Title of Invention | METHOD FOR THE PRODUCTION OF RECOMBINANT DNA-DERIVED TISSUE PLASMINOGEN ACTIVATOR AND A DNA MOLECULE |
---|---|
Abstract | Method for the production of recombinant DNA-derived tissue plasminogen activator (tPA), a tPA variant, a Kringle 2 Serine protease molecule (K2S) or a K2S variant in prokaryotic cells, wherein said tPA, tPA variant, K2S molecule or K2S variant is secreted extracellularly as an active and correctly folded protein, characterized in that the prokaryotic cell contains and expresses a vector comprising the DNA coding for said tPA, tPA variant, K2S molecule or K2S variant operably linked to the DNA coding for the signal peptide OmpA. |
Full Text | FORM 2 THE PATENTS ACT 1970 [39 OF 1970] & THE PATENTS RULES, 2003 COMPLETE SPECIFICATION [See Section 10; rule 13] "METHOD FOR THE PRODUCTION OF RECOMBINANT DNA-DERIVED TISSUE PLASMINOGEN ACTIVATOR AND A DNA MOLECULE" BOEHRINGER INGELHEIM INTERNATIONAL GMBH, a German company, of Binger Strasse 173, D-55216 Ingelheim am Rhein, Germany, The following specificatiori particularly describes the invention and the manner in which it is to be performed: ORIGINAL 482/MUMNP/2003 GRANTED 6-6-2007 The present invention relates to an isolated DNA molecule Background art Tissue plasminogen activator (tPA) is a polypeptide containing 527 amino acid residues (27) with a molecular mass of 72 kDa. The molecule is divided into five structural domains. Nearby the N-terminal region is a looped fmgerqpmain, which is followed by a growth facror domain. Two similar domains, knngle 1 and kringje-2; are following. Both finger and kringle 2 domains bind specifically to the fibrin clots thereby acceleratineg tPA protein activation of bound plasminogen. Downstream of kringle 2 is the.serine protease^with its catalytic site located at the C-tenninus. The serine protease is responsible for converting plasminogen to plasmin a reaction important in the homeostasis of fibrin formation and clot dissolution. The correct folding of tPA requires the correct pairing of 17 disulfide bridges-in the molecule (1). Clinically, tPA is a thrombolytic agent of choice for the treatment of acute myocardial infarction, pulmonary embolism, stroke, peripheral arterial occlusions, and other thromboembolic diseases. It has the advantage of causing no side effects on systemic haemorrhaging and fibrinogen depletion (7). Bowes melanoma cells were first used as a source in tPA production for therapeutic purposes (12). Since a consistent process with efficient production of highly purified protein in good yield is required for clinical use, the construction of full-length recombinant-fPA (r-tPA) progressed to mammalian cells. Chinese hamster ovary cells were transfected with the , tPA gene to synthesize the r-tPA (8, 22). The recombinant DNA derived product produced by a mammalian cell culture fermentation system is harvested and purified from the culture medium. Attracted by simplicity and economy of production, a number of efforts in producing r-tPA from microorganisms, expecially bacteria, and more especially from Escherichia coli, were investigated (10, 13, 30). Regarding the low yield and the formation of inclusion bodies, which resulted in misfolding and in an inactive enzyme, numerous strategies have been proposed to overcome these problems. Several deletion-mutant variants including kringle 2 plus serine protease (K2S) were considered. However, the enzymatic activity of the recombinant-K2S (r-K2S) was obtained only when refolding processes of purified inclusion bodies from cytoplasmic compartment were achieved (16,29). In order to avoid the cumbersome refolding processes, impurities of misfolded proteins, and periplasmic protein delivery, special bacterial expression systems were exploited (6, 31). Despite periplasmic expression of tPA, overexpression led to inactive aggregates, even in the relatively high oxidizing condition in the periplasm. In the prior art, there are a few descriptions of methods for the preparation of recombmant K2S in E. coli. However, there is no disclosure of a method leading to a cost effective method for large scale production of biologically active K2S. Obukowicz et al. (25) expressed and purified r-K2S from periplasmic space. The obvious disadvantage of this method was an extra periplasmic extraction step, which is not suitable for large scale production. Saito et al. (29) disclose the cytoplasmic expression of r-K2S. The authors used an in vivo renaturation processes for the expressed r-K2S, which was purified from the cytoplasmic space of E. coli as inclusion body. Boehringer Mannheim use a similar cumbersome denaturing/refolding process involving the steps of cell digestion, solubilization under denaturing and reducing conditions and reactivation under oxidizing conditions in the presence of GSH/GSSG which is not cost effective (24) and requires mutation of the amino acid sequence with possibly antigenic potential. In 1991, Waldenstrom et al. (34) constructed a vector (pEZZK2P) for the secretion of kringle 2 plus serine protease domain to E. coli culture supernatant. Hydroxylamine was used to remove the ZZ fusion peptide from IgG-Sepharose purified fraction. The cleavage agent hydroxylamine required modification of the cleavage sites of kringle 2 plus serine protease (Ash177 → Ser and Asn184 → Gin) thus to protect it from hydroxylamine digestion. However, the resulting non-native, not properly folded K2S molecule is not suitable for therapeutic purposes. No enzymatic 3 activity regarding fibrin binding/protease activity was disclosed. The unusual sequence may even activate the human immune system. The problem underlying the present invention was thus to provide a commercially applicable method for large scale production of tPA molecules and derivatives therof, e.g. K2S, wherein the K2S molecule is secreted in its biologically active form into the culture supernatant. Description of the invention The problem was solved within the scope of the claims and specification of the present invention. The use of the singular or plural in the claims or specification is in no way intended to be limiting and also includes the other form. The invention relates to a method for the production of a recombinant DNA-derived tissue plasminogen activator (tPA), a tPA variant, a Kringle 2 Serine protease molecule (K2S) or a K2S variant in prokaryotic cells, wherein said tPA, tPA variant, K2S molecule or K2S variant is secreted extracellularly as an active and correctly folded protein, characterized in that the prokaryotic cell contains and expresses a vector comprising the DNA coding for said tPA, tPA variant, K2S molecule or K2S variant operably linked to the DNA coding for the signal peptide OmpA or a functional derivative thereof. Surprisingly, the use of the signal peptide OmpA alone and/ or in combination with the N-teiminal amino acids SEGNJSEQ ID NO:9) / SEGNSD (SEQ ID NO:10) translocate the recombinant DNA-derived tPA, tPA variant, K2S molecule or K2S variant to the outer surface and facilitates the release of the functional and active molecule into the culture medium to a greater extent than any other method in the prior art. Before crossing the outer membrane, the recombinant DNA-derived protein is correctly folded according to the method of the present invention. The signal peptide is cleaved off to produce a mature molecule. Surprisingly, the efficiency of signal peptide removal is very high and leads to correct folding of the recombinant DNA-derived protein. Said signal peptide OmpA interacts with SecE and is delivered across the inner membrane by. energy generated by SecA, which binds to Sec components (SecE-SecY). SecY forms a secretion pore to dispatch the recombinant DNA-derived protein according to the invention. The space between the outer membrane and inner membrane of Gram-negative bacteria, periplasm, has higher oxidative condition in comparison to the cytoplasmic space. This supports the formation of disulfide bonds and properly folding of the recombinant DNA-derived protein (e.g. K2S) in the periplasm to yield an active molecule. According to the present invention, the signal peptide will be cleaved off to produce a mature molecule. The complex of GspD secretin and GspS lipoprotein on the outer membrane serves as gate channel for secreting the recombinant DNA- derived protein according to the invention to the extracellular medium. This secretion process requires energy, which is generated in cytoplasm by GspE nucleotide-binding protein then transferred to the inner membrane protein (Gsp G-J, F and K-N). GspC transfers the energy to GspD by forming a cross-linker between a set of inner membrane protein (Gsp G-J, F and K-N) and GspD. Before crossing the outer membrane successfully, the recombinant DNA-derived protein is correctly folded. Operably linked according to the invention means that the DNA encoding the tPA, tPA variant, K2S molecule or K2S variant (preferably comprising the nucleic acid encoding SEGN or SEGNSD at its N-terrninal portion) is cloned in close proximity to the OmpA DNA into the vector in order to achieve expression of the OmpA-tPA, tPA variant, K2S molecule or K2S variant-fusion protein and to direct secretion outside the prokaryotic host cell. Typically, the majority of the tPA, tPA variant, K2S molecule or K2S variant is secreted and can then be purified by appropriate methods such as ammonium sulfate precipitation and/or affinity chromatography and further purification steps. The invention also includes the use of inducers such as IPTG or IPTG in combination with glycerol, the improvement of the incubation condition and harvesting period to maximize the amount of active protein. In a preferred embodiment, said DNA encoding the OmpA signal peptide may be fused to a short peptide characterized by the amino acid sequence SEGN or SBGNSDor the coding nucleic acid sequence_TCTGAGGGAAAC (SEP ID NO:20) or TCTGAGGGAAACAGTGAC (SEQ ID NO:_l) and located in the Nterminal portion or at the_Nterminal.pxation-of-the.tPA, -tPA variant, K2S molecule or K2S variant Thus, preferably, said fusion.protein.comprises OmpA-SEGNSD-tPA, -tPA-variant, -K2S-molecule or -K2S-yariant. Even more preferred, said amino acids characterized by SEGN or SEGNSD may be carry a point mutation or may be substituted by a non-natural amino acid. Even more preferred, there may be an amino acid or non-arnino acid 1 spacer between OmpA and SEGN or SEGNSD and the tPA, tPA variant, K2S molecule or K2S variant. Thus, in a preferred method according to the invention said the prokaryotic cell contains and expresses a vector comprising the DNA coding for said tPA, tPA variant, K2S molecule or K2S 5 variant operably linked to the DNA coding for the signal peptide OmpA which is operably linked to the nucleic acid molecule defined by the sequence TCTGAGGGAAACAGTGAC or a functional derivative thereof. The method according to the invention comprises prokaryotic host cells such as, but not limited to Escherichia coli (E. coli), Bacillus subtilis, Streptomyces, Pseudomonas, e.g. Pseudomonas putida, Proteus mirabilis, Saccharomyces, Pichia or Staphylococcus, e.g. Staphylococcus carnosus. Preferably said host cells according to the invention are Gram-negative bacteria. Preferably, a method according to the invention is also characterised in that the prokaryotic cell is E. coli. Suitable strains include, but are not limited to E. coli XL-1 blue, BL21(DE3), JM109, DH series, TOP10 and HB101. Preferably, a method according to the invention is also characterised in that the following steps are carried out: a) the DNA encoding the tPA, tPA variant, K2S molecule or K2S variant is amplified by PCR; b) the PCR product is purified; c) said PCR product is inserted into a vector comprising the DNA coding for OmpA signal peptide and the DNA coding for gpIII in such a way that said PCR product is operably linked upstream to the DNA coding for the OmpA signal sequence and linked downstream to the DNA coding for gpIII of said vector; d) that a stop codon is inserted between said tPA, tPA variant, K2S molecule or K2S variant and gpHI; e) said vector is expressed by the prokaryotic cell f) the tPA, tPA variant, K2S molecule or K2S variant is purified. For step a) according to the invention the choice / design of the primers is important to clone the DNA in the right location and direction of the expression vector (see example 1), Thus, the primers as exemplified in example 1 and figure 4 comprise an important aspect of the present invention. With gp III of step c) gene protein III is meant which is present mainly in phagemid vectors. The stop codon is inserted to avoid transcription of gp III thus eventually leading to secretion of the tPA, tPA variant, K2S molecule or K2S variant of interest. Any suitable method for insertion of the stop codon may be employed such as site-directed mutagenesis (e.g. Weiner MP, Costa GL (1994) PCR Methods Appl 4(3):S131-136; Weiner MP, Costa GL, Schoettlin W, Cline J, Mathur E, Bauer JC (1994) Gene 151(1-2): 119-123; see also example 1). Any vector may be used in the method according to the invention, preferably said vector is a