Title of Invention | "A METHOD AND A DEVICE FOR MONITORING AN ELECTRONIC OR COMPUTER SYSTEMS". |
---|---|
Abstract | Method for monitoring an electronic or computer system (22, 23) comprising the steps of : • making at least one free segment (5) move with the aid of a fluid current, • translating the movement of the segment into an electric signal by means of at least one conversion device (10) associated with the segment (5), • processing the electric signal emitted by the conversion device (10), • and monitoring an action of the system (22, 23) in the results of processing of the electric signal. |
Full Text | The present invention relates to a method and a device for monitoring an electronic or computer systems. Field on the Invention The invention concerns the technical field for monitoring electronic or computer systems by means of capture or checking peripherals. In a preferred but not exclusive application, the invention concerns monitoring the movement of a pointer OF cursor on the screen of a computer using a checking peripheral. Background In this preferred application field, a device known as a mouse is used for transforming movements into controls required by a user. The mouse is formed by a box equipped with electronic means connected to the computer for transforming the movements of the box on the working surface into a movement of the cursor or pointer on the computer screen. Thus, a mouse more generally includes a ball for rolling over' the working surface, sensors to detect the movements of the ball and means for processing the electric signals of the sensors. The processing means are connected to the computer by an electric cable or a Hertzien or infrared link. The processing means have been designed to deliver signals recognised by the protocol of the port to which the mouse is connected, usually corresponding to the standard RS 232. However, the mouse can also be connected to the computer via a dedicated interface card or to a specific bus in which case the processing means shall deliver one or several signals recognised by the protocol associated with this interface card or bus. The mouse may in addition include a certain number of push or scrolling buttons which are also connected to the processing means and which correspond to validation or data entry function according to the operating mode of the computer. The means for processing the signals derived from the movement sensors and the position sensors of the scrolling or input buttons then provide several principal functions, namely: • detection of the movement of the mouse, • detection of the position of the push-buttons, • and communication with the computer as per the retained standard. Communication with the microcomputer is more usually managed by a microprocessor ensuring the two parts of the processing of the signals derived .from the movement and position detectors of the push-buttons. The mouse also contains means to control the electric feeding of the means for processing the signals and possibly that of the movement detection and position sensors. Finally, the mouse is associated with control software loaded into the computer, which decodes the signal transmitted by the mouse. The driver provides a requesting application software with information concerning the state and status of the mouse: firstly the movement and secondly the position of the push-buttons so as to enable the software application to carry out the resultant actions. In its most frequently used operating mode, the driver communicates with the sub-programme or movement routine of the cursor or pointer when the mouse is moved and sends messages to the programme when the push-buttons of the mouse are pressed. It ought to be said that for most of the drivers used, the movement of the pointer on the screen does not correspond directly to that of the mouse. In fact, it has been observed that the movement of the mouse can be broken down into two main movements, namely movement of the mouse until the pointer is brought into the desired zone and then its precise positioning on the targeted point or object. Thus, when the mouse is moved slowly, the driver generates a movement of the pointer on the screen of about 100 CPI (Counts Per Inch) or DPI (Dots Per Inch), and when the mouse is moved quickly, the driver generates a movement of the pointer of about 400 CPI, indeed 1000 CPI. According to the prior art, the mouse operates satisfactorily as a control peripheral of a computer when using the hand. However, it may be useful to be able to control a computer or electronic system without resorting to using the hands, especially when the user is unable to do so. Thus, it has been proposed to control a computer or electronic system via breath with the aid of a control device including a helical wheel or turbine moved by the breath of the user and whose rotation is processed and converted into an electric signal according to a standard approximately similar to the one associated with a mouse so as to be recognised by the driver and thus convert rotation of the wheel into a movement of the cursor on the screen. However, it appears that