Title of Invention

"METHOD AND DEVICE FOR NEBULISATION"

Abstract The invention relates to a nebulisation device, comprising a liquid reservoir, a liquid supply line for supply of liquid to a nebulisation zone and an outlet opening from the nebulisation zone by means of which a flow of nebulised liquid particles escapes the nebulisation zone. According to the invention, the outlet opening opens into the liquid reservoir above the level of the liquid and the liquid reservoir has an escape opening for nebulised liquid particles, by means of which some of the nebulised liquid particles, coming from the outlet opening, leave the reservoir. Optionally, the device comprises an outside air inlet duct with a nozzle in the nebulisation zone and an opening to outside air in the liquid reservoir.
Full Text This invention concerns a method and device for nebulization comprising a nebulization venturi,
which can be the one that is the subject of the filing of a patent application for a "nebulization
venturi and device comprising same" done this day by the applicant.
The invention applies in particular to devices for the diffusion of liquids, such as the diffusion of
perfumes, liquid fuels, etc.
The first goal of this invention is to achieve fine particles of liquid scattered into the air.
The nebulization devices currently known of feature a nebulization zone open in the direction of
the outlet of the nebulized liquid particles of said device. The result is that either large particles
escape from the.device, or a means of recovery of these large size particles has to be provided for
in the device. This invention intends to remedy these disadvantages.
Under a second aspect, this invention concerns a nebulization device comprising a liquid
container, a delivery conduit of the liquid into a nebulization zone and an escape opening of the
nebulization zone through which the nebulized liquid particle stream escapes from the
nebulization zone, characterized in that said escape opening ends in the liquid container above
the liquid level and in that the liquid container comprises a nebulized liquid particle escape
opening through which part of the nebulized liquid particles from the escape opening exits the
container.
Because of these arrangements, the larger nebulized liquid particles settle by the effect of gravity
or because of their inertia in the container where they join the liquid to be nebulized.
According to special characteristics, the nebulization device comprises a nebulization venturi
comprising a pressurized air intake conduit, the air intake conduit and liquid delivery conduit,
each provided with at least one nozzle ending toward a nebulization zone in which the air under
pressure coming from the air intake conduit nebulizes the liquid coming from the liquid delivery
conduit and an adjusting means of the position of the liquid delivery conduit nozzle The device
thus offers the advantages outlined with the first aspect of this invention.
According to special characteristics, the device comprises an air intake conduit provided with a
nozzle in the nebulization zone and an open air opening in the liquid container. Because of these
arrangements, part of the stream of nebulized liquid particles returns to the nebulization zone
through the free air intake conduit and the particle concentration of the stream is thus increased.
According to special characteristics, the device comprises: - an air suction conduit provided with
a nozzle in the nebulization zone, and at another opening of the air suction conduit, a negative
pressure sensor and - a processing means of a signal coming from said sensor and representative
of the negative pressure inside the suction conduit.
According to special characteristics, the suction conduit comprises also an open air opening in
the liquid container.
1

Since other advantages of each of these characteristics have been mentioned above, they are not
repeated here.
This invention also concerns a nebulization method comprising: - a suction step for the liquid to
be nebulized into a container, - an injection step for the liquid to be nebulized into a nebulization
zone, characterized in that it also comprises: - a projection step for the nebulized liquid particles
from the nebulization zone into said container above the level of the liquid in the container - a
step for the exit from the container of said nebulized liquid particles.
According to special characteristics, the method comprises also: - a step for air suction into the
container and - a step for injection of the sucked air into the container in the nebulization zone.
According to special characteristics, the method comprises also: - a step for measurement of the
pressure in the nebulization and a step for processing said measurement.
According to special characteristics, during the processing step, the operation of an air
compressor is stopped or an alarm signal is generated when the pressure measurement meets
predetermined variation criteria.
According to special characteristics, the measurement step is carried out by a negative pressure
sensor located in a suction conduit provided with an open air opening and a nozzle in the
nebulization zone.
Since the advantages and goals of the method correspond to those of the nebulization device
briefly described above, they are not restated here.
Other advantages, goals and characteristics of this invention will become apparent from the
description to follow, done based on the attached drawings where:
- Figure 1 shows a cross-sectional view of a venturi according to a first special embodiment of
a first aspect of this invention; Figure la shows at an enlarged scale the details of Figure 1;
- Figure 2 shows a cross-sectional view of a venturi according to a second special embodiment
of a first aspect of this invention;
- Figure 3 shows a cross-sectional view of a venturi according to a third embodiment of a first
aspect of this invention;
Figure 4 shows a cross-sectional view of a venturi according to a fourth special embodiment
of a first aspect of this invention;
- Figure 5 shows a sectional perspective view of a venturi according to another special
embodiment of the first aspect of this invention;
- Figures 6 and 7 show a cross-sectional view of a special embodiment of a nebulization
device according to another aspect of this invention;
- Figure 8 is a detail view of Figure 6;
Figure 9 shows a nebulization device comprising a means of alarm generation;
- Figure 10 is a schematic representation of a process flowchart of a nebulization device
according to one special embodiment of a process that is the subject of one aspect of this
invention;
2

