Title of Invention

CONTAINER TRACKING SYSTEM

Abstract A container tracking system (100) comprises a dispatcher workstation (108) with a graphical user interface (112) and a database (106). These are used to track the whereabouts of shipping containers in a storage and transfer yard. A mobile unit (102) in the yard is attached to container handling equipment and monitors the container lock-on mechanism. When a container is locked on for a move, the mobile unit starts reporting positions and velocities to the dispatcher workstation over a radio channel. These positions and solutions are computed from a combination of GPS satellite navigation receiver solutions, inertial navigation, and local beacon markers. Reports stop when the container handling equipment unlocks from the container. The database then updates the new position for that container, and the graphical user interface can be used to 'see' the container on a yard map.
Full Text

BACKGROUND OF THE INVENTION
Field of the Invention
The present invention relates to material-handling systems, and more particularly to computerized systems for tracking the real-time locations of shipping containers.
Description of Related Art
On the West Coast of the United States, shipping container handling volumes have been increasing dramatically. In 1999, container twenty-foot equivalent units (TEU's) increased almost 10% to 8M TEU's. This was half of the total TEU's for the entire country. Ten years ago, the West Coast was handling less than 4M TEU's.
Such increases in handling volume are adversely affecting real-time order visibility. But every partner to the transactions needs to have access to location information throughout a container's journey. In port, containers are routinely not visible to the consignees, and this produces some consternation.
Yard operations are the most time consuming in overall average transactions. Out-gate operations take less time, guard operations require less than that, and in-gate operations are the least time consuming. During yard operations, a yard clerk must accompany the truck driver to validate the correct container for pick-up. But if the container is not where it is supposed to be, the typical yard clerk wanders around the yard looking for it. Then the

equipment operator and truck driver have to be radioed to come to the new location. Even so, the right container might be buried by others that need to be moved out of the way, all while the yard clerk and truck driver are waiting. It would be better if the equipment operator could have the container free to load and in a verified location by the time the truck arrives.
Prior art systems and methods have experimented with attaching marks, markers, bugs, radios, GPS equipment, and other devices to the shipping containers. These devices then ride along through the entire trip. But putting such things on each container is expensive, and the devices are often blocked for some reason and not accessible. Device incorrpatibilities also are common because no world standard exists. It's hard enough to stick with a single standard within one storage and transfer yard.
The use of simple identification labels on material and the tracking of them is described by Harold Terrence Salive, et al,, in United States Patent 5,725,253, issued March 10, 1998. The labels are visual graphics that are captured by a digital imaging camera.
Joseph Radican describes a container monitoring system and method in United States Patent 5,712,789, issued January 27, 1998* The system can generate status reports for customers, suppliers, and shippers about their respective containers. A container management information system is updated with container identification and location data.
A GPS navigation receiver is coupled with a cellphone, and both are attached to a shipping container in United States Patent 5,835,377, issued November 10, 1998, to Ronald Bush. Such tracking module is described as being built into each shipping container.
Each such patent mentioned herein is incorporated by reference.

SUMMARY OF THE INVENTION
Briefly, a container tracking system embodiment of the present invention corrprises a dispatcher workstation with a graphical user interface and a database. These are used to track the whereabouts of shipping containers in a storage and transfer yard. A mobile unit in the yard is attached to container handling equipment and monitors the container lock-on mechanism. When a container is locked on for a move, the mobile unit starts reporting positions and velocities to the dispatcher workstation over a radio channel. These positions and solutions are corrputed from a combination of GPS satellite navigation receiver solutions, inertial navigation, and local beacon markers. Reports stop when the container handling equipment unlocks from the container. The database then updates the new position for that container, and the graphical user interface can be used to "see" the container on a yard map.
An advantage of the present invention is that a system is provided that keeps track of the locations of shipping containers in a storage and transfer yard.
Another advantage of the present invention is that a system is provided that reduces or eliminates the number of "lost" or misplaced shipping containers in a yard.
A further advantage of the present invention is that a system is provided that locates shipping containers to precise locations in a yard.
The above and still further objects, features, and advantages of the present invention will become apparent upon consideration of the following detailed description of

