Title of Invention

METHOD FOR PREPARING COMPOUNDS DERIVED FROMTHIAZOLIDINEDIONE, OXAZOLIDINEDIONE OR HYDANTOIN

Abstract Method for preparing a thiazolidinedione, oxazolidinedione or hydantoin compound of formula (I) from a compound of formula (II): wherein: Q represents an oxygen atom or a sulfur atom; Q1 represents an oxygen atom or a sulfur atom; R1 and R2, which can be identical or different, represent a hydrogen atom, a C1-10 alkyl chain, a cycloalkyl, an alkylaryl, an arylalkyl; the alkyl, cycloalkyl, alkylaryl or arylalkyl groups being optionally substituted by an alkyl, an alkoxy or aryloxy, a halogen, a hydroxy, a sulfino, a sulfonyl, an amino such as NH2, NHR3, N(R3)2, wherein R3 represents an alkyl, an alkoxy or an alkylcarbonyl, characterized in that reacting a compound of formula (II) with formic acid, either as a hydrogen donor in a hydrogen-transfer reaction or as a solvent in a hydrogenation reaction, in the presence of a homogeneous or heterogeneous catalyst containing a transition metal and optionally in the presence of a secondary solvent to obtain a corresponding compound of formula (I), wherein operating conditions are: (a) a temperature comprised between 0 and +150°C; (b) a metal quantity/substrate quantity ratio comprised between {fraction (1/10,000)} and {fraction (5/100)}; and (c) a reaction duration comprised between about 0.5 and about 40 hours.
Full Text Original
728/MUMNP/2003
24/07/2003
FORM 2
THE PATENTS ACT, 1970 (39 of 1970)
COMPLETE SPECIFICATION
[See Section 10; rule 13]
A METHOD OF PRAPARING THIAZOLIDINEDIONES

OVAZOLIDINE DIONES AND HYDANTOIN DERIVATIVE
PPG-SIPSY of Z.I. LA CROIX-CADEAU, F-49242 AVRILLE CEDEX FRANCE, FRENCH Company
The following specification particularly describes the nature of the invention and the manner in which it is to be performed : -
GRANTED
24-7-2003

The present invention pertains to a new method for the preparation of thiazolidinedione, oxazolidinedione and hydantoin derivative compounds of formula (I) from compounds of formula (II) below:

In which
- Q represents an oxygen atom or a sulfur atom;
- Ql represents an oxygen atom or a sulfur atom;
- Rl and R2, which can be identical or different, represent a hydrogen atom, a C1-10 alkyl chain, a cycloalkyl, an alkylaryl, an arylalkyl; said alkyl, cycloalkyl, alkylaryl or arylalkyl groups being optionally substituted by an alkyl, an alkoxy or aryloxy, a halogen, a hydroxy, a sulfino, a sulfonyl, an amino such as NH2, NHR3 N(R3)2 with R3 representing an alkyl, an alkoxy or an alkylcarbonyl.
The thiazolidinedione, oxazolidinedione and hydantoin derivative compounds of formula (I) are known as synthesis intermediaries for the preparation of active pharmaceutical principles or as active pharmaceutical agents such as, for example, pioglitazone, rosiglitazone, troglitazone and ciglitazone,
Known in the prior art are methods for the preparation of thiazolidinedione, Oxazolidinedione, and hydantoin derivative compounds:
- via reduction in the presence of a metal hydride as described in international patent application WO 98/37073/ or
- via reduction in the presence of a transition metal as described in European patent EP 257781,
- or via reduction in the presence of magnesium and methanol as described in international patent application WO 98/37073.


These various methods present the disadvantages of generating large amounts of impurities, which can exceed 10% in the synthesis of pioglitazone, of using a large amount of catalyst or solvent, and of having a selectivity problem in the isolation of the resultant compound of formula (I).
The method according to the invention presents the advantages of preparing said compounds of formula (I) while generating low amounts of impurities, of obtaining a total transformation rate, of eliminating the use of large amounts of solvent, of being selective and of easily isolating the product of formula (I). The method according to the present invention thus makes it possible to reduce the economic costs of industrial production of compounds of formula (I)-
The present invention thus has as its object a method for the preparation of a thiazolidinedione, oxazolodinedione or hydantoin derivative compound of formula (I) from a compound of formula (II) below:

