns for calendar rolls have been developed for functional as well as aesthetic reasons. One example of a pattern that has points is the Hansen-Pennings or "H&P" pattern with about a 30% bond area with about 200 pins/square inch as taught in U.S. Patent No. 3,855.046. The H&P pattern has square point or pin bonding areas. Another typical point bonding pattern is the expanded Hansen-Pennings or "EHP" bond pattern which produces a 15% bond area. Another typical point bonding pattern designated "714" has square pin bonding areas wherein the resulting pattern has a bonded area of about 15%. Other common patterns include a diamond pattern with repeating and slightly offset diamonds with about a 16% bond area and a wire weave pattern looking as the name suggests. e.g. like a window screen, with about an 18% bond area. Typically, the calender imparts from about 10% to about 30% bonded area of the resulting fabric. As is well known in the art. the point bonding holds the resulting fabric together.
As used herein, "ultrasonic bonding" generally refers a process performed, for example, by passing a substrate between a sonic horn and anvil roll, such as illustrated in U.S. Pat. No. 4,374,888 to Bornslaeoer.
Detailed Description
Reference now will be made in detail to various embodiments of the

invention, one or more examples of which are set forth below. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment, can be used on another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
In general, the present invention is directed to a flexible laminate structure that contains pockets formed by fusing at least two substrates together. The pockets contain discrete regions of a functional material, such as particles (e.g., superabsorbent materials, filtration materials, etc.) and/or liquids (e.g., water, aqueous liquids, oil-based liquids, etc.). As a result of the present invention, it has been discovered that relatively inflexible functional materials may be incorporated within the laminate structure without substantially impairing the flexibility of the structure. For example, in some embodiments, the pockets can be formed to have relatively small dimensions to enhance the flexibility of the laminate structure. Moreover, the thickness of the substrates, the materials used in forming the substrates, and the like, can all be varied to provide flexibility to the resulting laminate structure.
The flexible laminate structure of the present invention can generally be formed from two or more substrates that can each contain one or more layers. For example, the substrates may be hydrophobic or hydrophilic. Moreover, the substrates used in the present invention can also be made from a variety of different materials, so long as at least a portion of two or more of the substrates is fusible when subjected to thermal, ultrasonic, adhesive or other similar bonding techniques. For

instance, in some embodiments, the substrates can be generally free of cellulosic materials to enhance the ability of the substrates to be fused together. For example, a substrate used in the present invention can be formed from films, nonwoven webs, or combinations thereof (e.g., nonwoven fabric laminated to a film).
For instance, in one embodiment, the substrates can be formed from one or more nonwoven webs. In some instances, the basis weight and/or the thickness of the nonwoven webs may be selected within a certain range to enhance the flexibility of the laminate structure. For example, it has been discovered that, in some instances, an increase in the thickness of a particular substrate can cause the stiffness of the substrate to increase to the third power with thickness. Thus, in some embodiments, the thickness of the nonwoven webs can be less than about 0.1 inches, in some embodiments between about 0.005 inches to about 0.06 inches, and in some embodiments, between about 0.015 inches to about 0.03 inches. Moreover, in some embodiments, the basis weight of the nonwoven webs can be less than about 5 ounces per square yard, in some embodiments, between about 0.5 to about 4 ounces per square yard, and in some embodiments, between about 0.5 to about 2 ounces per square yard.
Typically, the nonwoven webs used in the present invention contain synthetic fibers or filaments. The synthetic fibers or filaments may be formed from a variety of thermoplastic polymers. For example, some suitable thermoplastics include, but are not limited, poly(vinyl) chlorides; polyesters; polyamides; polyolefins (e.g., polyethylene, polypropylenes. polybutylenes, etc.); polyurethanes; polystyrenes; poly(vinyl) alcohols; copolymers, terpolymers, and blends of the foregoing; and the like.
Some suitable polyolefins, for example, may include poly ethylenes, such as Dow Chemical's PE XU 61800.41 linear low density polyethylene ("LLDPE") and 25355 and 12350 high density polyethylene ("HOPE").

Moreover, other suitable polyolefins may include polypropylenes, such as Exxon Chemical Company's Escorene7 PD 3445 polypropylene and Montello Chemical Co.'s PF-304 and PF-015.
Further, some suitable polyamides may be found in "Polymer Resins" by Don E. Floyd (Library of Congress Catalog No. 66-20811, Reinhold Publishing. New York, 1966). Commercially available polyamides that can be used include Nylon-6. Nylon 6,6, Nylon-11 and Nylon-12, These polyamides are available from a number of sources, such as Emser Industries of Sumter, South Carolina (Grilon® & Grilamid® nylons), Atochem Inc. Polymers Division of Glen Rock, New Jersey (Rilsan® nylons). Nyltech of Manchester, New Hampshire (grade 2169, Nylon 6), and Custom Resins of Henderson, Kentucky (Nylene 401-D), among others.
In some embodiments, bicomponent fibers can also be utilized. Bicomponent fibers are fibers that can contain two materials such as but not limited to in a side by side arrangement, in a matrix-fibril arrangement wherein a core polymer has a complex cross-sectional shape, or in a core and sheath arrangement. In a core and sheath fiber, generally the sheath polymer has a lower melting temperature than the core polymer to facilitate thermal bonding of the fibers. For instance, the core polymer, in one embodiment, can be nylon or a polyester, while the sheath polymer can be a polyolefin such as polyethylene or polypropylene. Such commercially available bicomponent fibers include "CELBOND" fibers marketed by the Hoechst Celanese Company.
As stated above, one or more films may also be utilized in forming a substrate of the laminate structure of the present invention. In some instances, the thickness of the films may be selected within a certain range to enhance the flexibility of the laminate structure. For example, as stated above, an increase in the thickness of a particular substrate can cause the stiffness of the substrate to increase to the third power with


