Title of Invention

COMPOSITIONS AND PROCESS FOR PREPARING CLEANSING BARS COMPRISING LOW LEVELS OF SOLUBLE SURFACTANT FOR ENHANCED FRAGRANCE DEPOSITION / LONGEVITY

Abstract The invention relates to perfume-containing bar compositions in which the effect of the perfume(s) (e.g., longevity) is enhanced relative to comparative bars in that perfume-containing bar of the invention, comprise less than about 35 % soluble surfactant. The invention further comprises a process for enhancing deposition/longevity of perfume, for example, by controlling the level of soluble active relative to insoluble active and/or by increasing levels of perfume.
Full Text J6880
FORM - 2
THE PATENTS ACT, 1970
(39 of 1970)
&
The Patents Rules, 2006
COMPLETE SPECIFICATION
(See Section 10 and Rule 13)
COMPOSITIONS AND PROCESS FOR PREPARING CLEANSING BARS
COMPRISING LOW LEVELS OF SOLUBLE SURFACTANT FOR ENHANCED
FRAGRANCE DEPOSITION / LONGEVITY
HINDUSTAN LEVER LIMITED, a company incorporated under the Indian Companies Act, 1913 and having its registered office at Hindustan Lever House, 165/166, Backbay Reclamation, Mumbai -400 020, Maharashtra, India
The following specification particularly describes the invention and the manner in which it is to be performed

WO 2005/068601

PCT/EP2004/014468

- 1 -
COMPOSITIONS AMD PROCESS FOR PREPARING CLEANSING BARS COMPRISING LOW LEVELS OF SOLUBLE SURFACTANT FOR ENHANCED FRAGRANCE DEPOSITION/LONGEVITY
5 The present invention relates to delivery of perfume
performance from cleansing bar systems. Specifically, it relates to a process for enhancing perfume performance (measured as perfume enhancement factor or "PEF") by formulating bars in such manner as to decrease the soluble
10 surfactant to perfume component(s) ratio.
The ratio of soluble surfactant to perfume component in a bar can in turn be controlled by decreasing the level of soluble surfactant (e.g., by controlling the amounts of
15 generally less soluble, saturated, longer chain length fatty acid or fatty acid soaps versus amounts of generally more soluble, saturated, shorter chain length fatty acid or fatty acid soaps); and/or by increasing level of perfume.
20 Soap bars consist of a blend of different chain length fatty acid soaps. Some of the fatty acid soaps (e.g., typically shorter chain length C14, C12 and below as well as some unsaturated soaps, such as oleate) from which the bars are made are soluble (by "soluble" is generally meant it 25 dissolves at greater than 1 wt.% level in water at less than about 40°C; it should be understood that solubility may refer to single soaps/surfactants or to mixtures/complexes of soaps and/or surfactants which, as a mixture or complex, have solubility within the defined parameters); and some
30 (e.g., C16 , C18 and higher chain lengths) are insoluble or

WO 2005/068601

PCT/EP2004/014468

- 2 -
substantially insoluble (again insolubility may refer to mixtures or complexes).
A "typical" soap bar consists of mixtures of saponified nut
5 oils (generally producing more lower chain length, soluble fatty acid soaps) and saponified non-nut oils (generally producing more higher chain length, insoluble fatty acid soaps) which will comprise the various chain length fatty acid and various saturated and unsaturated fatty acid soaps.
10 A typical 85/15 bar, for example, is 85 % tallow (comprising longer chain soaps generally required for the structuring when bars are extruded) and 15 % coconut (containing shorter, more soluble soaps which yield good foam and other attributes). Such 85/15 soaps will generally contain about
15 50-60 % soluble actives.
The applicants have now found that, when the level of soluble actives is kept low (e.g., below about 35 % by wt. of bar composition, more preferably below 30 % by wt., even
20 more preferably below about 25 % of final bar being soluble active, active being soap or synthetic surfactant), then the fragrance delivery is enhanced relative to delivery of fragrance from a bar having higher levels of soluble active in the final bar. In one embodiment of the invention, the
25 bar with low levels of soluble active is predominantly a
soap bar or bar comprising a mixture of soap and free fatty acid but, as noted, the bar can be any bar where the amount of the soluble surfactant (e.g., soap, synthetic) is kept at a level of below about 35 % by wt. of final bar.

