Title of Invention

PROCESS FOR PREPARING ADRENALINE OR AN ADDITION SALT OF ADRENALINE

Abstract Process for preparing adrenaline or an addition salt of adrenaline, characterised in that in a first step N-protected adrenalone as the educt is subjected to asymmetric hydrogenation with i) a protic solvent; ii) a catalyst system of [Rh(COD)Cl]2 and a chiral, bidentate phosphine ligand selected from the group of (2R, 4R)-4-(dicyclohexylphosphino)-2- (diphenylphosphino-methyl)-N-methyl-aminocarbonyl-pyrrolidine and polymer-bound (2R, 4R)-4-(dicyclohexylphosphino)- 2-(diphenylphosphino-methyl)-N-methyl-aminocarbonyl-pyrrolidine, iii) a molar ratio of educt to the rhodium catalyst of between 500:1 and 10000:1, iv) a temperature range from 40°C to 70°G v) a pressue of 10 x 105 Pa to 100 x 105 Pa vi) a reaction time for the asymmetric hydrogenation of between 2 and 8 hours then in a second step the N-protected adrenaline produced is precipitated in the basic range and in a third step the N protecting group is cleaved in the acid range at a pH of between 5 and 6 and at a reaction temperature of 40 to 80°C.
Full Text FORM 2
THE PATENTS ACT 1970
. -{39 OF 1970]
&
The Patents Rule, 2003
COMPLETE SPECIFICATION
[See Section 10 and Rule 13]
"PROCESS FOR PREPARING ADRENALINE OR AN ADDITION SALT OF
ADRENALINE"
BOEHRINGER INGELHEIM PHARMA GMBH & CO. KG., a German company, of Binger Strasse 173, D-55216 Ingelheim am Rhein, Germany,
The following specification particularly describes the nature of the invention and the manner in which it is to be performed:-

The present invention relates to a process for preparing adrenaline or an addition salt of adrenaline.
The present invention relates to an improved process for preparing adrenaline, or an addition salt thereof, on an industrial scale, with asymmetric hydrogenation as a key step and a special sequence of successive steps, using [Rh(COD)Cl] 2 as catalyst and a chiral, bidentate phosphine ligand such as (2R, 4R)-4-dicyclohexylphosphmo)-2-(diphenylphosphino-meuiyl)-N-methyl-aminocarbonyl-pyrrolidine as the catalyst system.
Background to the invention
Adrenaline is a hormone and neurotransmitter which belongs to the catecholamines. In the human body it is formed from tyrosine when the latter is reacted via dihydroxyphenylalanine, dopamine and noradrenaline, finally producing adrenaline. Adrenaline, being a sympathetic agent, stimulates the adrenergic receptors of the sympathetic nervous system, increasing the pulse rate, cardiac output and systolic blood pressure, reducing intestinal peristalsis, relaxing the bronchial muscles and dilating the bronchi, dilating the pupils, increasing the basal metabolic rate by promoting O2 consumption, hyperglycaemia and glycosuria by mobilising the glycogen reserves in the liver and increasing lipolysis, inter alia, thereby increasing the free fatty acid in the blood. Because of its wide rtange of activities adrebaline is of
considerable commercial interest in the treatment of anaphylactic shock, inter alia, or as an addition to local anaesthetics.
Chemically, adrenaline is Ll-(3',4'Himydroxy-phenyl)-2-memylammoethan-l-ol with the following structure (formula I): Formula I:


