Title of Invention

A METHOD FOR MANAGING EJECT OPERATIONS IN A DATA STORAGE LIBRARY HAVING MULTIPLE SLOTS TO RECEIVE DATA STORAGE CARTRIDGES

Abstract A data storage library efficiently utilizes I/O slots while maintaining software compatibility by using functional addresses to conduct virtual cartridge moves from storage slots to I/O slots. More particularly, a location-centric library host manages cartridge movement according to functional storage addresses and functional I/O addresses. In reality, the library has multiple cartridge receiving slots, which include physical I/O slots and physical storage slots. In contrast with the physical I/O slots and physical storage slots, functional I/O low addresses and functional storage addresses are virtual locations used by the host in managing cartridge locations. Thus, host knowledge of cartridge locations is limited to their functional addresses. The library includes a library map that correlates functional addresses with physical addresses. Initially, an eject command is received from the host. The eject command requests transfer of a cartridge from a source functional storage address to a target functional I/O address. In response to the eject command, irrespective of any physical movement of the cartridge, the library reports successful completion of the requested eject command to the host. The library promptly gives a functional I/O address to the physical storage slot containing the cartridge. When a physical I/O slot becomes available, the library physically moves the cartridge there and either correlates the cartridge's functional I/O address with this physical I/O slot, or registers the cartridge's functional I/O address as empty.
Full Text The present invention relates to a method for managing ejects operations in a data storage library having multiple slots to receive data storage cartridges. More particularly, the invention concerns a data storage library that efficiently utilizes physical input/output ( I/O ) slots by using functional addresses to conduct virtual cartridge ejects to the I/O slots.
Description of the Related Art
Many data processing systems require a large amount of data storage, for use in efficiently accessing, modifying, and re-storing data. Data storage is typically separated into several different levels, each level exhibiting a different data access time or data storage cost. A first, or highest level of data storage involves electronic memory, usually dynamic or static random access memory ("DRAM" or "SRAM"). Electronic memories take the form of semiconductor integrated circuits where millions of bytes of data can be stored on each circuit, with access to such bytes of data measured in nanoseconds. The electronic memory provides the fastest access to data since access is entirely electronic.
A second level of data storage usually involves direct access storage devices ("DASD"). DASD storage, for example, includes magnetic and/or optical disks. Data bits are stored as micrometer-sized magnetically or optically altered spots on a disk surface, representing the "ones" and "zeros" that comprise the binary value of the data bits. Magnetic DASD includes one or more disks that are coated with remnant magnetic material. The disks are rotatably mounted within a protected environment. Each disk is divided into ma

concentric tracks, or closely spaced circles. The data is stored serially, bit by bit, along each track. An access mechanism, known as a head disk assembly ("HDA") typically includes one or more read/write heads, and is provided in each DASD for moving across the tracks to transfer the data to and from the surface of the disks as the disks are rotated past the read/write heads. DASDs can store gigabytes of data, and the access to such data is typically measured in milliseconds (orders of magnitudes slower than electronic memory). Access to data stored on DASD is slower than electronic memory due to the need to physically position the disk and HDA to the desired data storage location.
A third or lower level of data storage includes tapes, tape libraries, and optical disk libraries. Access to library data is much slower than electronic or DASD storage because a robot or human is necessary to select and load the needed data storage medium. An advantage of these storage systems is the reduced cost for very large data storage capabilities, on the order of Terabytes of data. Furthermore, tape storage is especially useful for backup purposes. That is, data stored at the higher levels of data storage hierarchy is reproduced for safe keeping on magnetic tape. Access to data stored on tape and/or in a library is presently on the order of seconds.
There are a number of different data storage libraries on the market today, including rtodels made by International Business Machines ("IBM"). A number of today"s data storage berries utilize the small computer system interface ("SCSI") medium changer standard. This tankards is "location-centric" because it requires the host to manage cartridge movement by Deifying source and destination locations in the system. Each location is a site capable of Duding a cartridge, and is referred to as an "element." Each element is given a fixed element