thickness. Thus, in some embodiments, the thickness of the films can be less than about 0.05 inches, in some embodiments between about 0.0003 inches to about 0.01 inches, and in some embodiments, between about 0.0007 inches to about 0.02 Inches.
To form the films, a variety of materials can be utilized. For instance, some suitable thermoplastic polymers used in the fabrication of films can include, but are not limited to, polyolefins (e.g.. polyethylene, polypropylene, etc.), including homopolymers. copolymers, terpolymers and blends thereof; ethylene vinyl acetate; ethylene ethyl acrylate; ethylene acrylic acid; ethylene methyl acrylate; ethylene normal butyl acrylate; polyurethane; poly(ether-ester); poly(amid-ether) block copolymers; and the like.
Whether containing films and/or nonwoven webs, the permeability of a substrate utilized in the present invention can also be varied for a particular application. For example, in some embodiments, one or more of the substrates can be permeable to liquids. Such substrates, for example, may be useful in various types of fluid absorption and filtration applications. In other embodiments, one or more of the substrates can be impermeable to liquids, such as films formed from polypropylene or polyethylene. In addition, in other embodiments, it may be desired that one or more of the substrates be impermeable to liquids, but permeable to gases and water vapor (i.e., breathable).
For instance, some suitable breathable, liquid-impermeable substrates can include substrates such as disclosed in U.S. Patent No. 4.828,556 to Braun etal., which is incorporated herein in its entirety by reference thereto for all purposes. The breathable substrate of Braun is a multilayer, cloth-like barrier that includes at least three layers. The first layer is a porous nonwoven web; the second layer, which is joined to one side of the first layer, contains a continuous film of polyvinyl alcohol; and the third layer, which is joined to either the second layer or

the other side of the first layer not joined with the second layer, contains another porous nonwoven web. The second layer of continuous film of polyvinyl alcohol is not microporous, meaning that it is substantially free of voids which connect the upper and lower surfaces of the film.
In other cases, various substrates can be constructed with films containing micropores to provide breath ability to the substrate. The micropores form what is often referred to as "tortuous pathways" through the film. Specifically, liquids contacting one side of the film do not have a direct passage through the film. Instead, a network of microporous channels in the film prevents liquid water from passing, but allows water vapor to pass.
In some instances, the breathable, liquid-impermeable substrates are made from polymer films that contain any suitable substance, such as calcium carbonate. The films are made breathable by stretching the filled films to create the microporous passageways as the polymer breaks away from the calcium carbonate during stretching.
Another example of a breathable, yet liquid-impermeable substrate is described in U.S. Patent No. 5,591,510 to Junker etal., which is incorporated herein in its entirety by reference thereto for all purposes. The fabric material described in Junker etal. contains a breathable outer layer of paper stock and a layer of breathable, fluid-resistant nonwoven material. The fabric also includes a thermoplastic film having a plurality of perforations which allow the film to be breathable while resisting direct flow of liquid therethrough.
In addition to the substrates mentioned above, various other breathable substrates can be ufiiized. For instance, one type of substrate that may be used is a nonporous, continuous film, which, because of its molecular structure, is capable of forming a vapor-permeable barrier. For example, among the various polymeric films that may fall into this type include films made from a sufficient amount of poly(vinyl alcohol), polyvinyl

acetate, ethylene vinyl alcohol, polyurethane, ethylene methyl acrylate, and ethylene methyl acrylic acid to make them breathable.
Still, other breathable substrates that can be used in the present invention include apertured films. For instance, in one embodiment, an apertured film can be used that is made from a thermoplastic film, such as polyethylene, polypropylene, copolymers of polypropylene or polyethylene, or calcium carbonate-filled films. The particular aperturing techniques utilized to obtain the apertured film layer may be varied. The film may be formed as an apertured film or may be formed as a continuous, non-apertured film and then subjected to a mechanical aperturing process.
Moreover, in some embodiments, one or more of the substrates used in the flexible laminate structure can contain an elastomeric component that includes at least one elastomeric material. For example, an elastomeric or elastic material can refer to material that, upon application of a force, is stretchable to a stretched, biased length which is at least about 150%, or one and a half times, its relaxed, unstretched length, and which will recover at least about 50% of its elongation upon release of the stretching, biasing force. In some instances, an elastomeric component can enhance the flexibility of the resulting laminate structure by enabling the structure to be more easily bent and distorted. When present in a substrate, the elastomeric component can take on various forms. For example, the elastomeric component can make up the entire substrate or form a portion of the substrate. In some embodiments, for instance, the elastomeric component can contain elastic strands or sections uniformly or randomly distributed throughout the substrate. Alternatively, the elastomeric component can be an elastic film or an elastic nonwoven web. The elastomeric component can also be a single layer or a multi-layered material.
In general, any material known in the art to possess elastomeric