Industrially, adrenaline is usually manufactured by non-stereoselective hydrogenation of 3 ',4'-dmydroxy-2-N-methyl-amino-acetophenone or a derivative thereof with protected OH functions or amino function and subsequent racemate separation.
Enantioselective methods of synthesis are also known. One of these is described, for example, in Tetrahedron Letters 5 (1979), 425 - 428. According to this, 3',4'-dihydroxy-2-N-methyl-amino-acetophenone is reacted to produce adrenaline by hydrogenation under a hydrogen pressure of about 50 x 105 Pa using a chiral hydroxyalkylferrocenylphosphine as catalyst. The amount of catalyst to substrate is about 1:100, based on the molar ratio. Under these conditions, R-l-(3',4'-dihydroxyphenyl)-2-methylamino-ethan-l-ol (adrenaline) is obtained in an enantiomeric excess over the S-enantiomer of 60 °A.eej&fter about 2 to 4 days reaction. However, this process is unsuitable for producing adrenaline on an industrial scale for a number of reasons: in spite of the use of large amounts of catalyst in the asymmetric reaction step the product cannot be produced in sufficiently pure form for pharmaceutical purposes except by the use of expensive purification procedures, as this reaction produces adrenaline only as a mixture containing a relatively high proportion of the opposite enantiomer as a contaminant. The relatively long reaction time of the asymmetric hydrogenation step, i.e. 2 to 4 days, also constitutes a reaction step which is very equipment-intensive and expensive for industrial purposes, with not inconsiderable safety risks.
Achiwa et al. writing in Tetrahedron Letters 30 (1989), 367 - 370 and Chem. Pharm. Bull. 43_ (5) (1995) 738- 747.describe an asymmetric rhodium catalyst which was used in the manufacture of L-phenylephrine. Using asymmetric hydrogenation, 3'-benzyloxy-2-(N-benzyl-N-methyl)-aminoacetophenone hydrochloride is reduced within 20 hours with hydrogen in the presence of [Rh(COD)Cl] 2 /(2R, 4R)-4-(dicyclohexylphosphino)-2-(diphenylphosphino-methyl)-N-methyl-aminopyrrolidine as catalyst. After filtration, concentration of the reaction mixture and cleaving of the benzyl nitrogen protecting group, phenylephrine is obtained as the product. In addition to the L-enantiomer, the D-enantiomer is also obtained in an amount of at least 7.5% as a contaminant (85% ee). The precise mechanism of rhodium-catalysed asymmetric hydrogenation is not known at present.
The main disadvantage of this process is that the L-phenylephrine obtained cannot be purified ^ economically on an industrial scale to the level of purity essential for its use as a

pharmaceutical. Moreover, the hydrogenation reaction is relatively long, taking more than 20 hours, which is associated with the disadvantages described above.
It is not known to produce adrenaline by this method.
Description of the invention
The present invention relates to a new process for preparing adrenaline by asymmetric hydrogenation which overcomes the problems and drawbacks known from the prior art or described above.
One of the essential objectives of the present invention is to develop a process by means of which adrenaline can be produced with high optical and chemical purity. Thus, for example, the risk of the unwanted enantiomer contaminating pharmaceutical preparations which contain adrenaline as active ingredient should be minimised.
Another objective of the invention is to develop a process by means of which substantially enantiomerically pure adrenaline can be produced easily, i.e. without complicated purification procedures.
A further aim of the invention is to produce adrenaline by means of a stereoselective process in order to avoid reaction steps in which chiral intermediate compounds or the chiral end product adrenaline is obtained as a racemate together with its opposite enantiomer in a similar amount.
The process according to the invention also sets out to keep the hydrogenation times needed for adrenaline production as short as possible in order to reduce the costs and risks involved in using hydrogen under high pressure, inter alia.
Another aim of the present invention is to provide the skilled person with a process for manufacturing adrenaline by which this substance, which is needed in large quantities, can be produced cheaply from readily available educts.
Surprisingly, it has now been found that adrenaline or the sulphate thereof can be obtained in exceptionally high optical purity from 3\4'-dihydroxy-2-N-benzyl-N-methyl-amino-

acetophenone 1 using asymmetric hydrogenation with [Rh(COD)Cl] 2 /(2R, 4R)-4-dicyclohexylphosphino)-2-(dipheflylphosphino-methyl)-N-methyl-aminocarbonylpyrrolidine (MCCPM) as the catalyst system and a special sequence of subsequent steps. The abbreviation COD used in the general formula denotes cyclooctadiene.
Specific description of the invention
With a molar ratio of catalyst to substrate of about 1:1500 (see example), adrenaline sulphate 3 can be obtained by the process according to the invention, starting from benzyladrenalone (3',4'-dihydroxy-2-N-benzyl-N-methyl-amino-acetophenone) 1, with an optical purity of 98% ee or more (HPLC) (reaction diagram 1).
Reaction diagram 1 :