in which Q, Ql, Rl and R2 have the same meanings as above, characterized in that a compound of formula (II) is brought to react with formic acid, either as a hydrogen donor in a hydrogen-transfer reaction or as a solvent in a hydrogenation reaction, in the presence of a catalyst based on a transition metal, in order to obtain the corresponding compound of formula (I).
The formic acid used can be formic acid at 100% or a solution containing formic acid with a formic acid level that can range from 0.1 to 99% as long as


said solution can dissolve the compound of formula (II). Said solution can be an aqueous solution or an organic solution or a mixture of these two.
The transition-metal based catalyst employed either in the hydrogen-transfer reaction or in the hydrogenation reaction is advantageously selected from a homogeneous or heterogeneous catalyst.
The following can be cited as homogeneous catalysts based on a transition metal: Ir(COD)Cl, Ru(p-cymene)Cl2, Ru(COD)Cl2, Ru(PPh3)3Cl2, RuCls, Ru(PPH3)4Cl, RuCl3 3H20, Ru(PPh3)4H2, Rh(PPh3)3Cl, RhCl3 3H2O, Ru(PPh3)4H2, Rh(COD)trifluoromethane sulfonate, (C6Hi2)3P(COD)pyridine-Ir(F)6, Ir(PPh3)3H2Cl, Ir(PPh3)3HCl2 Ir(PPh3)2H3, Ir(PPha)3H5, Ir(PPh3)2(CO)X [X - CI, Br,I], Ir(PPh3)2(CO)H, Os(PPh3)3HCl, Pd(OAc)2, PdCl2 Pd(PPh3)2Cl2, Pd(NH4)2Cl4, Pt(PPh3)2Cl2, PtCl4K2, Fe(PPh3)2Cl2, Ni(PBu-n3)2, ReCl5.
The following can be cited as optionally supported heterogeneous catalysts based on a transition metal: Pt, Pt/C, Pt(0)2, Pd, Pd/C, Pd/CaC03, Pd/SiO2 Pd/BaCO3, Pd(OH)2/C, Ir, Ir/C, Ru, Ru/C, Rh, Raney Ni, Fe.
The method according to the invention can optionally be implemented in the presence of a secondary solvent. Such a secondary solvent is advantageously selected from among water, a hydrocarbon such as hexane, heptane, octane, nonane, decane, benzene, toluene or xylene, an ether such as tetrahydrofuran, dioxane, dimethoxyethane, diisopropyl ether or diethylene glycol dimethyl ether, an ester such as ethyl acetate, butyl acetate or ethyl propionate, a ketone such as acetone, diisopropyl ketone, methyl isobutyl ketone, methylethyl ketone or acetylacetone, an alcohol such as methanol, ethanol, n-propanol, iso-propanol, butanol, isobutanol or methoxyethanol, an alkyl halide such as dichloromethane, chloroform or 1,2-dichloroethane, an acid such as acetic acid, propionic acid or butyric acid, an amide such as dimethylformamide or a sulfoxide such as dimethyl sulfoxide.


A preferred form of implementation of the method for the preparation of compounds of formula (I) by hydrogenarion reaction according to the invention comprises the treatment of the compound of formula (II) in the presence of formic acid and a catalyst under the following conditions:
- the optional presence of a secondary solvent as previously defined;
- a temperature comprised between 0 and +150°C;
- a metal quantity/substrate quantity ratio comprised between 1/10,000 and 5%;
- a hydrogen pressure between 0.1 and 50 bar;
- a reaction duration comprised between 0.5 and 40 hours.
A preferred form of implementation of the method for the preparation of compounds of formula (I) by a hydrogen-transfer reaction according to the invention comprises the treatment of the compound of formula (II) in the presence of formic acid and a catalyst under the following preferred operating conditions:
- the optional presence of a secondary solvent as previously defined;
- a temperature comprised between 0 and +150°C;
- a metal quantity/substrate quantity ratio comprised between 1/10,000 and 5/100;
- a reaction duration comprised between 0.5 and 40 hours.
Other advantages and characteristics of the invention will become apparent from the examples below presented as an illustration of the method for the preparation of compounds of formula (I) from compounds of formula (II). The compounds of formula (II) constituting the substrates of the reaction can be prepared by any method of the prior art known from the literature.
Example 1: Preparation of the compound: {[(ethyl)-5-pyridyl-2~)ethoxy-4-]benzyl}-5-thiazolidine-2,4-dione-2,4 by means of a hydrogenation reaction.