- Figure 11 is a schematic representation of a shutter adaptable to the embodiments shown in
Figures 6 through 9;
- Figure 12 is a schematic representation of an alternative shape for the liquid delivery conduit
nozzle that can be used in each embodiment of this invention;
- Figures 13 and 14 are perspective views of an open (Fig. 13) and closed (Fig. 14) case
intended to receive the device under the invention.
In each of Figures 1 through 4, a venturi 61 through 64 respectively can be seen, each
comprising a venturi body, an air intake conduit 10, a delivery conduit for the liquid to be
nebulized 20, a nebulization zone 30 in which are located a nozzle 15 of the air intake conduit 10
and a nozzle 25 of the liquid delivery conduit 20, a free air conduit 40 provided with a nozzle 45
in the nebulization zone 30, the nebulization zone being formed in the venturi body and various
conduits entering said body, more specifically said conduits fitting into borings made in the
venturi body, proper sealing being achieved between the outside cylindrical faces of the conduits
and the cylindrical faces of the corresponding borings. One can see that the conduit 20 enters
into the nebulization zone 30 that is formed by a cylindrical chamber. One can see that the
conduit 20 can be made of a containing part and of a contained part mounted in the containing
part with a tight fit or slightly tight fit, the nozzle 25 being provided for at the end of the
contained part. The type of fit can allow for the sliding of the contained part inside the
containing part or prevent it.
One can also see that the nozzle 45 is in a geometric plane perpendicular to the longitudinal axis
of the conduit 40 and that the nozzle 15 is arranged according to a geometric plane perpendicular
to the longitudinal axis of conduit 10. One can also see that the longitudinal axes of the conduits
10, 20 and 40 are secant, that the longitudinal axis of the conduit 10 is perpendicular to the
longitudinal axes of the conduits 40 and 20. One can also see that the conduits 40 and 20 are
axially aligned.
The air intake conduit 10 is connected to a compressor (Figure 9) that supplies air under
pressure, e.g., equal to between one and ten times the atmospheric pressure. The liquid delivery
conduit 20 is connected at one end to a container of liquid to be nebulized (Figures 6, 7 and 9).
In the nebulization zone 30, the nozzle 15 of the air intake conduit 10 and the nozzle 25 of the
liquid delivery conduit 20 are respectively positioned so that through Venturi effect, the liquid
either is sucked into the nebulization zone 30 where the air flow coming out of the nozzle causes
the generation of a flow of nebulized liquid particles, directed toward an outlet 50 of the
nebulization zone 30, in a well-known manner.
It can be noted that the venturi 61 through 64 has an adjusting means 70 of the position of the
nozzle 25 on the liquid delivery conduit 20. Adjustment can be achieved through longitudinal
sliding and/or rotation of the liquid delivery conduit 20 in the venturi 61 through 64. To that
effect, the liquid delivery conduit can be provided with a threaded section and the boring in the
venturi body designed to receive said conduit shall be tapped, the conduit thread matching the
boring tap. With such solution, the axial displacement of the conduit cannot be dissociated from
its rotation. According to an alternative embodiment, the liquid suction conduit 20 and the
corresponding boring are smooth, which allows for longitudinal adjustment of the conduit
independently from its rotational adjustment.
3

