Title of Invention

INJECTABLE SOLID HYALURONIC ACID CARRIERS FOR DELIVERY OF OSTEOGENIC PROTEINS

Abstract An injectable or implantable rod-shaped formulation is disclosed for delivery of osteogenic proteins. The formulation comprises hyaluronic acid derivatives and osteogenic proteins, and optional excipients and active ingredients such as a bone resorption inhibitor. Methods of making injectable rod-shaped pharmaceutical compositions and methods of using the osteogenic compositions to treat osteoporotic and/or osteopenic bone are also disclosed. (FIG. nil)
Full Text INJECTABLE SOLID HYALURONIC ACID CARRIERS
FOR DELIVERY OF OSTEOGENIC PROTEINS
FIELD OF THE INVENTION
The subject invention relates to the field of osteogenic proteins and
pharmaceutical formulations thereof. More particularly, the subject invention
involves injectable or implantable solid pharmaceutical formulations
comprising hyaluronic acid derivatives and osteogenic proteins.
BACKGROUND OF THE INVENTION
Idiopathic osteoporosis is a disease of unknown etiology characterized
by progressive loss of bone mass and increased fragility, resulting in a
marked increase in susceptibility to fractures. Osteoporosis is among the
most prevalent of all musculoskeletal disorders, afflicting fifty-six percent of
women over 45 years of age. Praemer et al., Musculoskeletal Conditions in
the United States, American Academy of Orthopaedic Surgeons, Park Ridge,
IL (1992). Because its incidence increases with age and the percentage of
elderly in the population is increasing, osteoporosis will become more
common with time. Osteoporosis is difficult to treat locally, and there is
presently no known cure. Finally, and most significantly, osteoporosis is
associated with a substantial morbidity and mortality. The most serious
fracture resulting from osteoporosis is that of the proximal femur in the region
of the hip joint. With an annual incidence of over 300,000, hip fractures are
currently the most common fracture in the elderly. One out of every six
Caucasian women will have a hip fracture during her lifetime (Cummings et
al., Arch Intern Med 149:2455-2458 (1989)), and for those who attain the age
of 90, this figure becomes one in three.
Of the patients who are independent and living at home at the time of
hip fracture, approximately 20 percent remain in a long term care institution for
at least one year following the fracture. During the first year following injury,
the mortality rate is approximately 15 % higher than for age and gender
matched controls. Praemer et al., supra. The increased incidence of proximal
femur fracture observed in elderly patients is mainly related to a decreased
bone density of their proximal femora, as well as an increased propensity to
fall. There is an inverse relationship between the age-related bone loss in the
proximal femur and the risk of hip fracture. Each decrease of one standard
deviation (SD) in femoral neck bone density increases the age-adjusted risk of
hip fracture 2.6 times (95% CI 1.9 - 3.6), and women with bone density in the
lowest quartile have an 8.5-fold greater risk of hip fracture than those in the
highest quartile. Cummings et al., The Lancet 341:72-75 (1993). This
relation between hip bone mass and hip fracture risk allows the screening and
identification of patients at risk for fracture. Patients who are two standard
deviations below peak hip bone mass have passed beneath the "fracture
threshold."
Current therapies for osteoporosis are systemic. These include
fluoride, bisphosphonates, calcitonin, estrogens and progestins, testosterone,
vitamin D metabolites, and/or calcium. In the United States, only estrogens
and alendronate, a bisphosphonate, are indicated for the prevention of hip
fractures in postmenopausal osteoporotic women. Each of these agents
requires continuous administration over a time period of years.
In addition to treating osteoporotic bone, a need exists for methods of
treating or preventing osteoporosis-related fractures, for example by local
administration of osteogenic proteins. Because of this need, despite the
variety and availability of carrier materials for delivering osteogenic proteins, a
need also exists for safe, effective and generally applicable carriers for local
treatment of bone defects. Accordingly, despite substantial endeavors in this
field, there remains a need for an effective method of repair and/or treatment
of osteoporotic and osteopenic bone, and for minimizing or reducing the
incidence or severity of osteoporosis-related fractures.
SUMMARY OF THE INVENTION
The present invention provides injectable or implantable solid, rod-
shaped compositions for intraosseous delivery of osteogenic proteins. In one
embodiment, the composition comprises the osteogenic protein and
hyaluronic acid esters. In another embodiment, the composition may further
comprise a bone resorption inhibitor such as a bisphosphonate. In yet
another embodiment, the composition may further comprise one or more
excipients, such as a pharmaceutically acceptable salt, polysaccharide,
peptide, protein, amino acid, synthetic polymer, natural polymers, or
surfactant. The solid, rod-shaped injectable or implantable compositions of
the invention provide prolonged retention of the osteoinductive agent at the
site of administration.
The present invention further provides methods and compositions for
increasing bone mass and quality, and for minimizing or reducing the
incidence or severity of osteoporosis-related fractures. Accordingly, the
present invention provides methods and compositions useful for decreasing
the incidence of fractures of osteoporotic or osteopenic bone. In particular,
the present invention comprises methods of treating patients with
osteoporosis, or with other evidence of osteoporosis or osteopenic condition.
Preferred embodiments where the present invention may prove particularly
useful include treatment of metaphyseal bone, including proximal femur (hip),
proximal humerus (upper arm), distal radius (wrist), and vertebral bodies
(spine), particularly the vertebral body.
The method comprises administering to a site of osteopenic or
osteoporotic bone, or a site of low bone mass or density, a solid rod-shaped
composition comprising an effective amount of at least one active agent that
is capable of inducing growth of bone or increasing the formation of bone
tissue or reducing bone loss at the site. Bone mass is commonly designated
"bone mineral content" or "BMC" and is measured in grams. Bone density is
commonly designated "bone mineral density" or "BMD" and is expressed as
grams per unit area or grams per unit volume. In a particular embodiment, the
mode of administration is by intraosseous injection. In illustrative
embodiments, the active agent is one or more proteins selected from the
group of proteins known as the transforming growth factors-beta ("TGF-ß")
superfamily of proteins, preferably selected from the bone morphogenetic
proteins ("BMPs"), the growth and differentiation factors ("GDFs"), as well as
other proteins, as described more fully herein. The methods and
compositions of the present invention are advantageous in that they provide a
localized treatment for osteoporosis or osteopenic bone, rather than systemic
treatment. The present invention is further advantageous in that it utilizes as
active agents osteogenic proteins, which may be produced via recombinant
DNA technology, and therefore are of potentially unlimited supply. The
methods and compositions of the present invention are further advantageous
in that regeneration of the bone tissue increases the bone mass/density,
increase the bone strength, and thereby reduce the severity of osteoporosis
or incidence of osteoporotic lesions, ultimately lessening the incidence of
bone fractures.
In other embodiments, the active agent further comprises, in addition to
one or more proteins selected from the TGF-ß superfamily of proteins, one or
more auxiliary proteins, such as Hedgehog, Noggin, Chordin, Frazzled,
Cerberus and Follistatin, soluble BMP receptors, or other protein or agent, as
described further herein.
The present invention further provides a methods for increasing bone
mass and quality, and for minimizing or reducing the incidence or severity of
osteoporosis-related fractures, by administering an injectable rod-shaped
composition comprising at least one osteogenic protein and a second
composition comprising an effective amount of a bone resorption inhibitor.
The second composition comprising the bone resorption inhibitor may be
administered prior to, after, or substantially simultaneously with the osteogenic
composition.
In addition to healing of osteoporotic bone, compositions of the present
invention may be useful for injectable formulations of BMPs for uses such as
injection into joints for treatment and repair of osseous defects, cartilage
defects, inhibition of cartilage degradation and to promote cartilage repair.
The formulations may also be injected into tendons, ligaments and/or their