characteristics can be used in the present invention in the eiastomeric component. For example, suitable eiastomeric resins include block copolymers having the general formula A-B~A' or A-B, where A and A* are each a thermoplastic polymer endblock which contains a styrenic moiety such as a poly(vinyl arene) and where B is an eiastomeric polymer diblock such as a conjugated diene or a lower alkene polymer. Block copolymers for the A and A' blocks, and the present block copolymers are intended to embrace linear, branched and radial block copolymers. In this regard, the radial block copolymers may be designated (A-B)m-X, wherein X is a polyfunctional atom or molecule and in which each (A-B)m- radiates from X in a way that A is an endblock. In the radial block copolymer. X may be an organic or inorganic polyfunctional atom or molecule and m may be an integer having the same value as the functional group originally present in X, which is usually at least 3, and is frequently 4 or 5, but not limited thereto. Thus, the expression "block copolymer." and particularly "A-B-A" and "A-B" block copolymers, can include all block copolymers having such rubbery blocks and thermoplastic blocks as discussed above, which can be extruded (e.g.. by melt blowing). and without limitation as to the number of blocks. For example, eiastomeric materials, such as (polystyrene/poly(ethylene-butylene)/ polystyrene) block copolymers, can be utilized. Commercial examples of such eiastomeric copolymers are. for example, those known as KRATON® materials which are available from Shell Chemical Company of Houston. Texas. KRATON® block copolymers are available in several different formulations, a number of which are identified in U.S. Patent Nos. 4,663.220, 4,323,534. 4.834.738, 5,093.422 and 5,304,599, which are hereby incorporated In their entirety by reference thereto for all purposes.
Polymers composed of an eiastomeric A-B-A-B tetrablock copolymer may also be used. Such polymers are discussed in U.S. Patent No. 5,332,613 to Taylor et al. In these polymers, A is a

thermoplastic polymer block and B is an isoprene monomer unit hydrogenated to substantially a poly(ethylene-propylene) monomer unit. An example of such a tetrablock copolymer is a styrene-poly(ethylene-propylene)-styrene-poly(ethylene-propylene) or S-EP-S-EP elastomeric block copolymer available from the Shell Chemical Company of Houston, Texas under the trade designation KRATON® G-1657.
Other exemplary elastomeric materials that may be used include polyurethane elastomeric materials such as, for example, those available under the trademark ESTANE® from B.F. Goodrich & Co. or MORTHANE® from Morton Thiokol Corp., and polyester elastomeric materials such as, for example, copolyesters available under the trade designation HYTREL® from E.l. DuPont De Nemours & Company and copolyesters known as ARNITEL®, formerly available from Akzo Plastics of Amhem, Holland and now available from DSM of Sitar, Holland.
Another suitable material is a polyester block amide copolymer having the formula:

where n is a positive integer, PA represents a polyamide polymer segment and PE represents a polyether polymer segment. In particular, the polyether block amide copolymer has a melting point of from about 150°C to about 170X, as measured in accordance with ASTM D-789; a melt index of from about 6 grams per 10 minutes to about 25 grams per 10 minutes, as measured in accordance with ASTM D-1238, condition Q (235 C/IKg load); a modulus of elasticity in flexure of from about 20 Mpa to about 200 Mpa, as measured in accordance with ASTM D-790; a tensile strength at break of from about 29 Mpa to about 33 Mpa as measured in accordance with ASTM D-638 and an ultimate elongation at break of from about 500 percent to about 700 percent as measured by ASTM D-638. A

particular embodiment of the polyether block amide copolymer has a melting point of about 152°C as measured in accordance with ASTM D-789; a melt index of about 7 grams per 10 minutes, as measured in accordance with ASTM D-1238, condition Q (235 C/IKg load); a modulus of elasticity in flexure of about 29.50 Mpa. as measured in accordance with ASTM D-790; a tensile strength at break of about 29 Mpa. as measured in accordance with ASTM D-639; and an elongation at break of about 650 percent, as measured in accordance with ASTM D-638. Such materials are available in various grades under the trade designation PEBAX® from ELF Atochem Inc. of Glen Rock, New Jersey. Examples of the use of such polymers may be found in U.S. Patent Nos. 4.724,184. 4,820,572 and 4,923.742 to Killian.
Elastomeric polymers can also include copolymers of ethylene and at least one vinyl monomer such as, for example, vinyl acetates, unsaturated aliphatic monocarboxylic acids, and esters of such monocarboxylic acids. The elastomeric copolymers and formation of elastomeric nonwoven webs from those elastomeric copolymers are disclosed in. for example, U.S. Patent No. 4.803.117.
The thermoplastic copolyester elastomers include copolyetheresters having the general formula;