Adjustment of the position of the nozzle 25, using the adjusting means 70, permits to vary the
operating parameters of the venturi 61 through 64, to compensate at least partially for the
fabrication variations and to adapt the stream of nebulized liquid particles to each use. By
moving longitudinally the nozzle 25, at least the average diffusion angle of the nebulized liquid
particles is adjusted in relation to the air intake conduit axis 10.
In Figure 1, the nozzles 15 and 25 touch, except for the thickness of conduit 25. In Figure 2, on
the other hand, the nozzle 25 is apart from the nozzle 15 by a distance of the same order of
magnitude as the diameter of the nozzle 25, i.e., between half and three times this diameter.
In Figure 3, the same elements as in Figure 2 can be noted, plus a taper 75 extending axially the
nebulization zone 30. In Figure 4, the same elements as in Figure 3 can be noted, plus an
extension of the taper 75 in the form of a cylindrical chamber 80 acting as diaphragm, i.e.,
laterally retaining the stream of nebulized liquid particles. Thus, the larger particles that are
generally located in the lateral parts of this stream settle on the cylindrical lateral surface of the
chamber 80 and flow under the effect of gravity to be recovered either in the nebulization zone,
or in the container of the liquid to be nebulized (see Figures 6 through 8).
In Figure 1 through 3 it can be noted that the nozzles 25 and 45 are arranged according to
parallel geometrical planes, and that the nozzle 25 is in a geometrical plane perpendicular to the
longitudinal axis of the conduit 20, while in Figure 4, it can be noted that the liquid delivery
nozzle 25 is not provided with revolution symmetry in relation to the liquid delivery conduit
axis: the plane of the nozzle 25 shows, in relation to the longitudinal axis of the conduit 25, an
angle different from 90 degrees. In alternative solutions, the absence of revolution symmetry is
reflected by a non-circular shape of the conduit 20. The adjusting means 70 is designed to adjust
at least the angular position of the liquid delivery nozzle 25, in relation to the liquid delivery
conduit 20. The rotation of this conduit 20 permits to vary the operation of the venturi 64.
Although not shown in the Figures, alternatively, the adjusting means 70 of the position of the
nozzle 25 also permits to adjust the distance between said nozzle 25 and the nozzle 15 along the
axis of nozzle 15, to adjust the distance between said nozzle 25 and the axis of the nozzle 15
and/or to adjust the angle between the axes of nozzles 15 and 25, according to mechanical means
known as such.
In each of Figures 1 through 4, one can note the free air intake conduit 40 that ends in the
nebulization zone 30, through the nozzle 45 and for which another opening is in the open air,
e.g., in the container of the liquid to be nebulized (see Figures 6 through 8). The shape and/or
position of nozzle 45 of the free air intake conduit in the nebulization zone 30 cause the suction
of free air into this area, e.g., through the venturi effect, or through the effect of the negative
pressure generated on the lateral parts of the nebulization zone 30 through the air flow injected
by nozzle 15. The inventor noted that the presence of the free air intake conduit 40 made it
possible to increase the efficiency of each venturi 61 through 64, compared to a similar venturi
not provided with this free air intake conduit 40.
In Figure 5, a venture 65 can be noted that comprises an air intake conduit 10, a cylindrical
conduit 85 for delivery of the liquid to be nebulized on one hand, and intake of free air on the
4