address, either at the time of manufacture or at the time of system installation or
configuration. The SCSI medium changer protocol defines four types of elements: medium
transport element, storage element, import/export element, and data transfer element. In
physical terms, the medium transport element is an accessor gripper, a storage element is
^ a storage slot, an importyexport element is a library I/O slot or pass-through slot, and a data
transfer element is a removable media drive.
Moves from one element to another are requested on the SCSI interface. Typically, moves from one element to another element are the responsibility of SCSI initiator software, also called independent software vendor programming. This includes moves between the
;KJ I/O slots and the storage slots.
Even though some data storage libraries enjoy considerable commercial success today, IBM engineers are continually seeking to improve the performance and efficiency of these systems. One area of possible focus concerns the manner in which the library ejects cartridges and receives Inserted cartridges. When an operator wishes to load a number of
y^ cartridges into a library without disrupting the accessor motion, the operator inserts the
cartridges into the I/O slots. However, data storage libraries only have a finite number of I/O slots for use in transferring cartridges to and from the library. Consequently, eject/insert operations are blocked if the I/O slots fill up, until the independent software vendor programming moves the inserted cartridges to storage slots using the SCSI interface.
,2(r In addition, many libraries are slow to transfer cartridges into the library from I/O slots
because they rely on human operators to issue commands to the host using a library control panel. This is because the host is needed to supervise cartridge insertion operations by
"IDMT.019

issuing appropriate commands to library robotics. This situation may be exacerbated if the
host is located remotely from the library, since the operator (and library control panel) are
located at the host, but the operator must physically insert or remove cartridges from I/O slots
at the library. Accordingly, the process of adding a large number of cartridges may involve
^ many trips between the library"s I/O station and the control panel.
Furthermore, when the independent software vendor programming needs to eject
some cartridges by operator request or automatically, the operator must ensure there is an
empty I/O slot for each cartridge. Otherwise, the attempt may be blocked, causing error,
failure, or other delay. For these and other reasons, known data storage libraries are
>€r amenable to improvement.
SUMMARY OF THE INVENTION
Broadly, the present invention concerns a data storage library that efficiently utilizes
^ I/O slots while maintaining software compatibility by using functional addresses to conduct
virtual cartridge moves from storage slots to I/O slots. More particularly, a location-centric
W library host manages cartridge movement according to functional storage addresses and
functional I/O addresses. In reality, the library has multiple cartridge receiving slots, which
include physical I/O slots and physical storage slots. In contrast with the physical I/O slots and
physical storage slots, functional I/O addresses and functional storage addresses are virtual
locations used by the host in managing cartridge locations. Thus, host knowledge of
-2(r cartridge locations is limited to their functional addresses. The library includes a library map
that correlates functional addresses with physical addresses.
TU9-99-047-IDMT:019-

Initially, an eject command is received from the host. The eject command requests
transfer of a cartridge from a source functional storage address to a target functional I/O
address. In response to the eject command, irrespective of any physical movement of the
cartridge, the library reports successful completion of the requested eject command to the
^ host. The library first gives a functional I/O address to the physical storage slot containing the
cartridge. When a physical I/O slot becomes available, the library physically moves the cartridge there and either correlates the cartridge"s functional I/O address with this physical I/O slot, or registers the cartridge"s functional I/O address as empty.
Accordingly, in one embodiment, the invention may be implemented to provide a
^^ method to manage eject operations in a data storage library. In another embodiment, the
n-^r
invention may be implemented to provide an apparatus, such as a data storage library, configured to manage eject operations as explained herein. In still another embodiment, the invention may be implemented to provide a signal-bearing medium tangibly embodying a program of machine-readable instructions executable by a digital data processing apparatus
^ I to perform operations for managing eject operations in a data storage library. Another
i embodiment concerns logic circuitry having multiple interconnected electrically conductive
elements configured to perform operations in a data storage library as discussed herein.
The invention affords its users with a number of distinct advantages. For example, host
workload is reduced because the host can direct ejection of a cartridge without waiting for
^ physical ejection to complete, and regardless of whether a physical I/O slot is available at that
time. As another advantage, the invention maintains broad software compatibility between
the host and library controller. The invention also nrm/iHPc a m imhr^r /^f «ti^-- -^J.—* -■
TU9 00 047-IDMT:019

