Title of Invention

"ANTIMICROBIAL AND ANTIVIRAL POLYMERIC MATERIALS."

Abstract The invention provides an antimicrobial and antiviral polymeric malcriid, having microscopic particles of ionjc cop per encapsulated therein and protruding from surfaces thereof,
Full Text The present invention relates to an antimicrobial and antiviral polymeric material and to a process for preparing the same. More particularly, the present invention relates to an antimicrobial polymeric material useful as a wrapping material for agricultural produce, as well as to an antiviral polymeric material useful for the formation of a condom sheath, surgical tubing and surgical gloves.
A problem faced by all food exporters is the 'attack on the agricultural produce after it has been harvested by microorganisms while in transport. This is especially true when the transportation is measured in days, weeks, or months, rather than hours. Microorganisms are known to cause severe damage to the produce, resulting in added costs which are passed on to the consumer. An example of this is the strawberry harvest in Israel. Every year about 50% of the harvest is lost while in transportation due to the attack of microorganisms, To date, there has been no effective system developed that can effectively reduce the waste rate.
There are many wrapping materials used in food transport from burlap bags to sophisticated polymer wrappings that demonstrate qualities such as strength, flexibility, breathability and are inexpensive. However, none to date are able to control the growth of microorganisms that flourish in packaged, agricultural produce.
According to the present invention it has now been discovered that by adding a small percentage of Cu+* in powder form to the slurry of a polymer to be formed into a wrapping material, the package is rendered antimicrobial..
It has also been surprisingly discovered that by adding Cu++ in powder form to the slurry of a polymer to be formed into a condom there is produced a condom which inhibits and reduces active HIV-1 in body fluids.
Similarly, surgical gloves and surgical tubing having antimicrobial and antiviral properties can be prepared according to the present invention.
In both WO 98/06508 and WO 98/06509 there are taught various aspects of a textile with a full or partial metal or metal oxide plating directly and securely bonded to the fibers thereof, wherein metal and metal oxides, including copper, are bonded to said fibers.
More specifically, in WO 98/06509 there is provided a process comprising the steps of: (a) providing a metallized textile, the metallized textile comprising: (i) a textile including fibers selected from the group consisting of natural fibers, synthetic celluloslc fibers, regenerated fibers,, acrylic fibers, polyolefin fibers, polyurethane fibers, vinyl fibers, and blends thereof, and (ii) a plating including materials selected from the group consisting of metals and metal oxidea, the metallized textile characterized in that the plating is bonded directly to the fibers; and (b) incorporating the metallized textile in an article of'manufacture.
In the context of said invention the term "textile" includes fibers, whether natural (for example, cotton, silk, wool, and linen) or synthetic yarns spun from those fibers, and woven, knit, and non-woven fabrics made of those yarns. The scope of said invention includes all natural fibers; and all synthetic fibers used in textile applications, including but not limited to synthetic cellulosic fibers (I.e., regenerated cellulose fibers such as rayon, and cellulose derivative fibers such as acetate fibers), regenerated protein fibers, acrylic fibers, polyolefin fibers, polyurethane fibers, and vinyl fibers, but excluding nylon and polyester fibers, and blends thereof.
Said invention comprised application to the products of an adaptation of technology used in the electrolyses plating of plastics, particularly printed circuit boards made of plastic, with metals. See, for example, Encyclopedia of Polymer Science and Engineering (Jacqueline I. Kroschwitz, editor), Wiley and Sons, 1987, vol. IX, pp 580-598. As applied to textiles, this process included two steps. The first step was the activation of the textile by precipitating catalytic noble metal nucleation sites on the textile. This was done by first soaking the textile In a solution of a low-oxidation-state reductant cation, and then soaking the textile in a solution of noble metal cations, preferably a solution of Pd++ cations, most preferably an acidic PdCla solution. The low-axidation-state cation reduces the noble metal cations to the noble metals themselves, while being oxidized to a higher oxidation stats, Preferably, the reductant cation is one that is soluble in both the initial low oxidation state and the. final high oxidation state, for example Sn++, which is oxidized to Sn++++, or Ti+++, which is oxidized tO Ti+++.
The second step was the reduction, in close proximity to the activated textile, of a metal cation whose reduction was catalyzed by a noble metal. The reducing
agents used to reduce the cations typically were molecular species, for example, formaldehyde in the case of Cu++, Because the reducing agents were oxidized, the metal cations are termed "oxidant cations* herein. The metallized textiles thus produced were characterized in that their metal plating was bonded directly to the textile fibers.
In WO 98/06508 there is described and claimed a composition of matter comprising:
(a) a textile including fibers selected from the group consisting of natural
fibers, synthetic cellulosic fibers, regenerated protein fibers, acrylic fibers, polyolefin
fibers, polyurethane fibers, vinyl fibers, and blends thereof; and
(b) a plating including materials selected from the group consisting of
metals and metal oxides;
the composition of matter characterized in that sard plating is bonded directly to said fibers.
Said publication also claims a composition of matter comprising:
(a) a textile .including fibers selected from the group consisting of natural
fibers, synthetic cellulosic fibers, regenerated protein fibers, acrylic fibers, polyolefin
fibers, polyurethane fibers, vinyl fibers, and blends thereof; and.
(b) a plurality of nudeation sites, each of said nucleation sites including at
least one ncble metal;
the composition of matter characterized by catalyzing the reduction of at least one metallic cationic species to a reduced metal, thereby plating said fibers with said reduced metal,
In addition, said publication teaches and claims processes for producing said products.
A preferred process for preparing a metallized textile according to said publication comprises the steps of:
a) selecting a textile, in a form selected .from the group consisting of yarn and fabric, said textile including fibers selected from the group consisting of natural fibers, synthetic cellulosic fibers, regenerated protein fibers, acrylic fibers, polyolefin fibers, polyurethane fibers, vinyl fibers, and blends thereof;