attachment sites to bone. Injectable formulations of BMPs may also find
application to other bone sites such as bone cysts, implants into bones,
closed or open fractures and distraction osteogenesis.
In a particular embodiment, the compositions of the present invention
are prepared by a process comprising the steps of mixing an osteogenic
protein and a hyaluronic acid derivative to form an osteogenic mixture. The
osteogenic mixture is then formed, for example by extruding the osteogenic
mixture into air or a nonsolvent such as ethanol, and drying. The
compositions of the invention may further comprise a bone resorption inhibitor
and/or an excipient, either or both of which may be included in the mixing
step.
The hyaluronic acid derivative may be a natural or synthetic hyaluronic
acid, or a modification thereof. Hyaluronic acid is a naturally-occurring
polysaccharide containing alternating N-acetyl-D-glucosamine and D-
glucuronic acid monosaccharide units linked with beta 1-4 bonds and the
disaccharide units linked with beta 1-3 glycoside bonds. It occurs usually as
the sodium salt and has a molecular weight range of about 50,000 to 8 x 106.
The bone resorption inhibitor may be a bisphosphonate, such as alendronate,
cimadronate, clodronate, EB-1053, etidronate, ibandrohate, neridronate,
olpadronate, pamidronate, risedronate, tiludronate, YH 529, zoledronate, and
pharmaceutically acceptable salts, esters, and mixtures thereof. The
excipient may be an agent that stabilizes and/or modulates release of the
active ingredient(s), such as a pharmaceutically acceptable salt,
polysaccharide, peptide, protein, amino acid, synthetic polymer, natural
polymers, and/or surfactant. The osteogenic protein can be in a solid or liquid
form, and the hyaluronic acid derivative and excipient(s) can be in a solid
form. The molding may be accomplished by extruding the osteogenic mixture
into air or a nonsolvent such as ethanol; the drying may accomplished by air-
drying or freeze-drying. The sustained-release preparation may further
comprise a bone resorption inhibitor such as a bisphosphonate.
The present invention also provides a method for preparing an
injectable sustained-release preparation comprising the steps of admixing an
osteogenic protein with a hyaluronic acid or hyaluronan-based material to
form an admixture, compressing the admixture to form a dense osteogenic
admixture, then forming the dense osteogenic admixture into a solid
cylindrical rod suitable for injecting or implanting into a body. The forming
step may be performed by extruding, pressing, molding, boring and/or cutting
to form a cylindrical rod. The injectable sustained-release preparation may
further comprise a bone resorption inhibitor, such as a bisphosphonate, and
one or more excipients, such as those described above.
The injectable, solid, osteoinductive compositions of the present
invention may have a diameter of between about 0.1 to 3.0 mm, and
preferably between about 0.5 to 1.5 mm. The length of the solid rod-shaped
compositions may be between about 1 mm and about 10 cm, and particularly
between about 2 cm and about 5 cm. The compositions of the present
invention may have a height to diameter ratio within the range of about 1000:1
to 1:1. This ratio may be about 1000:1, 500:1,250:1, 100:1, 50:1,25:1, 10:1,
5:1, 4:1, 3:1, 2:1 or 1:1. The osteoinductive compositions of the present
invention are rigid (but not brittle) to withstand loading into a conventional
needle or syringe, and injection into an intraosseous site. The osteoinductive
compositions have a density of between about 0.5 and 100 percent material,
and preferably of between about 50 and 90 percent material. The
compositions have a low macroporosity and a low water content, between
about 0.1 and about 10.0 percent water, and particularly between about 0.1
and about 5 percent water. The proportion of active ingredient to carrier may
be between about 0.01-0.90 gram of active ingredient to about 1 gram of
carrier, and particularly between 0.1-0.3 gram of active ingredient to about 1
gram of carrier. The hyaluronic acid derivative may be a partial or full ester
comprising between about 50 and about 100 percent hyaluronic acid
esterification.
ACCOMPANYING
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a graph showing the local retention times of BMP-2 for
various hyaluronic acid/rhBMP-2 compositions in the rabbit distal femur
(intraosseous) model.
DESCRIPTION OF THE EMBODIMENTS
According to the present invention, methods and compositions are
provided for treatment of patients who exhibit signs of osteoporosis, or
osteopenic conditions, including osteoporotic bone lesions. The identification
of such patients may be accomplished by procedures that are well known in
the art. These procedures include measurement of bone mass/density using
dual-energy X-ray absorptiometry (DEXA), Kilgus et al., J. Bone & Joint
Surgery, 75-B:279-287 (1992); Markel et al., Acta Orthop. Scand. 61:487-498
(1990); and quantitative computed tomography (QCT), Laval-Jeantet et al., J.
Comput. Assist. Tomogr., 17:915-921 (1993); Markel, Calcif. Tissue Int.
49:427-432 (1991); single-photon absorptiometry, Markel et al. Calcif. Tissue
Int. 48:392-399 (1991); ultrasound transmission velocity (UTV); Heaney et al.,
JAMA 261:2986-2990 (1989); Langton et al., Clin. Phys. Physiol. Meas.
11:243-249 (1990); and radiographic assessment, Glueret al., J. Bone Min.
Res. 9:671-677 (1994). Other methods of identification of patients at risk of
bone fracture include assessment of age-related factors, such as cognisance,
as well as prior occurrence of osteoporosis-related fractures. Porter et al.,
BMJ 301:638-641 (1990); Hui et al., J. Clin. Invest. 81:1804-1809 (1988). The
above publications are hereby incorporated by reference herein.
The methods comprise injecting into the osteoporotic or osteopenic site
a solid rod-shaped composition comprising one or more purified osteogenic
proteins, which is effective to induce the formation and/or maintenance of
bone, and a hyaluronic acid as a carrier. Unlike existing injectable
formulations, the osteogenic composition of the present invention is
administered in a solid form, thereby avoiding the deficiencies inherent in
liquid or viscous formulations. For example, using liquid or gel formulations,
the osteoinductive agent may be prematurely diluted by the body fluids before
the bone promoting effect can be achieved. The present invention obviates
the dilution effect by employing a solid carrier that degrades slowly in vivo,
thereby providing delayed, sustained release of the active ingredients).
Furthermore, unlike liquid or viscous formulations that may migrate from the
site of administration, the solid compositions of the present invention become
lodged and persist at the site of desired bone growth to effect the bone growth
promoting activity. Typically, the composition must persist at the site for a
period from about seven days to about six months. If the composition is
dispersed prematurely, the desired bone growth-promotion effect either will
not occur or the formed bone will not have the desired strength. Finally,
although the osteogenic composition of the present invention is administered
as a solid, it is formed as a cylindrical rod, thereby being suitable for either
injection or implantation into the body. In addition, the well-known surgical
complication of inducing an embolism during an intraosseous injection
procedure is considerably mitigated through the use of solid rods (vs. liquid or
gel forms). The potential displacement of intraosseous bone fragments, fat or
an embolism caused by a pressurized injection of a large volume of liquid/gel
carrier is reduced since the volume injected of highly concentrated solid rod
carrier is much less than that required if a similar dose was dispensed in a
liquid or gel form. The composition may be applied to the site of desired bone
growth in any convenient manner, including by introduction through a
conventional hypodermic needle or syringe.
The compositions of the present invention are prepared by mixing the
osteogenic protein, hyaluronic acid carrier and optional excipients to form,
depending upon the hyaluronic acid starting material, either a viscous
liquid/gel or paste. The ensuing mass is then shaped into cylindrical rods and
dried. The shaping may be accomplished using any one of a number of
known techniques, for example by molding, pressing, boring and/or cutting. In
a preferred embodiment, the osteogenic mixture is packed into and extruded
through the hub end of a hypodermic syringe. The material is extruded as
continuous cylindrical^ shaped rods, dried at room temperature and
sectioned into small, injectable rods.
If the hyaluronic acid starting material is a hydrophobic solid, such as
Hyaff-11®, the hyaluronic acid is first solubilized in an organic solvent to form
a solution. The organic solvent may be any pharmaceutically acceptable
