Title of Invention | BRUSH ASSEMBLY |
---|---|
Abstract | A brush assembly (10) for a miniature electric motor has a beryllium copper strip brush arm (14) and a graphite material brush head (12) moulded to an end thereof. The brush arm (14) has a number of apertures. The brush head (12) has a number of projections which pass through the apertures and form one or more caps (24) on the reverse side of the brush arm to secure the brush head (12) to the brush arm (14). A method of forming the brush assembly is also provided. |
Full Text | This invention relates to a brush assembly for a miniature electric motor, and to a method of forming the same. The use of a graphite or graphite-based brush head mounted on a brush arm for use in an electric motor is known. Graphite segment commutators generally use this type of brush; The graphite on graphite interface significantly reduces wear and thus dust. It also generates less electrical noise. The reduction in wear means that only a very short brush head is required allowing material savings and better space utilization within the motor. However, attachment of a shorter brush to the brush arm proves to be problematic using standard techniques due to the lack of a sizeable brush body to hold. Direct soldering is always difficult and requires a brush body with a high concentration of copper. Due to health reasons, soldering is generally avoided where possible. The common technique of using flaps on the brush arm which are resiliency deformed to grip a portion of the brush requires a. significant root portion for the attachment. Hence, there is a need for a secure and reliable engagement of a brush head to a brush arm which overcomes the above mentioned problems. Summary of the Invention According to a first aspect of the1 present invention, there is provided a brush assembly for a miniature electric motor comprising: a brush arm comprising an elongate strip of resilient conductive material having a distal end and a proximal end, the distal end having a cut out portion; and a brush head of graphite material having a projection residing in the cut out portion and a cap on the projection, the cap securing the brush head to the brush arm. 1A Preferably, the cut outs are apertures and the brush head has projections passing through the apertures to form one or more caps on the opposite side of the brush arm. Preferably, the graphite material includes a low temperature thermosetting binder. Preferably, the binder is cured by a hot pressing process which is used to form the caps. According to a second aspect, the present invention provides a method of forming a brush assembly for a miniature electric motor, the method comprising the steps of: placing a preformed brush arm having at least one cut out portion in a mould; introducing brush material into the mould; pressing the brush material to form a brush head attached to the brush arm; and pressing the brush material into the at least one cut out portion forming an anchorage integral with the brush head thereby holding the brush head in intimate contact with the brush arm. Preferably the brush material is substantially graphite mixed with a thermoset resin binder (such as phenolic) which is cured by using a hot pressing process to attach the brush head to the brush arm. Preferably, the green brush material is introduced into the press die as a billet or as a preformed green brush head. Brief Description of the Drawings The invention will now be more particularly..described, by way of example only, with reference to the accompanying drawings; wherein : Figure 1 is a perspective rear view of a first embodiment of a brush head of a brush assembly for a miniature electric motor, in accordance with the present invention; Figure 2 is a front view of one embodiment of a brush arm of the brush assembly, in accordance with the present invention; 2 Figure 3 is a front view of the brush assembly showing the brush head of Figure 1 being held by the brush arm of Figure 2; Figure 4 is a side view of the brush assembly shown in Figure 3; and Figure 5 is a front view of a second embodiment of the brush assembly. Detailed Description of the Preferred Embodiments Referring now to Figures 1 to 4 of the drawings, a first embodiment of a brush assembly, generally referenced by 10 in Figures 3 and 4, for an electric motor is shown therein. The brush 10 assembly comprises a brush head 12 and a brush arm 14, typically a leaf-spring type brush arm formed from beryllium copper strip. The brush arm may be plated with tin, nickel, silver or alloys thereof, at least in the region of the brush arm in contact with the brush head. The brush head 12 is typically formed from a graphite based material having a binder, and is shaped to include a plurality of projections 16; In this embodiment, the brush head 12 is parallelepiped or substantially parallelepiped and the projections 16 extend from a back surface 12a thereof. However, the brush head 12 may be of any suitable shape. The binder is preferably a thermoset material, such as phenolic resin or an epoxy. The brush arm 14 includes a plurality of cut out portions in the form of apertures 18, each of which corresponds to a respective one of the projections 16. The apertures 18 are typically formed at or adjacent to the in use free-end of the brush arm 14, and are dimensioned to receive the projections 16. The brush arm 14 may also include further apertures or slits 20 (only one shown in Figures 2 and 3) which are provided to set the flexibility or resilience of the brush arm, and openings 22 by which the brush arm 14 can be fixed to, for example, a power terminal of an electric motor housing (not shown). However, as these features are well known in the field, further detail will be omitted. 