wvxiv.iiis, wnicn should be apparent from the following description of the invention.
BRIEF DESCRIPTION OF THE ACCOMPANYING DRAWINGS :
FIG. 1 is a block diagram of the hardware components and interconnections of a data storage system according to the invention.
FIG. 2 is a block diagram of a digital data processing machine according to the invention.
FIG. 3 shows an exemplary signal-bearing medium according to the invention.
FIG. 4 depicts flowcharts of cartridge intake sequences according to the invention.
FIG. 5 is a flowchart of an operational sequence for processing host eject commands according to the invention.
Accordingly the present invention provides a method for managing eject operations in a data storage library having multiple slots to receive data storage cartridges, the slots having physical addresses, one or more physical I/O slots and multiple physical storage slots, where the library has a controller coupled to a location-centric host that manages cartridge location according to functional storage addresses and functional I/O addresses, and the library has a library database associating functional addresses with physical addresses, the method comprising the operations of the controller receiving an eject command from the host, the eject command requesting ejection of a cartridge from a source fijnctional storage address exclusively associated with the cartridge to a target functional I/O address, the cartridge residing in a source physical storage

il,Xi lllW
auuiwc functional storage address by the library database; in response to the eject command, the controller performing operations comprising: irrespective of any physical movement of the cartridge, reporting successful completion of the requested eject command to the host; updating the library database to associate the source physical storage slot with the target functional I/O address and disassociate the source physical storage slot from the source functional storage address; and when a physical I/O slot becomes available, physically moving the cartridge into the available physical I/O slot and disassociating the target functional I/O address from the source physical storage slot.
DETAILED DESCRIPTION
The nature, objectives, and advantages of the invention will become more apparent to those skilled in the art after considering the following detailed description in connection with the accompanying drawings.
HARDWARE COMPONENTS & INTERCONNECTIONS
Introduction
One aspect of the invention concerns a data storage system, which may be embodied by various hardware components and interconnections, with one example being described in FIG. 1. FIG. 1 shows a data storage library 100 coupled to a hierarchically

superior host 102. The library 100 may include one or different types of portable data storage media, such as magnetic tape cartridges, optical cartridges, writeable CDs, etc. For ease of reference, the portable data storage media of the library 100 are referred to as "cartridges."
y Host
Among other possible functions, the host 102 supplies data to the library 100 for storage on the cartridges, and sends requests to the library 100 to retrieve data from the cartridges. The host role may be satisfied by various types of hardware, such as a digital data processing computer, logic circuit, construction of discrete circuit components, interface
^ to a human operator, etc. As an example, the host 102 may comprise an IBM RS/6000
machine employing an operating system such as AIX. The host 102 is also coupled to an interface 104 and a host catalog 120. The interface 104 enables the host 102 to exchange information with a human operator, and may comprise a control panel, video monitor, computer keyboard/mouse, or another appropriate human/machine interface.
The host 120 manages data in the library 100 using "location-centric" commands, and may utilize the SCSI medium changer protocol as one example. The host manages cartridge movement by specifying source and destination locations in the system. According to the present invention, the source and destination locations are "functional addresses," rather than physical storage sites. The functional addresses may also be considered "imaginary" or
3^ "virtual" storage addresses, since they do not necessarily correspond to physical storage sites
in the library 100 (although they might on an incidental basis). Nonetheless, to satisfy the
TUQ QO 0^7
ICMTOIO -f^
?

host"s location-centric nature, the host 102 associates each functional address with various
physical attributes, such as a medium transport element, storage element, import/export
element, or data transfer element. In the illustrated example, the host"s functional addresses
include "functional I/O addresses" (which the host perceives to be I/O slots) and "functional
-^ storage addresses" (which the host perceives to be storage slots). As an example, the host"s
functional addresses may be established upon configuration of the library 100 with the host
102, and would not normally change. There is a different, underlying layer of mapping that
correlates the host"s functional addresses with the actual storage sites, called "physical
storage addresses." This configuration introduces several benefits for the library 100, as
>0 discussed in greater detail below.
To support its management of the data storage library 100 according to functional
addresses, the host 102 maintains the host catalog 120. The host catalog 120 cross-
references each functional address with any data storage cartridge that is stored therein,
according to the host"s view. TABLE 1 shows an example of the catalog 120. Each row
J^ depicts one functional address, and cross-references this address against:
1. The type of imaginary location in the data storage library 100 represented by the
functional address. This information, which includes whether the functional
address is a "functional I/O address" or a "functional storage address," is fixed
during operation of the host 102.
^20" 2. Whether the functional address contains a cartridge or not; this information varies
during normal operation of the library 100.
TU9-99-04?-4DMT:019
10

3. The identity of the cartridge (if any) stored at the functional address; one type of identification is by volume serial number ("VOLSER"), as illustrated. This information varies during normal operation of the library 100.