According to reaction diagram 1, first of all 3',4'-dihydroxy-2-N-benzyl-N-methyl-amino-acetophenone 1 is reacted by asymmetric hydrogenation, using [Rh(COD)Cl] 2 /(2R, 4R)-4-(dicyclohexylphosphino)-2-(diphenylphosphino-methyl)-N-methyl-aminopyrrolidmeas catalyst, to form the optically active benzyladrenaline base (R-l-(3',4'-dihydroxyphenyl)-2-N-benzyl-N-methyl-amino-ethan-1 2(reaction step 1) This is then precipitated in the
basic range by the addition of ammonia (reaction step 2). In a 3rd reaction step the benzyl protecting group is then eliminated by hydrogenation with hydrogen and palladium,

preferably palladium on charcoal, in a sulphuric acid solution, so as to obtain the adrenaline sulphate 3.
For easy production of almost optically pure adrenaline or its sulphate 3, another important step, in addition to asymmetric hydrogenation with the rhodium catalyst described above, is precipitation of the N-benzyladrenaline 2. By means of these two steps taken together, asymmetric hydrogenation plus precipitation of the benzyladrenaline in the basic range, an intermediate compound with high optical purity is readily obtained, from which adrenaline or the acid addition salts thereof can be obtained with high optical purity in another simple reaction step.
The educt 1 may be, apart from 3',4'-dihydroxy-2-N-benzyl-N-methyl-amino-acetophenone , another derivative of 3',4'-dihydroxy-2-N-methyl-amino-acetophenone (adrenalone), in which the nitrogen function either has no further protection, is protected as a salt or is protected with a protecting group other than the ben2yl protecting group. Suitable protecting groups of this kind include, for example, tert-butylcarbonyl-, 9-fluorenylmethylcarbonyl- or another nitrogen protecting group known from the relevant prior art. N-protected 1 -(3' ,4'-dihydroxy)-2- N-methyl-amino-acetophenone derivatives having a protecting group which is stable under the reaction conditions of the first reaction step (asymmetric hydrogenation) are preferred. 3',4'-dihydroxy-2-N-benzyl-N-methyl-amino-acetophenone 1 is particularly preferred as the educt. Educt 1 can be used as free base or salt, i.e. of an inorganic acid.
^_ . ■ ■ ■
The catalyst used according to the invention is [Rh(COD)Cl]2 and a chiral, bidentate phosphine ligand. Preferably, (2R, 4R)-4-(dicyclohexylphosphino)-2-(diphenylphosphino-methyl)-N-methyl-aminocarbonylpyrrolidine (RR-MCCPM) is used as catalyst.
The preparation of this catalyst is known from the prior art [EP-A-0 251 164, EP-A-0 336 123]. According to the invention, the catalyst may also be present in polymer-bound form, e.g. with the chiral ligand (2R, 4R)-4-dicyclohexylphosphino)-2-(diphenylphosphino-methyl)-N-methyl-aminocarbonyl) pyrrolidine being bound to a polymer via the phenyl groups. The use of polymer-bound ligands of this kind does not necessarily rule out the use of non-polymer-bound ligands at the same time. Polymer-bound catalysts of this kind are particularly advantageous for easy purification of the product.