WO 2005/068601

PCT/EP2004/014468

- 3 -
There are a number of references which disclose compositions having mixtures of short and long chain, saturated and unsaturated fatty acids possibly mixed with variety of ions to form soaps. No art of which applicants are aware,
5 however, discloses the criticality of maintaining levels of soluble active below certain level (35 % of total active) to enhance perfume delivery or a process/method of enhancing such delivery using the specific compositions of the invention.
10
U.S. Patent No. 5,387,362 to Tollens et al. discloses compositions containing a tailored mixture of Mg, Na and K
ions reacting with lauric acid, select C14-C18 fatty acids as
well as oleic acid to generate soap base. A related
15 reference is U.S. Patent No. 5,540,852 to KeFauver et. al. There is no disclosure in either reference of compositions with perfume and levels of soluble soaps which must be below certain levels, nor a disclosure of a process for enhancing perfume delivery (e.g., enhanced PEF) . Indeed, there is no
20 recognition of preparing bars to ensure the level of soluble soap must comprise no higher than 35 % of total surfactant.
U.S. Patent No. 5,262,079 to Kacher et al. discloses partially neutralizing fatty acids to form a network for a
25 framed bar and also contains high levels of anionic surfactant plus nonionic firmness aids. There is no discussion of compositions with perfume and levels of soluble active below certain level or of processes to enhance perfume delivery. That is, there is no direction or
30 suggestion to prepare bars to ensure final level of soluble
active is no more than 35 % of total actives. The reference

WO 2005/068601

PCT/EP2004/014468

4 -

also relates to framed bars versus extrusion bars of the subject invention.
10
U.S. Patent No. 6,121,216 to Narath et al. discloses a way
5 to improve processing of a syndet bar which incorporates amphoterics as a mildness aid. Processing efficiency is increased by minimizing levels of soap, especially unsaturated soaps. That soluble active must comprise less than 35 % of the total active, and the influence of such low level on perfume enhancement are not disclosed.
15 In one embodiment the subject invention relates to compositions for enhancing deposition of perfume molecule(s) which comprises:
a bar composition comprising:
(1) detergent active where no more than about 35 % by
wt., preferably no more than about 30 % by wt. of
total bar composition comprises soluble surfactant
active (e.g., bar may comprise 0.5 to 35 %,
20 preferably 1.0 % to 30 % by wt. soluble active);
and
(2) perfume active or actives,
wherein said composition provides enhanced delivery of perfume relative to bar composition having greater than
25 about 35 % soluble surfactant actives;
wherein solubility is defined by dissolution of surfactant actives or active combination (e.g. if combination has higher solubility than individual components) of greater than about 1 % by wt. in water
30 at 40°C.

WO 2005/068601

PCT/EP2004/014468

- 5 -
The remainder of bar (e.g., 0.1 % to 65 % by wt.) may comprise 0.5 % to 20 %, preferably 0.5 % to 15 % by wt. water and 0.5 % to 99 %, preferably 1 % to 70 % by wt. of "filler materials".
5
Such filler materials may range from anything which can hold together or "structure a bar" including insoluble actives (insoluble soaps and/or fatty acids), organic and inorganic structurant materials and any one of thousands or more of
10 materials which can be used as bar components.
The only criticality is that soluble surfactant comprises no more than 35 % of bar by wt., and that the bar is solid enough to function as a "bar" (e.g., have yield stress of at
15 least 90 kPa as measured by standard cheese-wire method with a 200g weight and cheese wire diameter of 0.5 millimetres).
In a second embodiment, the invention comprises a process for enhancing perfume retention/longevity of perfume which
20 process comprises minimizing the level of soluble surfactant actives in a bar relative to a typical bar comprising greater than about 35 %, generally comprising 40 % to 70 %, soluble surfactant active.
25 In a particular embodiment of the invention, the invention relates to bar compositions comprising:
(1) 20 % to 75 % fatty acid soap and free fatty acid mixture (most of which is insoluble but some of which may be soluble);
30 (2) 0 to 20 % synthetic surfactant active; and

WO 2005/068601

PCT/EP2004/014468

- 6 -
(3) balance water, minors and fillers/other bar components,
wherein the percent of active (1) and (2) which is soluble is less than about 35 % by wt. total bar
5 composition; and wherein PEF > to about 2.2, preferably greater than 2.3, more preferably greater than 2.5 relative to a standard control (for example 85/15 soap bar) .
10 The invention will be described by way of example only with reference to the accompanying figures, in which:
- Figure 1 is a graph showing the fraction of soap into
which the perfume partitions. The graph shows that most
15 perfume by far will partition into the soluble filtrate. While not wishing to be bound by theory, it is for this reason that it is believed the percent of soluble surfactant should be minimized, i.e., to minimize loss of perfume through soluble component, thereby making it unavailable for
20 good perfume performance;
- Figure 2 is a graph of surfactant to perfume ratio
and it's impact on two different perfume components. Both components partition into the surfactant phase and therefore
25 provide higher surfactant to perfume ratios (i.e., greater surfactant content), and perfume impact is reduced;
- Figure 3 is a graph of the effect of surfactant to
perfume ratio on perfume performance for a 2:1 sodium
30 oleate :sodium laurate system. Increasing surfactant; perfume ratio results in decreased perfume impact;