this wheel control system does not offer high checking accuracy having regard to the inertia of the wheel which continues to rotate after stopping applying the breath of said user. Thus, it seems necessary to have a method and device for monitoring an electronic or computer system using the breath of a user and possessing greater precision and control sensitivity than offered by system of the prior art. Summary of the Invention Accordingly, there is provided a method for monitoring an electronic or. computer system comprising the steps of: • making at least one free segment move with the aid of a fluid current, • translating the movement of the segment into an electric signal by means of at least one conversion device associated with the segment, • processing the electric signal emitted by the conversion device, • and monitoring an action of the system in the results of processing of the electric signal. In one preferred application, the invention concerns a method making it possible to obtain the same functionalities as those corresponding to the movements of a mouse by using the breath of a user. So as to attain this objective, according to another characteristic of the invention, in order to control movements by the breath along two directions X and Y, the method consists of a pointer or cursor on the computer screen so as to: • implement, for each movement direction, a conduit housing two free segments associated with conversion devices, the first segment being able to be stressed on vibration by the expiration (breathing out) flow and the second able to be stressed on vibration by the inspiration (breathing in) flow. • Process the signals transmitted by the conversion devices so that, for each movement direction, the inspiration flow corresponds to a movement direction of the cursor and the expiration flow corresponds to a movement direction opposite the one corresponding to the inspiration flow and so that the intensity of the flow corresponds, at least in part, to the movement speed of the cursor. The invention also concerns a device for converting into an electric signal the action of a fluid current on at least one free segment. According to the invention, this conversion device includes means for directly converting the mechanical vibrations of the free segment into an electric signal. According to one characteristic of the invention, the conversion means are formed by a piezo-electric transducer integral with the free segment. According to another characteristic of the invention, the conversion means are formed by an electromagnetic transducer including a magnet and a transducing coil associated with a magnetic circuit including a ferromagnetic portion provided by the segment at the level of its free extremity whose vibrations disturb the magnetic field generated by the magnet and induce an electromotive force in the coil. According to a further characteristic of the invention, the' conversion means are formed by the association of a light source and a light sensor both arranged so that the vibrations of the segment disturb illumination of the sensor so as to create a variable electric signal at the terminals of the sensor. Accordingly, there is provided a device for carrying out the method, comprising : • means to apply the fluid current to at least one free segment and make said segment move, • at least one conversion device comprising means for directly converting the mechanical movement of the segment into an electric signal, • means for processing the electric signal emitted by the conversion device, • and interface means between the processing means and the electronic or computer system. Accordingly, there is also provided a device for the breath monitoring the movement along two directions X and Y of a pointer or cursor on a computer screen wherein it has: • for each movement direction X, Y a conduit in which two free segments are placed associated with conversion devices comprising means for directly converting the mechanical movement of the segment into an electric signal, the first segment being able to be stressed on movement by the expiration flow and the second segment being able to be stressed on movement by the inspiration flow. • means for processing the signals emitted by the conversion means so that for each movement direction the inspiration flow corresponds to a direction of movement of the cursor and the expiration flow corresponds to a direction of movement opposite the one corresponding to the inspiration flow and so that the intensity of the flow corresponds, at least in part, to the movement speed of the cursor. Various other characteristics appear in the following description with reference to the accompanying drawings that show by way of non-restrictive examples various embodiments the invention. Brief Description of the Drawings Figure 1 is a diagrammatic view of a preferred embodiment of a device according to the invention for monitoring the movement of a pointer on a computer screen. Figure 2 is a diagrammatic section showing details of the arrangement of the vibrating segments for a monitoring device according to the invention. Figure 