3 The brush head 12, when mounted on the brush arm 14, also includes an anchorage in the form of one or more caps 24 (one being shown in Figure 4). Once the brush head 12 has been positioned on the brush arm 14, the free-end of each projection 16 is formed with a respective cap 24, or a single cap 24, which is dimensioned to cover all of the projections 16. When assembling the brush 10, the graphite based material to be used for the brush head 12 is initially 'green'. This is the state of the material prior to heat treating and, since the binder has not been set or cured, the material can be relatively easily softened and shaped. This 'green' state enables the brush head 12 to be either preformed in a separate pressing process prior to being engaged with the brush arm 14, i.e. the shape of the brush head 12 and the projections 16 can be pre-moulded; or the brush head 12, along with its projections 16 and caps 24, can be formed during the hot pressing process. The apertures 18 are formed in the brush arm 14, typically by pressing out the material of the brush arm 14 at the time the brush arm is stamped from the strip of beryllium copper. The brush head 12 is then overmoulded oh to the brush arm 14. The overmoulding process takes the form of a hot pressing process, which entails hot pressing the green brush material, at a relatively low temperature, for example 200°C, to squeeze the brush material and the brush arm. As the temperature of the green brush material rises, the binder softens or liquefies allowing the brush material to plastically deform. Since only "low temperature11 heating occurs, the brush arm is not annealed which would happen if the brush material was sintered at high temperatures, for example, 400° to 700°C. Under pressure by the hot pressing process, the plastically deformable brush material tends to fill, block and/or occlude ;gaps between the brush head 12 and the brush arm 14 thus making intimate contact with the brush arm. On cooling the binder cures hardening the material and the brush head is firmly anchored to the brush arm. A stable and reliable fixing of the brush head 12 to the brush arm 14 is thus produced. 4 The brash arm 14 may be plated, for example with tin, nickel, silver or another suitable material, to prevent or inhibit oxidation during the overmoulding process. The green brush material may be introduced into the die by injection, as a blank or as a preformed brash body. The suitability of each process depends in part on the flowability of the material used. More binder increases the flowability but also increases the resistance of the brash head. For injected material or plain blanks, the material introduced into the die against a first side 14a of the brush arm is softened and pressed to flow through the apertures 18 in the brash arm and into a cavity on the reverse side of the brash arm where it forms one or more caps 24 on the end of the projection passing through the apertures. When using the preformed brash bodies, the projections 16 are placed in the apertures 18 when the green brash material and brash arm are placed in the die and the hot pressing process deforms the ends of the preformed projections 16, to form the caps 24. The preformed brush bodies are preferred when using relatively stiff green brash material due to the smaller amount of movement of the brash material required during the moulding process. In both cases, the pressing process forms the caps which hold the brash heads to the brash arm and gives a final shape to the body of the brash head, including, if desired, a rilled contact surface having many fine ridges. In a second embodiment of the brush 10, shown in Figure 5, the brash arm 14 has three cut out portions in the form of apertures-18 into which the projections 16 can be inserted or formed. A single cap 24 covers.-the projections 16 and overlaps onto the rear face or surface 14b of .the brash arm 14 to bind the brash head 12 to the brash arm 14. In this case, the connection resistance between the brash arm 14 and the brash head 12 will be lower due to the larger contact surface between the two parts. 5 In a modification (not shown) to the brush assembly 10, the brush arm may have a single aperture. Typically, the aperture will have a non-circular shape to prevent angular displacement of the brush head relative to the brush arm when in use. Alternatively, the brush arm could have cut out portions along its edges for keying the brush head to the arm. However, apertures are preferred for conservation of graphite material. Although the resistivity of the brush of the present invention will be high due to the binder being cured and not carbonised or vaporised, this may be partially compensated for by the shortened length of the brush head 12. A brush for an electric motor that has a brush head which is securely and reliably attached to a brush arm and which is particularly suited to brushes of a short length can thus be provided. The embodiments described above are given by way of example only, and various modifications will be apparent to persons skilled in the art without departing from the scope of the invention as defined by the appended claims. 6 WE CLAIM: 1. A brush assembly for a miniature electric motor comprising: a brush arm (14) comprising an elongate strip of resilient conductive material having a distal end and a proximal end, the distal end having a cut out portion (18); and a brush head (12) of graphite material having a projection (16) residing in the cut out portion (18) characterised in that the brush head (12) has an integral cap (24) on the projection which secures the brush head (12) to the brush arm (14). 2. An assembly according to Claim 1, wherein the brush arm (14) has a number of cut out portions in the form of apertures (18) and the brush head (12) has a corresponding number of projections (16), each projection having a respective cap (24). 