phagemid vector (see below). Preferably, a method according to the invention is also characterised in that the tPA, tPA variant, K2S molecule or K2S variant is selected from human tissue plasminogen activator (tPA, figure 16) or a fragment, a functional variant, an allelic variant, a subunit, a chemical derivative, a fusion protein or a glycosylation variant therof. Such fragments, allelic variants, functional variants, variants based on the degenerative nucleic acid code, fusion proteins with an tPA protein according to the invention, chemical derivatives or a glycosylation variant of the tPA proteins according to the invention may include one, several or all of the following domains or subunits or variants thereof: 1. Finger domain (4-50) 2. Growth factor domain (50-87) 3. Kringle 1 domain (87-176) 4. Kringle 2 domain (176-262) 5. Protease domain (276-527) - The numbering/naming of the domains is according to Genbank accession number GI137119 or Nature 301 (5897), 214-221 (1983). More preferably, a method according to the invention is also characterised in that the tPA, tPA variant, K2S molecule or K2S variant is selected from the Kringle 2 (4.) plus Serine protease (5.) K2S variant of human tissue plasminogen activator or a fragment, a functional variant, an allelic variant, a subunit, a chemical derivative, a fusion protein or a glycosylation variant therof. More preferably, a method according to the invention is also characterised in that the vector is a phagemid vector comprising the DNA coding for OmpA signal peptide and the DNA coding for gpm. More preferably, a method according to the invention is also characterised in that the vector is the pComb3HSS phagemid (see also example 1). More preferably, a method according to the invention is also characterised in that the DNA sequence comprises or consists of the following DNA sequence encoding OmpA and K2S or a functional variant thereof or a variant due to the degenerate nucleotide code: ATGAAAAAGACAGCTATCGCGATTGCAGTGGCACTGGCTGGTTTCGCTACCGTGGCC CAGGCGGCCTCTGAGGGAAACAGTGACTGCTACTTTGGGAATGGGTCAGCCTACCG TGGCACGCACAGCCTCACCGAGTCGGGTGCCTCCTGCCTCCCGTGGAATTCCATGAT CCTGATAGGCAAGGTTTACACAGCACAGAACCCCAGTGCCCAGGCACTGGGCCTGG 7 GCAAACATAATTACTGCCGGAATCCTGATGGGGATGCCAAGCCCTGGTGCCACGTG CTGAAGAACCGCAGGCTGACGTGGGAGTACTGTGATGTGCCCTCCTGCTCCACCTGC GGCCTGAGACAGTACAGCCAGCCTCAGTTTCGCATCAAAGGAGGGCTCTTCGCCGA CATCGCCTCCCACCCCTGGCAGGCTGCCATCTTTGCCAAGCACAGGAGGTCGCCCGG AGAGCGGTTCCTGTGCGGGGGCATACTCATCAGCTCCTGCTGGATTCTCTCTGCCGC CCACTGCTTCCAGGAGAGGTTTCCGCCCCACCACCTGACGGTGATCTTGGGCAGAAC ATACCGGGTGGTCCCTGGCGAGGAGGAGCAGAAATTTGAAGTCGAAAAATACATTG TCCATAAGGAATTCGATGATGACACTTACGACAATGACATTGCGCTGCTGCAGCTGA AATCGGATTCGTCCCGCTGTGCCCAGGAGAGCAGCGTGGTCCGCACTGTGTGCCTTC CCCCGGCGGACCTGCAGCTGCCGGACTGGACGGAGTGTGAGCTCTCCGGCTACGGC AAGCATGAGGCCTTGTCTCCTTTCTATTCGGAGCGGCTGAAGGAGGCTCATGTCAGA CTGTACCCATCCAGCCGCTGCACATCACAACATTTACTTAACAGAACAGTCACCGAC AACATGCTGTGTGCTGGAGACACTCGGAGCGGCGGGCCCCAGGCAAACTTGCACGA CGCCTGCCAGGGCGATTCGGGAGGCCCCCTGGTGTGTCTGAACGATGGCCGCATGA CTTTGGTGGGCATCATCAGCTGGGGCCTGGGCTGTGGACAGAAGGATGTCCCGGGT GTGTACACAAAGGTTACCAACTACCTAGACTGGATTCGTGACAACATGCGACCG (SEQ ID N0:2) More preferably, a method according to the invention is also characterised in that the DNA Sequence of OmpA comprises or consists of the following sequence or a functional variant thereof or a variant due to the degenerate nucleotide code: ATGAAAAAGACAGCTATCGCGATTGCAGTGGCACTGGCTGGTTTCGCTACCGTGGCC CAGGCGGCC (SEQ ID NO:3). Said DNA encodes the following amino acid sequence of OmpA. OmpA thus comprises or consists of a protein characterized by the following amino acid sequence or a fragment, a functional variant, an allelic variant, a subunit, a chemical derivative or a glycosylation variant therof as part of the invention: MKKTAIAIAVALAGFATVAQAA (SEQ ID NO:21). The untranslated region may contain a regulatory element, such as e.g. a transcription initiation unit (promoter) or enhancer. Said promoter may, for example, be a constitutive, inducible or development-controlled promoter. Preferably, without ruling out other known promoters, the constitutive promoters of the human Cytomegalovirus (CMV) and Rous sarcoma virus (RSV), as well as the Simian virus 40 (SV40) and Herpes simplex promoter. Inducible promoters according to the invention comprise antibiotic-resistant promoters, heat-shock promoters/ hormone-inducible „Mammary tumour virus promoter" and the metallothioneine promoter. Preferred promotors include T3 promotor, T7 promotor, Lac/aral and Ltet0-1. More preferably, a method according to the invention is also characterised in that the DNA of the tPA, tPA variant, K2S molecule or K2S variant is preceeded by a lac promotor and/or a ribosomal binding site such as the Shine-Dalgarno sequence (see also example). More preferably, a method according to the invention is also characterised in that the DNA coding for the tPA, tPA variant, K2S molecule or K2S variant is selected from the group of DNA molecules coding for at least 90% of the.amino acids 87 - 527, 174 - 527, 180 - 527 or 220 -527 of the human tissue plasminogen activator protein. More preferably, a method according to the invention is also characterised in that the DNA Sequence of K2S comprises or consists of the following sequence: TCTGAGGGAAACAGTGACTGCTACTTTGGGAATGGGTCAGCCTACCGTGGCACGCA CAGCCTCACCGAGTCGGGTGCCTCCTGCCTCCCGTGGAATTCCATGATCCTGATAGG CAAGGTTTACACAGCACAGAACCCCAGTGCCCAGGCACTGGGCCTGGGCAAACATA ATTACTGCCGGAATCCTGATGGGGATGCCAAGCCCTGGTGCCACGTGCTGAAGAAC CGCAGGCTGACGTGGGAGTACTGTGATGTGCCCTCCTGCTCCACCTGCGGCCTGAGA CAGTACAGCCAGCCTCAGTTTCGCATCAAAGGAGGGCTCTTCGCCGACATCGCCTCC CACCCCTGGCAGGCTGCCATCTTTGCCAAGCACAGGAGGTCGCCCGGAGAGCGGTT CCTGTGCGGGGGCATACTCATCAGCTCCTGCTGGATTCTCTCTGCCGCCCACTGCTTC CAGGAGAGGTTTCCGCCCCACCACCTGACGGTGATCTTGGGCAGAACATACCGGGT GGTCCCTGGCGAGGAGGAGCAGAAATTTGAAGTCGAAAAATACATTGTCCATAAGG AATTCGATGATGACACTTACGACAATGACATTGCGCTGCTGCAGCTGAAATCGGATT CGTCCCGCTGTGCCCAGGAGAGCAGCGTGGTCCGCACTGTGTGCCTTCCCCCGGCGG ACCTGCAGCTGCCGGACTGGACGGAGTGTGAGCTCTCCGGCTACGGCAAGCATGAG GCCTTGTCTCCTTTCTATTCGGAGCGGCTGAAGGAGGCTCATGTCAGACTGTACCCA TCCAGCCGCTGCACATCACAACATTTACTTAACAGAACAGTCACCGACAACATGCTG TGTGCTGGAGACACTCGGAGCGGCGGGCCCCAGGCAAACTTGCACGACGCCTGCCA GGGCGATTCGGGAGGCCCCCTGGTGTGTCTGAACGATGGCCGCATGACTTTGGTGGG CATCATCAGCTGGGGCCTGGGCTGTGGACAGAAGGATGTCCCGGGTGTGTACACAA AGGTTACCAACTACCTAGACTGGATTCGTGACAACATGCGACCGTGA (SEQ ID NO:4). The present invention also relates to variants of the before-mentioned nucleic acid molecules due to the degenerate code or to fragments therof, nucleic acids which hybridize to said nucleic acids under stringent conditions, allelic or functional variants. The invention also relates to nucleic acids comprising said K2S nucleic acid fused to the nucleic acid encoding another protein molecule. Stringent conditions as understood by the skilled person are conditions which select for more than 85 %, preferred more than 90 % homology (Sambrook et al. 1989; Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York). The hybridisation will be carried out e.g. in 6x SSC/ 5x Denhardf s solution/ 0,1 % SDS (SDS: sodium dodecylsulfate) at 65 °C. The degree of stringency is decided in the washing step. Thus, for example for a selection of DNA-sequences with approx. 85 % or more homology, the conditions 0,2 x SSC/ 0,01 % SDS/ 65 °C and for a selection of DNA-sequences of approx. 90 % or more homology the conditions 0,lx SSC/ 0,01 % SDS/ 65 °C are suitable. The composition of said reagents is described in Sambrook et al. (1989, supra). Another important part of the present invention is a variant of human tissue plasminogen activator comprising of or consisting of the Kringle 2 (4.) plus Serine protease (5.) (abbreviated K2S) protein or a variant or a fragment, a functional variant, an allelic variant, a subunit, a chemical derivative, a fusion protein or a glycosylation variant therof. The numbering/naming of the domains is according to Genbank accession number GI137119 or Nature 301 (5897), 214-221 (1983), wherein the Kringle 2 domain extends from amino acid 176- 262 and the protease domain from 276-527. Thus, according to the invention, a preferred K2S molecule may include amino acids 176-527 including the amino acids between Kringle 2 and the protease (amino acids 263 to 275; exemplified in fig. (structure A)). A K2S molecule according to the invention comprises the rmnimal part of the Kringle 2 domain and the protease domain still retaining protease activity and fibrin binding activity (measured as exemplified in the description/example). Said K2S molecule according to the invention comprises the amino acids SEGN or SEGNSD in its N-terminal portion (see infra). A preferred K2S molecule does not include amino acids 1 to 3 or 1 to 5 of the tPA molecule. Preferably, a K2S molecule according to the invention has the amino acid Asn at positions 177 and 184, i.e. it does not require the modifications as disclosed in Waldenstrom for improved producibility with a method according to the invention. Thus, a preferred K2S molecule according to the invention has the native amino acid sequence (no mutation) as opposed to the molecules known from the prior art. Most preferred, said K2S molecule according to the invention is a molecule characterized by the native amino acid sequence or parts thereof, does neither have amino acids 1 to 3 nor 1 to 5 of tPA and comprises N-terminally the amino acids SEGN or SEGNSD for improved producibility and/or correct folding of the molecule. It is essential that the K2S protein according to the invention comprises in its N-termmal portion a peptide characterized by the amino acid sequence SEGN which advantageously allows commercial production with a method as described supra leading to a correctly folded, secreted K2S protein. Said 4 amino acids characterized by SEGN may have one or several ammo acids more N-terminal, however said amino acids have to be located in the N-teiminal portion as opposed to the C-terminal portion. Most preferably, said amino acids are located at the N-terminal portion. Preferably, the amino acids characterized by SEGN may be carry a point mutation or may be substituted by a non-natural amino acid. Thus, in another important embodiment the invention relates to a K2S protein characterized in that it comprises the amino acids defined by'the sequence SEGN or a variant or a fragment, a functional variant, an allelic variant, a subunit, a chemical derivative, a fusion protein or a glycosylation variant therof. Such fragments are exemplified e.g. in figure 10 (Structure B-l) and figure 11 (Structure B-2) extending from amino acids 193-527. Structure B-l has the native amino acid Cys in position 261, wherein in B-2 the amino acid is substituted by Ser. Further fragments according to the invention comprising the amino acids 220-527 (fig. 14, structure C) or comprising the amino acids 260-527 (fig. 15, structure D) may be modified according to the invention by addition of the amino acids SEGN and/or substitution of Cys-261 by Ser. The artisan can determine the minimal length of a K2S molecule according to the invention in order to retain its biological function and generate a K2S molecule with improved producibility and/or correct folding by adding the amino acids SEGN in the N-terminal portion. Thus, another preferred embodiment is said minimal K2S molecule with SEGN at its N-terminal portion. In another important embodiment the invention relates to a K2S protein characterized in that it comprises the amino acids defined by the sequence SEGNSD or a variant or a fragment, a functional variant, an allelic variant, a subunit, a chemical derivative, a fusion protein or a glycosylation variant therof. Such fragments are exemplified e.g. in figure 12 (Structure B-3) and figure 13 (Structure B-4) extending from amino acids 191-527. Structure B-3 has the native amino acid Cys in position 261, wherein in B-4 the amino acid is substituted by Ser. Further fragments according to the invention comprising the amino acids 220-527 (fig. 14, structure C) or comprising the arnino acids 260-527 (fig. 15, structure D) may be modified according to the invention by addition of the amino acids SEGNSD and/or substitution of Cys-261 by Ser. The artisan can determine the minimal length of a K2S molecule according to the invention in order to retain its biological function and generate a K2S molecule with improved producibility and/or correct folding by adding the amino acids SEGNSD in the N-terminal portion. Thus, another preferred embodiment is said minimal K2S molecule with SEGNSD at its N-terminal portion. Another more preferred embodiment of the present invention relates to a K2S protein comprising a protein characterized by the following amino acid sequence or a variant or a fragment, a functional variant, an allelic variant, a sub-unit, a chemical derivative or a glycosylation variant therof: SEGNSDCYFGNGSAYRGTHSLTESGASCLPWNSMILIGKVYTAQNPSAQALGLGKHNY CRNPDGDAKPWCHVLKNRRLTWEYCDVPSCSTCGLRQYSQPQFRIKGGLFADIASHPW QAAJFAKHRRSPGEPJFLCGGmSSCWILSAAHCFQERPPPHHLTVE.GRTYRVVPGEEEQ KFEVEKYIVHKEFDDDTYDNDIALLQLKSDSSRCAQESSVVRTVCLPPADLQLPDWTEC ELSGYGKHEALSPFYSERLKEAHVRLYPSSRCTSQHLLNRTVTDNMLCAGDTRSGGPQA NLHDACQGDSGGPLVCLNDGRMTLVGnSWGLGCGQKDVPGVYTKVTNYLDWIRDNM