The following were introduced into a Buchi device: 20 g of {[(ethyl-5-pyridyl-2-)ethoxy-4-)benzylylidene}-5-thiazolidine-2,4,-dione-2/4/ 10 g of Pd/C at 10% and 200 ml of formic acid at 95-97%.
The nitrogen and then the hydrogen were purged.
The reaction medium was heated at 75-80°C for 6 hours under a hydrogen pressure of 8 bar.
The reaction medium was cooled to ambient temperature (20-25°C). The catalyst was filtered and rinsed with 60 ml of formic acid.
The filtrate was concentrated to 40 ml under vacuum at 40°C. We then added 80 ml of water and 60 ml of formic acid to the concentrate. The pH value of the solution was 0.93.
We then added to this medium 101 g of a solution of NaOH at 30% up to a pH value equal to 3.25. The medium was then agitated for 10 minutes at 20°C and the product was filtered.
The crude product was washed in ethanol as follows.
The product was put into solution in 172 ml of ethanol; this was heated at reflux for 30 minutes and then cooled to 10°C. The resultant product was filtered.
After drying under vacuum at 50oC we obtained 19,1 g of white powder. Yield: 97.4%.
Example 2: Preparation of the compound; {[(ethyl-5-pyridyl-2-)ethoxy-4-]benzyl}-5-thiazolidine-2,4-dione-2,4 by means of a hydrogen-transfer reaction by homogeneous catalysis.


The following were introduced under nitrogen into a 50-ml flask: 1 g of {[(ethyl-5-pyridyl-2-)ethoxy-4-]benzylylidene}-5-thiazolidine-2,4-dione-2,4, 61 mg of chloro-l,5-COD iridium and 10 ml of formic acid at 97%.
The orangish solution was heated at reflux for 6 hours.
From the reaction medium, the HPLC profile indicated a transformation rate of 97%.
The medium was concentrated to 2 ml.
We then added 9 ml of water and filtered the product.
Example 3: Preparation of the compound: {[(ethyl-5"pyridyi-2-)ethoxy-4-]benzyl}-5-thiazotidine-2,4-dione-2/4 by means of a hydrogen-transfer reaction by heterogeneous catalysis.
The following were introduced under nitrogen into a 50-ml flask: 2.5 g of
{[(ethyl-5-pyridyl-2-)ethoxy-4-]benzylylidene}-5-thiazolidine-2,4-dione-2,4/3g of Rh/C at 5% with a moisture level of 57.8% (2.5% of metal rhodium/substrate) and 10 ml of formic acid at 99%.
The solution was heated at reflux for 5 hours.
The HPLC profile of the reaction medium indicated a transformation rate of
78%.
The medium was concentrated to 5 ml.
We then added 9 ml of water and filtered the product.

Example 4: Preparation of the compound; {[(ethyl-5-pyridy!-2-)ethoxy-4-]benzyl}-5-thiazolidine-2,4-dione-2,4 by means of a hydrogen-transfer reaction by heterogeneous catalysis.
The following were introduced under nitrogen into a 50-ml flask: 2.5 g of {[(ethyl-5"pyridyl-2-)ethoxy-4-]benzylylidene}-5-thiazolidine-2,4-dione-2A 1.37 g of Pd/C at 10% with a moisture level of 53.2% (2.5% of metal palladium/substrate) and 10 ml of formic acid at 99%.
The solution was heated at reflux (105°C) for 21 hours.
The HPLC of the reaction medium indicated a transformation rate of 66%.
The medium was concentrated to 5 ml.
We then added 19 ml of water and filtered the product.
Example 5: Preparation of the compound: {[(ethyl-5-pyridy!-2-)ethoxy^4-]benzyl}-5-thiazolidine-2,4-dione-2,4 by means of a hydrogen-transfer reaction by heterogeneous catalysis.
The following were introduced under nitrogen into a 0.5-1 flask: 20 g of
{[(ethyl-5-pyridyl-2-)ethoxy-4-Jbenzylylidene}-5-thiazolidine-2/4-dione-2/4/ 0.6 g of Pt(0)2 (2.5% of platinum/substrate) and 200 ml of formic add at 99%.
The solution was heated at the temperature of 84°C for 19 hours 30 minutes.
The HPLC profile of the reaction medium indicated a transformation rate of 98.3% of product formed.
The reaction medium was filtered and the filtrate was concentrated to 40 ml.