o) soaking said textile in a solution, containing at least one reductant cationic species having at least two positive oxidation states, said at least one cationic species being in a lower of said at least two positive oxidation states;
c) soaking said textile in a solution containing at least one noble metal
cationic species, thereby producing an activated textile; and
d) reducing at. least one oxidant cationic species in a medium in contact
with said activated textile, thereby producing a metallized textile.
Said publications, however, are limited to coated fibers and textiles prepared according to said processes and do not teach or suggest the possibility of, incorporating ionic copper into a polymeric slurry whereby there are produced films and fibers having microscopic particles of ionic copper encapsulated therein and protruding therefrom and having antimicrobial and antiviral polymeric properties, as described and exemplified herein.
With this state of the art in mind there is now provided according to the present invention an antimicrobial . and antiviral polymeric material, having microscopic water insoluble particles of ionic copper in powder form, which release . Cu*+ encapsulated therein with a portion of said particles being exposed and protruding from surfaces thereof.
In another aspect of the present invention there is provided a process for preparing an antimicrobial and antiviral polymeric material, comprising preparing a polymeric slurry, introducing an ionic copper powder and dispersing the same in said slurry and then extruding said slurry to form a polymeric material wherein water insoluble particles that release Cu++ are encapsulated therein with a portion of said particles being 'exposed and protruding from surfaces thereof.
The polymeric material of the present invention can be in the form of a film, a fiber, or a yarn, wherein said films are used per se and said fibers and yarns can be formed into a packaging material for agricultural products.
Said material can be made from almost any synthetic polymer, which will allow the introduction of an anionic, copper dust into its liquid slurry state. Examples of some materials are polyamides (nylon), polyester, acrylic, polypropylene, silastjc rubber and latex. When the copper dust is ground down to fine powder, e.g., a size of between 1 and 10 microns and introduced into the slurry in small quantities, e. g., in an amount of between 0.25 and 10% of the polymer weight, it was found that the