-s-"
^
)^


FUNCTIONAL
ADDRESS
(FIXED) TYPE (FIXED) FULL OR EMPTY? (CHANGEABLE) VOLSER (CHANGEABLE)
001 FUNCTIONAL STORAGE ADDRESS FULL 929475
002 FUNCTIONAL STORAGE ADDRESS FULL 988928
003 FUNCTIONAL STORAGE ADDRESS FULL 329820
004 FUNCTIONAL STORAGE ADDRESS EMPTY NONE
. • .
098 FUNCTIONAL I/O ADDRESS FULL 333820
099 FUNCTIONAL I/O ADDRESS EMPTY NONE
100 FUNCTIONAL I/O ADDRESS EMPTY NONE
TABLE 1: HOST CATALOG



2^

Drive
The data storage library 100 includes a drive 106 to conduct read/write operations with cartridges in the library 100. The library 100 may utilize multiple drives 106 if desired. Each drive 106 comprises suitable hardv\/are to access the format of data storage cartridge in the library 100. For example, in the case of magnetic tape cartridges, the drive 106 may comprise an IBM model 3590 tape drive. Cartridges are directed to/from the drive 106 by robotics 110, described below.



TUO 00 0^1 IBMT:010.

40— //

Physical Cartridge Storage & Management
The library 100 also includes equipment to physically move and store the cartridges.
For instance, physical storage slots 114 house cartridges when they are not being used. The
physical storage slots 114 comprise shelves or other data storage library compartments.
Js^ Physical I/O slots 112 are provided to transfer cartridges to/from the library 100. The
physical I/O slots 112 include any slots that are marked, known, set aside, positioned, or otherwise designated for operator to insert cartridges into the library and remove cartridges therefrom. Using the I/O slots 112, an operator can introduce cartridges into the library 100 ("insert" operation), or the library 100 can expel cartridges ("eject" operation). The physical
^ I/O slots 112 may be accessible by the operator without disrupting operation of the robotics
112 or drive 106 (such as through an external door), although this is not necessary. Some examples of physical I/O slots 112 include "pass-through" slots, a carriage, conveyor, normal storage-type slots designated as I/O slots, etc.
To move cartridges between the drive 106, I/O slots 112, and storage slots 114, the
>6^ library 100 includes robotics 110. The robotics 110 accesses these components by
respective paths 110a, 110b, and 110c. The robotics 110 may be implemented by any suitable cartridge movement machinery, such as robotic arms, integrated cartridge loading equipment, conveyors, grippers movable on an x-y coordinate system, etc.
Controller
20^ The library 100 operates under supervision of a controller 108, which receives
TUO 00 04Z-
-IDMT:019-- -44-
\z

commands from the host 102 requesting the controller 108 to move cartridges from one
functional address to another. The controller 108 communicates with the host 102 by
interfaces such as wires/cables, one or more busses, fiber optic lines, wireless transmission,
intelligent communications channel, etc. In addition to this host-controller interface, which
y^ constitutes a "control" path, the library 100 also includes a "data" path that carries data
between the host 102 and the drive 106.
The controller 108 comprises a digital data processing machine, logic circuit,
construction of discrete circuit components, or other automated mechanism, and operates
according to suitable programming, physical configuration, etc. To provide a specific
\A^ example, the controller 108 may comprise an IBM PowerPC processor.
After receiving location-centric commands from the host 102 referencing imaginary
"functional addresses," the controller 108 translates these commands into physical locations
present in the library 100 and implements the requested operations by directing the robotics
110. To map between the host"s functional addresses and the library"s physical storage
JS-^ locations, the controller 108 maintains a library database including a library map 116 and
library status table 118.
For each functional address, the library map 116 identifies a corresponding physical
storage address, if one has been associated with that functional address. TABLE 2 shows
an example of the library map 116. Each row depicts one functional address and the
,20- associated physical storage address. In this example, the physical storage addresses
comprise horizontal-vertical coordinates for a robotic gripper.
TUO OQ Orll,
IOMT;010 -"J^- ,^
I3>

STORAGE"
FUNCTIONArADDRESS" ~"^
VTA^-
(FIXED)^v>-5".

001"i wVjl",^;i --a,--- ," !!•,.■»--«;■•.»!.