solvent, such as N-methylpyrrolidone (NMP) or dimethyl sulfoxide (DMSO),
preferably NMP. The solution may comprise between about 1 and about 50
% (w/v) hyaluronic acid, preferably between about 5 and 20 % (w/v), and most
preferably about 10 % (w/v) hyaluronic acid. The dry powdered osteogenic
protein is dispersed in the hyaluronic acid solution at a concentration of
between about 1 and about 50 % (w/w), preferably about 20 % (w/w), and
optional excipients (e.g., amino acids, sugars, salts, surfactants, polymers,
etc.) are added at a concentration of between about 1 and about 50 % (w/w),
preferably between about 20 and about 40 % (w/w). The compositions of the
invention may further comprise a bone resorption inhibitor, which may be
included in the mixing step in dry powder or soluble form, individually or in
combination with the osteogenic protein component
If the hyaluronic acid starting material is in a hydrophilic form, such as
Hyaff-11 p65®, the hyaluronic acid may be blended with an aqueous buffer
comprising optionaf excipients until the mass assumes a paste-like
consistency. The paste-like substance may comprise between about 1 and
about 40 % (w/v), preferably between about 5 and about 30 % (w/v), and
more preferably between about 15 and about 20 % (w/v) hyaluronic acid. In
an exemplified embodiment, the paste-like substance comprises 18.75 %
(w/v) hyaluronic acid. The dry powdered osteogenic protein is then mixed into
the hyaluronic acid paste prior to shaping. Alternatively, rather than blending
with an aqueous buffer comprising optional excipients, the hyaluronic acid
starting material may be blended with an aqueous buffer comprising soluble
osteogenic protein with optional excipients until the mass assumes a paste-
like consistency or a viscous liquid or gel appearance. The compositions may
further comprise a bone resorption inhibitor, which may be included in the
mixing step in dry powder or soluble form, individually or in combination with
the osteogenic protein component.
Once the components have been combined and blended into a paste
or viscous liquid or gel, the osteogenic material is packed into a cylindrical
mold, air or gas-permeable tubing (e.g., silastic or Teflon®/FEP), or extrusion
type apparatus, such as a syringe. If a syringe is used for the forming step,
the plunger of the syringe is inserted and a sufficient amount of pressure is
applied to extrude a continuous length of paste onto a dry surface, in the case
of water soluble hyaluronic acid. In the case of water insoluble hyaluronic
acid, a continuous length of gel is extruded into a nonsolvent bath enabling
precipitation of the material. Sections are then cut using a cutting tool such as
a razor, scalpe), knife or the like, to form injectable, rod-shaped compositions.
After sectioning, the rod-shaped compositions are dried, for example by air
drying or freeze drying.
The present invention also provides a method for preparing an
injectable sustained-release preparation comprising the steps of admixing an
osteogenic protein, a hyaluronic acid or hyaluronan-based material, and
optional excipients to form a dense osteogenic admixture, then forming the
dense osteogenic admixture into a solid cylindrical rod suitable for injecting or
implanting into a body.
The active agent can be selected from the family of proteins known as
the transforming growth factors-beta (TGF-ß) superfamily of proteins, which
includes the activins, inhibins and bone morphogenetic proteins {BMPs). "
Particularly, the active agent includes at least one protein selected from the
subclass of proteins known generally as BMPs, which have been disclosed to
have osteogenic activity, and other growth and differentiation type activities.
These BMPs include BMP proteins BMP-2, BMP-3, BMP-4, BMP-5, BMP-6
and BMP-7, disclosed for instance in United States Patents 5,108,922;
5,013,649; 5,116,738; 5,106,748; 5,187,076; and 5,141,905; BMP-8,
disclosed in PCT publication WO91/18098; and BMP-9, disclosed in PCT
publication WO93/00432, BMP-10, disclosed in PCT application
WO94/26893; BMP-11, disclosed in PCT application WO94/26892, or BMP-
12 or BMP-13, disclosed in PCT application WO 95/16035; BMP-15, disclosed
in United States Patent 5,635,372; or BMP-16, disclosed in United States
Patent 6,331,612. Other TGF-ß proteins that may be useful as the active
agent in the present invention include Vgr-2, Jones et al., Mol. Endocrinol.
6:1961-1968 (1992), and any of the growth and differentiation factors (GDFs),
including those described in PCT applications WO94/15965; WO94/15949;
WO95/01801; WO95/01802; WO94/21681; WO94/15966; WO95/10539;
WO96/01845; WO96/02559 and others. Also useful in the present invention
may be BIP, disclosed in WO94/01557; HP00269, disclosed in JP Publication
number: 7-250688; and MP52, disclosed in PCT application WO93/16099.
The disclosures of all of the above applications are hereby incorporated by
reference. A subset of BMPs that are presently preferred for use in the
present invention include BMP-2, BMP-4, BMP-5, BMP-6, BMP-7, BMP-10,
BMP-12 and BMP-13. In an illustrative embodiment, the active agent isBMP-
2, the sequence of which is disclosed in United States Patent 5,013,649, the
disclosure of which is hereby incorporated by reference. Other BMPs and
TGF-ß proteins known in the art can also be used.
The active agent may be recombinantly produced, or purified from a
protein composition. The active agent, if a TGF-ß such as a BMP, or other
dimeric protein, may be homodimeric, or may be heterodimeric with other
BMPs (e.g., a heterodimer composed of one monomer each of BMP-2 and
BMP-6) or with other members of the TGF-ß superfamily, such as activins,
inhibins and TGF-ß1 (e.g., a heterodimer composed of one monomer each of
a BMP and a related member of the TGF-ß superfamily). Examples of such
heterodimeric proteins are described for example in Published PCT Patent
Application WO 93/09229, the specification of which is hereby incorporated
herein by reference.
The active agent may further comprise additional agents such as the
Hedgehog, Frazzled, Chordin, Noggin, Cerberus and Follistatin proteins.
These families of proteins are generally described in Sasai et al., Cell, 79:779-
790 (1994) (Chordin); PCT Patent Publication WO94/05800 (Noggin); and
Fukui et al., Dev. Biol. 159:131-139 (1993) (Follistatin). Hedgehog proteins
are described in WO96/16668; WO96/17924; and WO95/18856. The
Frazzled family of proteins is a.relatively recently discovered family of proteins
with high homology to the extracellular binding domain of the receptor protein
family known as Frizzled. The Frizzled family of genes and proteins is
described in Wang et al., J. Biol. Chem. 271.4468-4476 (1996). The active
agent may also include other soluble receptors, such as the truncated soluble
receptors disclosed in PCT patent publication WO95/07982. From the
teaching of WO95/07982, one skilled in the art will recognize that truncated
soluble receptors can be prepared for numerous other receptor proteins.
Such would also be encompassed within the present invention. The above
publications are hereby incorporated by reference herein.
The amount of active agent useful herein is that amount effective to
stimulate increased osteogenic activity of present or infiltrating progenitor or
other cells, and will depend upon the size and nature of the defect being
treated. Generally, the amount of protein to be delivered is in a range of from
about 0.1 to about 500 mg, particularly about 10 to about 300 mg, and more
particularly about 150 to about 250 mg per cubic centimeter of material
required.
Materials which may be useful as the carrier in practicing the present
invention include pharmaceutically acceptable materials having a rigidity such
that, when mixed and dried with a bone morphogenetic protein, form a
composition that possesses appropriate handling characteristics for injectable
or implantable application to the site of osteoporotic or osteopenic bone.
Incorporating the bone morphogenetic protein in a solid carrier allows the
protein to remain in the diseased or lesioned site for a time sufficient to allow
the protein to increase the otherwise natural rate of regenerative osteogenic
activity of the infiltrating mammalian progenitor or other cells, and to form a
space in which new tissue can grow and allow for ingrowth of cells. The
carrier may also allow the bone morphogenetic protein to be released from
the disease or lesion site over a time interval appropriate for optimally
increasing the rate of regenerative osteogenic activity of the progenitor cells.
The carrier may also supply a framework on which to induce new formation in
severely osteoporotic bone.
In illustrative embodiments, the family of carriers comprises hyaluronic
acid esters or hyaluronan-based materials. As used herein, the terms
"hyaluronic acid," "hyaluronan-based material," and "hyaluronic acid
derivatives" are used interchangeably to mean hyaluronic acid (as defined