subsequent product produced from this slurry exhibited both antimicrobial and antiviral properties. .
Unlike the fibers described, e. g. in WO 98/06508 and WO 98/06509, in which the fibers 'are coated on the outside, in the present product the polymer has microscopic water insoluble particles of ionic copper encapsulated therein with a portion of said particles being exposed and protruding from surfaces thereof. These exposed particles which protrude from the surface of the polymeric material have been shown to be active, as demonstrated by the tests set forth hereinafter.
In general, the .products of the present invention are produced as follows:
1. A slurry is prepared from any polymer, the chief raw material preferably being
selected from a polyamide, a polyethylene, a polyurethane and a polyester.
Combinations of more than one of said materials can also be used provided
they are compatible or adjusted for compatibility. The polymeric raw materials
are usually in bead form and can be mono-component, bi-coponent or
multi-component in nature. The beads are heated to melting at a temperature
which preferably will range from about 120 to 180 °C.
2. At the hot mixing stage, before extrusion, a water insoluble powder of ionic
copper is added to the slurry and allowed to spread through the heated
slurry. The particulate .size will be preferably between 1 and 10 microns,
however can be larger when the film or fiber thickness can accommodate
larger particles.
3. The liquid slurry is then pushed with pressure through holes in a series of
metal plates formed into a circle called a spinneret. As the slurry is pushed
through the fine Jioles which are close together, they form single fibers or if
allowed to contact one another, they form a film or sheath. The hot liquid fiber
or film,is pushed upward with cold air forming a continuous series of fibers or
a circular sheet. The thickness of the fibers or sheet is controlled by the size
of the holes and speed at which the slurry is pushed through the holes.and
upward by the cooling air flow.
4. In percentage mixtures of up to 10% by weight of ionic copper dust
demonstrated, no degradation of physical properties in a polyamide slurry of
the finished product. When tested, mixtures as low as 1% still showed
5a antimicrobial properties, as well as surprisingly showing 'inhibition of HIV-1
activity.
In WO 94/15463 there, are described antimicrobial compositions comprising an inorganic particle with a first coating providing antimicrobial, properties and a second coating providing a protective function wherein said first coating can be silver or copper or compounds of silver, copper and zinc and preferred are compounds containing silver and copper (II) oxide. Said patent, however, is based on the complicated and expensive process involving the coating of the metallic compositions with a secondary protective coaling selected from silica, silicates, borosilicates, aluminosilicates, alumina, aluminum phosphate, or mixtures thereof and in fact all the claims are directed to compositions having successive coatings • including silica, hydrous alumina and dioctyi azelate.
In contradistinction, the present invention is directed to the use and preparation of a polymeric material, having microscopic water insoluble particles of ionic copper in powder form, which release Cu++ encapsulated therein with a portion' of said particles being'exposed and protruding from surfaces thereof, which is neither taught nor suggested by said publication and which has the advantage that the exposed Cu++ releasing water insoluble particles which protrude from the polymeric material have been proven to be effective even in the inhibition of HIV-1 activity.
In EP 427858 there is described an antibacterial composition characterized in that inorganic fine particles are coated with an antibacterial metal and/or ' antibacterial metal compound and said patent does not teach or suggest a polymer that incorporates microscopic water insoluble particles of ionic copper in powder form, which release Cu++ encapsulated therein with a portion of said particles being exposed and protruding from surfaces thereof.
In DE 4403016 there is described a bacteriacidal and fungicidal composition utilizing copper as opposed to ionic Cu+* and said patent also does not teach or suggest a polymer that incorporates microscopic water insoluble particles of ionic copper in powder form, which release Cu++ encapsulated therein with a portion of said particles being exposed and protruding from surfaces thereof.
In JP-01 046465 there is described a condom releasing sterilizing ions utilizing metals selected from copper, silver, mercury and their alloys which metals