H-([O-G-O-C-C6H4-C]b-[O-(CH2)a-O-C-C6H4-C]m)n-O-(CH2)a-0H
where "G" is selected from the group consisting of poly(oxyethylene)-alpha, omega-diol, poly(oxypropylene)-alpha, omega-diol, poly(oxytetramethylene)-alpha, omega-diol and "a" and "b" are positive integers including 2,4 and 6, "m" and "n" are positive integers including 1-20. Such materials generally have an elongation at break of from about 600 percent to 750 percent when measured in accordance with ASTM D-638 and a melt point of from about 350T to about 400T

(176°C to 205'C) when measured in accordance with ASTM D-2117.
In addition, some examples of suitable elastomeric olefin polymers are available from Exxon Chemical Company of Baytown, Texas under the trade name ACHIEVE® for polypropylene based polymers and EXACT® and EXCEED® for polyethylene based polymers. Dow Chemical Company of Midland, Michigan has polymers commercially available under the name ENGAGE®. These materials are believed to be produced using non-stereoselective metallocene catalysts. Exxon generally refers to their metallocene catalyst technology as "single site" catalysts, while Dow refers to theirs as "constrained geometry" catalysts under the name INSIGHT® to distinguish them from traditional Ziegler-Natta catalysts which have multiple reaction sites.
When incorporating an elastomeric component containing an elastomeric material, such as described above, into a substrate, it is sometimes desired that the elastomeric component be an elastic laminate that contains an elastomeric material with one or more other layers, such as foams, films, apertured films, and/or nonwoven webs. An elastic laminate generally contains layers that can be bonded together so that at least one of the layers has the characteristics of an elastic polymer. The elastic material used in the elastic laminates can be made from materials, such as described above, that are formed into films, such as a microporous film, fibrous webs, such as a web made from meltblown fibers, spun bond fibers, foams, and the like.
For example, in one embodiment, the elastic laminate can be a "neck-bonded" laminate. A "neck-bonded" laminate refers to a composite material having at least two layers in which one layer is a necked, non-elastic layer and the other layer is an elastic layer. The resulting laminate is thereby a material that is elastic in the cross-direction. Some examples of neck-bonded laminates are described in

U,S. Patent Nos. 5,226,992,4,981,747, 4,965,122, and 5,336,545, all to Morman, all of which are incorporated herein in their entirety by reference thereto for all purposes.
The elastic laminate can also be a "stretch-bonded" laminate, which refers to a composite material having at least two layers in which one layer is a gatherable layer and in which the other layer is an elastic layer The layers are joined together when the elastic layer is in an extended condition so that upon relaxing the layers, the gatherable layer is gathered. For example, one elastic member can be bonded to another member while the elastic member is extended at least about 25 percent of its relaxed length. Such a multilayer composite elastic material may be stretched until the nonelastic layer is fully extended.
For example, one suitable type of stretch-bonded laminate is a spunbonded laminate, such as disclosed in U.S. Patent No. 4,720,415 to VanderWielen et al., which is incorporated herein in its entirety by reference thereto for all purposes. Another suitable type of stretch-bonded laminate is a continuous filament spunbonded laminate, such as disclosed in U.S. Patent No. 5,385,775 to Wright, which is incorporated herein in its entirety by reference thereto for all purposes. For instance, Wright discloses a composite elastic material that includes: (1) an anisotropic elastic fibrous web having at least one layer of elastomeric meltblown fibers and at least one layer of elastomeric filaments autogenously bonded to at least a portion of the elastomeric meltblown fibers, and (2) at least one gatherable layer joined at spaced-apart locations to the anisotropic elastic fibrous web so that the gatherable layer is gathered between the spaced-apart locations. The gatherable layer is joined to the elastic fibrous web when the elastic web is in a stretched condition so that when the elastic Ae relaxes, the gatherable layer gathers between the spaced-apart bonding locations. Other composite elastic materials are described and disclosed in U.S. Patent

Nos. 4,789,699 to KiefferetaK. 4,781,966 to Taylor, 4.657,802 to Morman, and 4,655,760 to Morman et al., all of which are incorporated herein in their entirety by reference thereto for all purposes.
in one embodiment, the elastic laminate can also be a necked stretch bonded laminate. As used herein, a necked stretch bonded laminate is defined as a laminate made from the combination of a neck-bonded laminate and a stretch-bonded laminate. Examples of necked stretch bonded laminates are disclosed in U.S. Patent Nos. 5,114,781 and 5.116,662, which are both incorporated herein in their entirety by reference thereto for all purposes. Of particular advantage, a necked stretch bonded laminate can be stretchable in both the machine and cross-machine directions.
In some embodiments, the material(s) used in forming a substrate of the present invention can provide a "light scattering" effect to mask the color of a functional material contained therein. For example, as described in more detail below, a functional material may sometimes contain particles having a certain color. In many applications, it may be desired that the color not be seen through the resulting laminate structure. Thus, in accordance with one embodiment of the present invention, the substrates can be formed and fused to other substrates in a manner so that the color of the particles is substantially masked. For example, in one embodiment, meitblown nonwoven webs formed from synthetic fibers can be utilized as the substrates with black particles (e.g. activated carbon) sandwiched therebetween. In this embodiment, the fine fibrous network of the meitblown nonwoven substrates can substantially mask the color of the particles contained within the pockets of the laminate structure.
In accordance with the present invention, as stated above, a functional material is also provided for deposition onto one or more of the substrates. As used herein, the term "functional" generally refers to any