below) and its salts such as the sodium, potassium magnesium calcium and
the like, salts. After molding and drying, the hyaluronic acid carriers are in a
form suitable for injection or implantation, such as a cylindrical rod, described
in detail below. Such rods are rigid enough to withstand loading into a
conventional hypodermic needle or syringe, as well as injection into an
intraosseous space. Although rigid, the hyaluronic acid-based carrier
materials have high tensile strength and low fragility. The solid rod
compositions of the invention preferably have a relatively high density of
material (30-100%), low macroporosity, and low water content.
Hyaluronic acid occurs naturally in a variety of tissues, including
synovial fluid, vitreous humor, human umbilical cord and cocks" combs. It is
the main component of the intracellular matrix of connective tissues such as
skin, tendons, muscles and cartilage. In addition to providing mechanical
support for the cells of these tissues, hyaluronic acid also facilitates other
important biological functions, including hydration, lubrication, cellular
migration and differentiation (see, e.g., Balazs et al., Cosmetics & Toiletries
5(84):8-17). Hyaluronic acid may be extracted from natural tissues, such as
cocks" combs, or produced by recombinant methods. The molecular weight of
hyaluronic acid obtained by extraction generally ranges from between 8 and
13 million. The polyscaccharide is labile and readily degraded by a variety of
physical (mechanical, radiation) and chemical agents. As a result, ordinary
purification procedures generally produce hydrolyzed fractions of low
molecular weight hyaluronic acids (see Balazs et al., supra).
As used herein, the term "hyaluronic acid" refers to an acidic
polysaccharide comprising D-glucuronic acid and N-acetyl-D-glucosamine
residues, regardless of molecular weight, including mixtures of various
molecular weight fractions and derivatives thereof. Derivatives of hyaluronic
acid include, for example, hyaluronic acid that has been chemically modified
through esterification, cross-linking, sulphation, etc. The hyaluronic acid may
be an ester, such as a methyl ester of a hyaluronic acid as described, for
example, in Jeanloz et al., J. Biol. Chem. 186:495-511 (1950); Jager et al., J.
Bacteriology 1065-1067; Biochem. J. 167:711-716(1977); Jeanloz et al., J.
Biol. Chem. 194:141-150 (1952); or Jeanloz et al., Helvetica Chimica Acta
35:262-271 (1952).
In an illustrative embodiment, the hyaluronic acid is an ester of
hyaluronic acid with aliphatic, aromatic, aroaliphatic, cycloaliphatic or
etherocyclic alcohols, in which all or a portion of the carboxylic groups of the
acid are esterified, such as the hyaluronic acid derivatives described in U.S.
Pat. No. 5,336,767, which is hereby incorporated by reference in its entirety
herein. The hyaluronic acid starting materials may be as described in co-
pending U.S. application Serial No. 09/687,283, filed October 13, 2000, which
is hereby incorporated by reference in its entirety herein. Particularly, the
hyaluronan-based starting materials are solids such as non-woven pads, felts,
sheets, powders, sponges, and microspheres sold under the tradename
Hyaff® by Fidia Advanced Biopolymers, Abano Terme, Italy. Hyaff® materials
are described, for example, in U.S. Pat. Nos. 4,851,521; 4,965,353; and
5,202,431; and EP 0 216 453, all of which are hereby incorporated by
reference in their entireties herein. The Hyaff® materials are esters of
hyaluronic acid having one or a combination of ester moieties (e.g., benzyl,
ethyl, propyl, pentyl, or larger molecules such as hydrocortisone or methyl
prednisone), as well as various degrees of esterification (i.e., partial esters or
complete esters). Partial esters of Hyaff® materials are designated by
percent esterification ranging from 50-99 % (e.g., Hyaff-11p65® and Hyaff-
11p80®), while complete esters are 100 % esters of hyaluronic acid (e.g.,
Hyaff-11®). In addition to providing the desired handling characteristics of the
compositions of the present invention, Hyaff® materials also provide a means
for manipulating the bioavailability and absorption kinetics of the active
ingredient(s) [see, e.g., U.S. Pat. Nos. 6,339,074; 6,232,303; and 6,066,340,
all of which are incorporated by reference in their entireties herein].
In another illustrative embodiment, the hyaluronan-based starting
materials are non-woven fabrics comprising mixtures of fibers of hyaluronic
acid esters and natural polymers, semisynthetic derivatives of natural
polymers, and/or synthetic polymers. The mixture may comprise from about 1
to about 100 % hyaluronic acid. Natural polymers useful in the present
invention include, without limitation, collagen, or coprecipitates of collagen
and glycosaminoglycans; cellulose; polysaccharides such as chitin, chitosan,
pectin or pectic acid, agar, agarose, xanthan gum, gellan, alginic acid or
alginates, polymannan or polyglycans, starches, and natural gums.
Semisynthetic derivatives of natural polymers useful in the present invention
include, for example, natural polymers such as collagen cross-linked with
agents such as aldehydes or aldehyde precursors, dicarboxylic acids or
halides thereof, diamines, derivatives of cellulose, alginic acid, starch,
hyaluronic acid, chitin or chitosan, gellan, xanthan, pectin, or pectic acid,
polyglycans, polymannan, agar, agarose, natural gums, and
glycosaminoglycans. Synthetic polymers include, for example, polylactic acid,
polyglycolic acid, polydioxanes, polyphosphazenes, polysulfone resins,
polyurethane resins, and copolymers and derivatives thereof. Exemplary non-
woven fabric materials useful in the present invention, including methods of
making these materials, are described in U.S. Pat. No. 5,520,916, issued May
28, 1996, which is hereby incorporated by reference in its entirety herein.
Although much is known about the osteogenic potential of TGF-ß
proteins, recent reports show that local administration of certain
osteoinductive agents, such as BMP-2, stimulates transient osteoclastic
activity at the site of administration. This reaction, which proceeds new bone
formation induced by the BMP, has been termed "transient resorption
phenomenon."
Agents known to inhibit bone resorption may play an important role in
delaying or reducing the initial bone resorption associated with local BMP
administration, without inhibiting the subsequent bone formation. Clinically,
bisphosphonate therapy has been shown to dramatically reduce indices of
bone turnover, increase bone mineral density, and, in osteopenic women,
reduce hip and spine fracture risk (see, e.g., Fleisch, H., Bisphosphonates In
Bone Disease, From The Laboratory To The Patient, 3rd Ed., Parthenon
Publishing (1997), which is incorporated by reference in its entirety herein).
Thus, in one embodiment, a bone resorption inhibitor such as a
bisphosphonate is co-administered with the osteoinductive agent to prevent or
minimize the initial bone resorption associated with intraosseous delivery of
BMP. The co-administration of bisphosphonate blocks this undesirable
resorption phase, while still allowing the bone augmentation effect to occur.
Despite their therapeutic benefit, bisphosphonates are poorly absorbed
in the gastrointestinal tract when taken orally. To overcome this poor
bioavailability issue, intravenous administration has been used; however, this
modality is seen as costly and inconvenient due to the duration and frequency
of dosing. The present invention overcomes this deficiency by incorporating
the bisphosphonate within a carrier, and delivering it locally directly to the site
of desired action.
In one embodiment of the invention, the bone resorption inhibitor is
incorporated into the injectable osteoinductive composition as a second active
ingredient. The bone resorption inhibitor may be mixed with the osteogenic
protein, hyaluronic acid carrier, and/or optional excipient(s) prior to the
molding and drying steps. The final mixture is then molded, for example by
extrusion into a nonsolvent or air.
In another embodiment of the invention, the bone resorption inhibitor is
administered sequentially or concurrently with the osteogenic composition. In
accordance with this embodiment, the osteogenic composition may be
administered locally to a specific area in need of bone growth or repair, with
either the concurrent or sequential administration of the bone resorption
inhibitor in a separate delivery vehicle. Thus, the bone resorption inhibitor
may be injected or implanted directly at the site to be treated, for example, by
injection or surgical implantation in a sustained-release carrier. The carrier
may be any pharmaceutically acceptable carrier, a wide variety of which are
well known and readily available in the art (see, e.g., Martin, E.W.,
Remington"s Pharmaceutical Sciences (Mack Pub. Co., current edition), which
is hereby incorporated by reference in its entirety herein). Preferably the
carrier is a sustained-release carrier, most preferably the hyaluronic acid