The catalyst is used either as a pre-prepared, oxygen-free solution of [Rh(COD)Cl]2 and ligand or prepared in situ from [Rh(COD)Cl]2 and ligand in the presence of the 3\4'-dihydroxy-2-N-benzyl-N-methyI-amino-acetophenone 1 without oxygen, under a protective gas atmosphere or hydrogen atmosphere.
The molar ratio of educt 1 to catalyst in the process according to the invention is between 500:1 and 10,000; 1, preferably between 500:1 and 3000:1 more preferably between 1000:1 and 2000:1 and most preferably about 1500:1.
The reaction medium used for the first reaction step (asymmetric hydrogenation with the rhodium catalyst) is a protic solvent which is preferably degassed before use. A Ci to C3-alcohol, namely methanol, ethanol, propanol or isopropanol, is preferred, especially methanol or ethanol, most preferably methanol. The solvent may optionally contain water.
The reaction temperature of this first step is preferably between 40 and 70°C, most preferably 45 to 55°C.
The hydrogen pressure is 10 to 100 x 105 Pa, preferably 10 to 50 x 105 Pa and more preferably
"15 to 25 x10s Pa.
This first reaction step is complete after 2 to 8 hours, preferably 4 to 6 hours.
Then the solvent is evaporated down sharply by distillation, optionally diluted with water and active charcoal is added thereto. After the active charcoal has been filtered off again, the reaction mixture is diluted with water and preferably the same solvent that was used for the asymmetric hydrogenation, and a base is added in order to precipitate out the N-benzyladrenaline (L-l-(3',4'-dihydroxy-phenyl)-2-N-benzyl-N-methyl-amino-ethan-l-ol) 2 in high optical yields.
Suitable bases are weak organic or inorganic bases. In both cases nitrogen bases are particularly preferred. Of the organic bases, nitrogen bases such as pyridine, piperidine, triethylamine, diethylamine, ethyl-isopropylamine, methylamine or derivatives thereof are particularly preferred, provided that they are soluble in the solvent. Ammonia is particularly preferred among the inorganic bases.

Ammonia is particularly preferred.
The substantially enantiomerically pure N-benzyladrenaline 2 obtained is hydrogenated with hydrogen in a third step. A palladium catalyst is preferably used, especially palladium on charcoal. This hydrogenation preferably takes place in the acid range. The pH of the solution is adjusted to 4 to 6, more preferably 5 to 6, by the addition of acid.
The solvent for this reaction step is water, a C1 to C3-alcohol, namely methanol, ethanol, propanol or isopropanol or a mixture thereof. Water, water-methanol mixtures or methanol are preferred. Water is particularly preferred.
Inorganic or organic acids may be used to acidify the solution. Examples of organic acids include: formic acid, acetic acid, propanoic acid, tartaric acid, malic acid, succinic acid and citric acid. Examples of inorganic acids include: sulphuric acid, hydrochloric acid and phosphoric acid. Sulphuric acid is preferred.
The reaction temperature for this reaction step is between 40 and 80°C, preferably between 50 and 70°C and is most preferably 60°C.
The hydrogen pressure is 1 to 5 x 105 Pa, preferably 2 to 3 x 105 Pa.
V... _ , --
Using the process according to the invention, adrenaline can be obtained by means of all three reaction steps in a total yield of 75% or more, with an optical purity of 98% ee or more and a chemical purity of 98% or more.
The advantage of the process according to the invention is that the amount of catalyst can be significantly reduced in relation to comparable methods known from the prior art, or the reaction time of the asymmetric hydrogenation can be substantially reduced whilst at the same time achieving an increase in the optical yield.
In addition, the process according to the invention makes it possible to cany out optical purification at the stage of the intermediate product, N-ben2yladrenaline 2, and thereby easily obtain adrenaline of high optical purity.