WO 2005/068601

PCT/EP2004/014468

- 7 -
- Figure 4 is a graph of predicted impact measurements
for benzyl acetate and limonene in surfactant solutions with
increasing surfactant to perfume ratios. The higher the
ratios, the lower the perfume impact;
5
- Figure 5 is a graph comparing GC head space data of
soap systems having different solid levels. Generally,
those with "high solids" (i.e. less amount of soluble soap)
have significantly higher fragrance headspace. As such,
10 again, bars with a lower amount of soluble soap will have greater perfume impact,-
- Figure 6 shows GC data of two bar solutions at
different dilutions, one with 1 % perfume compared to one
15 with 4 % perfume. Raising the level of perfume relative to surfactant also enhances perfume impact above the solution.
- Figure 7 shows GC data from a SPME measurement of
perfume deposited on the skin. This graph compares the
20 deposition of perfume from a bar formulated with "high
solids" (low soluble surfactant) and a control bar with low solids (high soluble active). Clearly the graph indicates more fragrance deposited to the skin from the "high solids" bar; and
25
- Figure 8 shows the GC data from a SPME measurement of
perfume deposited on the skin. This graph compares the
deposition from a bar containing 1 % perfume and a bar
containing 4 % perfume (same high soluble active
30 formulation). Again the graph indicates that increasing the

WO 2005/068601

PCT/EP2004/014468

- 8 -
perfume :soluble surfactant ratio provides greater perfume deposition.
The present invention relates to bar compositions comprising
5 perfume and to processes for enhancing perfume
retention/longevity using bar composition having no more than a defined amount of soluble active as a percent by wt. of total bar. The soluble surfactant active is believed to enhance perfume partitioning into the active, thereby reducing
10 available perfume and decreasing perfume performance.
Another way of defining a low level of soluble active is to define a soluble surfactant :perfume ratio. Specifically, activity or impact of perfume can be seen to increase as the
15 ratio of surfactant to perfume decreases. While such a ratio from a "typical" soap bar may be 60:1, the compositions of the subject invention have ratios less than 40:1, preferably lower than 35:1, more preferably less than 30:1 and more preferably lower than 25:1. The lower the
20 ratio, the greater the perfume impact.
The ratio in turn can be decreased either by decreasing the level of soluble surfactant (including synthetics and/or soluble soap), as has been noted, and/or by increasing the
25 level of perfume.
The crux of the invention is therefore really that the total amount of soluble surfactant in the final bar composition be below about 35 % of the bar composition because it is into
30 the soluble surfactant (rather than any insoluble
surfactant) that perfume will more readily partition in use.

WO 2005/068601

PCT/EP2004/014468

- 9 -
more readily wash off and ultimately reduce the perfume performance.
The type of soluble surfactant is therefore really
5 irrelevant, other than the fact that a soluble surfactant (or mixtures or complexes of surfactants) is/are defined as one(s) that have/has a solubility in water greater than 1 wt.% at temperature of 40°C. If the surfactant(s) does not meet this solubility limitation, there is therefore no limit
10 on the amount of "insoluble" surfactant which can be used. It is for this reason that increasing the amount of insoluble surfactant relative to soluble surfactant (or conversely decreasing the amount of soluble surfactant in the bar composition) is one way of increasing the fragrance
15 performance (e.g. fragrance deposition or fragrance longevity in use).
An example of how this works is if we consider a blend of different chain length fatty acid soaps. As indicated above,
20 shorter chain length fatty acid/fatty acid soap (e.g.,
typically shorter than Cig, particularly shorter than C14)
are "soluble" (and hence are also sometimes considered
"harsher") while, for example, C2.6 and above chain length
saturated fatty acids/fatty acid soaps are typically
25 insoluble. By increasing the ratio of longer chain length to shorter chain length saturated soaps (as the applicants have done for different reasons in co-pending, co-filed application relating to fatty acid/fatty acid soap based bars with relatively low synthetic) , it is possible to enhance
30 perfume longevity or effect.