other hand, a nebulization zone 30 comprising a nozzle 15 of the air intake conduit 10 and two
openings 86 and 87 of conduit 85. The conduit 85 is designed to slide in a cylindrical boring
made in the body of venturi 65. In this manner, the adjusting means 70, consisting of this boring,
makes it possible to slide conduit 85 both in rotation in relation to its axis and in translation
along its axis, which makes it possible to vary the position of openings 86 and 87 in relation to
nozzle 15 and thus constitutes two adjusting parameters of the operation of venturi 65. In
addition to the openings 86 and 87, conduits 85 has at one end an open air opening and at the
other end an opening in a container of the liquid to be nebulized
The openings 86 and 87 are circular and have diameters practically equal to the diameter of
nozzle 15. They are placed symmetrically in relation to the longitudinal axis of conduit 85. They
are thus diametrically opposite.
Figures 6 through 8 show a container of the liquid to be nebulized 100, a delivery conduit of the
liquid to be nebulized 120 consisting of a hollow rod 121 plunging into the liquid contained in
the container 100 and of a secondary conduit 122 inserted into a venturi 160, said secondary
conduit being in a communication relation with the conduit 120. The venturi 160 rests on the
rim of the container through a centering flange 161, either independent or rooted in the venturi
body. A pilferproof ring 162 is positioned around the upper part of the container and through a
locking collar 163 in its upper part rests against the centering flange 161. This pilferproof ring
162 is attached in a non-removable fashion on the container, hi addition, the venturi 160 is
covered with a cap 164 in which an air intake conduit 110a and a nebulisate discharge conduit
195 are formed.
The air intake conduit 110a is appropriately extended by a fitting end 110b that is proof against a
source of pressurized air, e.g., the compressed air output of a compressor. This fitting end 110b
can be vertical as shown and extend either upward or downward, but said fitting end can also
have a horizontal position.
The cap 164 is attached to the centering flange 161 with screws and covers the locking collar 163
on the pilferproof ring 162. Each screw is inserted into a boring through the flange 161 and into
a blind tap made in the cap 164. Because of this arrangement, the screw heads are in the inside
volume of the container or opposite it and are therefore inaccessible.
Thus, after the pilferproof ring 162 is secured on the container, it is no longer possible to remove
the venturi, without destroying the ring and to access the content of the container.
This device can then be single-use and disposable after depletion of the liquid contained in the
container.
To reinforce safety by precluding the introduction into the device, and especially into the
container, of any foreign matter or liquid before or after complete depletion of the liquid initially
contained in the container, the various conduits accessible from outside the device can be
equipped with securement means such as check valves and alike.
5

The venturi 160 comprises an air intake conduit 110 in communication relation with the conduit
110a provided in the cap, the secondary conduit 122, a nebulization zone 130 in which there is a
nozzle 115 of the air intake conduit 110 and a nozzle 125 of the liquid delivery conduit 120, an
outlet 150 of the nebulization zone 130, an adjusting means 170 of the position of the secondary
conduit 122, a taper 175 extending outlet 150 of the nebulization zone and a cylindrical chamber
180 extending the taper. The adjusting means 170 consists of a micrometric pitch screw. The
venturi 160 can also have a free air conduit 140 with a nozzle 145 in the nebulization zone 130.
This free air conduit will be in communication relation with a through-conduit 140a provided in
the cap.
In a preferred design, the conduit for the liquid to be nebulized 121 comprises at its lower end a
filter 121a. This filter plunges into the liquid present in the container.
The free air conduit or suction conduit 140 also features:
an opening 142 designed to receive a negative pressure sensor (see Figure 9),
In the nebulization zone 130, the nozzle 115 of the air intake conduit 110 and the nozzle 125 of
the liquid delivery conduit 120 are respectively positioned so that through Venturi effect, the
liquid is sucked into the nebulization zone 130 where the air flow coming out of the nozzle 115
causes the generation of a flow of nebulized liquid particles, directed toward the outlet 150 of the
nebulization zone 130, in a well-known manner.
The inventor noted that the presence of the free air intake conduit 140 made it possible to
increase the output of the venturi 160 compared to an identical venturi not equipped with this
free air intake conduit 140. In addition, since the suction conduit sucks air in the chamber 180,
part of the stream from the venturi is injected into the nebulization zone, which makes it possible
to increase the concentration of nebulized liquid particles in the stream leaving the chamber 180.
In a manner characteristic of one aspect of this invention, the escape opening 190 through which
the stream coming out of the chamber 180 exits the venturi 160 ends into the liquid container
100 and the liquid container 100 comprises a nebulized liquid particle release opening 195
through which part of the nebulized liquid particles coming from the escape opening 190 exits
the container 100 and the nebulization liquid to be diffiised in the atmosphere surrounding this
nebulization device.
Thus, the larger nebulized liquid particles settle by the effect of gravity or because of their inertia
in the container 100 where they join the liquid to be nebulized.
In a preferred design, the escape opening 190 is directed toward the surface of the liquid
contained in the container.
Figure 9 shows a nebulization device 200 comprising the container 100 and venturi 160, a
compressor 210, a power supply 220 for the compressor 210, a pressure sensor 230, a processing
means 240, an alarm signal generator 250, a sound transmitter 260, an indicating light 270 and a
computer network 280.
6