specific embodiments thereof, especially when taken in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a functional block diagram of a container tracking system embodiment of the present invention; and
Fig, 2 is a perspective diagram of a transtainer in a container storage and transfer yard that uses the system of Fig. 1.
DETAILED DESCRIPTION OF THE INVENTION
Fig. 1 illustrates a container tracking system embodiment of the present invention, referred to herein by the reference numeral 100. The system 100 includes a mobile •unit 102 that fastens to a bridle piece of container handling equipment, e.g., a rubber-tired transtainer or container crane, a side loader, a top loader, or a yard tractor. Such is in radio communication with a dispatcher's base station 104. A radio link between them communicates real-time position change information whenever a container is locked onto, moved, and released. The particular containers are identified by their starting positions in three-dimensional space. An index of container identities to their three-dimensional positions is kept in a database 106. A computer workstation 108 is connected to both the database 106 and a display screen 110. A graphical user interface (GUI) 112 is provided on-screen and can represent the three-dimensional positions of the containers in a yard being tracked with a map. Such map is preferably clickable, i.e., includes

hypertext links that can be selected for navigating between
0-
elements and screen pages. Initial and corrective information about various containers can be entered by an authorized user at the workstation 108. A wireless transceiver 114 provides the actual communications link to a similar transceiver 116 in the mobile unit. A dispatcher at the base station 104 can instruct an operator at the mobile unit 102 as to which containers are to be moved where, e.g. by voice or by e-mail messaging, A computer program may later test to see that those instructions were followed correctly.
The mobile unit determines its position, e.g., from a mixture of at least one of global positioning system (GPS) satellite navigation receiver solutions, inertial navigation solutions (INS), and pseudo-noise (PN) beacon readings. A combination of all three is preferred for accuracy and availability. The INS provides continuous position solutions, but these are subject to long-term drift that is readily corrected by the GPS and PN. A navigation computer (NAV) 118 receives position data from a GPS receiver 120, a pseudo-noise receiver 122, and an inertial navigation computer 124. The GPS solutions can be improved by constraining the solutions with the storage yard's elevation, discrete container stacking heights, and the container yard's perimeters. These can be provided by a complete survey and mapping of the yard that is represented as an electronic terrain model and map in the database 106,
Suitable GPS receiver equipment is available from Trimble Navigation (Sunnyvale, CA). The INS can be implemented with an inertial measurement unit (ISIS-IMU) made by Inertial Science, Inc. (Newbury Park, C-.) .
A three-dimension accelerometer 12 6, for example, is used to provide direction of movement and movement acceleration magnitude information. A lock detector 128

senses when a container transporter has locked onto a container and is mechanically able to lift and relocate the container. Such locking triggers the NAV 118 to start generating movement and trajectory information, and the generated data is preferably sent in real-time back to the dispatcher base station 104. New information about container movements are used by the workstation 108 to update the database 106. The GUI 112 represents the current information in an easy to understand graphic map representation.
A network of PN beacons 13 0-133 are disposed at known positions throughout the container storage yard. When a mobile unit 102 passes over one, the survey information can be plugged in as correction data. In one embodiment, a form of differential correction information can be derived from the PN beacons to improve the solution accuracy of the GPS 120, Trigger-wires, light beams, lasers and other devices at strategic locations throughout the yard can be used by the PN beacons 130-133 to determine the exact boundary being crossed by the mobile unit 102. These can be homogeneous, except for their locations, and the GPS and INS solutions can be used to identify the particular PN beacon being encountered. The PN beacon mark can nail down a location fix to better than a centimeter, and this can be used to fine-tune and correct the GPS and INS solutions that are obtained between PN beacon locations.
A pseudo-lite 134 is alternatively positioned in the container storage yard at a known, well-surveyed position. It mimics an orbiting GPS satellite, and transmits an appropriate almanac and ephemeris associated with its fixed position. The GPS 120 accepts this as yet another datum in a constellation, and the pseudo-lite 134 may contribute greatly due to the advantageous solution geometries that can be obtained.