have a sterilizing-and spernr killing effect, wherein the metal is preferably finely powdered copper. While copper salts such as copper chloride, copper sulfate and copper nitrate are also mentioned as is known these are water soluble salts which will dissolve and break down the polymer in which they are introduced. Similarly, while cuprous oxide is specifically.mentioned this is a Cu+ ionic form and therefore said patent does not .teach or suggest the use of exposed Cu++ releasing water insoluble particles which protrude from the polymeric material and which have been proven to be effective even in the inhibition of HIV-1 activity.
In JP-01 246204 there is described an antimicrobial moulded article in which a mixture of a powdery copper compound and organic polysiloxane are dispersed into a thermoplastic moulded article for the preparation of cloth, socks, etc. Said patent specifically states and teaches that metal ions cannot be introduced by

themselves into a polymer molecule and requires the inclusion of organopolysiloxane which is also intended to provide a connecting path for the release of copper ions to the fiber surface. Thus, as will be realized said copper compound .will be encapsulated and said patent does not teach or suggest the use of exposed Cu++releasing water insoluble particles that protrude from the polymeric material.
In JP-03 113011 there is described a fiber having good antifungus and hygienic action preferably for producing underwear wherein said synthetic fiber contains copper or a copper compound in combination with germanium or a compound thereof, however, .said patent teaches and requires the presence of a major portion of germanium and the copper compounds disclose therein are preferably metallic copper, cuprous iodide which is a monovalent Cu+ compound and,.water soluble copper salts. Thus, said patent does not teach or suggest the use of exposed. Cu++ releasing water insoluble particles which protrude from the polymeric material.
In EP 116865 there is described and claimed a polymer article containing zeolite particles at least part of which retain af least one metal ion having a bacterial property and thus said patent does not teach or suggest the use of exposed Cu++ releasing water insoluble particles, by themselves and in the absence of a zeolite, which particles protrude from the polymeric material and which have been proven to be effective even in the inhibition of HIV-1 activity.
in EP 253653 there7s described and claimed a polymer containing amorphous aJuminosilicate particles comprising an organic polymer and amorphous aiuminosilicate solid particles or amorphous aluminosilicale solid particles treated with a coating agent, at least some of said amorphous aiuminosilicate solid particles holding metal ions having a.bactericidal actions. Thus, said patent does not teach or suggest the use of exposed Cu++releasing water insoluble particles, by themselves and in the absence of amorphous atuminosilicate particles, which exposed Cu++ releasing water insoluble particles, protrude from the polymeric material and which have been proven to be effective even in the inhibition of HIV-1 activity.

Referring to the use of the material as a post harvest packaging system, it was found that microbes outside the package will not be able to enter the enclosed area and that microbes Inside the packet will have difficulty in growing along the inside of the packaging material which is usually where they incubate due to condensation within the encapsulated area.
As indicated herelnabove, the polymeric material of the present invention, having microscopic particles of ironic copper encapsulated therein, can also be utilized to manufacture disposable gloves and condoms using a mold/form configuration.
In general, the chief raw material is concentrated and preserved natural rubber latex. In addition such chemicals as acid, chlorine gases, alkalis, and com/majze starch can be added, as is known in the art, however according to the present invention there is also added CLk+ in powder form.
Formers (or positive molds) are prepared through preparations that will keep the liquid latex from sticking thereto. This is done through a series of dips and treatments to the molds, as known per se in the art. The formers are then cleaned and dried and are dipped into a solution of coagulant chemicals. The coagulant forms a layer on the formers which helps to solidify latex when the formers are dipped into the latex tank.
The formers are dipped into the latex mixture, withdrawn therefrom and passed through a curing oven. The gloves and/or condoms will be vulcanized as they pass through the different areas of the oven which expose the same to temperatures ranging from about 120 to 140 °C. This process cross-links the latex rubber to impart the physical qualities required.
The difference between the normal'process 'of manufacturing a disposable giove/condom and the process of the present invention is the addition of the Cu++ powder in the raw materials,
While the invention will now be described in connection with certain preferred embodiments in the following examples and with reference to the attached figures, so that aspects thereof may be more fully understood and appreciated, it is not intended to limit the invention to these particular embodiments. On the contrary, it is