RP*(SEQID NO:ll). According to the invention, * means STOP (i.e. encoded by a stop codon). This K2S molecule is exemplified in figure 8. One variant of the K2S molecule according to the invention relates to a fusion protein of K2S being fused to another protein molecule. Another more preferred embodiment of the present invention relates to a K2S protein consisting of a protein characterized by the following amino acid sequence: SEGNSDCYFGNGSAYRGTHSLTESGASCLPWNSMILIGKVYTAQNPSAQALGLGKHNY CRNPDGDAKPWCHVLKNRRLTWEYCDVPSCSTCGLRQYSQPQFRIKGGLFADIASHPW QAAIFAKHRRSPGERFLCGGILISSCWILSAAHCFQERFPPHHLTVrLGRTYRVVPGEEEQ KFEVEKYIVHKFDDDTYDNDIALLQLKSDSSRCAQESSVVRTVCLPPADLQLPDWTEC ELSGYGKHEALSPFYSERLKEAHVRLYPSSRCTSQHLLNRTVTDNMLCAGDTRSGGPQA NLHDACQGDSGGPLVCLNDGRMTLVGHSWGLGCGQKDWGVYTKVTNYLDWIRDNM RP*(SEQ ID NO:ll). Said K2S molecules may be encoded by a DNA molecule as described supra. Another important aspect of the invention relates to a DNA molecule characterized in that it is coding for: a) the OmpA protein or a functional derivative therof operably linked to b) a DNA molecule coding for a polypeptide containing the kringle 2 domain and the serine protease domain of tissue plasminogen activator protein. More preferably, a DNA molecule according to the invention is also characterised in that the DNA sequence comprises or consists of the following DNA sequence encoding OmpA and K2S or a functional variant thereof or a variant due to the degenerate nucleotide code: ATGAAAAAGACAGCTATCGCGATTGCAGTGGCACTGGCTGGTTTCGCTACCGTGGCC CAGGCGGCCTCTGAGGGAAACAGTGACTGCTACTTTGGGAATGGGTCAGCCTACCG TGGCACGCACAGCCTCACCGAGTCGGGTGCCTCCTGCCTCCCGTGGAATTCCATGAT CCTGATAGGCAAGGTITACACAGCACAGAACCCCAGTGCCCAGGCACTGGGCCTGG GCAAACATAATTACTGCCGGAATCCTGATGGGGATGCCAAGCCCTGGTGCCACGTG CTGAAGAACCGCAGGCTGACGTGGGAGTACTGTGATGTGCCCTCCTGCTCCACCTGC GGCCTGAGACAGTACAGCCAGCCTCAGTTTCGCATCAAAGGAGGGCTCTTCGCCGA CATCGCCTCCCACCCCTGGCAGGCTGCCATCTTTGCCAAGCACAGGAGGTCGCCCGG AGAGCGGTTCCTGTGCGGGGGCATACTCATCAGCTCCTGCTGGATTCTCTCTGCCGC CCACTGCTTCCAGGAGAGGTTTCCGCCCCACCACCTGACGGTGATCTTGGGCAGAAC ATACCGGGTGGTCCCTGGCGAGGAGGAGCAGAAATTTGAAGTCGAAAAATACATTG TCCATAAGGAATTCGATGATGACACTTACGACAATGACATTGCGCTGCTGCAGCTGA AATCGGATTCGTCCCGCTGTGCCCAGGAGAGCAGCGTGGTCCGCACTGTGTGCCTTC CCCCGGCGGACCTGCAGCTGCCGGACTGGACGGAGTGTGAGCTCTCCGGCTACGGC AAGCATGAGGCCTTGTCTCCTTTCTATTCGGAGCGGCTGAAGGAGGCTGATGTCAGA CTGTACCCATCCAGCCGCTGCACATCACAACATTTACTTAACAGAACAGTCACCGAC AACATGCTGTGTGCTGGAGACACTCGGAGCGGCGGGCCCCAGGCAAACTTGCACGA CGCCTGCCAGGGCGATTCGGGAGGCCCCCTGGTGTGTCTGAACGATGGCCGCATGA CTTTGGTGGGCATCATCAGCTGGGGCCTGGGCTGTGGACAGAAGGATGTCCCGGGT GTGTACACAAAGGTTACCAACTACCTAGACTGGATTCGTGACAACATGCGACCG (SEQ ID No:2) Said DNA molecule encodes the following fusion protein of OmpA and K2S. Said fusion protein of OmpA and K2S characterised in that it comprises or consists of a protein characterized by the following amino acid sequence or a fragment, a functional variant, an allelic variant, a subunit, a chemical derivative or a glycosylation variant therof forms an important part of the present invention: MKKTAIAIAVALAGFATVAQAASEGNSDCYFGNGSAYRGTHSLTESGASCLPWNSMrLI GKVYTAQNPSAQALGLGKHNYCRNPDGDAKPWCHVLKNRRLTWEYCDVPSCSTCGLR QYSQPQFIOKGGLFADIASHPWQAAIFAKHRRSPGERFLCGGILISSCWILSAAHCFQERF PPHHLTVILGRTYRVVPGEEEQKFEVEKYIVHKEFDDDTyDNDIALLQLKSDSSRCAQES SVVRTVCLPPADLQLPDWTECELSGYGKHEALSPFYSERLKEAHVPvLYPSSRCTSQHLL NRTVTDNMLCAGDTRSGGPQANLHDACQGDSGGPLVCLNDGRMTLVGnSWGLGCGQ KDVPGVYTKVTNYLDWIRDNMRPG (SEQ ID NO:8) Another preferred aspect of the invention relates to a DNA molecule according to the invention, characterized in that said DNA sequence b) is coding for at least 90% of the amino acids 87 - 13 527 of the human tissue plasminogen activator protein (numbering used herein as GI137119 or Nature 301 (5897), 214-221 (1983). Another preferred aspect of the invention relates to a DNA molecule according to the invention, characterized in that said DNA sequence b) is coding for at least 90% of the amino acids 174 - 527 of the human tissue plasminogen activator protein. Another preferred aspect of the invention relates to a DNA molecule according to the invention, characterized in that said DNA sequence b) is coding for at least 90% of the amino acids 180 — 527 of the human tissue plasminogen activator protein. Another preferred aspect of the invention relates to a DNA molecule according to the invention, characterized in that said DNA sequence b) is coding for at least 90% of the amino acids 220 - 527 of the human tissue plasminogen activator protein. Another preferred aspect of the invention relates to a DNA molecule according to the invention, characterized in that said DNA sequence a) is hybridizing under stringent conditions to the following sequence: ATGAAAAAGACAGCTATCGCGATTGCAGTGGCACTGGCTGGTTTCGCTACCGTGGCC CAGGCGGCC (SEQ ID NO:3). Another preferred aspect of the invention relates to a DNA molecule according to the invention, characterized in that said DNA sequence a) consists of the following sequence: ATGAAAAAGACAGCTATCGCGATTGGAGTGGCACTGGCTGGTTTCGCTACCGTGGCC CAGGCGGCC (SEQ ID NO:3). Another preferred aspect of the invention relates to a DNA molecule according to the invention, characterized in that said DNA sequence b) is hybridizing under stringent conditions to the following sequence: TCTGAGGGAAACAGTGACTGCTACTTTGGGAATGGGTCAGCCTACCGTGGCACGCA CAGCCTCACCGAGTCGGGTGCCTCCTGCCTCCCGTGGAATTCCATGATCCTGATAGG CAAGGTTTACACAGCACAGAACCCCAGTGCCCAGGCACTGGGCCTGGGCAAACATA ATTACTGCCGGAATCCTGATGGGGATGCCAAGCCCTGGTGCCACGTGCTGAAGAAC CGCAGGCTGACGTGGGAGTACTGTGATGTGCCCTCCTGCTCCACCTGCGGCCTGAGA CAGTACAGCCAGCCTCAGTTTCGCATCAAAGGAGGGCTCTTCGCCGACATCGCCTCC CACCCCTGGCAGGCTGCCATCTTTGCCAAGCACAGGAGGTCGCCCGGAGAGCGGTT CCTGTGCGGGGGCATACTCATCAGCTCCTGCTGGATTCTCTCTGCCGCCCACTGCTTC CAGGAGAGGTTTCCGCCCCACCACCTGACGGTGATCTTGGGCAGAACATACCGGGT 14 GGTCCCTGGCGAGGAGGAGCAGAAATTTGAAGTCGAAAAATACATTGTCCATAAGG AATTCGATGATGACACTTACGACAATGACATTGCGCTGCTGCAGCTGAAATCGGATT CGTCCCGCTGTGCCCAGGAGAGCAGCGTGGTCCGCACTGTGTGCCTTCCCCCGGCGG ACCTGCAGCTGCCGGACTGGACGGAGTGTGAGCTCTCCGGCTACGGCAAGCATGAG GCCTTGTCTCCTTTCTATTCGGAGCGGCTGAAGGAGGCTCATGTCAGACTGTACCCA TCCAGCCGCTGCACATCACAACATTTACTTAACAGAACAGTCACCGACAACATGCTG TGTGCTGGAGACACTCGGAGCGGCGGGCCCCAGGCAAACTTGCACGACGCCTGCCA GGGCGATTCGGGAGGCCCCCTGGTGTGTCTGAACGATGGCCGCATGACTTTGGTGGG CATCATCAGCTGGGGGCTGGGCTGTGGACAGAAGGATGTCCCGGGTGTGTACACAA AGGTTACCAACTACCTAGACTGGATTCGTGACAACATGCGACCGTGA (SEQ ID N0:4). Another preferred aspect of the invention relates to a DNA molecule according to the invention, characterized in that said DNA sequence b) consists of the following sequence: TCTGAGGGAAACAGTGACTGCTACTTTGGGAATGGGTCAGCCTACCGTGGCACGCA CAGCCTCACCGAGTCGGGTGCCTCCTGCCTCCCGTGGAATTCCATGATCCTGATAGG CAAGGTTTACACAGCACAGAACCCCAGTGCCCAGGCACTGGGCCTGGGCAAACATA ATTACTGCCGGAATCCTGATGGGGATGCCAAGCCCTGGTGCCACGTGCTGAAGAAC CGCAGGCTGACGTGGGAGTACTGTGATGTGCCCTCCTGCTCCACCTGCGGCCTGAGA CAGTACAGCCAGCCTCAGTTTCGCATCAAAGGAGGGCTCTTCGCCGACATCGCCTCC CACCCCTGGCAGGCTGCCATCTTTGCCAAGCACAGGAGGTCGCCCGGAGAGCGGTT CCTGTGCGGGGGCATACTCATCAGCTCCTGCTGGATTCTCTCTGCCGCCCACTGCTTC CAGGAGAGGTTTCCGCCCCACCACCTGACGGTGATCTTGGGCAGAACATACCGGGT GGTCCCTGGCGAGGAGGAGCAGAAATTTGAAGTCGAAAAATACATTGTCCATAAGG AATTCGATGATGACACTTACGACAATGACATTGCGCTGCTGCAGCTGAAATCGGATT CGTCCCGCTGTGCCCAGGAGAGCAGCGTGGTCCGCACTGTGTGCCTTCCCCCGGCGG ACCTGCAGCTGCCGGACTGGACGGAGTGTGAGCTCTCCGGCTACGGCAAGCATGAG GCCTTGTCTCCTTTCTATTCGGAGCGGCTGAAGGAGGCTCATGTCAGACTGTACCCA TCCAGCCGCTGCACATCACAACATTTACTTAACAGAACAGTCACCGACAACATGCTG TGTGCTGGAGACACTCGGAGCGGCGGGCCCCAGGCAAACTTGCACGACGCCTGCCA GGGCGATTCGGGAGGCCCCCTGGTGTGTCTGAACGATGGCCGCATGACTTTGGTGGG CATCATCAGCTGGGGCCTGGGCTGTGGACAGAAGGATGTCCCGGGTGTGTACACAA AGGTTACCAACTACCTAGACTGGATTCGTGACAACATGCGACCGTGA (SEQ ID NO:4). 15 Another preferred embodiment of the invention relates to a vector containing a DNA sequence according to the invention. Another preferred embodiment of the invention relates to a vector according,to the invention, wherein said DNA sequence is preceeded by a lac promoter and a ribosomal binding site. Suitable vectors according to the invention include, but are not limited to viral vectors such as e.g. Vaccinia, Semliki-Forest-Virus and Adenovirus, phagemid vectors and the like. Preferred are vectors which can be advantageously used in E. coli, but also in any other prokaryotic host such as pPROTetE, pPROLar.A, members of the pBAD family, pSE family, pQE family and pCAL. Another preferred embodiment of the invention relates to the vector pComb3HSS containing a DNA according to the invention, wherein the expression of the gp III protein is suppressed or inhibited by deleting the DNA molecule encoding said gp III protein or by a stop codon between the gene coding for a a polypeptide containing the kringle 2 domain and the serine protease domain of tissue plasminogen activator protein and the protein III gene. Another important aspect of the present invention relates to a prokaryotic host cell comprising a DNA molecule according to the invention. Another important aspect of the present invention relates to a prokaryotic host cell comprising a yectoxjaccprding to the invention. Another important aspect of the present invention relates to an E. coli host cell comprising a DNA molecule according to the invention. Another important aspect of the present invention relates to a E. coli host cell comprising a vector according to the invention. Yet another important aspect of the present invention is the use of a DNA molecule according to the invention or of a vector according to the invention or a host cell according to the invention in a method for the production of a polypeptide having the activity of tissue plasminogen activator. Yet another important aspect of the present invention is the use according the invention as described above, wherein said method is a method according to the invention. Another very important aspect is a pharmaceutical composition comprising' a substance obtainable by a method according to the invention and pharmaceutically acceptable excipients and carriers. An example for said substance is the K2S molecule described supra. The term "pharmaceutically acceptable carrier" as used herein refers to conventional pharmaceutic excipients or additives used in the pharmaceutical maniifacturing art. Such physiologically acceptable compounds include, for example, carbohydrates, such as glucose, sucrose or dextrans, antioxidants, such as ascorbic acid or glutathione, chelating agents, low molecular weight proteins or other stabilizers or excipients (see also e.g. Remington's Pharmaceutical Sciences (1990, 18th ed. Mack Publ., Easton.)). Said pharmaceutical composition according to the invention can be advantageously administered intravenously as a bolus, e.g. as a single bolus for 5 to 10 seconds intravenously. The invention further relates to the use of substances obtainable by a method according to the invention in the manufacture of a medicament in the treatment of stroke, cardiac infarction, acute myocardial infarction, pulmonary embolism, any artery occlusion such as coronary artery occlusion, intracranial artery occlusion (e.g. arteries supplying the brain), peripherally occluded arteries, deep vein thrombosis or related diseases associated with unwanted blood clotting. The following example is intended to aid the understanding of the invention and should in no way be regarded as limiting the scope of the invention. Example 1 MATERIALS AND METHODS Primer design. In order to amplify a specific part of tPA gene, a pair of primers SK2/174 [5' GAGGAGGAGGTGGCCCAGGCGGCCTCTGAGGGAAACAGTGAC 3' ] (SEQ ID NO:22) and ASSP [5' GAGGAGGAGCTGGCCGGCCTGGCCCGGTCGCATGTTGTCACG 3' ] (SEQ ID NO:23) were synthesized (Life Technologies, Grand Island, NY). These primers were designed based on the human tPA gene retrieved from NCBI databases (gl37119), They were synthesized with Sfi I end cloning sites (underlined) in such a way that the reading frame from the ATG of the gpIII gene in phagemid vector, pComb3HSS, will be maintained throughout the inserted sequence. Another primer set for site-directed mutagenesis was designed to anneal at the sequence situated between K2S gene and gene m in pComb3H-K2S. The sequence of primers with mutation bases (underlined) for generating a new stop codon were MSTPA [5' ACATGCGACCGTGACAGGCCGGCCAG 3'] (SEQ ID NO:24) and MASTPA [5' CTGGCCGGCCTGTCACGGTCGCATGT 3'] (SEQ ID NO:25). Amplification of K2S gene by PCR One µg SK2/174 and ASSP primers together with 50 ng of p51'-3 template (obtained from Dr. Hiroshi Sasaki, Fujisawa Pharmaceutical, Japan) were suspended in 100 pi PCR mixture. An amount of 2.5 U Taq polymerase (Roche Molecular Biochemicals, Indianapolis, IN) was finally added to the solution. The titrated amplification condition was initiated with jump start at 85°C for 4 min, then denaturation at 95°C for 50 sec, annealing at 42°C for 50 sec, extension at 72°C for 1.5 min. Thirty five rounds were repeatedly performed. The mixture was further incubated at 72°C for 10 min. The amplified product of 1110 bp was subsequently purified by QIAquick PCR Purification Kit (QIAGEN, Hilden, Germany). The correctness of purified product was confirmed by restriction enzymes. Construction of phagemid expressing K2S. The purified PCR product of K2S and pComb3HSS phagemid (kindly provided