3 shows a device for the electromagnetic conversion of the vibrations of a free segment into an electric signal. Figure 4 shows a device for the opto-electronic conversion of the vibrations of a free segment into an electric signal. Figure 5 shows another embodiment variant of a device for the opto-electronic conversion of the vibrations of a free segment into an electric signal. Detailed Description Figure 1 diagrammatically illustrates an application example of the invention for a device, denoted in its entirety by the reference numeral 1, controlled by the breath of a user for moving a cursor C of a computer system 1. The monitoring device 1 comprises two tubes 2, 3 associated respectively with a movement direction X or Y of the cursor. Each tube 2, 3 has an orifice 4 at the level of which an individual can breathe in (expel)or suck up (inhale) air. Opposite the orifices 4, each tube 2,3 has two free segments, one 5] of the latter being stressed by the air expired (expelled) or on expiration, whereas the other 52 is stressed by the inspired air or on inspiration. As shown on figure 1, each segment 5i and 5a is mounted opposite a channel 6\ and 62 fitted in the wall of the tube 2 or 3. Each channel 6\, 62 has dimensions similar to the dimension of the associated segment whilst being slightly larger so that the segment can flap in the channel. So as to ensure vibrating of each of the segments 5|, 52 by a corresponding stress breath, each segment is placed so as to be flush with the plane PI or ?2 of the wall of the tube 2 situated upstream with respect to the direction of the expiration flow FI or inspiration flow F2 for stressing said segment. Thus the segment 5i, which needs to be stressed by the expiration flow FI, is flush with the plane PI inside the tube 2, whereas the segment 52 needing to stressed by the inspiration flow F2 is flush with the plane ?2 outside the tube. Similarly, so as to provide improved stressing of the segments, each channel 61, 62 is preferably, but not necessarily, associated with a non-return clack valve 1\ or ?2 allowing air to pass only in the stress direction of the corresponding segment 5i or 52. Each segment 5i, 52 of each tube 2, 3 is associated with a conversion device 10 directly transforming the mechanical vibrations of the segment into an electric signal. According to a preferred embodiment of the invention, these conversion means 10 are, as shown on figure 3, formed by an electromagnetic transducer including a magnet 11 and a transducing coil 12 associated with a magnetic circuit 13 symbolised by the dot-and-dash lines. This magnetic circuit includes a ferromagnetic portion presented by the segment 5 at the level of its free extremity 14. The free segment 5 is preferably fully made of a plastic material and an element or ferromagnetic coating is mounted on its extremity. Of course, the segment could be fully made of a ferromagnetic material. The material constituting the segment 5 has been selected so as to induce a rapid damping of the vibrations of the segment at the end of stressing. In this respect, it needs to be noted that for the choice of this material, the most important criterion is the capacity of the segment to be vibrated under the action of a fluid flow and more particularly a flow of air. So as to avoid disturbing the functioning of the electromagnetic transducers 10 associated with the free segments 5), 52, the body of the monitoring device is preferably embodied, but not exclusively, inside an amagnetic material and preferably in a synthetic material, such as an injected plastic material or even a moulded composite material. Moreover, the use of these materials, depending on their implementation conditions, can render the device 1 silent. According to a preferred, but not exclusive, embodiment, each conversion device 10 includes a mobile adjustment element 15 for opposing the segments 5 so as to allow for an adjustment of the distance d, namely an air gap, separating the foot of the mobile adjustment element 15 from the free extremity 14 of the segment 5. According to the example shown, the mobile adjustment element 15 is constituted by a screw forming the core of the transducing coil 12 and extending along a direction approximately parallel to the extension plane of the segment 5. Each conversion device 10 functions as follows. When a segment 5 is stressed on vibration by a flow of air circulating in the conduit 2 or 3, it starts to vibrate so that the movements of its free extremity 14 disturb the magnetic field generated by the magnet 11 and routed by the magnetic circuit 13. These vibrations then induce an electromotive force in the coil 12. This variable electromotive force creates a current, the oscillations of the latter being the electric image of the mechanical oscillations of the vibrating free segment 5. The electric signal generated by each conversion device 10 is then amplified and/or processed by a processing system 20. The processing system 20 is connected by a line 21 to an interface with a computer system 22 comprising a display screen 23. The processing system 20 includes the power