material that provides some functional benefit to the laminate structure. Thus, a functional material may encompass a material that is chemically reactive or inert, as long as the material provides some functional attribute to the resulting structure. For example, if desired, the functional material may be a chemically inert material that is utilized to simply add weight to the flexible laminate structure. Moreover, the functional material may also have a variety of different forms. For example, as stated above, the functional material may contain particles, liquids (e.g., water, oils, etc.). and the like. When utilized, liquids can be deposited onto the substrate using well known liquid deposition techniques.
Moreover, as stated, particles may be utilized as the functional material, in general, the particles may be of any size, shape, and/or type. For example, the particles may be spherical or semispherical. cubic, rod-like, polyhedral, etc., while also including other shapes, such as needles, flakes, and fibers. Moreover, some examples of suitable particles can include, but are not limited to, superabsorbents, deodorants, colorants (e.g.. encapsulated dyes), fragrances, catalysts, germicidal materials, filtration media (e.g., activated carbon), proteins, drug particles, etc. For example, the particles may be selected from inorganic solids, organic solids, etc. Some inorganic solids that can be utilized include, but are not limited to, silica’s, metals, metal complexes, metal oxides, zeolites and clays. Moreover, some examples of suitable organic solids that can be utilized include, but are not limited to, activated carbons, activated charcoals, molecular sieves, polymer microsponges, polyacrylates, polyesters, polyolefins, polyvinyl alcohols, and polyvinylidine halides. Other solids that can be used may include pulp materials, such as microcrystalline cellulose, highly refined cellulose pulp, bacterial cellulose, and the like.
The functional material can generally be deposited onto the substrate using a variety of deposition techniques. For instance, in some

embodiments, a template can be utilized to deposit the functional material in a desired pattern onto a substrate. Specifically, a template can have a structure that enables it to physically inhibit the areas that are to be bonded from being deposited with the functional material. In addition, in some embodiments, vacuum plates can be utilized. Vacuum plates use sectional forces to draw the functional material to the desired areas. Moreover, adhesive deposition can also be used. For example, an adhesive can be applied to the substrate where it is desired for the functional material to be deposited. The functional material will then selectively adhere to those portions of the substrate containing the adhesive.
Further, in some embodiments, one or more of the substrates can be textured such that the substrate contains depressions and elevations. In such instances, a functional material can be deposited onto the textured substrate such that it collects substantially in the depressions of the substrate. Besides the above-mentioned techniques of deposition, other techniques can also be utilized. For instance, some other known techniques for depositing a functional material onto a substrate can include, but are not limited to, electrostatic, xerographic, printing (e.g., gravure). patterned transfer roll (vacuum or adhesive), and the like.
For instance, referring to Fig. 1, one embodiment of a method for enclosing a particulate functional material within a laminate structure is illustrated. As shown in Fig 1A, the particles can be initially deposited onto a first substrate 12. Once deposited, a second substrate 14 can then be fused to portions of the first substrate 12.
In accordance with the present invention, the substrates are generally fused together only at those portions on which the discrete regions of particles have not been deposited. For example, as shown in Figs 1B-1C, in one embodiment, the second substrate 14 can be fused to the first substrate 12 at certain fused portions 24. As a result, discrete

regions of particles 28 can be contained within unfused portions or pockets 20. In some embodiments, these pockets 20 can provide substantial benefits to the resulting laminate structure. For instance, when utilizing a laminate structure that is designed to be absorbent, it may be desired to direct the flow of liquids to discrete regions of particles (e.g., superabsorbents). Thus, in such instances, the fused portions of the laminate structure can be formed from certain materials, such as films or nonwoven webs, that are or become substantially impermeable to liquids when fused together. However, the unfused portions of the substrates can remain substantially permeable to liquids such that any liquid contacting the laminate structure is primarily directed to the unfused portions or pockets of the laminate structure so that they contact the discrete regions of superabsorbent particles.
Besides being utilized in absorbent articles, however, substrates containing fused portions and unfused portions (i.e.. pockets) can also be beneficial in numerous other applications as well. For instance, the laminate structure can sometimes be utilized as a flexible body wrap that is configured to be wrapped around one or more body parts of a person or animal. In such instances, the pockets may contains liquids, such as water, or discrete particles, such as drug particles for delivery to the skin of a user. In addition, in other embodiments, the laminate structure can be utilized as a filtration media in which the pockets contain discrete regions of filtration media, such as activated carbon. However, although various applications have been described above, it should be understood that the laminate structure of the present invention is not limited to any particular application. In fact, virtually any type of functional material can be incorporated into the pockets of the laminate structure so that the resulting laminate can be used in a wide variety of applications.
To fuse the substrates together in a manner such as described above, a variety of methods can be utilized. In particular, any method