WO 2005/068601

PCT/EP2004/014468

10
In particular, in one embodiment the invention comprises:
(1) 0.5 % to 35 % by wt. soluble surfactant/actives;
(2) perfume;
5 (3) 0.5 % to 20 %, preferably 0.5 % to 15 % by wt.
water; and
(4) 0.1 % to 99 % by wt., preferably 1 % to 70 % by
wt. fillers which may comprise structuring
materials including insoluble actives and organic
10 and inorganic materials which structure and fill.
The amount of soluble active/surfactant of (1) comprises no more than 35 % by wt. of total bar, or the enhanced effect of the invention is not observed relative to bars having for
15 example greater than about 35 % soluble active. Stated differently, only those bars with soluble surfactant less than 35 % by wt. of bar composition have performance enhancement factor of >_ 2.2 PEF, preferably ^2.3, more preferably _> 2.5 based on ratio of perfume deposited from bar
20 relative to that deposited from a standard control.
With regard to the surfactant/active, there is no constraint on what the active may be. It may be any of the myriads of anionic surfactants, nonionic surfactants,
25 amphoteric/zwitterionic surfactants, cationic surfactants well known to those skilled in the art with the only criticality being that no more than 35 % of active (including mixtures or complexes) may be soluble, wherein solubility is defined as at least 1% by wt. soluble in water
30 at 40°C.

WO 2005/068601

PCT/EP2004/014468

- 11 -
Perfume molecules include but are not limited to:
acetanisol; amyl acetate; anisic aldehyde; anisole; anisylalcohol; benzaldehyde; benzyl acetate; benzyl acetone;
5 benzyl alcohol; benzyl formate; hexenol; d-carvone;
cinnamaldehyde; cinnamic alcohol; cinnamyl acetate; cinnamyl formate; cis-3-hexenyl acetate; Cyclal C (2,4-dimethyl-3-cyclohexen-1-carbaldehyde); dihydroxyindole; dimethyl benzyl carbinol; ethyl acetate; ethyl acetoacetate; ethyl
10 butanoate; ethyl butyrate; ethyl vanillin; tricyclo decenyl propionate; furfural; hexanal; hexenol; hydratropic alcohol; hydroxycitronellal; indole; isoamyl alcohol; isopulegyl acetate; isoquinoline; ligustral; linalool oxide; methyl acetophenone; methyl amyl ketone; methyl anthranilate;
15 methyl benzoate; methyl benzyl acetate; methyl heptenone;
methyl heptyl ketone; methyl phenyl carbinyl acetate; methyl salicylate; octalactone; para-cresol; para-methoxy acetophenone; para-methyl acetophenone; phenethylalcohol; phenoxy ethanol; phenyl acetaldehyde; phenyl ethyl acetate,
20 phenyl ethyl alcohol; prenyl acetate; propyl butyrate;
safrole; vanillin; viridine; allyl caproate, allyl heptoate, anisole, camphene, carvacrol, carvone, citral, citronellal, citronellol, citronellyl acetate, citronellyl nitrile, coumarin, cyclohexyl ethylacetate, p-cymene, decanal,
25 dihydromyrcenol, dihydromyrcenyl acetate, dimethyl octanol, ethyl1inalool, ethylhexyl ketone, eucalyptol, fenchyl acetate, geraniol, gernyl formate, hexenyl isobutyrate, hexyl acetate, hexyl neopentanoate, heptanal, isobornyl acetate, isoeugenol, isomenthone, isononyl acetate, isononyl
30 alcohol, isomenthol, isopulegol, limpnene, linalool, linalyl acetate, menthyl acetate, methyl chavicol, methyl octyl