The process according to the invention will now be illustrated by the following Example. This Example serves only as an illustration and is not to be regarded as limiting.
Example
Preparation of the catalyst solution:
6 mg of dichloro-bis-[cycloocta-l,5-diene)rhodium (I)] and 8.2 mg of RR-MCCPM (2R,4R)-
4-(dicyclohexyl-phosphino)-2-(diphenylphosphino-methyl)-N-methyl-
aminocarbonylpyrrolidine) are added to 10 ml of degassed methanol under protective gas and
stirred for 30 min. at ambient temperature.
Preparation of adrenaline
7.4 g of benzyladrenalone hydrochloride 1 are dissolved in about 60 ml of methanol (degassed), 0.07 ml of triethylamine and 10 ml of the catalyst solution (corresponding to 6 mg of (RhCODCl)2 and 8.2 mg of RR-MCCPM) are added and the mixture is hydrogenated at about 50°C under about 20 x 105 Pa of hydrogen pressure. After the reaction has ended the methanol is largely distilled off, about 30 ml of water and about 0.5 g of active charcoal are added, the mixture is stirred for 30 min and filtered. Then N-benzyladrenaline 2 is precipitated with about 10 ml of water and about 15 ml of methanol and by adding about 4 ml of ammonia (aqueous solution about 25 % w/w) and then filtered off. (ambient temperature) Yield 6 g = 90 %.
Benzyladrenaline 2 is dissolved in about 10 ml of water and about 5 ml of 18 % sulphuric acid (pH: about 5.5), about 50 mg of palladium-charcoal (10 %) are added and the mixture is hydrogenated at about 60 °C under 2 = 105 Pa of hydrogen pressure. It is then evaporated down to about half its volume, about 20 ml of methanol are added and the mixture is cooled. The crystalline product (adrenaline sulphate 3) is filtered off and dried.
Yield over all the steps taken together: about 4.5 g (about 75 %), optical purity: > 98 % ee (HPLC) chemical purity: > 98 % (HPLC)

We Claim:
1. Process for preparing adrenaline or an addition salt of adrenaline, characterised in that in a first step N-protected adrenalone as the educt is subjected to asymmetric hydrogenation with
i) a protic solvent;
ii) a catalyst system of [Rh(COD)Cl]2 and a chiral, bidentate phosphine
ligand selected from the group of (2R, 4R)-4-(dicyclohexylphosphino)-2-
(diphenylphosphino-methyl)-N-methyl-aminocarbonyl-pyrrolidine and
polymer-bound (2R, 4R)-4-(dicyclohexylphosphino)- 2-(diphenylphosphino-methyl)-N-methyl-aminocarbonyl-pyrrolidine,
iii) a molar ratio of educt to the rhodium catalyst of between 500:1 and 10000:1,
iv) a temperature range from 40°C to 70°G v) a pressue of 10 x 105 Pa to 100 x 105 Pa
vi) a reaction time for the asymmetric hydrogenation of between 2 and 8 hours then in a second step the N-protected adrenaline produced is precipitated in the basic range and in a third step the N protecting group is cleaved in the acid range at a pH of between 5 and 6 and at a reaction temperature of 40 to 80°C.
2. Process as claimed in claim 1, wherein in the first step N-benzyl-adrenalone 1 is used as educt, which is reacted in the first reaction step to form N- benzyladrenaline 2, which is precipitated in the second

step and is reacted in the third step by cleaving the benzyl nitrogen protecting group by hydrogenation in the presence of a palladium catalyst, preferably palladium on charcoal, to obtain adrenaline or an acid addition salt thereof.
3. Process as claimed in claim 1 or 2, wherein the phosphine ligand is (2R, 4R )-4- (dicyclohexylphosphino)-2-(diphenylphosphino-methyl)- N -methyl- aminocarbonyl- pyrrolidine.
4. Process as claimed in claim 1 or 2, wherein the phosphine ligand is polymer-bound (2R, 4R)-4-(dicyclohexylphosphino)-2-(diphenylphosphino-methyl)- N-methyl -aminocarbonyl-pyrrolidine.
5. Process as claimed in one of claims 1 to 4, wherein the asymmetric hydrogenation is carried out in a temperature range from 45°C to 55°C.
6. Process as claimed in one of the preceding claims 1 to 5, wherein the asymmetric hydrogenation is carried out under a pressure of 10 to 50 x 105 Pa .
7. Process as claimed in claim 6, wherein the asymmetric hydrogenation is carried out under a pressure of 15 to 25 x 105 Pa.