The pressure sensor 230 is positioned on the opening 142 of the conduit 140 and generates a
signal representative of the pressure (or negative pressure) in the lateral parts of the nebulization
zone 130. The processing means 240, for example an electronic board (possibly of the
microprocessor type), a computer or a threshold circuit, receives the signal transmitted by the
pressure sensor 230 and, based on predetermined variation criteria of this signal, causes the
generation of alarm signals by the alarm signal generator 250 sent to the sound transmitter 260,
indicating light 270 and/or computer network 280.
The predetermined criteria are for example: drop of pressure measured below a threshold level or
drop of pressure by at least 10% measured in less than 5 minutes.
The inventor indeed discovered that when there is no more liquid in the nozzle 125, the value of
the negative pressure sensed by the pressure sensor 230 is different from the value of the
negative pressure when said nozzle contains liquid to be nebulized. In the embodiment
illustrated in Figures 6 through 9, the value of the pressure measured is, when there is no more
liquid in the nozzle 125, lower than when there is still liquid to be nebulized in the nozzle 125.
The alarm signal generator 250 is designed to command: - the transmittal of sound signals by the
sound transmitter 260, consisting for example of a speaker, - the transmittal of visual signals by
the indicating light 270, consisting for example of a LED and/or - the transmission of alarm
signals by the computer network 280, consisting for example of a wire or non-wire connection
connected to a capture board itself connected to a computer system.
The processing means is also designed to cut off the power supply of the compressor 210 when it
detects that there is no more liquid to be nebulized.
Figure 10 shows an initialization step 300 during which a venturi is connected to a container of
liquid to be nebulized so that the projection by the venturi of nebulized liquid particles is done
inside the container.
Then, during step 310, an air compressor is started to cause suction of the liquid to be nebulized
into a container.
For each part of the liquid sucked during step 310, an injection step 320 into a nebulization zone
then takes place and a projection step 330 of the nebulized liquid particles into said container.
Part of the nebulized liquid particles then exits the container through a release opening during
step 340.
In parallel to the steps 320 through 340, part of the air in the container is sucked into a free air
conduit, step 350, and injected into the nebulization zone, step 360.
hi parallel to the steps 320 through 360, a measurement step 370 is carried out for the pressure in
the nebulization zone and a processing step 380 of said measurement.
7

According to a preferred design, during measurement step 370, the pressure is measured in a
suction conduit provided with a nozzle in the nebulization zone, and possibly with an open air
opening, for example, in the container.
During the processing step 380, the compressor operation is stopped or an alarm signal is
generated whenever the pressure meets predetermined variation criteria, as explained based on
Figure 9.
Figure 11 shows a circular component or diaphragm 196 with three lateral openings 197 that can
be inserted into the escape opening 190 preferably in a shoulder provided at the end of this
opening, i.e., opposite to the nebulization chamber (see Figure 6). The function of this circular
component is to retain the largest particles of the nebulized liquid so that they form large size
drops that fall under the gravity effect into the container 100, which prevents the formation of an
emulsion liable to cause oxidation of the liquid to be nebulized.
Figure 12 shows an alternative form 26 of the nozzle 25 (see Figures 1 through 4).
In this alternative, the opening of nozzle 25 has a non-plane shape formed by the intersection of
the liquid delivery conduit 70 cylinder and of a cylinder surrounding the nozzle of the
pressurized air intake 10, with the pressurized intake air conduit as axis.
The inventor noted that this particular shape 26 allows for good efficiency of the nebulization
venturi 61 through 64. Any other shape, for example, triangular can be provided for.
The device as described will be appropriately arranged in a compartmented protective case as
shown in Figures 13 and 14. As one can see, this case has a closing flap with a lock. One of the
compartments of the case shall be designed to receive the device under the invention and another
one of the compartments shall be designed to receive the compressed air compressor. The
compressor compressed air outlet shall be connected through a flexible or rigid line to a socket
secured in the first compartment and designed to receive the cap socket end of the nebulization
device. Another compartment shall be provided to receive the device electronics.
In a preferred design, to secure the device inside the case without altering the removability of the
device, the latter is equipped with a locking lever designed to work together through pivoting
with two anchoring studs mounted in the first compartment.
It is understood that this invention can accommodate any fixtures and alternatives from the field
of equivalent techniques without thereby going outside the scope of this invention.
8