by Dr. Carlos F. Barbas, Seripps Institute, USA) were digested with Sfi I (Roche Molecular Biochemicals, Indianapolis, IN) to prepare specific cohesive cloning sites. Four µg of the purified PCR product was digested with 60 U of Sfi I at 50°C for 18 h. For pComb3HSS, 20 \ig of phagemid vectors were treated with 100 U of Sfi I. Digested products of purified PCR product of K2S and pComb3HSS (-3300 bp) were subsequently gel-purified by the QJAquick Gel Extraction Kit (QIAGEN, Hilden, Germany). T4 ligase (Roche Molecular Biochemicals, Indianapolis, IN) of 5 U were introduced to the mixture of 0.7 jig of purified Sfi I-digested pComb3HSS and 0.9 µg of purified Sfi I-digested PCR product. Ligation reaction was incubated at 30°C for 18 h. The newly constructed phagemid was named pComb3H-K2S. Transformation of E. coli XL-1 Blue, Two hundred µl of CaCl2 competent E. coli XL-1 Blue (Stratagene, La Jolla, CA) were transformed with 70 ng of ligated or mutated product. The transformed cells were propagated by spreading on LB agar containing 100 µg/ml ampicillin and 10 µg/ml tetracycline (Sigma, Saint Louis, MO). After cultivation at 37°C for 18 h several antibiotic resistant colonies were selected for plasmid minipreps by using the alkaline lysis method. Each purified plasmid was subjected to Sfi I restriction site analysis. A transfonnant harboring plasmid with the correct Sfi I restriction site(s) was subsequently propagated for 18 h at 37°C in 100 ml LB broth with ampicillin 100 jig/ml and tetracycline 10 µg/ml. A plasmid maxiprep was performed using the QIAGEN Plasmid Maxi Kit (QIAGEN, Hilden, Germany). The purified plasmid was reexamined for specific restriction sites by Sfi I and sequenced by AmpliTaq DNA Polymerase Terminator Cycle Sequencing Kit (The Perkin-Elmer Corporation, Forster City,CA). Site-directed mutagenesis of pComb3H-K2S. 10 ng of pComb3H-K2S template were mixed with 125 ng of MSTPA and MASTPA primers. PfuTurbo DNA polymerase (Stratagene, LA Jolla, CA) of 2.5 U was added to the mixture for cycle amplification. The reaction started with one round of 95°C for 30 sec. Then it was followed by 16 rounds consisting of 95°C for 30 sec, 55°C for 1 min, and 68°C for 9 min. The reaction tube was subsequently placed on ice for 2 min. In order to destroy the template strands, 10 U of Dpn I restriction enzyme (Stratagene, LA Jolla, CA) were added to the amplification reaction and incubated for 1 h at 37°C. This synthesized product (MpComb3H-K2S) was further used to transform E. coli XL-1 Blue. Preparation of phage-display recombinant-K2S. After pComb3H-K2S was transformed to XL-1 Blue, the phage display technique was performed. A clone of pComb3H-K2S transformed E. coli XL-1 Blue was propagated in 10 ml super broth containing ampicillin 100 µg/ml and tetracycline 10 µg/ml at 37°C until the O.D. [600 urn] of 1.5 was reached. The bacterial culture was subsequently propagated in 100 ml of the same medium and culture for 2 h. An amount of 1012 pfu of VCSM13 helper phage (Stratagene, La Jolla, CA) was used to infect the transformed E. coli XL-1 Blue. After 3 h incubation, kanamycin at a 'final concentration of 70 g/ml final concentration was added to culture. The culture was left shaking (200 RPM) for 18 h at 37°C. Bacteriophages which harbored K2S on gp3 (K2S-) were then harvested by adding 4% w/v PEG MW 8000 (Sigma, Saint Louis, MO) and 3% w/v NaCl. Finally, the harvested phage was resuspended in 2 ml PBS pH 7.4. The phage number was determined by infecting E. coli XL-1 Blue. The colony-forming unit per milliliter (cfu/ml) was calculated as described previously (21). Expression of recombinant-K2S in shaker flasks. MpComb3H-K2S transformed E. coli XL-1 Blue was cultivated in 100 ml super broth (3% w/v tryptone, 2% w/v yeast extract and 1% w/v MOPS) at pH 7.0 in the presence of ampicillin (100 .g/ml) at 37°C until an O.D. [600 nm] of 0.8 was reached. Subsequently, the protein synthesis was induced by 1 mM of IPTG (Promega, Madison, WI). The bacteria were further cultured shaking (200 RPM) for 6 h at 30°C. The culture supernatant was collected and precipitated with 55% saturated ammonium sulfate (32). WO 02/40650 PCT/EP01/12857 The precipitate was reconstituted with PBS, pH 7.2, and dialysed in the same buffer solution at 4°C for 18 h. Periplasmic proteins from bacterial cells were extracted by using a chloroform shock as previously described by Ames et al. (2). Immunoassay quantification of recombinant-K2S. In order to detect r-K2S, solid phase was coated with monoclonal anti-kringle 2 domain (16/B) (generously provided by Dr. Ute 'Zacharias, Central Institute of Molecular Biology, Berlin-Buch, Germany). The standard ELISA washing and blocking processes were preformed. Fifty JJ,1 of 1011 cfu/ml of K2S- or secretory r- K2S were added into each anti-kringle 2 coated well. Antigen-antibody detection was carried out as follows. Either sheep anti-M13 conjugated HRP (Pharmacia Biotech, Uppsala, Sweden) or sheep anti-tPA conjugated HRP (Cedarlane, Ontario, Canada), was added to each reaction well after the washing step. The substrate TMB was subjected to every well and the reaction was finally ceased with H2S04 solution after 30 min incubation. The standard melanoma tPA 86/670 (National Institute -for Biological Standards and Control, Hertfordshine, UK) was used as positive control. Amidolytic activity assay. A test kit for the detection of tPA amidolytic activity was purchased from Chromogenix (Molndal, Sweden). The substrate mixture containing plasminogen and S-2251 was used to determine serine protease enzymatic activity. The dilution of 10"2 of each ammonium precipitated sample was assayed with and without stimulator, human fibrinogen fragments. The assay procedure was according to the COASET t-PA manual. SDS-PAGE and irnmunoblotting. The dialysed precipitate-product from culture supernatant was further concentrated 10 folds with centricon 10 (AMICON , Beverly, MA). The concentrated sample was subjected to protein separation by SDS-PAGE, 15% resolving gel, in the reducing buffer followed by electroblotting to nitrocellulose. The nitrocellulose was then blocked with 4% skimmed milk for 2 hr. In order fo detect r-K2S, a proper dilution of sheep anti-tPA conjugated HRP was applied to the nitrocellulose. The inununoreactive band was visualized by a sensitive detection system, Amplified Opti-4CN kit (BIORAD, Hercules, CA). Copolymerized plasminogen polyacrylamide gel electrophoresis. An 11% resolving polyacrylamide gel was copolymerized with plasminogen and gelatin as previously described by 20 Heussen et al. (14). The stacking gel was prepared as 4 % concentration without plasminogen and gelatin. Electrophoresis was performed at 4°C at a constant current of 8 mA. The residual SDS in gel slab was removed after gentle shaking at room temperature for lh in 2.5% Triton X-100. Then the gel slab was incubated in 0.1 M glycine-NaOH, pH 8.3, for 5 h at 37°C. Finally, the gel slab was stained and destained by standard Coomassie brilliant blue (R-250) dying system. The location of the peptide harboring enzymatic activity was not stained by dye in contrast to blue-paint background. RESULTS Construction of K2S gene carrying vector. From the vector p51-3 we amplified the kringle 2 plus ther serine protease portion of tPA (Ser174 in kringle 2 domain to ProS27 in the serine protease) using primers SK2/174 and ASSP. The amplified 1110 bp product was demonstrated by agarose gel electrophoresis (Fig. 1, lane 2) and was inserted into pComb3HSS phagemid by double Sfi I cleavage sites on 5' and 3' ends in the correct reading frame. Thus a new vector, pComb3H-K2S, harboring the K2S was generated, hi this vector K2S is flanked upstream by the OmpA signal sequence and donwstream by gp3. The correct insertion of K2S was verified both by restriction analysis with Sfi I (Fig. 2, lane 3), PCR-anaysis (demonstration of a single band at 1110 bp), and DNA sequencing. The schematic diagram of pComb3H~K2S map is given in Fig. 3. Phage-displayed r-K2S. VCSM13 filamentous phage was used to infect pComb3H-K2S transformed E. coli XL-1 Blue, X[K2S]. VCSM13 was propagated and incorporated the K2S-gp3 fusion protein during the viral packaging processes. The harvested recombinant phage (K2S-) gave a concentration of 5.4 x 10" cfu/ml determined by reinfecting E. coli XL-1 Blue with PEG-precipitated phages. These recombinant phage particles were verified for the expression of r-K2S by sandwich ELISA. The phage-bound heterologous K2S protein was recognized by the monoclonal anti-kringle 2 antibody (16/B) by using sheep anti-tPA conjugated HRP antibody detection system. The absorbance of this assay was 1.12 ± 0.03 (Table 1). The amount of K2S detectable on 1012 phage particles is equal to 336 ng of protein in relation to the standard melanoma tPA. In order to corroborate that K2S-gp3 fusion protein was associated with phage particles, sheep anti-tPA conjugated HRP antibody was substituted by sheep anti-M13 antibody conjugated HRP. This irnmuno-reaction exhibited an absorbance of 1.89 ± 0.07 (Table 1). In 21 WO 02/40650 PCT/EP01/12857 21 contrast, if the capture antibody was sheep anti-M13 antibody, extremely low K2S was observed with sheep anti-tPA antibody conjugated HRP; the absorbance was only 0.17 ± 0.01 (Table 1). This suggested that only a minority of purified phage particles carried K2S-gp3 fusion protein. VCSM13 prepared from non-transformed XL-1 Blue was used as a negative control. Construction of MpComb3H-K2S. We generated a stop codon between K2S and gp3 in pComb3H-K2S with the aid of the mutagenic primers (MSTPA and MASTPA) (Fig. 4). In order to enrich the newly synthesized and mutated MpComb3H-K2S, the cycle amplification mixture was thoroughly digested with Dpn I to degrade the old dam methylated pComb3H-K2S template (Dpn I prefers dam methylated DNA). After transforming of E. coli XL-1 Blue with MpComb3H-K2S, a transfoimant XM£K2S] was selected for further study. As a consequence of bp substitution, one Sfi I cleavage site close to the 3' end of K2S gene was lost after site-directed mutagenesis. A linear version of Sfi I cleaved MpComb3H-K2S was observed at 4319 bp without the appearance of inserted K2S gene fragment (Fig. 5, lane 3). Thus, the K2S gene encoding by MpComb3H-K2S was expressed in non-gp3 fusion form in XM[K2S]. Expression and purification of K2S. K2S expression in XM[K2S] was induced by IPTG. r-K2S was detectable by using ELISA both in the periplasmic space and in the culture supernatant . The amount of the heterologous protein in each preparation was determined by sandwich ELISA and related to the standard tPA. From 100 ml of the bacterial culture in shaker flask with the O.D. [600 nm] of 50, the periplasmic fraction yielded 1.38 µ,g of r-K2S (approximately 32%) whereas 2.96 p.g of r-K2S (approximately 68%) was obtained in the ammonium precipitated culture supernatant Sandwich ELISA was used to verify the PEG precipitated phage from VCSM13 infected XM[K2S]. No r-K2S captured by monoclonal anti-kringle 2 antibody was detected by anti-M13 conjugated HRP, indicating that K2S is not presented on the phage particles if gp3 is missing. Amidolytic activity measurement If serine protease domain is present in the sample, plasminogen will be converted to plasmin. The produced plasmin will farther digest the S-2251 substrate to a colour product, p-nitroaniline, which has a maximum absorbance at 405 nm. The specific activity of the recombinant product is in accordance with the absorbance. The fibrinogen-dependent enzymatic activity of each sample i.e. K2S-, periplasmic r-K2S or culture 22 WO 02/40650 PCT/EP01/12857 22 supernatant r-K2S, was evaluated and compared. Both K2S- and periplasmic r-K2S illustrated - ' notably low enzymatic activity, which was below the sensitivity of the test (0.25 IU/ml). The culture supernatant r-K2S gave the fibrinogen-dependent enzymatic activity of 7 lU/ml. Thus, from 100 ml culture we obtained a total of 700 IU enzymatic activity. Without fibrinogen no s enzymatic activity of the r-K2S purified from culture supernatant was observed - whereas standard melanoma tPA showed some activity. Demonstration of recombinant protein by irnmunoblotting. Partially purified K2S from culture supernatant of XM[K2S] revealed a molecular mass of 39 kDa by using sheep anti-tPA antibodies (Fig. 6). The negative control, partially purified culture supernatant of non-transformed XL 1-Blue, contained no reactive band with a similar size. Localization of active enzyme by PAGE. The plasminogen has been copolymerized and immobilized with gelatin in the polyacrylamide gel prior to electrophoresis. The ammonium sulfate precipitated culture supematants of E. coli XL-1 Blue, E. coli XL-1 Blue transformed with pComb3HSS and XM[K2S] were analyzed (Fig. 7). All samples were processed in non-reducing condition to preserve the correct conformation and activity of the serine protease domain. Transparent areas of serine protease digested plasminogen were observed only in the ammonium sulfate precipitated culture supematants of XM[K2S] at 34 and 37 kDa postions. The other samples gave no clearing zones. The positive control lane of standard melanoma tPA also demonstrated enzymatic activity at 66 and 72 kDa positions. REFERENCES 1. Allen, S., H. Y. Nairn, and N. J. Bulleid. 