intended to cover all alternatives, modifications and equivalents as may be included Within the scope of the Invention as defined by the appended claims. Thus, the following examples which include preferred embodiments will serve to illustrate the practice of this invention, it being understood that the particulars shown are by way of example and for purposes of illustrative discussion of preferred embodiments of the present invention only and are presented in the cause of providing what is believed to be the most useful and readily understood description of formulation procedures as well as of the principles and conceptual aspects of the invention.
In the drawings:
Figure 1 is an electron microscope photograph of a nylon fiber with copper particles embedded therein and protruding therefrom after having been added to a polymeric slurry; and
Figure 2 is a graphical representation of the inhibition of HIV-1 on sterilized pieces of latex gloves impregnated with varying amounts of ionic copper according to the present invention.
Example 1 - Preparation of fibers.
A total of 500 grams of a polyamide bi-component compound were prepared by heating the two beaded chemicals in separate baths each at 160 °C. The two separate components were then mixed together and allowed to stir for 15 minutes until the mixture appeared to be homogenous in color. The mixed chemistry was again divided into two separate pots. In one pot, 25 grams of a mixture of CuO and CU20 powder was added yielding a 1 % mixture. In the second pot 6.25 grams of a mixture of CuO and Cu20 were added yielding a 0.25% mixture. In both cases, the temperature of 160 °C was maintained. The compounds were stirred until they appeared homogenous in color.
The two mixtures were run through a spinneret with holes that hielded fibers of. between 50 and 70 microns in diameter. Since the Cu++ releasing powder was ground to particles of less than 20 microns no obstructions in the spinneret holes were observed. The extruded fibers were air-cooled and spun on to cones. The fibers were tested for biological activity.
The difference between the normal process of manufacturing any synthetic fiber and this process is the addition of the Cu++ releasing powder in the raw materials.
Example 2
100^,1 aliquots of highly concentrated HIV-1 virus were incubated on top of the fibers for 30 minutes at 37°C. Then I0µ1 of each pretreated virus were added to MT-2 cells (Lymphocyte Human Cell Line) cultured in 1 ml media. The cells were then incubated for 5 days in a moist incubator at 37oC and the virus infectivity and proliferation was determined by measuring the amount of p24 (a specific HIV-1 protein) in the supernatant with a commercial ELISA (Enzyme Based Immuno-absorbtion Assay) kit. The results are the average of duplicate experime.nts. As control for possible cytotoxlcity of the CuO or Cu2O to the cells, similar experiments were carried out as above, but the fibers were Incubated with 100|J of natural medium that did not contain HIV-1. No cytotoxicity was observed, i.e., none of the host cells were observed to be killed, under the experimental conditions described above.
The following summarizes the evaluation of the capacity of the several fibers
impregnated wilh CuO and Cu20 to inhibit HIV-1 proliferation in tissue culture:
Negative control (Polymeric Fiber without CuO and CuaO): no inhibition
Positive control (CuO and CusO powder): 70% inhibition
1 % CuO and Cu2O Fiber .26% inhibition.
Example 3
Antifungal Susceptibility Testing Susceptibility testing was performed as follows: Agar formulation used for this test was chosen in accordance with NCCLS document M27-A: RPMI (RPG) and a buffered to pH 7.0 with 0,.165 M morpholinepropa'nesulfonic acid buffer (MOPS).
For the test, 90-mm-diameter plates containing agar at a depth of 4.0 mm were used, For Candida albicans, Cryptococcus neoformans, micrococcus, Tinea pedis, and Tinea curpus, the inoculum was prepared from a 24 hour culture and a 48 hour culture respectively; whereas for Aspergillus fumigatus and Trichophyton mentagrophytes a five-day old culture was used. Cell suspension was prepared in sterile 0,85% NaCI adjusted to a turbidity of a 0.5 McFarland standard. The agar surface was inoculated by streaking a nontoxic swab dipped in a cell suspension across the entire surface of the agar in three directions.
After excess moisture was absorbed into the agar and the surface was completely
dry, Chemtex/MTC treated fibers in a concentration range from 3%-10% were applied to each plated The plates were incubated at 35°C and read after 24 hours, 48 hours, and 7 days. Antifungal activity of the treated fibers was considered positive if a zone of inhibition was visible underneath and surrounding the fibers.
•Antibacterial Susceptibility Testing
Susceptibility testing was performed as described above for the antifungal activity
with the following modifications: Mueller-Hinton agar (Difco, Detroit, Ml) was the medium used. The pH was adjusted to 7,2-7.4. The bacteria used for this study were Escherichia coli, Staphyfococcus aureus, brevubacterium, adnetobacter and micrococcus.
Results ,
The treated fibers in a concentration range of 3-10% exhibited characteristic
inhibitory zone underneath and surrounding the fibers, indicating correct antifungal
and antibacterial activity. The controls (untreated fibers) indicated no antifungal or
antibacterial activity.
Example 4 -
Fifty |il of RPM11640 medium, containing HIV-IIIIB (laboratory T-tropic strain, 0.36
pg p24 [amount of virus]), were placed on top of UV sterilized pieces of gloves. As
negative control for viral activity, 50 µl of medium was placed on the gloves, and as
positive control, virus was placed on a regular glove (i.e. no CU++). The experiment
was done in duplicates, "i.e., in each glove (different concentrations of Cu++) two
separate drops with or without virus were placed.
After 20 minutes of incubation at room temperature, the 50 (il of drops containing
the virus were mixed with 450 µl fresh medium (containing 10% fetal calf serum),
and the mixture was added to 2x10s MT-2 cells (a lymphocyte cell line) in I ml
medium (containing 10% fetal calf serum).
The virus-cell mixtures were then incubated in 24 well plates in a CCk humidified
incubator at 37° C. After 4 days of incubation the amount of virus present per well
was quantified by a Reverse Transcriptase (RT) Assay.
RT is a key enzyme of the HIV-I, which can polymerize a DMA strand from an RNA
strand. By adding radio-labeled deoxynucleotides, the amount of newly synthesized
DNA can be quantified. The percentage of inhibition as shown in Figure 2 was
calculated by dividing the average counts per minute (CPM) obtained In each glove concentration by that obtained in the regular control glove. As will be noted from said graph, twenty minutes of exposure of concentrated HIV-1 virus to the surface of a latex glove impregnated with 1 % or more of a copper ion yielding compound at room temperature resulted in a more than a 95% neutralization of subsequent virus infectivity of lymphocytes (the main target of HIV-1}. This result points out the potential of an approach of impregnating copper into a slurry to form a glove or other item, such as a condom, to neutralize Infectious viruses which may be found in human contaminated fluids such as blood or sperm. It will be evident to those skilled in the art that the invention is not limited to the details of the foregoing illustrative examples and that the present invention may be embodied in other specific forms without departing from the essential attributes thereof, and it is therefore desired that the present embodiments and examples be considered in all respects as illustrative and not restrictive, reference being made to the appended claims, rather than to the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.