CLAIMS
1. Nebulization device (200) comprising a liquid container (100), a delivery conduit (120) of
the liquid into a nebulization zone (130) and an escape opening of the nebulization zone
(180) through which the nebulized liquid particle stream escapes from the nebulization zone,
characterized in that said escape opening (180) ends in the liquid container above the liquid
level and in that the liquid container comprises a release opening of the nebulized liquid
particles (195) through which part of the nebulized liquid particles from the escape opening
exits the container.
2. Device according to claim 1, characterized in that it comprises a nebulization venturi (160)
comprising a pressurized air intake conduit (110), the air intake conduit and liquid delivery
conduit featuring each at least one nozzle ending toward the nebulization zone in which the
air under pressure coming from the air intake conduit nebulizes the liquid coming from the
liquid delivery conduit and an adjusting means (170) of the position of the liquid delivery
conduit nozzle (125) in relation to the pressurized air intake conduit nozzle (115).
3. Device according to any of claims 1 or 2, characterized in that it comprises a free air intake
conduit (140) provided with a nozzle in the nebulization zone (145) and an open air opening
(141) in the liquid container (100).
4. Device according to any of claims 1 through 3, characterized in that it comprises: - an air
suction conduit (140) provided with a nozzle (145) in the nebulization zone (130), and at
another opening of the air suction conduit (142), a negative pressure sensor (230) and - a
processing means (240) for a signal from said sensor and representative of the negative
pressure inside the suction conduit.
5. Device according to claim 4, characterized in that the suction conduit comprises also an open
air opening (141) in the liquid container (100).
6. Nebulization method comprising: - a suction step (310) of the liquid to be nebulized into a
container, - an injection step (320) of the liquid to be nebulized into a nebulization zone
(130), characterized in that it also comprises: - aprojection step (330) of the nebulized liquid
particles from the nebulization zone into said container above the level of the liquid in the
container - an exit step (340) from the container for part of said nebulized liquid particles.
7. Method according to claim 6, characterized in that it also comprises: - an air suction step
(350) into the container and - an injection step (360) for the air sucked into the container in
the nebulization zone.
8. Method according to any of claims 6 or 7, characterized in that it also comprises: - a
measurement step (370) for the pressure in the nebulization zone and a processing step for
said measurement (380).
9

9. Method according to claim 8, characterized in that, during the processing step (380), the
operation of an air compressor (210) is stopped or an alarm signal is generated when the
pressure measurement meets predetermined variation criteria.
10. Method according to any of claims 8 or 9, characterized in that the measurement step (370) is
carried out by a negative pressure sensor (230) located in a suction conduit (140) provided
with an open air opening (141) and a nozzle (145) in the nebulization zone (130).

The invention relates to a nebulisation device, comprising a liquid reservoir, a liquid supply line for supply of liquid to a nebulisation zone and an outlet opening from the nebulisation zone by means of which a flow of nebulised liquid particles escapes the nebulisation zone. According to the invention, the outlet opening opens into the liquid reservoir above the level of the liquid and the liquid reservoir has an escape opening for nebulised liquid particles, by means of which some of the nebulised liquid particles, coming from the outlet opening, leave the reservoir. Optionally, the device comprises an outside air inlet duct with a nozzle in the nebulisation zone and an opening to outside air in the liquid reservoir.

Documents:


Patent Number 219336
Indian Patent Application Number 01892/KOLNP/2005
PG Journal Number 18/2008
Publication Date 02-May-2008
Grant Date 30-Apr-2008
Date of Filing 22-Sep-2005
Name of Patentee PROLITEC S.A.
Applicant Address 71 BOULEVARD DE SEBASTOPOL, 75002 PARIS, FRANCE
Inventors:
# Inventor's Name Inventor's Address
1 BENALIKHOUDJA KARIM 283, RUE FRANCOIS RABELAIS, F-34130, MAUGUIO, FRANCE
PCT International Classification Number B65B 1/30; B05B 7/00
PCT International Application Number PCT/EP2004/050292
PCT International Filing date 2004-03-11
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 0303316 2003-03-11 France