TYPE OKFUNCTIONAlSl^ ADDRESS"(RWEDJ|Mpi

ASSOCIATED PHYSICAL
ADDRESS
(CHANGEABLE)
(1,1) LEFT
(1,1) RIGHT



^

-. I." »- •.*;-="JTiVf,!.--.■*•. T"-"" _ fi5s?;r:j^;*?"^?f=s«-" ?r - j ?
ai.-.. -. i-zc-"^ »_i

":^-^F9e2^"^^H^>i^, ^:d:i-




-STORAGE-;^;^^^^,

(1,2) LEFT
UNASSOCIATED
(4,5) LEFT
UNASSOCIATED



^

100"

mmm^m^
TABLE 2: LIBRARY MAP

UNASSOCIATED



^^
J2Q

The library status table 118 (TABLE 3) lists all physical storage addresses in the library 100. This listing depends upon the physical configuration of the library 100, which is established upon manufacture, initial configuration, etc. Also, for each physical storage address, the library status table 118 tells:
1. Whether the physical storage address contains a cartridge or not, which may
change from time to time.
2. What physical configuration embodies that physical storage address (e.g.,
read/write drive, storage slot, I/O slot, etc.). This is fixed at an appropriate time, such as the initial configuration of the library.
3. The VOLSER or other identity of cartridge stored in the physical storage address.
This changes from time to time, as cartridges are moved about in the library.



TUO 00 0r17 IDMT:018-

*■ I O

/^

PHYSICAL-ADDRESS K


FULL OR EMPTY? (CHANGEABLE)

: CONFlGUR[ATlONjOFi^"5|=^^Sr PHYSIC AU ADDRES^^r^-^-

VOLSER (CHANGEABLE)



S^ffiS

FULL

929475



(.r,1) RIGHTfeKiSss^Vrtr^"*.?

FULL

988928



^

FULL

:STpRA^§te

^^:S"

329820



- J,\; JSiC;:4i!JgS£;-///:",-?-,





J^

I"-*..; "■-"^*-:-
mmmm»
(5,8) RIGHT^fi^--itiic: j-,*._


FULL
EMPTY
EMPTY



^^^^^
^i^:^^^grigg


333820
NONE
NONE

TABLE 3: LIBRARY STATUS TABLE
Exemplary Digital Data Processing Apparatus
The controller 108 may be implemented in various forms, including a digital data
processing apparatus as one example. This apparatus may be embodied by various
^^ hardware components and interconnections; one example is the digital data processing
apparatus 200 of FIGURE 2, The apparatus 200 includes a processor 202, such as a
microprocessor or other processing machine, coupled to a storage 204. In the present
example, the storage 204 includes a fast-access storage 206, as well as nonvolatile storage
" 208. The fast-access storage 206 may comprise random access memory ("RAM"), and may
.^-20" be used to store the programming instructions executed by the processor 202. The
/ nonvolatile storage 208 may comprise, for example, one or more magnetic data storage
disks such as a "hard drive," a tape drive, or any other suitable storage device. The
apparatus 200 also includes an input/output 210, such as a line, bus, cable, electromagnetic
TUO-00-Q4?. .IBMT.OIQ
1^

link, or other means for the processor 202 to exchange data with other hardware external to the apparatus 200.
Despite the specific foregoing description, ordinarily skilled artisans (having the benefit
of this disclosure) will recognize that the apparatus discussed above may be implemented
--5^ in a machine of different construction, without departing from the scope of the invention. As
a specific example, one of the components 206, 208 may be eliminated; furthermore, the storage 204 may be provided on-board the processor 202, or even provided externally to the apparatus 200.
Logic Circuitry
>}^ In contrast to the digital data storage apparatus discussed previously, a different
embodiment of the invention uses logic circuitry instead of computer-executed instructions to implement the controller 108. Depending upon the particular requirements of the application in the areas of speed, expense, tooling costs, and the like, this logic may be implemented by constructing an application specific integrated circuit ("ASIC") having
-4-5^ thousands of tiny integrated transistors. Such an ASIC may be implemented with CMOS,
TTL, VLSI, or another suitable construction. Other alternatives include a digital signal processing chip ("DSP"), discrete circuitry (such as resistors, capacitors, diodes, inductors, and transistors), field programmable gate array ("FPGA"), programmable logic array ("PLA"), and the like.
TU9-99-04?-
■iBMT:01Q -^S-^—-.