1995. Intracellular folding of tissue-type plasminogen activator. Effects of disulfide bond formation on N-linked glycosylation and secretion. J. Biol. Chem. 270:4797-4804. 2. Ames, G. F., C. Prody, and S. Kustu. 1984. Simple, rapid, and quantitative release of periplasmic proteins by chloroform. J. Bacteriol. 160:1181-1183. 3. Barbas, C. F. HI, A. S. Kang, R. A. Lemer, and S. J. Benkovic. 1991.-Assembly of combinatorial antibody libraries on phage surfaces: the gene m site. Proc. Natl. Acad. Sci. U. S. A. 88:7978-7982. 23 . WO 02/40650 PCT/EPOl/12857 23 4. Barbas, C. F. III, and J. Wagner. 1995. Synthetic human antibodies: selecting and evolving ' functional proteins. A Companion to Methods in Enzymology 8:94-103. 5. Bennett, W. F., N. F. Paoni, B. A. Keyt, D. Botstein, A. J. Jones, L. Presta, F. M. Wurm, and M. J. Zoller. 1991. High resolution analysis of functional determinants on human tissue-type plasminogen activator. J Biol Chem. 266:5191-5201. 6. Betton, J. M., N. Sassoon, M. Hofnung, and M. Laurent. 1998. Degradation versus aggregation of misfolded maltose-binding protein in the periplasm of Escherichia cdli. J. Biol. Chem. 273:8897-8902. 7. Camiolo, S. M., S. Thorsen, and T. Astrup. 1971. Fibrinogenolysis and fibrinolysis with tissue plasminogen activator, urokinase, streptokinase-activated human globulin and plasmin. Proc. Soc. Exp. Biol. Med. 38:277-280. 8. Cartwright, T. 1992. Production of t-PA from animal cell culture, p. 217-245. In R. E. Spier, and J. B. Griffiths (ed.), Animal Cell Biotechnology, Vol 5. Academic Press, N.Y. 9. Curry, K. A., A. W. Yem, M. R. Deibel, Jr., N. T. Hatzenbuhler, J. G. Hoogerheide, and C. S. Tomich. 1990. Escherichia coli expression and processing of human interleukin-1 beta fused to signal peptides. DNA Cell Biol. 9:167-175. 10. Datar, R. V., T. Cartwright, an C.-G. Rosen. 1993. Process economics of animal cell and bacterial fermentations: a case study analysis of tissue plasminogen activator. Biotechnology 11:349-357. 11. Denefle, P., S. Kovarik, T. Ciora, N. Gosselet, J. C. Benichou, M. Latta, F. Guinet, A. Ryter, and J. F. Mayaux. 1989. Heterologous protein export in Escherichia coli: influence of bacterial signal peptides on the export of human interleukin 1 beta. Gene 85:499-510. 12. Griffiths, J. B., A. Electricwala. 1987. Production of tissue plasmmogen activators from animal cells. Adv. Biochem. Eng. Biotechnol. 34:147-166. 13. Harris, T, J., T. Patel, F. A. Marston, S. Little, J. S. Emtage, G. Opdenakker, G. Volckaert, W. Rombauts , A. Billiau, and P. De Somer. 1986. Cloning of cDNA coding for human tissue-type plasminogen activator and its expression in Escherichia coli. Mol. Biol. Med. 3:279-292. 14. Heussen, C, and E. B. Dowdle. 1980. Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal. Biochem. 102:196-202. 15. Heussen, C, F. Joubert, and E. B. Dowdle. 1984. Purification of human tissue plasminogen activator with. Erythrina trypsin inhibitor. J. Biol. Chem. 259:11635-11638. 24 WO 02/40650 PCT/EPOl/12857 24 16. Hu, C. K., U. Kohnert, 0. Wilhelm, S. Fischer, and M. Llinas. 1994. Tissue-type plasminogen activator domain-deletion mutant BM 06.022: modular stability, inhibitor binding, and activation cleavage. Biochemistry 33:11760-11766. 17. Kipriyanov, S. M., G. Moldenhauer, and M. Little. 1997. High level production of soluble single chain antibodies in small-scale Escherichia coli cultures. J. Immunol. Methods 200:69-77. 18. Ko, J. H., D. K. Park, I. C. Kim, S. H. Lee, and S. M. Byun. 1995. High-level expression and secretion of streptokinase in Excherichia coli. Biotechnol. Lett. 17:1019-1024. 19. Kouzuma, Y., N. Yamasaki, and M. Kimura. 1997. The tissue-type plasminogen activator inhibitor ETIa from Erythrina variegata: structural basis for the inhibitory activity by cloning, expression, and mutagenesis of the cDNA encoding ETIa. J. Biochem. (Tokyo) 121:456-463. 20. Lasters, I., N . Van Herzeele, H. R. Lijnen, D. Collen, and L. Jespers. 1997. Enzymatic properties of phage-displayed fragments of human plasminogen. Eur. J. Biochem. 244:946-952. 21. Lobel, L. I., P. Rausch, I. Trakht, S. Pollak, and J. W. Lustbader. 1997. Filamentous phage displaying the extracellular domain of the hLH/CG receptor bind hCG specifically. Endocrinology. 138:1232-1239. 22. Lubiniecki, A., R Arathoon, G. Polastri, J. Thomas, M. Wiebe, R Gamick, A. Jones, R. van Reis, and S. Builder. Selected strategies for manufacture and control of recombinant tissue plasminogen activator prepared from cell culture, p. 442-451. In R E. Spier, J. B. Griffiths, J. Stephenne, and P. J. Crooy (ed.), Advances in animal cell biology and technology for bioprocesses. Butterworths, London. 23. Lucie, M. R, B. E. Forbes, S. E. Grosvenor, J. M. Carr, J. C. Wallace, and G. Forsberg. 1998. Secretion in Escherichia coli and phage-display of recombinant insulin-like growth factor binding protein-2. J. Biotechnol. 61:95-108. 24. Martin, U., S. Fischer, U. Kohnert, H.' Lill, R Rudolph, G. Sponer, A. Stern, and K. Strein. 1990. Properties of a novel plasminogen activator (BM 06.022) produced in Escherichia coli. Z. Kardiol. 79:167-170. 25. Obukowicz, M. G., M. E. Gustafson, K. D. Junger, R M. Leimgruber, A. J. Wittwer, T. C. Wun, T. G. Warren, B. F. Bishop, K. J. Mathis, D. T. McPherson, N. R. Siegel, M. G. Jenning, B. B. Brightwell, J. A. Diaz-Cllier, L. D. BeU, C. S. Craik, and W. C. Tacon. 1990. Secretion of active kringle-2-serine protease in Escherichia coli. Biochemistry 29:9737-9745. 26. Parmley, S. F., and G. P. Smith. 1988. Antibody-selectable filamentous fd phage vectors: affinity purification of target genes. Gene 73:305-318. 25 WO 02/40650 PCT/EP01/12857 25 27. Pennica, D., W. E. Holmes, W. J. Kohr, R. N. Harkras, G. A. Vehar, C. A. Ward, W. F. ' Bennett, E. Yelverton, P. H. Seeburg, H. I. Heyneker, D. V. Goeddel, and D. Collen. 1983. Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature 301:214-221. 28. Rippmann, J. F., M, Klein, C. Hoischen, B. Brocks, W. J. Rettig, J. Gumpert, K. Pfizenmaier, R. Mattes, and D. Moosmayer. 1998. Procaryotic expression of single-chain variable-fragment (scFv) antibodies:-secretion in L-form cells of Proteus mirabilis leads to active product and overcomes the limitations of periplasmic expression in Escherichia coli. Appl. Environ. Microbiol. 64:4862-4869. 29. Saito, Y., Y. Ishii, H. Sasaki, M. Hayashi, T. Fujimura, Y. Imai, S. Nakamura, S. Suzuki, J. Notani, T. Asada, H. Horiai, K. Masakazu, and N. Mineo. 1994. Production and characterization of a novel tissue-type plasminogen activator derivative in Escherichia coli. Biotechnol. Prog. 10:472-479. 30. Sarmientos, P., M. Duchesne, P. Denefle, J. Boiziau, N. Fromage, N. Delporte, F. Parker, Y. Lelievre, J.-F. Mayaux, and T. Cartwright. 1989. Synthesis and purification of active human tissue plasminogen activator from Escherichia coli. Biotechnology 7:495-501. 31. Scherrer, S., N. Robas, H. Zouheiry, G. Branlant, and C. Branlant 1994. Periplasmic aggregation limits the proteolytic maturation of the Escherichia coli penicillin G amidase precursor polypeptide. Appl. Microbiol. Biotechnol. 42:85-89. 32. Soeda, S., M. Kakiki, H. Shimeno, and A. Nagamatsu. 1986. Rapid and high-yield purification of porcine heart tissue-type plasminogen activator by heparin-sepharose choromatography. Life Sci. 39:1317-1324. 33. Szarka, S. J., E. G. Sihota, H. R. Habibi., and S.-L. Wong. 1999. Staphylokmase as a plasminogen activator component in recombinant fusion proteins. Appl. Environ. Microbiol. 65:506-513. , 34. Waldenstrom, M., E. Holmgren, A. Attersand, C. Kalderen, B. Lowenadler, B, Raden, L. Hansson, and G. Pohl. 1991. Synthesis and secretion of a fibrinolytically active tissue-type plasminogen activator variant in Escherichia coli. Gene 99:243-248. 35. Wan, E. W.-M., and F. Baneyx. 1998. TolAHI Co-overexpression Facilitates the Recovery of Periplasmic Recombinant Proteins into the Growth Medium of Escherichia coli. Protein Expr. Purif. 14:13-22. 26 WO 02/40650 26 PCTYEP01/12857 S6. Zacharias, U., B. Fischer, F. Noll, and H. Will. 1992. Characterization of human tissue-type plasminogen activator with monoclonal antibodies: mapping of epitopes and binding sites for fibrin and lysine. Thromb. Haemost. 67:88-94. FIGURE LEGENDS FIG. 1. Validation of PCR amplification product of the K2S gene from the p51-3 vector by using SK2/174 and ASSP primers. Lane 1 shows 1 kb marker (Roche Molecular Biochemicals, Indianapolis, IN). Lane 2 was loaded with 1 µ,l of amplified product. A single band at 1110 bp is depicted. The electrophoresis was performed on a 1% agarose gel. FIG. 2. Identification of inserted K2S gene at 1110 bp (*) after Sfi I digested pComb3H-K2S was demonstrated in lane 3. Lane 1 shows 1 kb marker. Lane 2 was loaded with uncut pComb3H-K2S. The electrophoresis was performed on a 1% agarose gel. FIG. 3. Scheme of pCorrib3H-K2S showing two Sfi I cloning sites into which the K2S gene was inserted. Signal sequence (OmpA), ribosome binding site (RIBS), lac promoter, and gpIII gene are also depicted. FIG. 4. Schematic diagram of the mutation site at the junction between the K2S and gpni genes on pComb3H-K2S. The annealing site of pComb3H-K2S is bound with a set of mutation primers (MSTPA and MASTPA) containing modified oligonucleosides (underlined). After performing the cycle amplification, the Sfi I site 1 (in bold) is modified and lost in the newly synthesized strand. FIG. 5. Characterization of newly synthesized MpComb3H-K2S by the Sfi I restriction enzyme. A single band at 4319 bp that refers to a single cleavage site of MpComb3H-K2S is observed in lane 3. No inserted K2S band at 1110 bp can be visualized. Lane 1 shows 1 kb marker. Lane 2 was loaded with uncut MpComb3H-K2S. The electrophoresis was performed on a 1% agarose gel. FIG. 6. Identification of immunological reactive band with of recombinant DNA-derived protein purified from XM[K2S} culture supernatant with sheep anti-tPA conjugated HRP. Lane 1 was loaded with 40 ng of standard melanoma tPA (86/670); which showed the reactive band at 70 kDa. The partially purified and concentrated culture supernatants from non-transformed E. coli 27 WO 02/40650 PCT/EP01/12857 XLl- Blue and XM[K2S] were applied to lane 2 and 3 respectively. The distinct reactive band was particularly demonstrated in lane 3 at 39 kDa. FIG. 7. Molecular weight determination of extracellular r-K2S harboring active serine protease domain by copolymerized plasminogen polyacrylamide gel electrophoresis. Lane 1 contained the indicated molecular weight standards (X10"3), SDS-6H (Sigma, Saint Louis, MO). Fifty fig of the 55% saturated ammonium sulfate precipitated culture supernatant of XL-1 Blue, Xl-1 Blue transformed with pComb3HSS, and XM[K2S] were loaded in lane 2, 3, and 4 respectively. Lane 5 contained 50 mlU of standard melanoma tPA (86/670). Transparent zones of digested plasminogen in polyacrylamide gel are visible only in lane 4 at molecular weight of 34 and 37 kDa (B) and lane 5 at molecular weight of 66 and 72 kDa (A). FIG. 8. Structure A (SEQ ID NO: 11) Native K2S molecule from amino acids 174-527 without modification. FIG. 9. Structure B-0 (SEQ ID NO: 12) Native K2S molecule from amino acids 197-527 without modification. FIG. 10. Structure B-l (SEQ ID NO:13) K2S molecule from amino acids 193-527, wherein to Structure B-0 of Fig. 9 the amino acids SEGN were added at the N-terminal portion. FIG. 11. Structure B-2 (SEQ ID NO: 14) K2S molecule from amino acids 193-527, as in Fig. 10, wherein Cys-261 was exchanged for Ser. FIG. 12. Structure B-3 (SEQ ID NO: 15) K2S molecule from amino acids 191-527, wherein to Structure B-0 of Fig. 9 the amino acids SEGNSD were added at the N-terminal portion. FIG. 13. Structure B-4 (SEQ ID NO:16) K2S molecule from amino acids 191-527, as in Fig/12, wherein Cys-261 was exchanged for Ser. 28 FIG. 14. Structure C (SEQ ID NO: 17) Native K2S molecule from amino acids 220-527 without modification. This molecule may be further modified in a similar manner as disclosed for structure B in figures 10-13. FIG. 15. Structure D (SEQ ID NO: 18) Native K2S molecule from amino acids 260-527 without modification. This molecule may be further modified in a similar manner as disclosed for structure B in figures 10-13. FIG. 16. tPA molecule (SEQ ID NO: 19) TABLE 1. Detection of r-K2S molecule in phage preparation by sandwich ELISA Tracer antibody (conjugated HRP) Capture antibody Anti-tPA Anti-M13 K2S- VCSM13* R2S- VCSM13 Anti-kringle2b Anti-M13 1.12 ±0.04° 0.12 + 0.03 0.17 + 0.01 0.14 + 0.05 1.89 + 0.02 1.91 + 0.02 0.16 + 0.02 1.88 + 0.03 a VCSM13 was harvested from XL-1 Blue transformed with pComb3HSS. n b Mouse monoclonal anti-kringle 2 (16/B) was used The other antibodies were prepared from sheep immunoglobulin. c Value is mean of absorbance of each sample which was assayed in triplicate. SEQUENCE LISTING Boehringer Ingelheim International GmbH Methods for large scale production of recombinant DNA-derived tPA or K2S molecules case 1-1170 GB 0027779.8 2000-11-14 25 Patentln Ver. 2.1 1 IB DNA