electronics and a microprocessor able to process the signals derived from the conversion devices 10 so as to condition them according to a specific standard or protocol. Therefore, if it is decided to connect the device 1 to a mouse port functioning according to the standard RS 232, the system 20 shall then process the signals so as to translate them into this standard. Of course, any other dialogue standard could be adopted according to the nature of the computer system 1. The system 20 is fed appropriately and, in the case of the use of a RS 232 standard interface, by an auxiliary power source 24 that uses the electric current available at the level of the interface. The monitoring device 1 thus established may function as follows. When the user of the computer wishes to control movement along the direction X of the cursor C on the screen 23, the user blows into or breathes out of the first tube 2 for example so as to induce vibration the segment 51 of this tube. The characteristics of the signal transmitted by the conversion device 10 associated with this segment 51 then directly depend on the intensity of the blow. The system 20 for processing the electric signal then converts the analogue signal derived from the device 10 into a digital signal transmitted by the line 21 to an interface of the computer system 22. The system 20 may for example, but not necessarily, process the signal so as to associate value thresholds and/or conversion ratios to the information received from the conversion devices 10. This signal is then interpreted by a driver programme functioning on the computer 22 into a movement of the cursor C along the direction X towards the right, for example. The movement speed of the cursor C could then directly depend on the intensity of the blowing applied. When the user sucks up or breathes through the same tube 2, the segment 5 stressed on inspiration shall activate its associated conversion device 10 which shall transmit an electric signal which, after processing by the system 20, could be translated by the interface and the software of the computer 58 into a movement along the direction X towards the left of the cursor C. As previously, the movement speed of the cursor shall depend on the intensity of suction. Similarly, the fact of breathing out or in through the second tube 3 shall be associated with a movement of the cursor C along the direction Y either upwards or downwards. The associated driver of the device 1 could then allow allocation of the tubes 2 and 3 to the movement directions of the cursor C, as well as the movement directions of the cursor C associated on inspiration and expiration. According to one embodiment variant of the device 1, each segment 5|, 52 is associated with means for damping its vibrations at the end of stressing so as to guarantee great precision of control of the cursor C. In accordance with the invention, it appears that the monitoring device 1 is able to obtain functioning of the computer system 22, 23 directly subordinate to or controlled by the breath of a user. The invention then makes it possible to advantageously control an improved computer system by a user who may have lost use of his upper limbs, for example. So as to have functions similar to those of a conventional mouse, the device 1 of the invention may also include systems of buttons to be activated by pressing one of the buttons. These systems may be formed by a mobile portion of the orifice that activates a switch when it is pressed from above or is moved from one side to the other. The breath pointing device may also include an additional conduit including a single free segment 5 associated with a conversion device 10 so as to constitute a monitoring device having a function similar to that of the function button, namely "scroll" present on certain mice make use of a menu. Of course, this is only one example of one of the possible applications of the invention for monitoring a computer or electronic system. In fact, the conversion of the vibrations of a free segment into an electric signal can be used for any other computer action than moving of the cursor. Similarly, the fluid current in the example above is sucked in or breathed out air, but it could also be an air current applied in a suitable way, such as by means of bellows, a blower or a compressed gas reserve or similar element. Equally it could be possible to use another fluid, gas or liquid, for generating vibrations of the segment. In the examples above, the means for converting movements of the free segment into an electric signal are constituted by an electromagnetic transducing system. However, in accordance with the invention, the conversion for movements of the free segment into an electric signal could be made in any other way, such as by optoelectronic means formed by the association of a light source and a sensor placed so that the vibrations of the segment creates an interference with the illumination of the sensor. Thus, according to one embodiment variant of the invention and shown on figure 4, the conversion means are formed for each segment by a light source 30 and a light