We claim:
1. An antimicrobial and antiviral polymeric material formed from a single
polymeric component selected from the group consisting of a polyamide, a
polyester, an acrylic and a polypropylene, said material being in the form of a
fiber or a yarn and comprising a single antimicrobial and antiviral agent
consisting essentially of microscopic water insoluble particles of ionic copper
oxides in powder form, embedded directly in said component, with a portion
of said particles being exposed and protruding from surfaces thereof, which
particles release Cu++.
2. An antimicrobial and antiviral polymeric material as claimed in claim to 1,
wherein the ionic copper comprises a mixture of CuO and Cu2O.
3. An antimicrobial and antiviral polymeric material as claimed in claim 1 or
claim 2, wherein said particles are of a size of between 1 and 10 microns.
4. An antimicrobial and antiviral polymeric material as claimed in any of claims 1
to 3, wherein said particles are present in an amount of between 0.25 and
10% of the polymer weight.
5. A wrapping material comprising an antimicrobial polymeric material as
claimed in any of claims 1 to 4.
6. A process for preparing an antimicrobial and antiviral polymeric material as
claimed in Claim 1, comprising preparing a slurry of a polymer selected from
the group consisting of a polyamide, a polyester, an acrylic and a
polypropylene, introducing a powder consisting essentially of water insoluble
ionic copper oxides and dispersing the same in said slurry and then extruding
said slurry to form a polymeric material wherein water insoluble particles that
release Cu++ are encapsulated therein with a portion of said particles being
exposed and protruding from surfaces thereof.
7. An antimicrobial and antiviral polymeric material as claimed in any one of
claims 1 to 5 comprising microscopic water insoluble particles which release
Cu++ encapsulated therein with a portion of said particles being exposed and
protruding from surfaces thereof, for inhibition of HIV-1 proliferation.
8. An antimicrobial and antiviral polymeric material as claimed in any one of claims 1 to 5 comprising microscopic water insoluble particles which release Cu++ encapsulated therein with a portion of said particles being exposed and protruding from surfaces thereof, for neutralising infectious viruses.