Artificial Sequence Description of Artificial Sequence: coding sequence of N-terminal part of K2S protein 1 tctgagggaa acagtgac 18 2 1128 DNA Artificial Sequence 30 WO 02/40650 2/27 PCT/EP01/12857 C220> Description of Artificial Sequence: coding sequence for QmpA-K2S fusion protein 2 atgaaaaaga cagctatcgc gattgcagtg gcactggctg gtttcgctac cgtggcccag 60 gcggcctctg agggaaacag tgactgctac tttgggaatg ggtcagccta ccgtggcacg 120 cacagcctca ccgagtcggg tgcctcctgc ctcccgtgga attccatgat cctgataggc 180 aaggtttaca cagcacagaa ccccagtgcc caggcactgg gcctgggcaa acataattac 240 tgccggaatc ctgatgggga tgccaagccc tggtgccacg tgctgaagaa ccgcaggctg 300 acgtgggagt actgtgatgt gccctcctgc tccacctgcg gcctgagaca gtacagccag 360 cctcagtttc gcatcaaagg agggctcttc gccgacatcg cctcccaccc ctggcaggct 420 gccatctttg ccaagcacag gaggtcgccc ggagagcggt tcctgtgcgg gggcatactc 480 atcagctcct gctggattct ctctgccgcc cactgcttcc aggagaggtt tccgccccac 540 cacctgacgg tgatcttggg cagaacatac cgggtggtcc ctggcgagga ggagcagaaa 600 tttgaagtcg aaaaatacat tgtccataag gaattcgatg atgacactta cgacaatgac 660 attgcgctgc tgcagctgaa atcggattcg tcccgctgtg cccaggagag cagcgtggtc 720 cgcactgtgt gccttccccc ggcggacctg cagctgccgg actggacgga gtgtgagctc 780 tccggctacg gcaagcatga ggccttgtct cctttctatt cggagcggct gaaggaggct 840 catgtcagac tgtacccatc cagccgctgc acatcacaac atttacttaa cagaacagtc 900 accgacaaca tgctgtgtgc tggagacact cggagcggcg ggccccaggc aaacttgcac 960 gacgcctgcc agggcgattc gggaggcccc ctggtgtgtc tgaacgatgg ccgcatgact 1020 ttggtgggca tcatcagctg gggcctgggc tgtggacaga aggatgtccc gggtgtgtac 1080 acaaaggtta ccaactacct agactggatt cgtgacaaca tgcgaccg 1128 3 66 DNA Escherichia coli 3 atgaaaaaga cagctatcgc gattgcagtg gcactggctg gtttcgctac cgtggcccag 60 gcggcc 66 4 1065 DNA 31 WO 02/40650 PCT/EP01/12857 3/27 Artificial Sequence Description of Artificial Sequence: coding sequence for K2S protein 4 tctgagggaa acagtgactg ctactttggg aatgggtcag cctaccgtgg cacgcacagc 60 ctcaccgagt cgggtgcctc ctgcctcccg tggaattcca tgatcctgat aggcaaggtt 120 tacacagcac agaaccccag tgcccaggca ctgggcctgg gcaaacataa ttactgccgg 180 aatcctgatg gggatgccaa gccctggtgc cacgtgctga agaaccgcag gctgacgtgg 240 gagtactgtg atgtgccctc ctgctccacc tgcggcctga gacagtacag ccagcctcag 300 tttcgcatca aaggagggct cttcgccgac atcgcctccc acccctggca ggctgccatc 360 tttgccaagc acaggaggtc gcccggagag cggttcctgt gcgggggcat actcatcagc 420 tcctgctgga ttctctctgc cgcccactgc ttccaggaga ggtttccgcc ccaccacctg 480 acggtgatct tgggcagaac ataccgggtg gtccctggcg aggaggagca gaaatttgaa 540 gtcgaaaaat acattgtcca taaggaattc gatgatgaca cttacgacaa tgacattgcg 600 ctgctgcagc tgaaatcgga ttcgtcccgc tgtgcccagg agagcagcgt ggtccgcact 660 gtgtgccttc ccccggcgga cctgcagctg ccggactgga cggagtgtga gctctccggc 720 tacggcaagc atgaggcctt gtctcctttc tattcggagc ggctgaagga ggctcatgtc 780 agactgtacc catccagccg ctgcacatca caacatttac ttaacagaac agtcaccgac 840 aacatgctgt gtgctggaga cactcggagc ggcgggcccc aggcaaactt gcacgacgcc 900 tgccagggcg attcgggagg ccccctggtg tgtctgaacg atggccgcat gactttggtg 960 ggcatcatca gctggggcct gggctgtgga cagaaggatg tcccgggtgt gtacacaaag 1020 gttaccaact acctagactg gattcgtgac aacatgcgac cgtga 1065 5 1128 DNA Artificial Sequence Description of Artificial Sequence: coding sequence for OmpA-K2S fusion protein 5 atgaaaaaga cagctatcgc gattgcagtg gcactggctg gtttcgctac cgtggcccag 60 gcggcctctg agggaaacag tgactgctac tttgggaatg ggtcagccta ccgtggcacg 120 32 WO 02/40650 PCT/EP01/12857 4/27 cacagcctca ccgagtcggg tgcctcctgc ctcccgtgga attccatgat cctgataggc 180 aaggtttaca cagcacagaa ccccagtgcc caggcactgg gcctgggcaa acataattac 240 tgccggaatc ctgatgggga tgccaagccc tggtgccacg tgctgaagaa ccgcaggctg 300 acgtgggagt actgtgatgt gccctcctgc tccacctgcg gcctgagaca gtacagccag 360 cctcagtttc gcatcaaagg agggctcttc gccgacatcg cctcccaccc ctggcaggct 420 gccatctttg ccaagcacag gaggtcgccc ggagagcggt tcctgtgcgg gggcatactc 480 atcagctcct gctggattct ctctgccgcc cactgcttcc aggagaggtt tccgccccac 540 cacctgacgg tgatcttggg cagaacatac cgggtggtcc ctggcgagga ggagcagaaa 600 tttgaagtcg aaaaatacat tgtccataag gaattcgatg atgacactta cgacaatgac 660 attgcgctgc tgcagctgaa atcggattcg tcccgctgtg cccaggagag cagcgtggtc 720 cgcactgtgt gccttccccc ggcggacctg cagctgccgg actggacgga gtgtgagctc 780 tccggctacg gcaagcatga ggccttgtct cctttctatt cggagcggct gaaggaggct 840 catgtcagac tgtacccatc cagccgctgc acatcacaac atttacttaa cagaacagtc 900 accgacaaca tgctgtgtgc tggagacact cggagcggcg ggccccaggc aaacttgcac 960 gacgcctgcc agggcgattc gggaggcccc ctggtgtgtc tgaacgatgg ccgcatgact 1020 ttggtgggca tcatcagctg gggcctgggc tgtggacaga aggatgtccc gggtgtgtac 1080 acaaaggtta ccaactacct agactggatt cgtgacaaca tgcgaccg 1128 6 66 DNA Escherichia coli 6 atgaaaaaga cagctatcgc gattgcagtg gcactggctg gtttcgctac cgtggcccag 60 gcggcc . 66 7 1065 DNA Artificial Sequence Description of Artificial Sequence: coding sequence for K2S protein 7 33 WO 02/40650 5/27 PCT/EP01/12857 tctgagggaa acagtgactg ctactttggg aatgggtcag cctaccgtgg cacgcacagc 60 ctcaccgagt cgggtgcctc ctgcctcccg tggaattcca tgatcctgat aggcaaggtt 120 tacacagcac agaaccccag tgcccaggca ctgggcctgg gcaaacataa ttactgccgg 180 aatcctgatg gggatgccaa gccctggtgc cacgtgctga agaaccgcag gctgacgtgg 240 gagtactgtg atgtgccctc ctgctccacc tgcggcctga gacagtacag ccagcctcag 300 tttcgcatca aaggagggct cttcgccgac atcgcctccc acccctggca ggctgccatc 360 tttgccaagc acaggaggtc gcccggagag cggttcctgt gcgggggcat actcatcagc 420 tcctgctgga ttctctctgc cgcccactgc ttccaggaga ggtttccgcc ccaccacctg 480 acggtgatct tgggcagaac ataccgggtg gtccctggcg .aggaggagca gaaatttgaa 540 ' gtcgaaaaat acattgtcca taaggaattc gatgatgaca cttacgacaa tgacattgcg 600 ctgctgcagc tgaaatcgga ttcgtcccgc tgtgcccagg agagcagcgt ggtccgcact 660 gtgtgccttc ccccggcgga cctgcagctg ccggactgga cggagtgtga gctctccggc 720 tacggcaagc atgaggcctt gtctcctttc tattcggagc ggctgaagga ggctcatgtc 780 agactgtacc catccagccg ctgcacatca caacatttac ttaacagaac agtcaccgac 840 aacatgctgt gtgctggaga cactcggagc ggcgggcccc aggcaaactt gcacgacgcc 900 tgccagggcg attcgggagg ccccctggtg tgtctgaacg atggccgcat gactttggtg 960 ggcatcatca gctggggcct gggctgtgga cagaaggatg tcccgggtgt gtacacaaag 1020 gttaccaact acctagactg gattcgtgac aacatgcgac cgtga 1065 8 377 PRT Artificial Sequence 21 Description of Artificial Sequence: OmpA-K2S fusion protein 30 8 Met Lys Lys Thr Ala He Ala He Ala Val Ala Leu Ala Gly Phe Ala 1 5 10 * 15 Thr Val Ala Gin Ala Ala Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly 20 25 30 Asn Gly Ser Ala Tyr Arg Gly Thr His Ser Leu Thr Glu Ser Gly Ala 35 40 45 34 Ser Cys Leu Pro Trp Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr 50 55 60 Ala Gln Asn Pro Ser Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr 65 70 75- 80 Cys Arg Asn Pro Asp Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys 85 90 95 . Asn Arg Arg Leu Thr Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr 100 105 110 Cys Gly Leu Arg Gln Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly 115 120 125 Leu Phe Ala Asp Ile Ala Ser His Pro Trp Gin Ala Ala Ile Phe Ala 130 135 140 Lys His Arg Arg Ser Pro Gly Glu Arg Phe Leu Cys Gly Gly Ile Leu 145 150 155 160 Ile Ser Ser Cys Trp Ile Leu Ser Ala Ala His Cys Phe Gln Glu Arg 165 170 , 175 Phe Pro Pro His His Leu Thr Val Ile. Leu Gly Arg Thr Tyr Arg Val 180 185 190 Val Pro Gly Glu Glu Glu Gln Lys Phe Glu Val Glu Lys Tyr Ile Val 195 200 205 His Lys Glu Phe Asp Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu 210 215 220 Gln Leu Lys Ser Asp Ser Ser Arg Cys Ala Gln Glu Ser Ser Val Val '225 230 235 240 Arg Thr Val Cys Leu Pro Pro Ala Asp Leu Gln Leu Pro Asp Trp Thr 245 250 255 7/27 Glu Cys Glu Leu Ser Gly Tyr Gly Lys His Glu Ala Leu Ser Pro Phe 260 265 270 Tyr Ser Glu Arg Leu Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser 275 280 285 Arg Cys Thr Ser Gln His Leu Leu Asn Arg Thr Val Thr Asp Asn Met 290 295 300 Leu Cys Ala Gly Asp Thr Arg Ser Gly Gly Pro Gln Ala Asn Leu His 305 310 315 320 Asp Ala Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Leu Asn Asp 325 330 335 Gly Arg Met Thr Leu Val Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly 340 345 350 Gln Lys Asp Val Pro Gly Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp 355 360 365 Trp Ile Arg Asp Asn Met Arg Pro Gly 370 375 9 4 PRT Artificial Sequence Description of Artificial Sequence: peptide sequence 9 Ser Glu Gly Asn 1 36 10 6 PRT Artificial Sequence Description of Artificial Sequence: peptide sequence (l0 ) Ser Glu Gly Asn Ser Asp 11 354 PRT Artificial Sequence Description of Artificial Sequence: K2S 174-527 11 Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr Arg as 1 5 10 15 Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp Asn ■20 25 30 Ser Met lie Leu He Gly Lys Val Tyr Thr Ala Gin Asn Pro Ser Ala 35 40 45 Gin Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp Gly 50 55 60 Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr Trp 65 70 75 80 Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gin Tyr 37 85 90 95 Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile Ala 100 105 110 ' Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Arg Arg Ser Pro 115 120 125 Gly Glu Arg Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp Ile 130 135 140 Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His Leu 145 150 155 160 Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu Glu 165 170 175 Gln Lys Phe Glu Val Glu lys Tyr He Val His Lys Glu Phe Asp Asp 180 185 190 Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp Ser 195 200 205 Ser Arg Cys Ala Gin Glu Ser Ser Val Val Arg Thr Val Cys Leu Pro 210 215 220 Pro Ala Asp Leu Gin Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser Gly 225 230 235 240 Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu Lys 245 . 250 255 Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln His 260 265 270 Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp Thr 275 280 285 Arg Ser Gly Gly Pro Gin Ala Asn Leu His Asp Ala Cys Gin Gly Asp 290 295 300 Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu Val 305 . 310 315 320 Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro Gly 325 330 335 Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn Met 340 345 350 Arg Pro 12 331 PRT Artificial Sequence Description of Artificial Sequence: K2S 197-527 12 Ser Gly Ala Ser Cys Leu Pro Trp Asn Ser Met Ile Leu Ile Gly Lys 1,5 10 15 Val Tyr Thr Ala Gln Asn Pro Ser Ala Gln Ala Leu Gly Leu Gly Lys 20 25 30 His Asn Tyr Cys Arg Asn Pro Asp Gly Asp Ala Lys Pro Trp Cys His 35 40 45 Val Leu Lys Asn Arg Arg Leu Thr Trp Glu Tyr Cys Asp Val Pro Ser 50 55 60 Cys Ser Thr Cys Gly Leu Arg Gln Tyr Ser Gln Pro Gln Phe Arg Ile 65 70 75 80 Ala Ser His Pro 90 Pro Gly Glu Arg 105 Ile Leu Ser Ala Trp Gln Ala Ala 95 Phe Leu Cys Gly ,110 Ala His Cys Phe 125 Leu Gly Arg Thr Phe Ala Asp Ile 85 His Arg Arg Ser Ser Ser Cys Trp 120 Pro Pro His His 135 Pro Gly Glu Glu 150 Lys Glu Phe Asp 165 Leu Lys Ser Asp Leu Thr Val Ile 140 Glu Gln Lys Phe 155 Asp Asp Thr Tyr 170 Ser Ser Arg Cys 185 Pro Pro Ala Asp Glu Val Glu Lys 160 Asp Asn Asp Ile 175 Ala Gln Glu Ser 190 Leu Gln Leu Pro 205 His Glu Ala Leu Gly Tyr Gly Lys 220 Lys Glu Ala His 235 His Leu Leu Asn 250 Thr Arg Ser Gly 265 Asp Ser Gly Gly Val Arg Leu Tyr 240 Arg Thr Val Thr 255 Gly Pro Gln Ala 270 Pro Leu Val Cys 285 Lys Gly Gly Leu Ile Phe Ala Lys 100 Gly lie Leu Ile 115 Gln Glu Arg Phe 130 Tyr Arg Val Val 145 Tyr He Val His Ala Leu Leu Gin 180 Thr Val Cys Leu 200 Cys Glu Leu Ser 215 Ser Glu Arg Leu 230 Cys Thr Ser Gln 245 Cys Ala Gly Asp 'Ser Val Val Arg 195 Asp Trp Thr Glu 210 Ser Pro Phe Tyr 225 Pro Ser Ser Arg Asp Asn Met Leu 2 60 Ala Cys Gln Gly 280 Asn Leu His Asp 275 40 Leu Asn Asp Gly Arg Met Thr Leu Val Gly Ile Ile Ser Trp Gly Leu 290 295 300 Gly Cys Gly Gln Lys Asp Val Pro Gly Val Tyr Thr Lys Val Thr Asn 305 310 315 320 Tyr Leu Asp Trp Ile Arg Asp Asn Met Arg Pro 325 330 13 339 PRT Artificial Sequence Description of Artificial Sequence: K2S 193-527, modified 13 Ser Glu Gly Asn Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp 1 5 , 10 15 Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser is 20 25 30 Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp 35 40 45 Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr 50_ 55 60 Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln 65 70 75 80 Tyr Ser Gln Pro Gin Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile 85 90 95 Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Arg Arg Ser 41 100 105 110 Pro Gly Glu Arg Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp 115 120 125 Ile Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His 130 135 140 Leu Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu ID 145 150 155 160 Glu Gln Lys Phe Glu Val Glu Lys Tyr Ile Val His Lys Glu Phe Asp 165 170 175 Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp 180 185 190 Ser Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu 195 ' 200 205 Pro Pro Ala Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser 210 215 220 Gly Tyr Gly Lys His Glu Ala Leu Ser "Pro Phe Tyr Ser Glu Arg Leu 225 230 235 240 Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln 245 250 255 His Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp 260 265 270 Thr Arg Ser Gly Gly Pro Gin Ala Asn Leu His Asp Ala Cys Gln Gly 275 280 285 35 Asp Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu 290 295 300 Val Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro 305 310 315 320 Gly Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn 325 330 335 Met Arg Pro 14 335 PRT Artificial Sequence Description of Artificial Sequence: K2S 193-527, modified 14 Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp Asn Ser Met Ile 15 10 15 Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser Ala Gln Ala Leu 20 25 30 Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp Gly Asp Ala Lys 35 40 45 Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr Trp Glu Tyr Cys 50 55 60 Asp Val Pro Ser Ser Ser Thr Cys Gly Leu Arg Gln Tyr Ser Gln Pro 65 70 75 80 Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile Ala Ser His Pro 85 90 95 Trp Gln Ala Ala Ile Phe Ala Lys His Arg Arg Ser Pro Gly Glu Arg 100 105 110 43 Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp Ile Leu Ser Ala 115 120 125 Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His Leu Thr Val Ile 130 135 140 Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu Glu Gln Lys Phe 145 150 155 160 Glu Val Glu Lys Tyr Ile Val His Lys Glu Phe Asp Asp Asp Thr Tyr 165 170 175 Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp Ser Ser Arg Cys 180 185 190 Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu Pro Pro Ala Asp 195 200 205 Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser Gly Tyr Gly Lys 210 215 220 His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu Lys Glu Ala His 225 230 235 240 Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln His Leu Leu Asn 245 250 255 Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp Thr Arg Ser Gly 260 265 270 Gly Pro Gln Ala Asn Leu His Asp Ala Cys Gln Gly Asp Ser Gly Gly 275 280 285 Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu Val Gly Ile Ile 290 295 300 Ser Trp Gly Leu Gly Cys Gly Gin Lys Asp Val Pro Gly Val Tyr Thr 305 310 315 320 44 Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn Met Arg Pro 325 330 . 