Process as claimed in any of claims 1 to 6, wherein the asymmetric hydrogenation is carried out in methanol, ethanol, propanol or isopropanol as solvent-
Process as claimed in claim 8, wherein the asymmetric hydrogenation is carried out in methanol as solvent.
Process as claimed in one of the preceding claims 8 or 9, wherein the solvent for theosymmetric hydrogenation contains water.
Process as claimed in one of the preceding claims 1 to 10, wherein the molar ratio of educt to the rhodium catalyst in the asymmetric hydrogenation is between 500:1 and 3000:1.
Process as claimed in claim 11, wherein the molar ratio of educt to the rhodium catalyst in the asymmetric hydrogenation is between 1000:1 and 2000:1.
Process as claimed in one of the preceding claims 1 to 12, wherein the rhodium catalyst for the asymmetric hydrogenation is used as a pre-prepared solution.
Process as claimed in one of the preceding claims 1 to 12, wherein the
situ.

15. Process as claimed in one of the preceding claims 1 to 13, wherein the reaction time for the asymmetric hydrogenation is between 4 and 6 hours.
16. Process as claimed in one of the preceding claims 1 to 15, wherein in the second reaction step a nitrogen base, preferably ammonia, is used as the base for precipitating the N-protected adrenaline.
17. Process as claimed in one of the preceding claims 1 to 16, wherein in the third reaction step sulphuric acid, hydrochloric acid or phosphoric acid, preferably sulphuric acid, is used to acidify the solvent.
18. Process as claimed in one of the preceding claims 1 to 17, wherein the reaction temperature of the third reaction step is 50° to 70°C and preferably 60°C.
Dated this the 21st day of January,2002
[JAYANTA PAL]
Of Remfry & Sagar
ATTORNEY FOR THE APPLICANTS

Documents:

in-pct-2002-00073-mum-cancelled pages(30-05-2005).pdf

in-pct-2002-00073-mum-claims(granted)-(30-05-2005).doc

in-pct-2002-00073-mum-claims(granted)-(30-05-2005).pdf

in-pct-2002-00073-mum-correspondence(ipo)-(03-12-2004).pdf

in-pct-2002-00073-mum-correspondence1(26-07-2007).pdf

in-pct-2002-00073-mum-correspondence2(08-11-2002).pdf

in-pct-2002-00073-mum-form 1(21-01-2002).pdf

in-pct-2002-00073-mum-form 13(05-05-2003).pdf

in-pct-2002-00073-mum-form 13(26-07-2007).pdf

in-pct-2002-00073-mum-form 19(05-08-2004).pdf

in-pct-2002-00073-mum-form 1a(26-07-2007).pdf

in-pct-2002-00073-mum-form 2(granted)-(30-05-2005).doc

in-pct-2002-00073-mum-form 2(granted)-(30-05-2005).pdf

in-pct-2002-00073-mum-form 3(21-01-2002).pdf

in-pct-2002-00073-mum-form 3(30-05-2005).pdf

in-pct-2002-00073-mum-form 5(21-01-2002).pdf

in-pct-2002-00073-mum-form-pct-ipea-409(21-01-2002).pdf

in-pct-2002-00073-mum-form-pct-isa-210(21-01-2002).pdf

in-pct-2002-00073-mum-petition under rule 137(30-05-2005).pdf

in-pct-2002-00073-mum-power of authority(02-12-2005).pdf

in-pct-2002-00073-mum-power of authority(21-01-2001).pdf


Patent Number 209710
Indian Patent Application Number IN/PCT/2002/00073/MUM
PG Journal Number 38/2007
Publication Date 21-Sep-2007
Grant Date 06-Sep-2007
Date of Filing 21-Jan-2002
Name of Patentee BOEHRINGER INGELHEIM PHARMA GMBH & CO. KG.
Applicant Address BINGER STRASSE 173, D - 55216 INGELHEIM AM RHEIN, GERMANY.
Inventors:
# Inventor's Name Inventor's Address
1 FRANZ DIETRICH KLINGER WEICHGASSE 7, 64347 GRIESHEIM, GERMANY.
2 LIENHARD WOLTER BERGSTRASSE 3, 55606 HOCHSTETTEN/DHAUN, GERMANY.
PCT International Classification Number C07C 213/08
PCT International Application Number PCT/EP00/07573
PCT International Filing date 2000-08-04
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 199 38 709.5 1999-08-14 Germany