esters or hyaluronan-based materials described above. Presently preferred
carriers are formed into solid rods, as described elsewhere herein.
As used herein, the term "inhibition of bone resorption" refers to
prevention of bone loss, especially the inhibition of removal of existing bone
through direct or indirect alteration of osteoclast formation or activity. Thus,
the term "bone resorption inhibitor" as used herein refers to agents that
prevent or inhibit bone loss by the direct or indirect alteration of osteoclast
formation or activity.
As used herein, the term "bisphosphonate" refers to the related
bisphosphonic acids and salts, and various crystalline and amorphous forms
of bisphosphonate. In a particular embodiment, the bisphosphonate is
selected from the group consisting of alendronate, cimadronate, clodronate,
EB-1053, etidronates, ibandronate, neridronate, olpadronate, pamidronate,
risedronate, tiludronate, YH 529, zolendronate, and pharmaceutically
acceptable salts, esters, acids, and mixtures thereof.
The amount of bone resorption inhibitor useful herein is that amount
effective to prevent or inhibit the initial bone loss, typically associated with the
local administration of BMP, by the direct or indirect alteration of osteoclast
formation or activity. The precise dosage necessary will depend upon the
size and nature of the defect being treated, as well as the amount of
osteogenic agent being delivered. Generally, the amount of phosphonate to
be delivered is in a range of from about 1 to about 3000 mg, particularly about
10 to about 1000 mg, and illustratively about 100 to about 500 mg per cubic
centimeter of material. The application site is preferably local (intraosseous),
but can be other parenteral sites such as intramuscular or subcutaneous for
systemic delivery.
Additional additives or excipients that may be useful in the
compositions of the present invention include, without limitation,
pharmaceutically acceptable salts, polysaccharides, peptides, proteins, amino
acids, synthetic polymers, natural polymers, and/or surfactants. Such
excipients are well known in the formulation art to stabilize and/or modulate
release of the active ingredient(s). Useful polymers include, for example,
those described in U.S. Patent No. 5,171,579, the entire disclosure of which is
incorporated herein by reference. Synthetic polymers or surfactants include,
without limitation, the pluronics, such as Poloxamer 407 gel, which are a class
of water soluble ABA type block surfactant copolymers which exhibit the
unique property of reverse thermal gelation. Other useful synthetic polymers
include polylactides and polyethylene glycols including
poly(lactide)/poly(ethylene glycol), polyvinylpyrrolidone (PVP), polyethylene
glycol), polyoxyethylene oxide, carboxyvinyl polymer and polyvinyl alcohol).
Natural polymers include, without limitation, sodium alginate, chitosan,
collagen, gelatin, hyaluronan, and cellulosic materials, such as
hydroxycelluloses. Other useful excipients include peptides, proteins, and
amino acids.
In one embodiment of the present invention, the excipient is present in
powder form, which is then mixed with the active agent(s) into solubilized
Hyaff-11® in organic solvent, and extruded into ethanol (nonsolvent) to form
rods, which are then rinsed and dried. The final composition may contain one
or a combination of excipients, preferably a salt, sugar (e.g., sucrose) and/or
amino acid (e.g., glycine and/or glutamic acid). Compositions of the present
invention may comprise about 1 to about 60 % (w/w) amino acid, about 1 to
about 60 % (w/w) of a sugar, and about 1 to about 60 % (w/w) synthetic
polymer. In another embodiment of the invention, the formulation comprises
about 20-50 % (w/w) amino acid, and/or about 5-50 % (w/w) sugar, and/or
about 20-50 % (w/w) synthetic polymer.
The injectable compositions of the present invention may be
administered in any clinically acceptable manner of injection. A number of
commercially available syringes may be suitable for use in the present
invention, and for administration of the compositions of the present invention.
For example, suitable syringes are available the Catesept® syringe [JS Dental
Manufacturing, Ridgefield CT] comprises sterile calcium hydroxide paste in
isotonic saline solution, in a non-aspirating or modified aspirating cartridge
syringe; Henke-Ject® aspirating syringe and Hypo® dental syringes/needles
[Smith & Nephew MPL, Franklin Park, IL]; intraosseous needles from MPL,
Inc., Chicago IL; and Luer-Lok® Syringes [Becton Dickinson, Franklin Lakes,
NJ], may all be appropriate syringes for use in the present invention. Any
syringe capable of holding and delivering an injectable rod and/or enabling
extrusion with an obdurator is appropriate for use.
In one embodiment of the invention, the solid rod-shaped compositions
are delivered intraosseously using an appropriate size and type hypodermic
needle percutaneously or surgically preplaced into the selected anatomic
location. Percutaneous placement of the hypodermic needle may be
accomplished using manual palpation of known anatomic landmarks, with or
without the use of fluoroscopy for visualize placement. Fluoroscopy may also
be used in conjunction with surgical implantation prior to and/or concurrent
with placement of the hypodermic needle.
In an illustrative embodiment, a guide wire (commonly referred to as a
"k-wire") is first inserted percutaneously into the desired anatomic location to
serve as a guide for the hypodermic needle. The hypodermic needle is
inserted over the guide wire, which is subsequently removed leaving only the
hypodermic needle in place. The solid rod-shaped composition is then
inserted into the hub end of the hypodermic needle. Following loading of the
composition, a second guide wire is inserted into the needle, which is used to
advance the solid composition to the tip of the needle. The needle is then
removed leaving the guide wire to anchor the composition within the bone at
the desired location. Finally, the guide wire is removed leaving the solid
composition in place. In another embodiment, the solid rod-shaped
composition of the invention is preplaced within the needle barrel. After
placement into the desired anatomic site, the plunger of the syringe is
advanced into the needle barrel as the device is withdrawn, leaving the solid
rod-shaped composition at the desired location.
In one embodiment of the present invention, bone morphogenetic
proteins are used as an osteoinductive agent to treat osteoporosis. Patients
who might benefit from such treatment may be identified using any one or
more of a variety of standard procedures, including measurement of bone
mass/density using dual-energy X-ray absorptiometry (DEXA), quantitative
computed tomography (QCT), single-photon absorptiometry, ultrasound
transmission velocity (UTV), and/or radiographic assessment. Such
procedures provide the clinician with information on the location and severity
of osteoporotic or osteopenic bone lesions. In addition to locating the
lesion(s) to be treated, the clinician can use this information to select the
appropriate mode of administration and dose of osteoinductive agent for the
patient.
In another embodiment of the present invention, bone morphogenetic
proteins are used as an osteoinductive agent in the process known as
distraction osteogenesis. This process is an alternative to segmental bone
regeneration in response to implanted osteoinductive agents. In traditional
segmental bone repair, the osteoinductive agent and carrier are placed in the
defect created between the parent bone ends. For bone formation to occur,
the osteoinductive agent has to have sufficient residence time in the defect to
stimulate differentiation of sufficient numbers of bone forming cells to support
new bone formation. The process of distraction osteogenesis creates a
regenerate construct between the distracted parent bone ends that is highly
vascular and contains a large population of mesenchymal stem cells destined
to become bone forming cells. As a result, the regenerate construct
represents a much more ideal environment for cell differentiation growth
factors such rhBMP-2 to stimulate rapid bone induction relative to induction of
bone within a segmental defect.
The process of distraction osteogenesis begins with an initial latency
period allowing a fibrous connection to form between the bone ends to be
distracted. Following this latency period, the bone ends are slowly distracted
at a controlled rate of up to 1 mm per day in human clinical cases. Once the
regenerate forms and the bone ends are distracted to the appropriate length,
a prolonged consolidation period is required to allow the regenerate to form
bone. This prolonged consolidation period which can be on the order 4 to 6
months is associated with considerable morbidity. A frequent complication is
the occurrence of pin track infections resulting from the extended length of