OPERATION in addition to the various hardware embodiments described above, a different aspect of the invention concerns a method, discussed below.
Signal-Bearing Media
operating the controller 108, as embodied by a digital data processing apparatus 200, to execute various sequences of machine-readable instructions. These instructions may reside in various types of signal-bearing media. In this respect, one aspect of the present invention concerns a programmed product, comprising signal-bearing media tangibly embodying a
^ program of machine-readable instructions executable by a digital data processor to perform
a method of managing eject operations in the data storage library 100.
i This signal-bearing media may comprise, for example, RAM (not shown) contained
within the controller 108, as represented by the fast-access storage 206. Alternatively, the
instructions may be contained in another signal-bearing media, such as a magnetic data
„JL5- storage diskette 300 (FIGURE 3), directly or indirectly accessible by the processor 200.
Whether contained in the storage 206, diskette 300, or elsewhere, the instructions may be stored on a variety of machine-readable data storage media, such as direct access storage (e.g., a conventional "hard drive," redundant array of inexpensive disks ("RAID"), or another DASD), magnetic tape, electronic read-only memory (e.g., ROM, EPROM, or EEPROM),
-20" optical storage (e.g., CD-ROM, WORM, DVD, digital optical tape), paper "punch" cards, or
other suitable signal-bearing media including transmission media such as digital and analog
■TU9-99-047
-4BMT.0t9 46-.^
n

and communication links and wireless. In an illustrative embodiment of the invention, the machine-readable instructions may comprise software object code, compiled from a language such as "C," etc.
Logic Circuitry
•^ In contrast to the signal-bearing medium discussed above, the method aspect of the
invention may be implemented using logic circuitry, without using a processor to execute instructions. In this embodiment, the logic circuitry is implemented in the controller 108, and is configured to perform operations to implement the method of the invention. The logic circuitry may be implemented using many different types of circuitry, as discussed above.
y(t^ Cartridge Insertion
FIGURE 4 shows cartridge intake sequences 400/450, to provide one example of the
invention. For ease of explanation, but without any intended limitation, the example of
FIGURE 4 is described in the context of the hardware components and interconnections
shown in FIGURE 1, described above.
^jS^" In the routine 400, the controller 108 manages the library 100 to automatically empty
new cartridges from the physical I/O slots 112. This helps the operator by ensuring that the
I/O slots do not fill up, which would prevent the operator from inserting more cartridges. This
also facilitates eject operations, since the controller 108 is more likely to find an available
physical I/O slot. Another benefit of the routine 400 is that the controller 108 automatically
^0- recognizes external placement of a cartridge into the physical I/O slots 112. The sequence
TU9-99-047
IS

400 automatically empties cartridges from the physical I/O slots 112 regardless of any host involvement.
The sequence 400 is initiated in step 402. In step 404, the controller 108 determines
whether any new cartridge(s) have been placed into the I/O slots 112. This step may be
.,^5-^ performed by physically checking the physical I/O slots 112 ("polling") according to a desired
repeating schedule, polling the physical I/O slots 112 whenever a door to the physical I/O slots is opened, etc. As an alternative, some or all of the physical I/O slots 112 may include sensors that are activated when a cartridge is received. When step 404 finds a newly inserted cartridge, the controller 108 accesses the library status table 118 to identify an empty
A^ physical storage slot 114 (step 406), and then moves the inserted cartridge there (step 408).
Step 408 also updates the library status table 118 to show the cartridge"s presence in the empty storage slot. Step 408 has the effect of quickly clearing the physical I/O slot 112 where the cartridge was inserted, making it available for other insert or eject operations. Moreover, this step is invisible to the host 102.
Jt^-^ After step 408, the controller 108 makes the cartridge known to the host 102. First,
the controller 108 selects an available functional I/O address from the library map 116, and updates the library map 116 to associate this functional I/O address with the physical storage slot that now contains the cartridge (step 410). After step 410, the routine 400 returns to step 404 to process any other newly inserted cartridges.
-2^ Apart from the sequence 400, the sequence 450 is performed by the controller 108
to assist the host 102 in completing the cartridge insertion operation. The sequence 450 begins in step 412. In step 414, the controller 108 determines whether it has received any
Ty9-99-94Z.
n