that allows the substrates to be fused together in a pattern corresponding to the portions of the substrate that do not contain the discrete regions of the functional material can be utilized. For instance, thermal bonding techniques, such as thermal point bonding, pattern unbinding. etc., and ultrasonic bonding are some examples of techniques that may be utilized in the present invention to fuse together the substrates. In addition, if desired, adhesives may also be utilized in conjunction with fusing techniques to facilitate the attachment of the substrate at the fused portions. For example, some suitable adhesives are described in U.S. Patent Nos. 5,425,725 to Tanzer, etal.: 5,433,715toTanzer, eta!.; and 5,593,399 to Tanzer, etal., which are incorporated herein in their entirety by reference thereto for all purposes.
Referring to Fig. 4, one particular embodiment for fusing the second substrate 14 to the substrate 12 is illustrated. As shown, a functional material 28 is first deposited by a dispenser 35 onto the substrate 12 in a preselected pattern. The substrate 12 is moved under the dispenser 35 with the aid of a roll 37. Further, in this embodiment, to facilitate deposition of the functional material 28 onto the substrate 12. a vacuum roll 33 is utilized. In particular, the vacuum roll 33 can apply a suctional force to the lower surface of the substrate 12 to better control the positioning of the functional material 28 within a discrete region of the substrate 12.
Thereafter, the substrate 12 containing the functional material 28 is passed beneath the substrate 14. In this embodiment, each substrate 12 and 14 contains a heat-fusible matenal, such as polypropylene. As shown, the substrates 12 and 14 are passed under a roll 30 that is heated and contains a surface having various protrusions 32. The protrusions 32 form a pattern that corresponds to portions of the substrate 12 that do not contain the functional material 28. In this embodiment, another heated roll 34 that has a smooth surface is also

utilized to facilitate the fusing of the substrates 12 and 14. However, it should be understood that the roll 34 is not required in ail instances. Moreover, the roll 34 may also have a certain pattern of protrusions and/or may remain unheated. In the illustrated embodiment, as the heated rolls 30 and 34 press the fusible substrates 12 and 14, the areas at the protrusions 32 are fused together, forming fused areas surrounding pockets containing the functional material.
In some instances, it may be desired to control the level of bonding for the laminate structure. For example, in some embodiments, the bonded surface area can be between about 10% to about 500% of the unbonded area, in some embodiments, between about 10% to about 100% of the unbonded area, and in some embodiments, between about 40% to about 60% of the unbonded area.
The pockets of the laminate structure formed according to the present invention, such as described above, can be unique in size and shape. For example, the pockets can have regular or irregular shapes. Some regular shapes can include, for example, circles, ovals, ellipses, squares, hexagons, rectangles, hourglass-shaped, tube-shaped, etc. Moreover, in some instances, some pockets of the laminate structure may have different shapes and/or sizes than other pockets.
Regardless of the particular shape utilized, the pockets are generally formed to be relatively small in size so that they do not substantially inhibit the flexibility of the resulting laminate structure. For example, referring to Fig. 2. the approximate width V to height "h" ratio of the pockets 20 (i.e., w/h) can. in some embodiments, be less than 10, in some embodiments between about 1 to about 8, and in some embodiments, between 1 to about 5. For example, in some embodiments, the approximate height "h" can be equal to less than about 1 inch, in some embodiments less than about 0.5 inches, and in some embodiments, between about 0.005 inches to about 0.4 inches.

Further, as shown in Figs. 2-5, the approximate length 1" to width "w" ratio of the pockets 20 (i.e.. l/w) can, in some embodiments, be less than about 100, in some embodiments, less than about 50, and in some embodiments, between about 1 to about 20. For example, in some embodiments, the approximate length dimension T of the pockets 20 can be less than about 2 inches, in some embodiments between about 0.0625 inches to about 2 inches, and in some embodiments, between about 0,25 inches to about 2 inches.
In addition, the spacing between the pockets can also be varied. For example, as shown in Fig. 5. the approximate distance "x" that the pockets 20 are spaced apart can, in some embodiments, be greater than about 0.0625 inches. Moreover, in some embodiments, the distance "x" can be equal to the width "w" of the pockets 20.
Although various dimensions have been set forth above, it should understood that other dimensions are also contemplated in the present invention. For instance, the particular pocket dimensions may vary depending on the overall dimensions of the laminate structure. Moreover, it should also be understood that the dimensions set forth above are approximate "maximum" or "minimum" dimensions for a given direction. Thus, a pocket having a certain approximate height, for example, may have other heights at different locations in the width direction of the pocket. In some instances, some of the heights of a pocket may actually exceed the given dimension by a relatively small amount.
Although not necessarily required in all embodiments, the present inventors have discovered that the use of pockets having such relatively small dimensions can allow the resulting laminate structure to remain flexible, even when containing an inflexible functional material. For instance, if an inflexible functional material, such as activated carbon, were simply sandwiched in between two flexible substrates, the resulting