We then added 140 ml of water and the pH was adjusted to 3.2 by addition of soda at 30%.
The product was filtered.
The product was purified by rethickening in ethanol.
After drying under vacuum at 50°C/ we isolated 19,7 g of product.
Yield: 96,5%.
Example 6: Preparation of the compound: {[(ethyl-5-pyridyl-2-)ethoxy-4]benzyl}-5-thiazolidine-2,4-dione-2,4 by means of a hydrogen-transfer reaction by heterogeneous catalysis.
The following were introduced under nitrogen into a 100-ml three-necked flask; 5 g of {[(ethyl-5-pyridyl"2'-)ethoxy-4-]benzylyUdene}-5-thiazolidine-2/4-dione-2,4/ 0.148 g of Pt(0)2 (2.5% of platinum/substrate) and 35 ml of formic acid at 99%.
The solution was heated at the temperature of 80-85"C for 19 hours 30 minutes.
The HPLC profile of the reaction medium indicated a transformation rate of 98.4% of product formed.
The product was isolated as above with a yield of 96.5%.
Example 7: Preparation of the compound: {[(ethyl-5-pyridy!-2-)ethoxy-4-]benzy!}-5-thiazolidine-2,4-dione-2,4 by means of a hydrogen-transfer reaction by heterogeneous catalysis.


The following were introduced under nitrogen into a 100-ml three-necked flask: 5 g of U(ethyl-5-pyridyl-2-)ethoxy-4-]benzyIyUdene)-5-thiazolidine-2/4-dione-2/4/ 0.203 g of Ft(0)2 (3.4% of platinum/substrate) and 50 ml of formic acid at 99%.
The solution was heated at the temperature of 80-85°C for 16 hours.
The HPLC profile of the reaction mixture indicated a transformation rate of 98% of product formed.
The product was isolated as above with a yield of 94.5%.


WE CLAIM:
1. Method for preparing a thiazolidinedione, oxazolidinedione or
hydantoin compound of formula (I) from a compound of formula (II):

wherein:
Q represents an oxygen atom or a sulfur atom; Q1 represents an oxygen atom or a sulfur atom; R1 and R2, which can be identical or different, represent a hydrogen atom, a C1-10 alkyl chain, a cycloalkyl, an alkylaryl, an arylalkyl; the alkyl, cycloalkyl, alkylaryl or arylalkyl groups being optionally substituted by an alkyl, an alkoxy or aryloxy, a halogen, a hydroxy, a sulfino, a sulfonyl, an amino such as NH2, NHR3, N(R3)2, wherein R3 represents an alkyl, an alkoxy or an alkylcarbonyl,
characterized in that reacting a compound of formula (II) with formic acid, either as a hydrogen donor in a hydrogen-transfer reaction or as a solvent in a hydrogenation reaction, in the presence of a homogeneous or heterogeneous catalyst containing a transition metal and optionally in the presence of a secondary solvent to obtain a corresponding compound of formula (I), wherein operating conditions are:
(a) a temperature comprised between 0 and +150°C;
(b) a metal quantity/substrate quantity ratio comprised between {fraction (1/10,000)} and {fraction (5/100)}; and
(c) a reaction duration comprised between about 0.5 and about 40 hours.