lu a I luoi oLOiuo ouilll
iiand, the controller 108 reports the newly received cartridge to the host 102 (step 413). Particularly, the controller 108 reports the cartridge"s functional I/O address (from step 410) and VOLSER to the host 102. This is how the host 102 learns of the cartridge"s presence in the library, namely, by querying the
.--&"^ controller 108. After the host 102 becomes aware of the new cartridge"s presence in the
functional I/O address (via step 413), the host 102 responds (not shown) by updating its host catalog 120 to showthe functional I/O address as "full," and entering the cartridge"s VOLSER or other identity. Then, at some later time depending upon host programming, the host 102 elects to move the cartridge from its functional I/O address into a functional storage address.
,>& When this occurs, the host 102 sends an appropriate "insert" command, which is received
by the controller 108 in step 414. The controller 108 reflexively responds to the insert command of step 414 with an immediate report that the requested insertion has been completed (step 416). To actually carry out insert operation, the controller 108 performs certain additional steps as part of step 416, these additional steps being invisible to the host
JLS^ 102. Namely, as the cartridge already resides in a physical storage slot, no physical
movement is needed. Instead, the controller 108 chooses an available functional storage address from the library map 116 and associates it with the cartridge"s physical storage address by updating the library map 116 (step 416). The controller 108 also de-associates the cartridge"s previous functional I/O address by listing this functional I/O address as
-20 "unassociated" in the library map 116. After step 416, the controller 108 returns to step 414
to await another host command.
TUO-00-047
4BMT:010. 1^^

With the benefit of this disclosure, ordinarily skilled artisans should recognize that the
order of operations within the sequences 400, 450 may be changed in certain respects
without departing from this invention. Moreover, although the foregoing sequences 400,450
have been described in a rigid, serial form for ease of illustration, some of the operations 400,
^r^ 450 may employ hardware interrupts or multitasking to perform concurrent operations for
different cartridges, etc.
Cartridge Ejection
FIGURE 5 shows one example of a cartridge ejection sequence 500. For ease of
explanation, but without any intended limitation, the example of FIGURE 5 is described in the
>6" context of the hardware components and interconnections shown in FIGURE 1, described
above.
Advantageously, the controller 108 manages the library 100 to perform a near
immediate virtual eject, so that the host 102 is never blocked by the perception of full physical
I/O slots. As shown below, this is done by immediately associating a functional I/O address
.J-S^ with the cartridge"s current physical storage slot, whether any physical I/O slots are available
or not.
The steps 500 are initiated in step 502. In step 504, the controller 108 receives an
eject request from the host 102. The eject request, which is location-centric in accordance
with host programming, tells the controller 108 to move the cartridge from a specified
20- functional storage address to a specified, available functional I/O address. In response, the
controller 108 reflexively reports that the requested eject operation is complete (step 506),
Ttt§=99-647
^IDMT!OI» -26--
Zl

thereby satisfying the host request promptly. At this time, the host 102 may delete the
cartridge from the host catalog 120 (step not shown); alternatively, the host 102 may wait until
the cartridge is physically removed from the library or another appropriate event, determined
by querying the controller 108. To actually carry out the eject request, the controller 108
^^^ performs certain other steps, which are invisible to the host 102. Namely, the controller 108
updates the library map 116 to free the functional storage address currently associated with the physical storage slot, and replace the functional storage address with the specified functional I/O address step (step 506). This achieves a near immediate virtual eject, since the host 102 now perceives the cartridge to be located in an I/O slot.
,-4tJ As an alternative to steps 504-506 as illustrated above, the host"s eject request may
omit the functional I/O address, leaving the controller 108 identify, select, and report (when queried) an available functional I/O address.
After step 506, the controller 108 checks to see whether a physical I/O slot is available (step 510) to truly eject the cartridge. If not, the controller 108 waits in step 512, and then
,>1^ repeats step 510. One implementation of step 512, for example, involves entering the
cartridge-to-be-ejected into queue that advances each time a physical I/O slot becomes available.
When a physical I/O slot becomes available for the awaiting cartridge, the controller 108 moves the subject cartridge into the available physical I/O slot (step 514). Then, the
>-20~ controller 108 updates the library map 116 (step 516) so that the cartridge"s current functional
I/O address is associated with the cartridge"s physical I/O address, instead of the physical storage address of its previously occupied storage slot. Additionally, the controller 108
T-U9-99-04?-
.IBMT:019 "~24-.
zz