time the external fixator used to generate the distraction must remain in place.
In addition, there are considerable psychological effects and life style
alterations associated with wearing the external fixator for prolonged periods
of time. In addition to complications associated with the external fixator, there
are a number of patients where the regenerate does not form properly and a
delayed union or non-union occurs. Since the regenerate contains a
responsive cell population and is already highly vascularized following the
initial distraction phase, the use of bone morphogenetic proteins may rapidly
accelerate the rate of bone formation during the normally prolonged
consolidation phase of distraction osteogenesis. Acceleration of the
distraction phase is limited by stretching of the soft tissues associated with
bone. The cells created using distraction osteogenesis may also be
harvested in order to provide a source of cells that are primed for
osteogenesis. These cells can be cultured to prepare immortalized cell lines.
If desired, these cells can also be immunotolerized using agents such as
CTLA4 receptors [U.S. Patent 5,434,131] or CTLA4 ligands or B7 monoclonal
antibodies [WO 96/40915]. Methods and materials for such
immunotolerization are disclosed in the above references, and include co-
transfection or treatment with these factors. The disclosure of these
references is hereby incorporated herein by reference.
In addition to treating osteoporosis and closed fractures, the rod-
shaped compositions of the present invention may also find application to
other bone sites such as bone cysts and defects. Injectable solid
compositions may also be administered to non-bone sites, for example into
tendons, damaged cartilage tissue, ligaments, and/or their attachment sites to
bones.
Although the foregoing discussion relates to the administration of a
single osteoinductive composition, the present invention expressly
contemplates the co-administration of multiple active ingredients in separate
formulations, for example the bisphosphonate compositions described above.
Multiple active ingredients may be delivered concurrently or sequentially in
separate delivery vehicles, and individually or in combination.
The dosage regimen will be determined by the clinical indication being
addressed, as well as by various patient variables (e.g. weight, age, sex) and
clinical presentation (e.g. extent of injury, site of injury, etc.).
The compositions of the subject invention allow therapeutically effective
amounts of osteoinductive protein to be delivered to an injury site where
-cartilage and/or bone formation is desired. The formulations may be used as
a substitute for autologous bone graft in fresh and non-union fractures, spinal
fusions, and bone defect repair in the orthopaedic field; in cranio/maxillofacial
reconstructions; in osteomyelitis for bone regeneration; and in the dental field
for augmentation of the alveolar ridge and periodontal defects and tooth
extraction sockets. When used to treat osteomyelitis or for bone repair with
minimal infection, the osteogenic protein may be used in combination with
antibiotics. The antibiotic is selected for its ability to decrease infection while
having minimal adverse effects on bone formation. Preferred antibiotics for
use in the compositions of the present invention include vancomycin and
gentamycin. The antibiotic may be in any pharmaceutically acceptable form,
such as vancomycin HCI or gentamycin sulfate. The antibiotic is preferably
present in a concentration of from about 0.1 mg/mL to about 10.0 mg/mL.
The traditional preparation of formulations in pharmaceutically acceptable
form (i.e. pyrogen free, appropriate pH and isotonicity, sterility, etc.) is well
within the skill in the art and is applicable to the formulations of the invention.
The solid rod-shaped compositions of the present invention may also
be utilized in combination with other drugs, growth factors, peptides, proteins,
cytokines, oligonucleotides, antisense oligonucleotides, DNA and polymers.
These compounds may be added by mixing them with the hyaluronic acid
carrier or by covalent attachment to the carriers. The hyaluronic acid
compositions may also be used with DNA encoding for BMPs and cells
transduced or transfected with genes encoding BMP proteins.
The following examples are illustrative of the present invention and are
not limiting in any manner. Modifications, variations and minor enhancements
are contemplated and are within the present invention.
Example 1: Formulation of Hvaff-11 Rods
Injectable 100% esterified Hyaff-11 rod-shaped compositions (1 mm in
diameter) were prepared and evaluated for recombinant human bone
morphogenetic protein-2 (rhBMP-2) retention and bone formation efficacy.
The rod-shaped compositions comprised Hyaff-11® hyaluronan-based
material as carrier, two doses (see Table 1) of rhBMP-2 as active ingredient,
and varying amounts of excipients for modulation of release kinetics.
Excipients used in this example consisted of dry powder forms of either
glutamic acid or buffer salts. Buffer salts contained 0.5% sucrose, 2.5%
glycine, 5 mM L-glutamic acid, 5 mM NaCI, and 0.01% polysorbate 80. The
Hyaff-11® based compositions were formed into rod shapes using a phase
inversion process. Briefly, rhBMP-2 and excipients (glutamate and buffer
salts) were mixed into pre-solubilized Hyaff-11® particulates (10% w/v) in
organic solvent N-methylpyrrolidone (NMP), extruded into excess ethanol
(nonsolvent) using a syringe and a catheter (e.g., 16-gauge), phase inverted
for 1 hour, rinsed, and dried. The drying step consisted of 24 hour air-drying
followed by a 24 hour lyophilization step. Extrusion was performed using a
metered syringe pump, preferably at 0.2 mL/min injection rate. The following
Hyaff-11®-based compositions were prepared: Hyaff-11®, 20% (w/w) rhBMP-
2, and 40% (w/w) glutamate (i.e., 40/40/20 (w/w) Hyaff-11®/glutamate/rhBMP-
2); Hyaff-11®, 60% (w/w) rhBMP-2/buffer salts (i.e., 40/60 (w/w) Hyaff-
11®/rhBMP-2); and Hyaff-11®, 20% (w/w) rhBMP-2, and 20% (w/w) buffer
salts (i.e., 60/20/20 (w/w) Hyaff-11®/buffer salts/rhBMP-2). High rhBMP-2
doses were obtained by desalting the protein formulation prior to combination
with the Hyaff-11. Dried rods were typically cut into 1 or 2 cm segments for
further evaluation. The theoretical doses of the rods are listed in Table 1.
The preferred mode of administration is a 16-gauge hypodermic needle
equipped with an obdurator to inject the solid rods into the intraosseous site.
Example 2: Formulation of Hyaff-11 p65® Rods
Injectable 65% esterified Hyaff-11p65 rod-shaped compositions (1 mm
in diameter) were prepared and evaluated for rhBMP-2 retention and bone
formation efficacy. The rod-shaped compositions comprised Hyaff-11p65®
hyaluronan-based material as carrier and two doses (see Table 1) of rhBMP-2
as active ingredient. Hyaff-11 p65®-based compositions comprising 20%
(w/w) rhBMP-2 (i.e., 80/20 (w/w) Hyaff-11p65®/rhBMP-2) or 40% (w/w)
rhBMP-2 (i.e., 60/40 (w/w) Hyaff-11p65®/rhBMP-2) were prepared by mixing
desalted rhBMP-2 and Hyaff-11p65® non-woven pads in dry forms, followed
by hydrating to 18.75% (w/v) of the weight of the non-woven pad, mixing to a
white paste-like consistency, transferring to a syringe, extruding through a
catheter (e.g., 16-gauge), and drying. A variation of this method consists of
extruding the paste through a catheter to a rod form, freezing the rod (in -80°C
or liquid nitrogen), inserting into a slightly larger diameter tubing (e.g., 14-
gauge catheter), and drying. The drying step consisted of 24-hour air-drying
followed by a 24-hour lyophilization step. Alternative methods of rod
preparation include molding the Hyaff-11 p65® paste into a 1.5 mm inner-
diameter silastic or Teflon®/FeP tubing followed by drying. The preferred
mode of administration is a 16-gauge hypodermic needle equipped with an
obdurator to force the solid rods into the intraosseous site.
Example 3: In Vitro Characterization
All rod-shaped compositions were rigid, straight, handleable, and
injectable through a 16-gauge needle. Scanning electron micrographs (SEM)
of Hyaff-11® rod compositions were typically solid, dense, and smooth, while
those of Hyaff-11 p65® rod compositions were densely packed with short,
fibrillar segments of the native non-woven fibers. Bioactivity of rhBMP-2 in the
rod-shaped compositions was obtained after extracting rhBMP-2 from the
compositions and testing its ability to induce alkaline phosphatase (a bone
marker) expression in mouse W-20-17 stromal cells. The rhBMP-2 from
Hyaff-11® and Hyaff-11p65® rod compositions were bioactive.
Example 4: In Vivo Local Biodistribution
A range of in vivo rhBMP-2 retention profiles were obtained using
Hyaff-11® and Hyaff-11 p65® rod compositions. Local retention times of
rhBMP-2 in 1 cm rod-shaped compositions (prepared as described in
Example 1 and 2) were evaluated in a rabbit distal femur intraosseous model