3. An assembly according to Claim 1, wherein the brush arm (14) has a number of cut out portions in the form of apertures (18) and the brush head (12) has a corresponding number of projections (16) and a number of caps (24) with the or each cap (24) being formed on one or more of the projections (16). 4. An assembly according to Claim 3, wherein the brush head (12) has a single cap (24) formed on the distal end of all of the projections (16). 5. An assembly according to any one of the preceding claims, wherein the or each cap (24) is integrally formed with the or each projection (16). 6. An assembly according to any one of the preceding claims, wherein the graphite material of the brush head (12) includes a low temperature thermosetting binder. 7. An assembly according to Claim 6, wherein the brush head (12) is attached to the brush arm (14) using a hot pressing process. 7 8. An assembly according to Claim 6, wherein the binder is cured by a hot pressing process. 9. An assembly according to Claim 7 or Claim 8, wherein the binder is phenolic resin. 10. A brush assembly according to any one of the preceding claims, wherein the brush arm (14) is of beryllium copper and is plated with a material selected from the group consisting of tin, nickel, silver and alloys thereof, at least in the region in contact with the brush head (12). 11. A method of forming a brush assembly for a miniature electric motor, the method comprising the steps of: placing a preformed brush arm (14) having at least one cut out portion (18) in a mould; introducing brush material into the mould; pressing the brush material to form a brush head (12) attached to the brush arm (14); and pressing the brush material into the at least one cut out portion (18) forming an anchorage (24) integral with the brush head (12) thereby holding the brush head (12) in intimate contact with the brush arm (14). 12. A method according to Claim 11, wherein the cut portion includes at least one aperture (18) and the anchorage is formed by pressing the brush material through the or each aperture (18) from a first side of the brush arm (14) to form a cap (24) on the opposite side of the brush arm (14). 13. A method according to Claim 12,.wherein the brush arm (14) has a plurality of apertures (18) and the brush material is pressed through the apertures (18) to form a plurality of projections (16) extending through the apertures (18) and to form a single cap (24) connected to the brush head (12) by the plurality of projections (16). 14. A method according to Claim 12, wherein the brush arm (14) has a plurality of apertures (18) and the brush material is pressed through the apertures (18) to form 8 a plurality of projections (16) and to form a plurality of caps (24) connected to the remainder of the brush head (12) by the projections (16). 15 A method according to any one of Claims 11 to 14, wherein the brush material is substantially graphite material mixed with a thermoset resin binder and the pressing process is a hot pressing process which cures the binder. 16. A method according to Claim 15, wherein the hot pressing step heats the brush material to a temperature at which the binder begins to liquefy. 17. A method according to any one of Claims 11 to 16, wherein the brush material is introduced into the die as a billet of green brush material. 18. A method according to any one of Claims 11 to 16, wherein the brush material is first cold pressed to form a green brush head (12) having at least one projection (16); the projection (16) is mated with the cut out portion (18) in the brush arm (14) and the green brush head (12) and brush arm (14) are placed into the mould together. 19. A method according to any one of Claims 11 to 18, wherein the brush arm (14) is plated with nickel, tin, silver, or alloys thereof, at least in the region to be covered by the brush head (12), prior to being placed in the mould. 9 20. A brush assembly for miniature electric motor, substantially as herein described,particularly with reference to the accompanying drawings. 10 21. A method of forming a brush assembly for a miniature electric motor, substantially as herein described,particularly with reference to the accompanying drawings. 22. A miniature electric motor incorporating a brush assembly, substantially as herein described,particularly with reference to the accompanying drawings. A brush assembly (10) for a miniature electric motor has a beryllium copper strip brush arm (14) and a graphite material brush head (12) moulded to an end thereof. The brush arm (14) has a number of apertures. The brush head (12) has a number of projections which pass through the apertures and form one or more caps (24) on the reverse side of the brush arm to secure the brush head (12) to the brush arm (14). A method of forming the brush assembly is also provided. |
---|
00147-cal-2002-correspondence.pdf
00147-cal-2002-description(complete).pdf
00147-cal-2002-latters patent.pdf
00147-cal-2002-priority document.pdf
147-cal-2002-granted-abstract.pdf
147-cal-2002-granted-claims.pdf
147-cal-2002-granted-description (complete).pdf
147-cal-2002-granted-drawings.pdf
147-cal-2002-granted-form 2.pdf
147-cal-2002-granted-specification.pdf
147-cal-2002-priority document.pdf
Patent Number | 212286 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Indian Patent Application Number | 147/CAL/2002 | ||||||||
PG Journal Number | 48/2007 | ||||||||
Publication Date | 30-Nov-2007 | ||||||||
Grant Date | 28-Nov-2007 | ||||||||
Date of Filing | 18-Mar-2002 | ||||||||
Name of Patentee | JOHNSON ELECTRIC S.A. | ||||||||
Applicant Address | RUE FRITZ COURVOISIER 40, CH-2300 LA CHAUX DE FONDS SWITZERLAND. | ||||||||
Inventors:
|
|||||||||
PCT International Classification Number | FO/D 11/00 | ||||||||
PCT International Application Number | N/A | ||||||||
PCT International Filing date | |||||||||
PCT Conventions:
|