updates the library status table 118 to show the cartridge"s presence in the physical I/O slot.
After step 516, the controller 108 waits until the cartridge is removed from its physical I/O slot by a human operator, another machine, etc. At this time, the controller 108 updates the library map 116 and library status table 118 to show removal of the cartridge from the library (step 517). As an alternative, the controller 108 may omit step 516, in which case the cartridge"s move to its physical I/O slot is not recorded. After step 517, the eject routine 500 ends instep 518.
OTHER EMBODIMENTS While the foregoing disclosure shows a number of illustrative embodiments of the invention, it will be apparent to those skilled in the art that various changes and modifications can be made herein without departing from the scope of the invention as defined by the appended claims. Furthermore, although elements of the invention may be described or claimed in the singular, the plural is contemplated unless limitation to the singular is explicitly stated. Additionally, ordinarily skilled artisans will recognize that operational sequences must be set forth in some specific order for the purpose of explanation and claiming, but the present invention contemplates various changes beyond such specific order.


WE CLAIM :
1. A method for managing eject operations in a data storage library having
multiple slots to receive data storage cartridges, the slots having physical
addresses, one or more physical I/O slots and multiple physical storage slots
where the library has a controller coupled to a location-centric host that
manages cartridge location according to functional storage addresses and
functional I/O addresses, and the library has a library database associating
functional addresses with physical addresses, the method comprising tell
operations of the controller receiving an eject command from the host, the eject
command requesting ejection of a cartridge from a source functional storage
address exclusively associated with the cartridge to a target functional I/O
address, the cartridge residing in a source physical storage slot associated with
the source functional storage address by the library database; in response to the
eject command, the controller performing operations comprising: irrespective
of any physical movement of the cartridge, reporting successful completion of
the requested eject command to the host; updating the library database to
associate the source physical storage slot with the target functional I/O address
and disassociate the source physical storage slot from the source functional
storage address; and when a physical I/O slot becomes available, physically
moving the cartridge into the available physical I/O slot and disassociating the
target functional I/O address from the source physical storage slot.
2. The method as claimed in claim 1, wherein the operations comprising
responsive to a physical I/O slot becoming available: updating the library data
to associate the target functional I/O address with the available physical I/O
slot and disassociating the target functional I/O address from the source
physical storage slot; responsive to removal of the cartridge from the available
physical I/O slot, disassociating the target functional I/O address from the
available physical I/O slot.

3. The method as claimed in claim 1, wherein the operations comprising:
maintaining a host-accessible catalog showing the associations between
functional addresses and cartridges.
4. The method as claimed in claim 1, wherein the library data having a library
status map showing the associations between functional addresses and physical
addresses; a library status table listing each physical address and identifying
any cartridge contained therein.
5. The method as claimed in claim 1, wherein the cartridges comprising
magnetic tape cartridges.

Documents:

1027-mas-2000 abstract-duplicate.pdf

1027-mas-2000 abstract.pdf

1027-mas-2000 claims-duplicate.pdf

1027-mas-2000 claims.pdf

1027-mas-2000 correspondence-others.pdf

1027-mas-2000 correspondence-po.pdf

1027-mas-2000 description (complete)-duplicate.pdf

1027-mas-2000 description (complete).pdf

1027-mas-2000 drawings-duplicate.pdf

1027-mas-2000 drawings.pdf

1027-mas-2000 form-1.pdf

1027-mas-2000 form-19.pdf

1027-mas-2000 form-26.pdf

1027-mas-2000 form-3.pdf

1027-mas-2000 form-5.pdf

1027-mas-2000 others.pdf

1027-mas-2000 petition.pdf


Patent Number 216170
Indian Patent Application Number 1027/MAS/2000
PG Journal Number 13/2008
Publication Date 31-Mar-2008
Grant Date 10-Mar-2008
Date of Filing 30-Nov-2000
Name of Patentee INTERNATIONAL BUSINESS MACHINES CORPORATION
Applicant Address ARMONK, NEW YORK 10504,
Inventors:
# Inventor's Name Inventor's Address
1 LEONARD GEORGE JESIONOWSKI 12518 E. BARBARY COAST ROAD, TUCSON, ARIZONA 85749,
2 WILLIAM HENRY TRAVIS 6920 E. MESA GRANDE DRIVE, TUCSON, ARIZONA 85715,
PCT International Classification Number G06F 7/00
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 459,414 1999-12-11 U.S.A.