using 125l-rhBMP-2 and gamma scintigraphy (Figure 1). Formulations
comprising Hyaff-11® (not Hyaff-11p65®) provided slow, sustained release of
rhBMP-2, regardless of BMP-2 dose or excipients. Sterilization of the
glutamate excipient by ethylene oxide provided a slightly more burst release
during the initial 3-day period as compared to gamma-sterilized glutamate.
The 80/20 (w/w) Hyaff-11p65®/rhBMP-2 composition provided the fastest
release kinetics of rhBMP-2.
Example 5: Efficacy and Biocompatibilitv
The Hyaff-11 ©-based compositions (not Hyaff-11 p65®), prepared as
described above, were evaluated for biocompatibility and effect on bone
formation two weeks following subcutaneous (ventral thorax) and
intraosseous (distal femur) administration in rats. The rod-shaped
compositions were 2 mm and 10 mm in length for intraosseous and
subcutaneous administration, respectively. Radiographic and histologic
analysis of subcutaneous sites of administration showed bone formation
adjacent to the rod-shaped compositions containing rhBMP-2, suggesting that
rhBMP-2/Hyaff-11® rods were osteoinductive (data not shown). Both
subcutaneous and intraosseous sites of administration showed minimum
inflammatory responses, suggesting good biocompatibility of the hyaluronic
acid/BMP-2 compositions. The Hyaff-11® and Hyaff-11 p65® rod
compositions were additionally injected into rabbit distal femurs and after 7
weeks, considerable de novo bone formation in the intraosseous space was
observed by histology (data not shown) and particularly in the 80/20 (w/w)
Hyaff-11 p65®/rhBMP-2 and 40/40/20 (w/w) Hyaff-11-®/g!utamate/rhBMP-2
formulations. Injection of 80/20 (w/w) Hyaff-11 p65®/rhBMP-2 rod formulation
into the distal radius of ovariectomized baboons resulted in a 30 % relative
increase in trabecular bone volume compared to untreated controls
histologically (data not shown).
WE CLAIM
1. A composition for injectable delivery of osteogenic proteins comprising an osteogenic
protein and a hyaluronic acid ester, wherein the composition is in the form of a
cylindrical rod suitable for intraosseous injection in solid state into a body.
2. The composition as claimed in claim 1, wherein the osteogenic protein is selected
from the group consisting of BMP-2, BMP-4, BMP-5, BMP-6, BMP-7, BMP-10, BMP-
12, BMP-13, or MP52.
3. The composition as claimed in claim 1, comprising a bone resorption inhibitor.
4. The composition as claimed in claim 3, wherein the bone resorption inhibitor is a
bisphosphonate.
5. The composition as claimed in claim 1, wherein the hyaluronic acid ester comprising
from 50 percent to 100 percent hyaluronic acid esterification.
6. The composition as claimed in claim 1, wherein the hyaluronic acid ester is Hyaff-
11p65.
7. The composition as claimed in claim 1, wherein the hyaluronic acid ester is Hyaff-
11 p65 and the osteogenic protein is BMP-12, BMP-13, or MP52.
8. The composition as claimed in claim 1, wherein the hyaluronic acid ester is a cross-
linked hyaluronic acid.
9. The composition as claimed in claim 1, wherein the diameter of said cylindrical rod is
between 0.5 to 1.5 mm.
10. The composition as claimed in claim 1, wherein the length of said cylindrical rod is
between 2 cm and 5 cm.
11. A composition for treating osteoporotic bone prepared by a process comprising the
steps of:
(a) mixing an osteogenic protein and an hyaluronic acid ester to form an osteogenic
mixture; and
(b) forming and drying the osteogenic mixture into a cylindrical rod suitable for
intraosseous injection in solid state into a body.
12. The composition as claimed in claim 11, wherein the step of mixing comprises mixing
the osteogenic protein and hyaluronic acid ester with a bone resorption inhibitor.
13. The composition as claimed in claim 12, wherein the bone resorption inhibitor is a
bisphosphonate.
14. The composition as claimed in claim 11, wherein the hyaluronic acid ester is prepared
by hydration or solubilization of insoluble or partially soluble particles, films, fibers,
non-woven pads, or sponges of hyaluronic acid benzyl esters in water, an organic
solvent or an aqueous buffer.
15. The composition as claimed in claim 11, wherein the osteogenic protein is selected
from the group consisting of BMP-2, BMP-4, BMP-5, BMP-6, BMP-7, BMP-10, BMP-
12, BMP-13, and MP52.
16. The composition as claimed in claim 11, wherein the step of mixing comprises mixing
the osteogenic protein and hyaluronic acid ester with a solvent; and wherein the step
of forming and drying the osteogenic mixture into a cylindrical rod comprise extruding
the osteogenic mixture in a nonsolvent.
17. The composition as claimed in claim 16, wherein the solvent is N-methyl
pyrrolidinone (NMP) or dimethyl sulfoxide (DMSO).
18. The composition as claimed in claim 11, where in the step of forming and drying the
osteogenic mixture comprises extruding the osteogenic mixture in a nonsolvent.
19. The composition as claimed in claim 11, wherein the nonsolvent is ethanol or water.
20. The composition as claimed in claim 11, where in the step of forming and drying the
osteogenic mixture comprises extruding the osteogenic mixture into air and drying.
21. The composition as claimed in claim 11, wherein the diameter of said cylindrical rod
is between 0.5 to 1.5 mm.
22. The composition as claimed in claim 11 wherein the length of said cylindrical rod is
2 cm to 5 cm.
23. A method for preparing an injectable, rod-shaped, sustained-release composition
comprising the steps of:
(a) mixing an osteogenic protein with a hyaluronic acid ester to form an osteogenic
mixture comprising the hyaluronic acid ester in an amount of between 1 to 50 (w/v)
percent;
(b) molding the osteogenic mixture to form a rod-shaped product suitable for
intraosseous injection in solid state into a body; and
(c) drying the rod-shaped product from step (b).
24. The method as claimed in claim 23, wherein step (a) comprises mixing the osteogenic
protein and hyaluronic acid ester with a bone resorption inhibitor.
25. The method as claimed in claim 24, wherein the bone resorption inhibitor is
bisphosphonate.
26. The method as claimed in claim 23, wherein step (a) comprises the solubilization of
the hyaluronic acid ester into organic solvent.
27. The method as claimed in claim 26, wherein the organic solvent is N-methyl
pyrrolidinone (NMP) or dimethyl sulfoxide (DMSO).
28. The method as claimed in claim 23, wherein step (a) comprises the hydration of the
hyaluronic acid ester into aqueous buffer.
29. The method as claimed in claim 23, wherein the hyaluronic acid ester in step (a) is
between 10 to 25 (w/v) percent.
30. The method as claimed in claim 23, wherein said molding in step (b) comprises
extruding the osteogenic mixture in a nonsolvent.
31. The method as claimed in claim 23, wherein said molding in step (b) comprises
extruding the osteogenic mixture into air and drying.
32. The method as claimed in claim 23, wherein the osteogenic protein is selected from
the group consisting of BMP-2, BMP-4, BMP-5, BMP-6, BMP-7, BMP-10, BMP-12,
BMP-13, and MP52.
33. The method as claimed in claim 23, wherein the hyaluronic acid ester comprises from
50 percent to 100 percent hyaluronic acid esterification.
34. A method for preparing an injectable sustained-release composition comprising the
steps of:
(a) mixing an osteogenic protein with a hyaluronan-based material to form an
mixture;
(b) compressing the mixture from step (a) to form a dense osteogenic mixture; and
(c) forming the dense osteogenic mixture from step (b) into a solid cylindrical rod
suitable for intraosseous injection into a body.
35. The method as claimed in claim 34, wherein the mixing in step (a) comprises mixing
the osteogenic protein and hyaluronan-based material with a bone resorption
inhibitor.
36. The method as claimed in claim 35, wherein the bone resorption inhibitor is a
bisphosphonate.
37. The method as claimed in claim 34, wherein said forming in step (c) consists of
extruding, pressing, molding, boring or cutting to form a cylindrical rod with a
diameter of between 0.5 to 1.5 mm.
38. The method as claimed in claim 34, wherein the osteogenic protein is selected from
the group consisting of BMP-2, BMP-4, BMP-5, BMP-6, BMP-7, BMP-10, BMP-12,
BMP-13, and MP52.
39. The method as claimed in claim 34, wherein the hyaluronan-based material is an ester
comprising from 50 percent to 100 percent hyaluronic acid esterification.
The invention relates to the field of osteogenic proteins and pharmaceutical formulations
thereof. The invention is directed to the technical problem of local and systemic osteogenic
protein delivery, and particularly to the problem of delivering osteogenic proteins to the site of
bone defects without an open reduction procedure. The technical solution provided by the
invention is compositions useful for injectable intraosseous delivery and sustained release of
osteogenic proteins, which result in increased retention of osteogenic proteins at the site of
delivery, increased bone growth, and reduced risk for embolisms.