sensor 31 placed opposite each other and on both sides of the free segment. Thus, when the segment is stressed on vibration by the breath of the user, its free extremity placed between the corresponding light source and the sensor generates a discontinuous illumination of the sensor so as to create a variable electric signal which shall be processed by the processing system 20 of the monitoring device of the invention, as described previously. The light source 20 is preferably formed by a light-emitting diode (LED) and the sensor 31 is formed by a phototransistor. So as to avoid daylight disturbing the detection of the vibrations of the segment, the conversion device works in infrared. Similarly, a dark zone is provided close to the light source and sensor. Of course, it is also possible to use a photo-resistor as a light sensor. So as to increase the surface area of the segment placed between the sensor 31 and the light source 30, the free extremity of the segment may carry a screen 32 for hiding the light source with respect to the sensor in certain positions of the segment and more particularly when the latter is inactive. It is also possible to provide a window, either in the segment or in the screen, so as to clearly determine the positions of said segment in which the light ray reaches the sensor 31. It could also be possible to adapt the light-emitting diode 30 at the free extremity of the segment and place a window in front of the phototransistor so as to reduce its optical opening. The feeding of the diode 30 can then be carried out with the aid of sliding contacts co-operating with one or two conductive ranges so as to feed the diode solely when it moves in front of the sensor 31. According to another variant shown on figure 5, the extremity of one of the faces of the free segment 5 is covered with a coating reflecting the light emitted by the light source 30. The light sensor 31 is then placed so as to receive in its rest position the segment 5 and via reflection onto the segment 5 the light emitted by the light source 30. When the segment vibrates, the reflected light is deflected so that it no longer fully reaches the sensor 31. The light intensity received by the sensor 31 thus varies and the movement of the segment 5 is therefore converted into an electric signal. Of course, it is also possible to convert the movements of the free segment into an electric signal by other conversion means, such as with the aid of a pie-zo-electric sensor integral with the segment, this sensor then being connected to the processing system 20 of the monitoring device. In the examples above, the means for converting the movements of the free segment into an electric signal are used for monitoring a computer system, but they could also be used for monitoring any other electronic system and especially within the context of an electric musical instrument, such as a free reed instrument. WE CLAIM : 1. Method for monitoring an electronic or computer system (22, 23) comprising the steps of: • making at least one free segment such as herein described (5) move with the aid of a fluid current, • translating the movement of the segment into an electric signal by means of at least one conversion device (10) associated with the segment (5), • processing the electric signal emitted by the conversion device (10), • and monitoring an action of the system (22, 23) in the results of processing of the electric signal. 2. Method as claimed in claim 1 wherein it comprises the step of making the free segment (5) vibrates. 3. Method as claimed in claim 1 or 2, wherein the fluid current results from the flow of air created via the inspiration and/or expiration of an individual. 4. Method as claimed in claim 3, wherein, in order to have the breath monitor the movements along two directions X and Y of a pointer or cursor C on a computer screen (23), it consists of: • for each movement direction using a conduit (2,3) in which two free segments (51, 52) are placed, each segment being associated with a. conversion device (10), the first segment (51) being able to be stressed on movement by the expiration flow (F1) and the second segment (52) being able to be stressed on movement by the inspiration flow (F2). • processing the signals transmitted by the conversion devices (10) so that for each movement direction (X, Y), the inspiration flow corresponds to one movement direction of the cursor C and the expiration flow corresponds to a movement direction opposite the one corresponding to the inspiration flow and so that the movement speed of the cursor corresponds at least in part to the intensity of the movement of the corresponding segment. 5. Method as claimed in claim 4, wherein the directions of movements associated with the expiration flow and inspiration flow are reversible. 6. Device for monitoring an electronic or computer system carrying out the method as claimed in claim 1, comprising : • means (2, 3) such as herein described to apply the fluid current to at least one free segment (51, 52) and make said segment move, • at least one conversion device (10) comprising means for directly converting the mechanical movement of the segment (51, 52) into an electric signal, • means (20) such as herein described for processing the electric signal emitted by the conversion device (10), • and interface means (21) between the processing means (20) and the electronic or computer system (22, 23). 