2. The method as claimed in claim 1, wherein the formic acid is formic acid at about 100% or a solution containing formic acid with a formic acid level that can range from about 0.1 to about 99%, the solution being an aqueous solution or an organic solution or a mixture thereof.
3. The method as claimed in claim 1, wherein the homogeneous catalyst is selected from the group consisting of Ir(COD)Cl, Ru(p-cymene)Cl2, Ru(COD)Cl2, Ru(PPh3)3Cl2, RuCl3, Ru(PPH3)4Cl, RuCl3.3H20, Ru(PPh3)4H2/ Rh(PPh3)3Cl, RhCl3.3H20, Ru(PPh3)4H, Rh(COD) trifluoromethane sulfonate, (C6H12)3P(COD)pyridine-Ir(F)6, Ir(PPh3)3H2Cl, Ir(PPh3)3HCl2, Ir(PPh3)2H3, Ir(PPh3)3H5, Ir(PPh3)2(CO)X, where in X is CI, Br or I, Ir(PPh3)2(CO)H, Os(PPh3)3HCl, Pd(OAc)2, PdCl2/ Pd(PPh3)2Cl2, Pd(NH4)2Cl4, Pt(PPh3)2Cl2, PtCl4K2, Fe(PPh3)2Cl2/ Ni(PBu-n3)2, and ReCl5.

4. The method as claimed in claim 1, wherein the heterogeneous catalyst is selected from the group consisting of Pt, Pt/C, Pt(0)2, Pd, Pd/C, Pd/CaC03/ Pd/Si02, Pd/BaC03, Pd(OH)2/C, Ir, Ir/C, Ru, Ru/C, Rh, Raney Ni, and Fe.
5. The method as claimed in claim 1, wherein the secondary solvent is selected from the group consisting of water, a hydrocarbon selected from the group consisting of hexane, heptane, octane, nonane, decane, benzene, toluene and xylene, an ether selected from the group consisting of tetrahydrofuran, dioxane, dimethoxyethane, diisopropyl ether and diethylene glycol dimethyl ether, an ester selected from the group consisting of ethyl acetate, butyl acetate and ethyl propionate, a ketone selected from the group consisting of acetone, diisopropyl ketone, methyl isobutyl ketone, methylethyl ketone and acetylacetone, an alcohol selected from the group consisting of methanol, ethanol, n-propanol, iso-propanol, butanol, isobutanol and methoxy-ethanol, an alkyl halide selected from the group consisting of dichloromethane, chloroform and 1,2-dichloroethane, an acid selected from the group consisting of acetic acid, propionic acid and butyric acid, an amide and a sulfoxide.
Dated this on 27th day of July 2003

HIRAL CHANDRAKANT JOSHI AGENT FOR PPG-SIPSY, FRANCE

Documents:

728-mumnp-2003-cancelled pages(24-7-2003).pdf

728-mumnp-2003-claims(granted)-(24-7-2003).doc

728-mumnp-2003-claims(granted)-(24-7-2003).pdf

728-mumnp-2003-correspondence(3-8-2004).pdf

728-mumnp-2003-correspondence(ipo)-(29-3-2004).pdf

728-mumnp-2003-form 1(24-7-2003).pdf

728-mumnp-2003-form 19(17-2-2004).pdf

728-mumnp-2003-form 2(granted)-(24-7-2003).doc

728-mumnp-2003-form 2(granted)-(24-7-2003).pdf

728-mumnp-2003-form 3(23-7-2003).pdf

728-mumnp-2003-form 5(23-7-2003).pdf

728-mumnp-2003-form-pct-isa-210(24-7-2003).pdf

728-mumnp-2003-other documents(14-06-2003).pdf

728-mumnp-2003-power of attorney(26-9-2003).pdf


Patent Number 209976
Indian Patent Application Number 728/MUMNP/2003
PG Journal Number 43/2007
Publication Date 26-Oct-2007
Grant Date 12-Sep-2007
Date of Filing 24-Jul-2003
Name of Patentee PPG-SIPSY
Applicant Address Z.I. LA CROIX-CADEAU, F-49242 AVRILLE CEDEX,
Inventors:
# Inventor's Name Inventor's Address
1 BULLIARD MICHEL 87, RUE DU QUINCONCE, F-49100, ANGERS,
2 DERRIEN, YVON 12,RUE DES MOISSONS, F-49770 LA MEIGNANNE,
3 PINTUS, TONY 10, RUE DU PRIEURE, F-49080, BOUCHEMAINE,
PCT International Classification Number C07D277/34
PCT International Application Number PCT/FR02/00571
PCT International Filing date 2002-02-14
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 01/05206 2001-04-17 France
2 01/02010 2001-02-14 France