The practical implementations of the PN beacons 13 0-133 and PN receiver 122 may depend on different fundamental technologies, e.g., radio waves, laser beam interruption, recognition of patterns placed on the ground surface, etc. The object is to send a signal from a known location to the mobile unit 102 when it passes nearby, so that such signal can be interpreted as a physical-position calibration mark.
Fig. 2 shows a container handling system embodiment of the present invention, and is referred to herein by the general reference numeral 200. A transtainer 202 is able to move left and right along direction 204, e.g., along a railway or roadbed. The transtainer 202 has a gantry 206 that can reach out in a direction 208 with a bridle 210 to move any of a group of containers 212.
As an example of a typical logistic problem facing a storage and transfer yard, a number of containers "A" need to be shipped out today, a group "B" tomorrow, and a group "C" the day after. The bridle 210 is equipped with the mobile unit 102 (Fig. 1) and this makes it possible for a dispatcher to orchestrate the necessary moves that will make container groups "A", "B", and "C" available with the least amount of delay, confusion, effort, and labor. In alternative embodiments of the present invention, the workstation 108 includes a computer program for scheduling, logistical strategies, and position changes for the containers 212.
A row of magnets 214 are laid down in the roadbed at regular intervals and all in parallel. The directional placement of their magnetic poles spells out a code that can be magnetically read by PN receiver 122. Alternatively, a series of visual symbols can be substituted for the row of magnets 214, and the PN receiver reads them by a video imaging camera. The row of magnets 214 is laid cut in .a pattern that mimics a pseudo-random number (PPN) . Such resembles the PPN modulation impressed on microwave carriers

by GPS satellites and that are read by GPS receivers. The code phase of the PRN word corresponds to the physical position of the reader.
The PN receiver 122 reads a magnetic signal it receives from the row of magnets 214 as the transtainer 202 moves in direction 204. A code phase is determined and this is used by NAV 118 to compute the position of bridle 210 and any container it has locked to. Such magnetic codes can be laid out in any convenient direction, not just left and right as illustrated in Fig. 2.
A method embodiment of the present invention for managing inventories in a storage area comprises electronically mapping a three-dimensional storage area in which pieces of inventory come-in, go-out, and shuffle between internal locations. Then cataloging and indexing each piece of an inventory according to its identity and location within the storage area, A navigation corrputer is attached to a piece of machinery that is able to move the pieces of inventory around in the storage area. The method detects when the piece of machinery is attached to move any of the pieces of inventory. And it reports any position solutions derived from the navigation corrputer that can be attributed to movements of a particular piece of inventory. A database is updated with a new imputed position of each piece of inventory that has been moved to a new location by the piece of machinery.
Alternative embodiments further display a map representation of the storage area and each of the pieces of inventory on a computer screen through a graphical user interface (GUI).
The steps of attaching and detecting include attaching the navigation computer to a bridle on a transtainer, and detecting when the bridle locks onto a shipping container one of the pieces of inventory. The step of attaching can also

include attaching a navigation computer which includes at least one of a navigation satellite receiver, inertial navigation sensor, and a pseudo-noise receiver.
Other embodiments of the present invention magnetically encode a digital pseudo-random number in a pattern along linear runs within the storage yard. The pattern is read as the piece of machinery passes by it. A code phase of the pattern is interpreted as correlating to a particular linear position within the storage area. And it used in the step of updating to associate a shipping container with its new position.
Although particular embodiments of the present invention have been described and illustrated, such is not intended to limit the invention. Modifications and changes will no doubt become apparent to those skilled in the art, and it is intended that the invention only be limited by the scope of the appended claims.