Documents:

IN-PCT-2002-993-DEL-Correspondence-Others-(26-07-2010).pdf

IN-PCT-2002-993-DEL-Correspondence-Others-(28-06-2010).pdf

IN-PCT-2002-993-DEL-Form-15-(21-10-2009).pdf

IN-PCT-2002-993-DEL-GPA-(26-07-2010).pdf

IN-PCT-2002-993-DEL-GPA-(28-06-2010).pdf

in-pct-20052-993-del-abstract.pdf

in-pct-20052-993-del-assignment.pdf

in-pct-20052-993-del-claims.pdf

in-pct-20052-993-del-correspondence-others.pdf

in-pct-20052-993-del-correspondence-po.pdf

in-pct-20052-993-del-description (complete).pdf

in-pct-20052-993-del-drawings.pdf

in-pct-20052-993-del-form-1.pdf

in-pct-20052-993-del-form-19.pdf

in-pct-20052-993-del-form-2.pdf

in-pct-20052-993-del-form-3.pdf

in-pct-20052-993-del-form-5.pdf

in-pct-20052-993-del-gpa.pdf

in-pct-20052-993-del-pct-210.pdf

in-pct-20052-993-del-pct-304.pdf

in-pct-20052-993-del-pct-409.pdf

in-pct-20052-993-del-pct-416.pdf


Patent Number 212545
Indian Patent Application Number IN/PCT/2002/00993/DEL
PG Journal Number 50/2007
Publication Date 14-Dec-2007
Grant Date 04-Dec-2007
Date of Filing 04-Oct-2002
Name of Patentee THE CUPRON CORPORATION
Applicant Address C/O LAW OFFICE, MR. SYLAVAN JAKABOVICS, 18 EAST 41ST ST., NEW YORK, N.Y. 10017, U.S.A.
Inventors:
# Inventor's Name Inventor's Address
1 GABBAY JEFFREY 14/21 JABOTINSKY STR., JERUSALEM 92142, ISRAEL
PCT International Classification Number A01N 59/20
PCT International Application Number PCT/IL01/00299
PCT International Filing date 2001-04-01
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 135,487 2000-04-05 Israel