7. Device as claimed in claim 6 wherein the free segment (51, 52) is stressed in vibration by the fluid current. 8. Device as claimed in claim 6 or 7, wherein the means (2, 3) to apply the fluid current have at least one orifice (4) enabling an individual to suck in or breathe out the air so as to create a flow of air at the level of the segment (51, 52). 9. Device as claimed in claim 1, • for each movement direction X, Y a conduit (2, 3) in which two free segments (51, 52) are placed associated with conversion devices (10) comprising means for directly converting the mechanical movement of the segment (5) into an electric signal, the first segment (51) being able to be stressed on movement by the expiration flow and the second segment (52) being able to be stressed on movement by the inspiration flow. • means (20) for processing the signals emitted by the conversion means (10) so that for each movement direction the inspiration flow corresponds to a direction of movement of the cursor and the expiration flow corresponds to a direction of movement opposite the one corresponding to the inspiration flow and so that the intensity of the flow corresponds, at least in part, to the movement speed of the cursor. 10. Device as claimed in claims 6 to 9 wherein the free segment (51, 52) is stressed in vibration by the coorespending flow. 11. Device as claimed in any of claims 6 to 10, wherein the conversion means (10) are formed by a piezo-electric transducer integral with the segment (5). 12. Device as claimed in any of claims 6 to 10, wherein the conversion means (10) are formed by an electromagnetic transducer having a magnet (11) and a transducing coil (12) associated with a magnetic circuit (13) having a ferromagnetic portion presented by the segment (5) at the level of its free extremity (14) whose movements disturb the magnetic field generated by the magnet (11) and induce an electromotive force in the coil (12). 13. Device as claimed in claim 12, wherein the magnetic circuit of the transducer (10) has a mobile adjustment element (15) intended to come approximately opposite at least one segment (5) so as to allow an adjustment to be made of the distance d, that is an airgap, separating the foot of the mobile element from the free extremity (14) of the segment. 14. Device as claimed in any of claims 6 to 10, wherein the conversion means are formed by the association of a light source (30) and a light (31) both placed so that the movements of the segment create an interface with the illumination of the sensor so as to create a variable electric signal at the to menals of the sensor. 15. Device as claimed in claim 14, wherein the light source (30) and sensor (31) are placed opposite each other and on both sides of the segment (5) so that the movements of said segment generate a discontinuous illumination of the sensor (31) so as to create a variable electric signal at the terminal of the sensor. 16. Device as claimed in claim 14 or 15, wherein the light source (30) is constituted by a light-emitting diode and the light sensor (31) is constituted by a phototransistor. 17. Device as claimed in claim 14, wherein the segment (51) bears at its free extremity a screen (32) for hiding the light source with respect to the sensor in certain positions of the segment: 18. Method for monitoring an electronic or computer system (22, 23) substantially as hereinbefore described with reference to and as illustrated in the accompanying drawings. 19. Device for monitoring an electronic or computer system carrying out the method substantially as hereinbefore described with reference to and as illustrated in the accompanying drawings. |
---|
in-pct-2001-00717-del-abstract.pdf
in-pct-2001-00717-del-claims.pdf
in-pct-2001-00717-del-correspondence-others.pdf
in-pct-2001-00717-del-correspondence-po.pdf
in-pct-2001-00717-del-description (complete).pdf
in-pct-2001-00717-del-drawings.pdf
in-pct-2001-00717-del-form-1.pdf
in-pct-2001-00717-del-form-13.pdf
in-pct-2001-00717-del-form-19.pdf
in-pct-2001-00717-del-form-2.pdf
in-pct-2001-00717-del-form-3.pdf
in-pct-2001-00717-del-form-5.pdf
in-pct-2001-00717-del-pct-101.pdf
in-pct-2001-00717-del-petition-137.pdf
in-pct-2001-00717-del-petition-138.pdf
Patent Number | 217889 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Indian Patent Application Number | IN/PCT/2001/00717/DEL | ||||||||
PG Journal Number | 17/2008 | ||||||||
Publication Date | 25-Apr-2008 | ||||||||
Grant Date | 29-Mar-2008 | ||||||||
Date of Filing | 10-Aug-2001 | ||||||||
Name of Patentee | PIERRE BONNAT | ||||||||
Applicant Address | LE CARRON, 01290 GRIEGES, FRANCE. | ||||||||
Inventors:
|
|||||||||
PCT International Classification Number | G06F 3/00 | ||||||||
PCT International Application Number | PCT/FR00/00362 | ||||||||
PCT International Filing date | 2000-02-14 | ||||||||
PCT Conventions:
|