WE CLAIM :
1. A container tracking system comprising :
a dispatcher workstation for use at a shipping container storage yard, the dispatcher workstation comprising :
a database for storage of location information related to a plurality of shipping containers located throughout the shipping container storage yard;
a display for providing a graphical user interface representing a number of map locations of the plurality of shipping containers that are derived from the location information in the database; and
a mobile unit for attachment to a piece of container-handling equipment that can roam around said shipping container storage yard and transport individual ones of the shipping containers to different locations, the mobile unit comprising:
a computer configured to provide real time three-dimensional position solutions of a location of the mobile unit; and
a communication link between the mobile unit and the dispatcher workstation configured to transmit the real time position solutions in real time to the dispatcher workstation for storage in the database;
2. The system as claimed in claim 1, comprising :
a satellite-navigation receiver connected to provide the position solutions to the computer; and
means for detecting the position of said mobile unit relative to at least one ground based locating device provided in the shipping container storage yard, said means for detecting further providing the position solutions to the computer.

3. The system as claimed in claim 2, comprising an inertial navigation system connected to provide the position solutions to the computer.
4. The system as claimed in claim 1, wherein the mobile unit comprises a lock detector configured to sense whenthe piece of container-handling equipment is mechanically able to lift and relocate a given one of the containers and then provide a lock signal to enable the transmission of the position solutions for the given container.
5. The system as claimed in claim 1, wherein the mobile unit comprises a three-dimensional accelerometer to provide direction of movement and acceleration magnitude information as part of the position solutions.
6. The system as claimed in claim 1, wherein the mobile unit comprises inertial navigation system components configured to provide a three-dimensional acceleration measurement as part of the position solutions.
7. The system as claimed in claim 3, wherein the at least one ground based locating device comprises at least one of trigger-wires, radio wave transmitters, location markers detectable by a digital camera and magnetic devices located throughout said yard to determine boundaries being crossed by said mobile unit.
8. A method of managing inventories in a storage area, the method comprising the steps of:
electronically mapping a three-dimensional storage area in which pieces of inventory come-in, go-out and shuffle between internal locations;
cataloging and indexing in real time each piece of an inventory according to its identity and location within said storage area;

attaching computer to a piece of machinery able to move said piece of inventory around said storage area
detecting in real time when said piece of machinery is attached to move any of said pieces of inventory;
reporting real time position solutions derived from said computer that can be attributed to movements of a particular piece of inventory; and
updating a database with a new computer position of each piece of inventory that has been moved to a new location by said piece of machinery.
9. The method as claimed in claim 8, comprising the step of displaying a map
representation of said storage area and each of said pieces of inventory on a
computer screen through a graphical user interface (GUI).
10. The method as claimed in claim 8, wherein the step of attaching includes
attaching said computer which includes at least one of a navigation satellite
receiver, inertial navigation sensor, and a pseudo-noise receiver.
11. The method as claimed in claim 8, comprising the step of detecting in real
time the position of said piece of machinery.
12. The method as claimed in claim 8, wherein the step of reporting real time
position solutions includes reporting container and vehicle position solutions.


Documents:

1001-chenp-2003-abstract.pdf

1001-chenp-2003-assignement.pdf

1001-chenp-2003-claims filed.pdf

1001-chenp-2003-claims granted.pdf

1001-chenp-2003-correspondnece-others.pdf

1001-chenp-2003-correspondnece-po.pdf

1001-chenp-2003-description(complete)filed.pdf

1001-chenp-2003-description(complete)granted.pdf

1001-chenp-2003-drawings.pdf

1001-chenp-2003-form 1.pdf

1001-chenp-2003-form 26.pdf

1001-chenp-2003-form 3.pdf

1001-chenp-2003-form 5.pdf

1001-chenp-2003-other documents.pdf

1001-chenp-2003-pct.pdf


Patent Number 212201
Indian Patent Application Number 1001/CHENP/2003
PG Journal Number 02/2008
Publication Date 11-Jan-2008
Grant Date 26-Nov-2007
Date of Filing 24-Jun-2003
Name of Patentee CONTAINERTRAC INC
Applicant Address 1321 67TH STREET,EMERYVILLE,CA 94608
Inventors:
# Inventor's Name Inventor's Address
1 CARSON, Robert, M 2447 17th Avenue San Francisco, CA 94116
PCT International Classification Number G06Q 10/00
PCT International Application Number PCT/US2001/046825
PCT International Filing date 2001-11-08
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 09/723,047 2000-11-27 U.S.A.