flexibility of the laminate structure would likely be severely limited by the flexibility of the functional material. However, by enclosing such an inflexible functional material within relatively small pockets in accordance with the present invention, the resulting laminate structure can retain a substantial amount of the flexibility of the substrates.
As stated, flexible laminate structures formed according to the present invention can be used in a wide variety of applications. For example, in some embodiments, the flexible laminate structure can be used as a bandage, wound dressing, or support, for one or more body parts of a user. In such instances, the functional material can include a variety of materials, such as. but not limited to. superabsorbent materials for absorbing blood and other bodily fluids, drug particles, odor absorbents, etc. The functional material can also be a liquid, such as water, that is capable of being frozen so that the resulting laminate structure could function as a flexible ice-pack. In addition to the above-mentioned applications, other applications are also contemplated by the present invention. For instance, the flexible laminate structure could also be utilized as a flexible filtration media.
While the invention has been described in detail with respect to the specific embodiments thereof, it will be appreciated that those skilled in the art. upon attaining an understanding of the foregoing, may readily conceive of alterations to, variations of, and equivalents to these embodiments. Accordingly, the scope of the present invention should be assessed as that of the appended claims and any equivalents thereto.





WHAT IS CLAIMED IS:
1. A flexible laminate structure comprising:
a first substrate containing a thermoplastic polymer and a second substrate containing a thermoplastic polymer, wherein the thermoplastic polymer of said first substrate is fused together with the thermoplastic polymer of said second substrate to form fused portions and unfused portions located between said fused portions, said unfused portions defining pockets containing discrete regions of a functional material selected from the group consisting of particles, liquids, and combinations thereof, said pockets having an approximate width to height ratio of less than about 10.
2. A flexible laminate structure as defined in claim 1, wherein said pockets have an approximate width to height ratio of between about 1 to about 8.
3. A flexible laminate structure as defined in claim 1. wherein said pockets have an approximate width to height ratio of between about 1 to about 5.
4. A flexible laminate structure as defined in claim 1, wherein said pockets have an approximate length to width ratio of less than about 20.
5. A flexible laminate structure as defined in claim 1, wherein at least one of said substrates contains a nonwoven web.
6. A flexible laminate structure as defined in claim 1. wherein at least one of said substrates contains a film.
7. A flexible laminate structure as defined in claim 1, wherein said first substrate and said second substrate are selected from the group consisting of nonwoven webs having a thickness of less than about 0.1 inches, films having a thickness less than about 0.05 inches, and combinations thereof
8. A flexible laminate structure as defined in claim 1, wherein said first substrate and said second substrates are selected from the group

consisting of nonwoven webs having a thickness between about 0.015 inches to about 0.03 inches, films having a thickness between about 0.0007 inches to about 0.002 inches, and combinations thereof.
9. A flexible laminate structure as defined in claim 1, wherein at
least one of said substrates contains a film that is substantially
impermeable to liquids but substantially permeable to gases.
10. A flexible laminate structure as defined in claim 1. wherein said unfused portions are substantially permeable to liquids and said fused portions are substantially impermeable to liquids.
11. A flexible laminate structure as defined in claim 1, wherein at least one of said substrates contains an elastomeric component.
12. A flexible laminate structure as defined in claim 1, wherein said functional material has a certain color, said substrates substantially masking said color when said substrates are fused together.
13. A flexible laminate structure as defined in claim 1. wherein said functional material contains particles selected from the group consisting of superabsorbents, deodorants, colorants, fragrances, catalysts, germicidal materials, filtration media, proteins, drugs, and combinations thereof.
14. A flexible laminate structure as defined in claim 1, wherein the area of said fused portions is between about 40% to about 60% of the area of said unfused portions.
15. A flexible laminate structure comprising:
a first substrate and a second substrate, said first substrate and said second substrates being selected from the group consisting of nonwoven webs having a thickness less than about 0.1 inches, films having a thickness less than about 0.05 inches, and combinations thereof, said first substrate containing a thermoplastic polymer and said second substrate containing a thermoplastic polymer, wherein the thermoplastic polymer of said first substrate is fused together with the

thermoplastic polymer of said second substrate to form fused portions and unfused portions located between said fused portions, said unfused portions defining pockets containing discrete regions of a functional material selected from the group consisting of particles, liquids, and combinations thereof, said pockets having an approximate width to height ratio of between about 1 to about 8.
16. A flexible laminate structure as defined in claim 15, wherein said pockets have an approximate width to height ratio of between about 1 to about 5.
17. A flexible laminate structure as defined in claim 15. wherein said pockets have an approximate length to width ratio of less than about 20.
18. A flexible laminate structure as defined in claim 15, wherein said first substrate and said second substrates are selected from the group consisting of nonwoven webs having a thickness between about 0.015 inches to about 0.03 inches, films having a thickness between about 0.0007 inches to about 0.002 inches, and combinations thereof.
19. A flexible laminate structure as defined in claim 15, wherein at least one of said substrates contains a film that is substantially impermeable to liquids but substantially permeable to gases.
20. A flexible laminate structure as defined in claim 15, wherein said unfused portions are substantially permeable to liquids and said fused portions are substantially impermeable to liquids.
21. A flexible laminate structure as defined in claim 15. wherein at least one of said substrates contains an elastomeric component.
22. A flexible laminate structure as defined in claim 15. wherein said functional material has a certain color, said substrates substantially masking said color when said substrates are fused together.
23. A flexible laminate structure as defined in claim 15, wherein said functional material contains particles selected from the group