335 15 343 PRT Artificial Sequence Description of Artificial Sequence: K2S 191-527, modified 15 Ser Glu Gly Asn Ser Asp Thr His Ser Leu Thr Glu Ser Gly Ala Ser 15 10 15 Cys Leu Pro Trp Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala 20 25 30 Gln Asn Pro,Ser Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys 35 40 45 Arg Asn Pro Asp Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn 50 55 60 Arg Arg Leu Thr Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys 65 70 75 80 Gly Leu Arg Gln Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu 85 90 95 Phe Ala Asp Ile Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys 100 105 110 His Arg Arg Ser Pro Gly Glu Arg Phe Leu Cys Gly Gly Ile Leu Ile 115 120 125 45 Ser Ser Cys Trp Ile Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe 130 135 140 Pro Pro His His Leu Thr VAL Ile Leu Gly Arg Thr Tyr Arg Val Val 145 150 155 160 Pro Gly Glu Glu Glu Gln Lys phe Glu Val Glu Lys Tyr Ile Val His 165 170 175 Lys Glu Phe Asp Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln 180 185 190 Leu Lys Ser Asp Ser Ser Arg cys Ala Gln Glu Ser Ser Val Val Arg 195 200 205 . Thr Val Cys Leu Pro Pro Ala Asp Leu Gln Leu Pro Asp Trp Thr Glu 210 215 220 Cys Glu Leu Ser Gly Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr 225 230 235 240 Ser Glu Arg Leu Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg 245 250 255 Cys Thr Ser Gln His Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu - 260 265 270 Cys Ala Gly Asp Thr Arg Ser Gly Gly Pro Gln Ala Asn Leu His Asp 275 280 285 Ala Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly 290 295 300 Arg Met Thr Leu Val Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln 305 310 315 320 Lys Asp Val Pro Gly Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp 325 330 335 46 Ile 02/40650 02/40650 Arg Asp Asn Met Arg Pro 340 16 , 343 PRT Artificial Sequence Description of Artificial Sequence: K2S 191-527, modified 16 Ser Glu Gly Asn Ser Asp Thr His Ser Leu Thr Glu Ser Gly Ala Ser 15 10 15 Cys Leu Pro Trp Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala 20 25 30 Gln Asn Pro Ser Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys 35 40 , 45 Arg Asn Pro Asp Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn 50 55 60 Arg Arg Leu Thr Trp Glu Tyr Cys Asp Val Pro Ser Ser Ser Thr Cys 65 70 75 • 80 Gly Leu Arg Gln Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu 85 90 95 Phe Ala Asp Ile Ala Ser 'His Pro Trp Gln Ala Ala Ile Phe Ala Lys 100 ' 105 110 33 His Arg Arg Ser Pro Gly Glu Arg Phe Leu Cys Gly Gly Ile Leu Ile 115 120 125 Ser Ser Cys Trp Ile Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe 47 130 135 140 Pro Pro His His Leu Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val 145 150 155 160 Pro Gly Glu Glu Glu Gln Lys Phe Glu Val Glu Lys Tyr Ile Val His 165 170 175 Lys Glu Phe Asp Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln 180 185 190 Leu Lys Ser Asp Ser Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg 195 200 205 Thr Val Cys Leu Pro Pro Ala Asp Leu Gln Leu Pro Asp Trp Thr Glu 210 215 220 Cys Glu Leu Ser Gly Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr 225 230 235 . 240 20 Ser Glu Arg Leu Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg 245 250 255 Cys Thr Ser Gln His Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu 260 265 270 Cys Ala Gly Asp Thr Arg Ser Gly Gly Pro Gln Ala Asn Leu His 'Asp 275 ' 280 285 Ala Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly 290 295 300 Arg Met Thr Leu Val Gly Ile He Ser Trp Gly Leu Gly Cys Gly Gln 305 310 315 320 Lys Asp Val Pro Gly Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp 325 330 335 He Arg Asp Asn Met Arg Pro 48 17 308 PRT Artificial Sequence Description of Artificial Sequence: K2S 220-527 17 Ser Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro .1 5 10 15 Asp Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu 20 25 30 Thr Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg 35 40 45 Gln Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp 50 55 60 Ile Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Arg Arg 65 70 75 80 Ser Pro Gly Glu Arg Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys 85 90 95 Trp Ile Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His 100 105 110 His Leu Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu 115 120 125 Glu Glu Gln Lys Phe Glu Val Glu Lys Tyr Ile Val His Lys Glu Phe 130 135 140 49 Asp Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser 145 150 155 160 Asp Ser Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys 165 170 175 Leu Pro Pro Ala Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu 180 ' 185 190 Ser Gly Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg 195 200 205 Leu Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser 210 215 220 Gln His Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly 225 230 235 240 Asp Thr Arg Ser Gly Gly Pro Gln Ala Asn Leu His Asp Ala Cys Gln 245 250 255 Gly Asp Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr 260 265 270 Leu Val Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val 275 280 285 Pro Gly Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp 290 295 300 Asn Met Arg Pro 305 18 268 PRT Artificial Sequence 50 Description of Artificial Sequence: K2S 260-527 18 Ser Cys Ser Thr Cys Gly Leu Arg Gin Tyr Ser Gin Pro Gin Phe Arg 15 10 15 He lys Gly Gly Leu Phe Ala Asp He Ala Ser His Pro Trp Gin Ala 20 25 .30 Ala Ile Phe Ala Lys His Arg Arg Ser Pro Gly Glu Arg Phe Leu Cys 35 40 45 Gly Gly Ile Leu Ile Ser Ser Cys Trp Ile Leu Ser Ala Ala His Cys 50 55 60 Phe Gln Glu Arg Phe Pro Pro His His Leu Thr Val Ile Leu Gly Arg 65 70 75 80 Thr Tyr Arg Val Val Pro Gly Glu Glu Glu Gln Lys Phe Glu Val Glu 85 90 95 Lys Tyr Ile Val His Lys Glu Phe Asp Asp Asp Thr Tyr Asp Asn Asp 100 105 110 Ile Ala Leu Leu Gin Leu Lys Ser Asp Ser Ser Arg Cys Ala Gln Glu 115 120 ' 125 Ser Ser Val Val Arg Thr Val Cys Leu Pro Pro Ala Asp Leu Gln Leu 130 135 140 Pro Asp Trp Thr Glu Cys Glu Leu Ser Gly Tyr Gly Lys His Glu Ala 145 150 155 160 Leu Ser Pro Phe Tyr Ser Glu Arg Leu Lys Glu Ala His Val Arg Leu 165 170 175 Tyr Pro Ser Ser Arg Cys Thr Ser Gln His Leu Leu Asn Arg Thr Val 180 185 190 Thr Asp Asn Met Leu Cys Ala Gly Asp Thr Arg Ser Gly Gly Pro Gln 195 200 205 Ala Asn Leu His Asp Ala Cys Gln Gly Asp Ser Gly Gly Pro Leu Val 210 215 220 Cys Leu Asn Asp Gly Arg Met Thr Leu Val Gly Ile Ile Ser Trp Gly 225 230 235 240 Leu Gly Cys Gly Gln Lys Asp Val Pro Gly Val Tyr Thr Lys Val Thr 245 . 250 255 Asn Tyr Leu Asp Trp Ile Arg Asp Asn Met Arg Pro 260 265 19 527 PRT Homo sapiens 19 Ser Tyr Gln Val Ile Cys Arg Asp Glu Lys Thr Gln Met Ile Tyr Gln 1 5 10 15 Gln His Gln Ser Trp Leu Arg Pro Val Leu Arg Ser Asn Arg Val Glu 20 ' 25 30 Tyr Cys Trp Cys Asn Ser Gly Arg Ala Gln Cys His Ser Val Pro Val 35 40 45 Lys Ser Cys Ser Glu Pro Arg Cys Phe Asn Gly Gly Thr Cys Gln Gln 50 55 60 Ala Leu Tyr Phe Ser Asp Phe Val Cys Gln Cys Pro Glu Gly Phe Ala 65 70 75 80 Gly Lys Cys Cys Glu Ile Asp Thr Arg Ala Thr Cys Tyr Glu Asp Gln 85 90 95 Gly Ile Ser Tyr Arg Gly Thr Trp Ser Thr Ala Glu Ser Gly Ala Glu 100 105 110 Cys Thr Asn Trp Asn Ser Ser Ala Leu Ala Gln Lys Pro Tyr Ser Gly 115 120- '125 Arg Arg Pro Asp Ala Ile Arg Leu Gly Leu Gly Asn His Asn Tyr Cys 130 135 140 Arg Asn Pro Asp Arg Asp Ser Lys Pro Trp Cys Tyr Val Phe Lys Ala 145 150 155 160 Gly Lys Tyr Ser Ser Glu phe Cys Ser Thr Pro Ala Cys Ser Glu Gly 165 170 175 Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr Arg Gly Thr His 180 185 190 Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp Asn Ser Met Ile 195 200 205 ' Leu Ile Gly Lys Val Tyr 'Thr Ala Gln Asn Pro Ser Ala Gln Ala Leu 210 215 220 Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp Gly Asp Ala Lys 225 230 235 240 Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr Trp Glu Tyr Cys 245 250 255 Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln Tyr Ser Gln Pro 260 265 270 Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile Ala Ser His Pro 275 280 285 Trp Gln Ala Ala Ile Phe Ala Lys His Arg Arg Ser Pro Gly Glu Arg 290 295 300 Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp Ile Leu Ser Ala 305 310 315 320 Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His Leu Thr Val Ile 325 330 335 Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu Glu Gln Lys Phe 340 345 350 Glu Val Glu Lys Tyr Ile Val His Lys Glu Phe Asp Asp Asp Thr Tyr 355 360 365 Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp Ser Ser Arg Cys 370 375 380 Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu Pro Pro Ala Asp 385 390 395 400 Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser Gly Tyr Gly Lys 405 410 415 His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu Lys Glu Ala His 420 425 430 Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln His Leu Leu Asn 435 440 '445 Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp Thr Arg Ser Gly 450 455 460 Gly Pro Gln Ala Asn Leu His Asp Ala Cys Gln Gly Asp Ser Gly Gly 465 470 475 480 Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu Val Gly Ile Ile 485 490 495 Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro Gly Val Tyr Thr 54 500 505 510 Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn Met Arg Pro 515 520 525 20 12 DNA Artificial Sequence Description of Artificial Sequence: coding sequence for SEGN 20 tctgagggaa ac 12 21 22 PRT > Escherichia coli 21 Met Lys Lys Thr Ala Ile Ala Ile Ala Val Ala Leu Ala Gly Phe Ala 1 5• 10 15 Thr Val Ala Gln Ala Ala 20 22 42 DNA Artificial Sequence Description of Artificial Sequence: primer 22 gaggaggagg tggcccaggc ggcctctgag ggaaacagtg ac 23 42 DNA Artificial Sequence Description of Artificial Sequence: primer 23 gaggaggagc tggccggcct ggcccggtcg catgttgtca cg 24 26 DNA Artificial Sequence Description of Artificial Sequence: primer 24 acatgcgacc gtgacaggcc ggccag 25 26 DNA Artificial Sequence Description of Artificial Sequence: primer 25 ctggccggcc tgtcacggtc gcatgt 56 |We claim: 1. Method for the production of recombinant DNA-derived tissue plasminogen activator (tPA), a tPA variant, a Kringle 2 Serine protease molecule (K2S) or a K2S variant in prokaryotic cells, wherein said tPA, tPA variant, K2S molecule or K2S variant is secreted extracellularly as an active and correctly folded protein, characterized in that the prokaryotic cell contains and expresses a vector comprising the DNA coding for said tPA, tPA variant, K2S molecule or K2S variant operably linked to the DNA coding for the signal peptide OmpA. 2. Method as claimed in claim 1, wherein said the prokaryotic cell contains and expresses a vector comprising the DNA coding for said tPA, tPA variant, K2S •molecule or K2S variant operably linked to the DNA coding for the signal peptide OmpA which is operably linked to the nucleic acid molecule defined by the sequence TCTGAGGOAAACAGTGAC (SEQ ID NO: 1) or a functional derivative thereof. 