Documents:

1814-kolnp-2004-granted-abstract.pdf

1814-kolnp-2004-granted-assignment.pdf

1814-kolnp-2004-granted-claims.pdf

1814-kolnp-2004-granted-correspondence.pdf

1814-kolnp-2004-granted-description (complete).pdf

1814-kolnp-2004-granted-drawings.pdf

1814-kolnp-2004-granted-examination report.pdf

1814-kolnp-2004-granted-form 1.pdf

1814-kolnp-2004-granted-form 13.pdf

1814-kolnp-2004-granted-form 18.pdf

1814-kolnp-2004-granted-form 3.pdf

1814-kolnp-2004-granted-form 5.pdf

1814-kolnp-2004-granted-gpa.pdf

1814-kolnp-2004-granted-letter patent.pdf

1814-kolnp-2004-granted-reply to examination report.pdf

1814-kolnp-2004-granted-specification.pdf


Patent Number 215537
Indian Patent Application Number 01814/KOLNP/2004
PG Journal Number 09/2008
Publication Date 29-Feb-2008
Grant Date 27-Feb-2008
Date of Filing 30-Nov-2004
Name of Patentee WYETH & FIDIA ADVANCED BIOPOLYMERS S.R.L.
Applicant Address FIVE GIRALDA FARMS MADISON USA.
Inventors:
# Inventor's Name Inventor's Address
1 LI REVECCA H 14 SHIRE LANE BEDFORD MA 01730 USA.
2 KIM HYUN D 262 WASHINGTRON STREET BOXFORD USA.
PCT International Classification Number C12N
PCT International Application Number PCT/US03/14609
PCT International Filing date 2003-05-12
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 60/381, 590 2002-05-17 U.S.A.