consisting of superabsorbents. deodorants, colorants, fragrances, catalysts, germicidal materials, filtration media, proteins, drugs, and combinations thereof.
24. A flexible laminate structure as defined in claim 15. wherein
the area of said fused portions is between about 40% to about 60% of
the area of said unfused portions.
25. A method for forming a flexible laminate structure comprising:
providing a first substrate containing a thermoplastic polymer;
depositing a functional material onto said first substrate in discrete
regions, said functional material being selected from the group consisting of particles, liquids, and combinations thereof;
placing a second substrate containing a thermoplastic polymer adjacent said first substrate such that said functional material is sandwiched between said first and said second substrates;
fusing the thermoplastic polymer of said first substrate with the thermoplastic polymer of said second substrate to form fused portions and unfused portions located between said fused portions, said unfused portions defining pockets containing said discrete regions of said functional material, said pockets having an approximate width to height ratio of less than about 10.
26. A method as defined in claim 25, wherein said functional material is deposited onto said first substrate utilizing a deposition technique selected from the group consisting of vacuum screen, template, xerographic, electrostatic, print, and combinations thereof.
27. A method as defined claim 25. wherein said pockets have an approximate width to height ratio of between about 1 to about 8.
28. A method as defined in claim 25, wherein said pockets have an approximate width to height ratio of between about 1 to about 5.
29. A method as defined in claim 25, wherein said pockets have an approximate length to width ratio of less than about 20.

30. A method as defined in claim jib, where at lease one OT saga substrates contains a material selected from the group consisting of nonwoven webs, films, and combinations thereof
31. A method as defined in claim 25. wherein said first substrate and said second substrate are selected from the group consisting of nonwoven webs having a thickness of less than about 0.1 inches, films having a thickness less than about 0.05 inches, and combinations thereof.
32. A method as defined in claim 25. wherein said first substrate and said second substrates are selected from the group consisting of nonwoven webs having a thickness between about 0.015 inches to about 0.03 inches, films having a thickness between about 0.0007 inches to about 0.002 inches, and combinations thereof
33. A method as defined in claim 25. wherein at least one of said substrates contains a film that is substantially impermeable to liquids but substantially permeable to gases.
34. A method as defined in claim 25. wherein said unfused portions are substantially permeable to liquids and said fused portions are substantially impermeable to liquids.
35. A method as defined in claim 25. wherein at least one of said substrates contains an elastomeric component.
36. A method as defined in claim 25, wherein said functional material has a certain color, said substrates substantially masking said color when said substrates are fused together.
37. A method as defined in claim 25. wherein said functional material contains particles selected from the group consisting of superabsorbents. deodorants, colorants, fragrances, catalysts, germicidal materials, filtration media, proteins, drugs, and combinations thereof.
38. A method as defined in claim 25. wherein the area of said

fused portions is between about 40% to about 60% of the area of said unfused portions.
39. A method as defined in claim 25, wherein said fusing is accomplished by a technique selected from the group consisting of thermal bonding, ultrasonic bonding, adhesive bonding, and combinations thereof.

40. A flexible laminate structure substantially as herein described with reference to the accompanying drawings.
41. A method for forming a flexible laminate structure substantially as herein described with reference to the accompanying drawings.


Documents:

999-chenp-2003-abstract.pdf

999-chenp-2003-assignement.pdf

999-chenp-2003-claims filed.pdf

999-chenp-2003-claims granted.pdf

999-chenp-2003-correspondnece-others.pdf

999-chenp-2003-correspondnece-po.pdf

999-chenp-2003-description(complete)filed.pdf

999-chenp-2003-description(complete)granted.pdf

999-chenp-2003-drawings.pdf

999-chenp-2003-form 1.pdf

999-chenp-2003-form 26.pdf

999-chenp-2003-form 3.pdf

999-chenp-2003-form 5.pdf

999-chenp-2003-other document.pdf

999-chenp-2003-pct.pdf


Patent Number 209353
Indian Patent Application Number 999/CHENP/2003
PG Journal Number 38/2007
Publication Date 21-Sep-2007
Grant Date 27-Aug-2007
Date of Filing 24-Jun-2003
Name of Patentee M/S. KIMBERLY-CLARK WORLDWIDE, INC
Applicant Address 401 North Lake Street, Neenah, Wisconsin 54956
Inventors:
# Inventor's Name Inventor's Address
1 FISH, Jeffrey, E 2405 Cammie Wages Road, Dacula, GA 30019
PCT International Classification Number A61F 13/15
PCT International Application Number PCT/US2001/049881
PCT International Filing date 2001-12-21
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 60/259,129 2000-12-28 U.S.A.