3. Method as claimed in claim 1 or 2, wherein the prokaryotic cell is E. coli. 4. Method as claimed in one of claims 1 to 3, wherein the following steps are carried out: a) the DNA encoding the tPA, tPA variant, K2S molecule or K2S variant is amplified by PCR; b) the PCR product is purified; c) said PCR product is inserted into a vector comprising the DNA coding for OmpA signal peptide and the DNA coding for gpIII in such a way that said PCR product is operably linked upstream to the DNA coding for the OmpA signal sequence and linked downstream to the DNA coding for gplll of said vector;' d) that a stop codon is inserted between said tPA, tPA variant, K2S molecule or K2S variant and gplll; e) said vector is expressed by the prokaryotic cell; f) the tPA, tPA variant, K2S molecule or K2S variant is purified. -57- 5. Method as claimed in any one of claims 1 to 4, wherein the vector is a phagemid vector comprising the DNA coding for OmpA signal peptide and the DNA coding for gpIII. 6. Method as claimed in any one of claims 1 to 5, wherein the vector is the pComb3HSS phagemid. 7. Method as claimed in one of claims 1 to 6, wherein the DNA Sequence of OmpA linked upstream to K2S comprises the following sequence or a variant due to the degenerate nucleotide code: ATGAAAAAGACAGCTATCGCGATTGCAGTGGCACTGGCTGGTrTCGCTACCGTGGCCCAG GCGGCCTCTGAGGGAAACAGTGACrGCTACTTTGGGAATGGGTCAGCCTACCGTGGCAC GCACAGCCTCACTGAGTCGGGTGCCTCCTGCCTCCCGTGGAATTCCATGATCCTGATAGG CAAGGTTTACACAGCACAGAACCCCAGTGCCCAGGCACTGGGCCTGGGCAAACATAATT ACTGCCGGAATCCTGATGGGGATGCCAAGCCCTGGTGCCACGTGCTGAAGAACCGCAGG CTGACGTGGGAGTACTGTGATGTGCCCTCCTGCTCCACCTGCGGCCTGAGACAGTACAGC CAGCCTCAGTTTCGCATCAAAGGAGGGCTCTrCGCCGACATCGCCTCCCACCCCrGGCAG GCTGCCATCTTTGCCAAGCACAGGAGGTCGCCCGGAGAGCGGTTCCTGTGCGGGGGCAT ACTCATCAGCTCCTGCTGGATTCTCTCTGCCGCCCACTGCnCCAGGAGAGGTTTCCGCCC CACCACCTGACGGTGATCTTGGGCAGAACATACCGGGTGGTCCCTGGCGAGGAGGAGCA GAAATTTGAAGTCGAAAAATACATTGTCCATAAGGAATTCGATGATGACACTTACGACA ATGACATTGCGCTGCTGCAGCTGAAATCGGATTCGTCCCGCTGTGCCCAGGAGAGCAGCG TGGTCCGCACTGTGTGCCTTCCCCCGGCGGACCTGCAGCTGCajGACTGGACGGAGTGTG AGCTCTCCGGCTACGGCAAGCATGAGGCCTTGTCTCCrTTCTATTCGGAGCGGCTGAAGG AGGCTCATGTCAGACTGTACCCATCCAGCCGCTGCACATCACAACATTTACTTAACAGAA CAGTCACCGACAACATGCTGTGTGCTGGAGACACTCGGAGCGGCGGGCCCCAGGCAAAC TTGCACGACGCCTGCCAGGGCGATTCGGGAGGCCCCCTGGTGTGTCTGAACGATGGCCGC ATGACnTGGTGGGCATCATCAGCTGGGGCCTGGGCTGTGGACAGAAGGATGTCCCGGGT GTGTACACAAAGGTTACCAACTACCTAGACTGGATTCGTGACAACATGCGACCG (SEQ ID N0:2) • 8. Method as claimed in any one of claims 1 to 7, wherein the DNA Sequence of OmpA comprises the following sequence: ATGAAAAAGACAGCTATCGCGATTGCAGTGGCACTGGCTGGTTTCGCTACCGTGGCCCAG GCGGCC(SEQ ID NO:3) 9. Method as claimed in any one of claims 1 to 8, wherein the DNA Sequence of OmpA consists of the following sequence: ATGAAAAAGACAGCTATC GCGATTGCAGTGGCACTGGCTGGTTTCGCTACCGTGGCCCAG GCGGCC (SEQ ID N0:3) 58 10. Method as claimed in any one of claims 1 to 9, wherein the DNA of the tPA, tPA variant, 1 molecule or K2S variant is preceeded by a lac promoter and/or a ribosomal binding site. 11. Method as claimed in any one of claims 1 to 10, wherein the DNA coding for the tPA, tPA variant, K2S molecule or K2S variant is selected from the group of DNA molecules coding for at least 90% of the amino acids 87 - 527, 174 - 527, 180 - 527 or 220 - 527 of the human tissue plasminogen activator protein. 12. Method as claimed in any one of claims 5 to 11, wherein the DNA Sequence of K2S comprises the following sequence or a functional variant thereof or a variant due to the degenerate nucleotide code: TCTGAGGGAAACAOTOACTGCTACTTTCKGGAATGGGTCAGCCTACCGTGGCACGCACAG CCTCACCGAGTCGGGTGCCTCCTGCCTCCCGTGGAATTCCATGATCCTGATAGGCAAGGT TTACACAGCACAGAACCCCAGTGCCCAGGCACTGGGCCTGGOCAAACATAATTACTGCC GGAATCCTGATGGGGATGCCAAGCCCTGGTGCCACGTGCTGAAGAACCGCAGGCTGACG TGGGAGTACTGTGATGTGCCCTCCTGCTCCACCTGCGGCCTGAGACAGTACAGCCAGCCT CAGTTTCGCATCAAAGGAGGGCTCTTCGCCCGACATCGCCTCCCACCCCTGGCAGGCTGCC ATCTTTGCCAAGCACAGGAGGTCGCCCGGAGAGCGGTTCCTGTGCGGGGGCATACTCATC AGCTCCTGCTGGATrCTCTCTGCCGCCCACTGCTTCCAGGAGAGGTTTCCGCCCCACGACC TGACGGTGATCTTGGGCAGAACATACCGGGTGGTCCCTGGCGAGGAGGAGCAGAAATTT GAAGTCGAAAAATACATTGTCCATAAGGAATTCGATGATGACACTTACGACAATGACATT GCGCTGCTGCAGCTGAAATCGGATTCGTCCCGCTGTGCCCAGGAGAGCAGCGTGGTCCGC ACTGTGTGCCTTCCCCCGGCGGACCTGCAGCTGCCGGACTGGACGGAGTGTGAGCTCTCC GGCTACGGCAAGCATGAGCKXTrrGTCTCCTTTCTATTCGGAGCGGCTGAAGGAGGCTCAT GTCAGACTGTACCCATOCAGCCGCTGCACATCACAACATTTACTTAACAGAACAGTCACC GACAACATGCTGTGTGCTGGAGACACTCGGAGCGGCGGGCCCCAGGCAAACTTGCACGA CGCCTGCCAGGGCGATTCGGGAGGCCCCCTGGTGTGTCTGAACGATGGCCGCATGACTTT GGTGGGCATCATCAGCTGGGGCCTGGGCTGTGGACAGAAGGATGTCCCGGGTGTGTACA CAAAGGTTACCAACTACCTAGACTGGATTCGTGACAACATGCGACCGTGA (SEQ ID NO:4). 13. Method as claimed in any one of claims 5 to 12, wherein the DNA Sequence of K2S consists of the following sequence: 59 .TCTGAGGGAAACAGTGACTGCTACTTTGGGAATGGGTCAGCCTACCGTGGCACGCACAG CCTCACCGAGTCGGGTGCCTCCTGCCTCCCGTGGAATTCCATGATCCTGATAGGCAAGGT TTACACAGCACAGAACCCCAGTGCCCAGGCACrGGGCCTGGGCAAACATAATTACTGCC GGAATCCTGATGGGGATGCCAAGCCCTGGTGCCACGTGCTGAAGAACCGCAGGCTGACG TGGGAGTACTGTGATGTGCCCTCCTGCTCCACCTGCGGCCTGAGACAGTACAGCCAGCCT CAGTTTCGCATCAAAGGAGGGCTCTTCGCCGACATCGCCTCCCACCCCTGGCAGGCTGCC ATCTrTGCCAAGCACAGGAGGTCGCCCGGAGAGCGGTTCCTGTGCGGGGGCATACTCATC AGCTCCTCKTGGATTCTCTCTGCCGCCCACTGCrrcCAGGAGAGGTTTCCGCCCCACCACC TGACGGTGATCTTGGGCAGAACATACCXJGGTGGTCCCTGGCGAGGAGGAGCAGAAATT GAAGTCGAAAAATACATrGTCCATAAGGAATTCGATGATGACACTTACGACAATGACATT GCGCTGCTGCAGCTGAAATCGGATTCGTCCCGCTGTGCCCAGGAGAGCAGCGTGGTCCGC ACTGTGTGCCTTCCCCCGGCGGACCTGCAGCTGCCGGACTGGACGGAGTGTGAGCTCTCC GGCTACGGCVUGCATGAGGCCrrGTCTCCTTTCTATTCGGAGCGGCTGAAGGAGGCTCAT GTCAGACTGTACCCATCCAGCCGCTGCACATCACAACATTTACTTAACAGAACAGTCACC GACAACATGCTGTGTGCTGGAGACACTCGGAGCGGCGGGCCCCAGGCAAACTTGCACGA CGCCTGCCAGGGCGATTCGGGAGGCCCCCTGGTGTGTCTGAACGATGGCCGCATGACTTT GGTGGGCATCATCAGCTGGGGCCTGGGCTGTGGACAGAAGGATGTCCCGGGTGTGTACA CAAAGGTTACCAACTACCTAGACTGGATTCGTGACAACATGCGACCGTGA (SEQ IDN0:4). 14. DNA molecule prepared by the method as claimed in claim 1 wherein it is coding for: a) the OmpA protein operably linked to b) a DNA molecule coding for a polypeptide containing the amino acids SEGN, which itself is operatively linked to c) DNA molecule coding for a polypeptide containing the kringle 2 domain and the serine protease domain of tissue plasminogen activator protein. 15. DNA molecule as claimed in claim 14, wherein said DNA sequence comprises the following sequence or a variant due to the degenerate nucleotide code: 60 |ATGAAAAAGACAGCTATCGCGATTGCAGTGGCACTGGCTGGTTTCGCTACCGTGGCCCAG 'GCGGCCTCTGAGGGAAACAGTGACTGCTACTTTGGGAATGGGTCAGCCTACCGTGGCAC GCACAGCCTCACCGAGTCGGGTGCCTCCTGCCTCCCGTGGAATTCCATGATCCTGATAGG CAAGGTTTACACAGCACAGAACCCCAGTGCCCAGGCACTGGGCCTGGGCAAACATAATT ACTGCCGGAATCCTGATGGGGATGCCAAGCCCTGGTGCCACGTGCTGAAGAACCGCAGG CTGACGTGGGAGTACTGTGATGTGCCCTCCTGCTCCACCTGCGGCCTGAGACAGTACAGC CAGCCTCAGTTTCGCATCAAAGGAGGGCTCTTCGCCGACATCGCCTCCCACCCCTGGCAG GCTGCCATCTn-GCCAAGCACAGGAGGTCGCCCGGAGAGCGGrrCCTGTGCGGGGGCAT ACTCATCAGCTCCTGCTGGATTCTCTCTGCCGCCC^CTGCTTCCAGGAGAGGTITCCGCCC CACCACCTGACGGTGATCTTGGGCAGAACATACCGGGTGGTCCCTGGCGAGGAGGAGCA GAAATTTGAAGTCGAAAAATACATTGTCCATAAGGAATTCGATGATGACACTTACGACA ATGACATTGCGCTGCTGCAGCTGAAATCGGATTCGTCCCGCTGTGCCCAGGAGAGCAGCG TGGTCCGCACTGTGTGCCTTCCCCCGGCGGACCTGCAGCTGCCGGACTGGACGGAGTGTG AGCTCTCCGGCTACGGCAAGCATGAGGCCTTGTCTCCTTTCTATTCGGAGCGGCTGAAGG AGCKHCATGTCACLACTGTACCCATCCAGCCGCTGCACATCACAACATTTACTTAACAGAA CAGTCACCGACAACATGCTGTGTGCTGGAGACACTCGGAGCGGCGGGCCCCAGGCAAAC TTGCACGACGCCTGCCAGGGCGATTCGGGAGGCCCCCTGGTGTGTCTGAACGATGGCCGC ATGACTTGGTGGGCATCATCAGCTGGGGCCTGGGCTGTGGACAGAAGGATGTCCCGGGT GTGTACACAAAGGTTACCAACTACCTAGACTGGATTCGTGACAACATGCGACCG ATGAAAAAGACAGCTATCGCGATTGCAGTGGCACTGGCTGG'nTCGCTACCGTGGCCCAG GCGGCCTCTGAGGGAAACAGTGACTGCTACTTTGGGAATGGGTCAGCCTACCGTGGCAC GCACAGCCTCACCGAGTCGGGTGCCTCCTGCCTCCCGTGGAATTCCATGATCCTGATAGG CAAGGTTTACACAGCACAGAACCCCAGTGCCCAGGCACTGGGCCTGGGCAAACATAATT ACTGCCGGAATCCTGATGGGGATGCCAAGCCCTGGTGCCACGTGCTGAAGAACCGCAGG CTGACGTGGGAGTACTGTGATGTGCCCTCCTGCTCCACCTGCGGCCTGAGACAGTACAGC CAGCCTCAGTTTCGCATCAAAGGAGGGCTCTTCGCCGACATCGCCTCCCACCCCTGGCAG GCTGCCATCTTTGCCAAGCACAGGAGGTCGCCCGGAGAGCCGTTCCTGTGCGGGGGCAT ACTCATCAGCTCCTGCTGGATTCTCTCTGCCGCCCACTGCTTCCAGGAGAGGTTTCCGCCC CACCACCTGACGGTGATCTTGGGCAGAACATACCGGGTGGTCCCTGGCGAGGAGGAGCA GAAATTTGAAGTCGAAAAATACATTGTCCATAAGGAATTCGATGATGACACTTACGACA ATGACATTGCGCTGCTGCAGCTGAAATCGGATTCGTCCCGCTGTGCCCAGGAGAGCAGCG TGGTCCGCACTGTGTGCCTTCCCCCGGCGGACCTGCAGCTGCCGGACTGGACGGAGTGTG AGCTCTCCGGCTACGGCAAGCATGAGGCCTTGTCTCCTTTCTATTCGGAGCGGCTGAAGG AGGCTCATGTCAGACTGTACCCATCCAGCCGCTGCACATCACAACATTTAC1TAACAGAA CAGTCACCGACAACATGCTGTGTGCTGGAGACACTCGGAGCGGCGGGCCCCAGGCAAAC TTGCACGACGCCTGCCAGGGCGATTCGGGAGGCCCX:CTGGTGTGTCTGAACGATGGCCGC ATGACTTTGGTGGGCATCATCAGCTGGGGCCTGGGCTGTGGACAGAAGGATGTCCCGGGT GTGTACACAAAGGTTACCAACTACCTAGACTGGATTCGTGACAACATGCGACCG (SEQ ID N0:5). 34 . DNA molecule as claimed in any one of claims 14 to 16, wherein said DNA sequence b) is coding for at least 90% of the amino acids 87 - 527 of the human tissue plasminogen activator protein. 18. DNA molecule as claimed in any one of claims 14 to 17, wherein said DNA sequence b) is coding for at least 90% of the amino acids 174 - 527 of the human tissue plasminogen activator protein. 19. DNA molecule as claimed in any one of claims 14 to 18, wherein said DNA sequence b) is coding for at least 90% of the amino acids 180 - 527 of the human tissue plasminogen activator protein. 20. DNA molecule as claimed in any one of claims 14 to 19, wherein said DNA sequence b) is coding for at least 90% of the amino acids 220 - 527 of the human tissue plasminogen activator protein. 21. DNA molecule as claimed in any one of claims 14 to 20 wherein said DNA sequence b) is hybridizing under stringent conditions to the following sequence: TCTGAGGGAAACAGTGACTGCTACTTTGGGAATGGGTCAGCCTACCGTGGCACGCACAG CCTCACCGAGTCGGGTGCCTCCTGCCTCCCGTGGAATTCCATGATCCTGATAGGCAAGGT TTACACAGCACAGAACCCCAGTGCCCAGGCACTGGGCCTGGGCAAACATAATrACTGCC GGAATCCTGATGGGGATGCCAAGCCCTGGTGCCACGTGCTGAAGAACCGCAGGCTGACG TGGGAGTACTGTGATGTG(XCTCCTGCTCCACCTGCGGCCTGAGACAGTACAGCCAGCCT CAGTTTCGCATCAAAGGAGGGCTCTTCGCCGACATCGCCTCCCACCCCTGGCAGGCTGCC ATCTTTGCCAAGCACAGGAGGTCGCCCGGAGAGCGGTTCCTGTGCGGGGGCATACTCATC AGCTCCTGCTGGATTCTCTCTGCCGCCCACTGCTTCCAGGAGAGGTTTCCGCCCCACCACC TGACGGTGATCrrGGGCAGAACATACCGGGTGGTCCCTGGCGAGGAGGAGCAGAAATTT GAAGTCGAAAAATACATTGTCCATAAGGAATTCGATGATGACACTTACGACAATGACATT GCGCTGCTGCAGCTGAAATCGGATTCGTCCCGCTGTGCCCAGGAGAGCAGCGTGGTCCGC ACTGTGTGCCTTCCCCCGGCGGACCTGCAGCTGCCGGACTGGACGGAGTGTGAGCTCTCC GGCTACGGCAAGCATGAGGCCTTGTCTCCTTTCTATTCGGAGCGGCTGAAGGAGGCTCAT GTCAGACTGTACCCATCCAGCCGCTGCACATCACAACATTTACTTAACAGAACAGTCACC GACAACATGCTGTGTGCTGGAGACACTCGGAGCGGCGGGCCCCAGGCAAACTTGCACGA CGCCTGCCAGGGCGATTCGGGAGGCCCCCTGGTGTGTCTGAACGATGGCCGCATGATTT GGTGGGCATCATCAGCTGGGGCCTGGGCTGTGGACAGAAGGATGTCCCGGGTGTGTACA CAAAGGTTACCAACTACCTAGACTGGATTCGTGACAACATGCGACCGTGA (SEQ IDNO:7). . DNA molecule as claimed in any one of claims 14 to 21, wherein said DNA sequence b) consists of the following sequence: TCTGAGGGAAACAGTGACTGCTACTTTGGGAATGGGTCAGCCTACCGTGGCACGCACAG CCTCACCGAGTCGGGTGCCTCCTGCCTCCCGTGGAATTCCATGATCCTGATAGGCAAGGT TTACACAGCACAGAACCCCAGTGCCCAGGCACTGGGCCTGGGCAAACATAATTACTGCC GGAATCCTGATGGGGATGCCAAGCCCTGGTGCCACGTGCTGAAGAACCGCAGGCTGACG TGGGAGTACTGTGATGTGCCCTCCTGCTCCACCTGCGGCCTGAGACAGTACAGCCAGCCr CAGTTTCGCATCAAAGGAGGGCTCTTCGCCGACATCGCCTCCCACCCCTGGCAGGCTGCC ATCTTTGCCAAGCACAGGAGGTCGCCCGGAGAGCGGTTCCTGTGCGGGGGCATACTCATC AGCTCCTGCTCK3ATTCTCTCTGCCGCCCACTGCTTCCAGGAGAGGTTTCCGCCCCACCACC TGACGGTGATCTTGGGCAGAACATACCGGGTGGTCCCTGGCGAGGAGGAGCAGAAATTT GAAGTCGAAAAATACATTGTCCATAAGGAATTCXJATGATGACACTTACGACAATGACATT GCGCTGCTGCAGCTGAAATCGGATTCGTCCCGCTGTGCCCAGGAGAGCAGCGTGGTCCGC ACTGTGTGCCTTCCCCCGGCGGACCTGCAGCTGCCGGACTGGACGGAGTGTGAGCTCTCC GGCTACGGCAAGCATGAGGCCTTGTCTCCTTTCTATTCGGAGCGGCTGAAGGAGGCTCAT GTCAGACTGTACCCATCCAGCCGCTGCACATCACAACATTTACTTAACAGAACAGTCACC GACAACATGCTGTGTGCTGGAGACACTCGGAGCGGCGGGCCCCAGGCAAACTTGCACGA CGCCTGCCAGGGCGATTCGGGAGGCCCCCTGGTGTGTCTGAACGATGGCCGCATGACTTT GGTGGGCATCATCAGCTGGGGCCTGGGCTGTGGACAGAAGGATGTCCCGGGTGTGTACA CAAAGGTTACCAACTACCTAGACTGGATTCGTGACAACATGCGACCGTGA (SEQ ID NO:7). Dated this 6th day of May, 2003. 63 |
---|
482-mumnp-2003-cancelled page(06-06-2007).pdf
482-mumnp-2003-claim(granted)-(06-06-2007).doc
482-mumnp-2003-claim(granted)-(06-06-2007).pdf
482-mumnp-2003-correspondence(12-09-2007).pdf
482-mumnp-2003-correspondence(ipo)-(05-03-2008).pdf
482-mumnp-2003-drawing(06-06-2007).pdf
482-mumnp-2003-form 18(28-12-2005).pdf
482-mumnp-2003-form 1a(06-05-2003).pdf
482-mumnp-2003-form 2(granted)-(06-06-2007).doc
482-mumnp-2003-form 2(granted)-(06-06-2007).pdf
482-mumnp-2003-form 3(06-05-2003).pdf
482-mumnp-2003-form 3(06-06-2007).pdf
482-mumnp-2003-form 5(06-05-2003).pdf
482-mumnp-2003-form 5(06-06-2007).pdf
482-mumnp-2003-form-pct-ipea-409(06-05-2003).pdf
482-mumnp-2003-form-pct-isa-210(06-06-2007).pdf
482-mumnp-2003-petition under rule 137(06-06-2007).pdf
482-mumnp-2003-power of authority(06-05-2003).pdf
482-mumnp-2003-ppower of authority(06-06-2007).pdf
Patent Number | 216016 | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Indian Patent Application Number | 482/MUMNP/2003 | ||||||||||||||||||
PG Journal Number | 13/2008 | ||||||||||||||||||
Publication Date | 28-Mar-2008 | ||||||||||||||||||
Grant Date | 05-Mar-2008 | ||||||||||||||||||
Date of Filing | 06-May-2003 | ||||||||||||||||||
Name of Patentee | BOEHRINGER INGELHEIM INTERNATIONAL GMBH | ||||||||||||||||||
Applicant Address | BINGER STRASSE 173, D-55216 INGELHEIM AM RHEIN, GERMANY | ||||||||||||||||||
Inventors:
|
|||||||||||||||||||
PCT International Classification Number | C12N 15/62 | ||||||||||||||||||
PCT International Application Number | PCT/EP01/12857 | ||||||||||||||||||
PCT International Filing date | 2001-11-07 | ||||||||||||||||||
PCT Conventions:
|