WO 2005/068601

PCT/EP2004/014468

- 12 -
acetaldehyde, myrcene, napthalene, nerol, neral, nonanal, 2-nonanone, nonyl acetate, octanol, octanal, a-pinene, B-pinene, rose oxide, a-terpinene, y-terpinene, a-terpinenol, terpinolene, terpinyl acetate, tetrahydrolinalool,
5 tetrahydromyrcenol, undecenal, veratrol, verdox, allyl cyclohexane propionate, ambrettolide, Ambrox DL (dodecahydro-3a,6,6,9a-tetramethyl-naphtho[2,1-b]furan), amyl benzoate, amyl cinnamate, amyl cinnamic aldehyde, amyl salicylate, anethol, aurantiol, benzophenone, benzyl
10 butyrate, benzyl iso-valerate, benzyl salicylate, cadinene, campylcyclohexal, cedrol, cedryl acetate, cinnamyl cinnamate, citronellyl isobutyrate, citronellyl propionate, cuminic aldehyde, cyclohexylsalicylate, cyclamen aldehyde, dihydro isojamonate, diphenyl methane, diphenyl oxide,
15 dodecanal, dodecalactone, ethylene brassylate, ethylmethyl phenylglycidate, ethyl undecylenate, exaltolide, Galoxilide™ (1,3,4,6,7,8-hexhydro,4,6,6,7,8, 8-hexamethyl- cyclopenta-y-2-benzopyran) , geranyl acetate, geranyl isobutyrate, hexadecanolide, hexenyl salicylate, hexyl
20 cinnamic aldehyde, hexyl salicylate, a-ionone, B-ionone, y-ionone, a-irone, isobutyl benzoate, isobutyl quinoline, Iso E Super™ (7-acettl,1,2,3,4,5,6,7,8-octahydro,1,1,6,7- tetramethyl napthalene), cis-jasmone, lilial, linalyl benzoate, methoxy naphthaline, methyl cinnamate, methyl
25 eugenol, Y-methylionone, methyl linolate, methyl linolenate, musk indanone, musk ketone, musk tibetine, myristicin, neryl acetate, 5-nonalactone, y-nonalactone, patchouli alcohol, phantolide, phenylethyl benzoate, phenylethylphenylacetate, phenyl heptanol, phenyl hexanol, a-santalol, thibetolide,

WO 2005/068601

PCT/EP2004/014468

- 13 -
tonalid, 8-undecalactone, y-undecalactone, vertenex, vetiveryl acetate, yara-yara, ylangene.
The "filler" material is everything else in the bar other 5 than "soluble" surfactant, water and perfume or perfume
ingredients. It should be understood that "filler" itself may be soluble and, as indicated above, is defined only as being something other than the specifically recited surfactant, perfume or water.
10
The structurant can be long chain, preferably straight and saturated (e.g., C16-C24) fatty acids, fatty acid soaps or ester derivatives thereof; and/or branched long chain, preferably straight and saturated alcohol or ether
15 derivative.
It may be polyalkylene glycol of MW 2000 to 20,000.
Other ingredients which may be used as structurants and or 20 fillers include starches, sugars, maltodextrins and other
polysaccharides. They may also include waxes and unsaponified fats.
Inorganic fillers such as talc, kaolin, clays and calcium 25 salts may also be used.
Structuring aids can also be selected from water soluble polymers chemically modified with hydrophobic moiety or moieties, for example, EO-PO block copolymer, 30 hydrophobically modified PEGs such as POE (200)-glyceryl-

WO 2005/068601

PCT/EP2004/014468

- 14 -
stearate, glucam DOE 120 (PEG 120 Methyl Glucose Dioleate),

modified glyceryl cocoate, palmate or tallowate) from Rewo Chemicals.
5
Other structuring aids which may be used include Amerchol Polymer HM 1500 (Nonoxynyl Hydroethyl Cellulose).
In addition, the bar compositions of the invention may include
10 optional ingredients as follows; sequestering agents, such as tetrasodium ethylenediaminetetraacetate (EDTA), EHDP or mixtures in an amount of 0.01 % to 1 %, preferably 0.01 % to 0.05 %; and coloring agents, opacifiers and pearlizers such as zinc stearate, magnesium stearate, Ti02, EGMS (ethylene glycol
15 monostearate) or Lytron 621 (Styrene/Acrylate copolymer); all of which are useful in enhancing the appearance or cosmetic properties of the product.
The compositions may further comprise antimicrobials such as 20 2-hydroxy-4,2 ' 4 ' trichlorodiphenylether (DP300);
preservatives such as dimethyloldimethylhydantoin (Glydant XL1000), parabens, sorbic acid etc.
The compositions may also comprise coconut acyl mono- or
25 diethanol amides as suds boosters, and strongly ionizing
salts such as sodium chloride and sodium sulfate may also be used to advantage.

WO 2005/068601

PCT/EP2004/014468

- 15 -
Antioxidants such as, for example, butylated hydroxy toluene (BHT) may be used advantageously in amounts of about 0.01 % or higher if appropriate.
5 Cationic polymers as conditioners which may be used include Quatrisoft LM-200 Polyquateraium-24, Merquat Plus 3330
Polyquaternium 39; and Jaguar1" type conditioners.
Polyethylene glycols as conditioners which may be used 10 include:
Polyox WSR-20.5 PEG 14M,
Polyox WSR-N-60K PEG 45M, or
Polyox WSR-N-750 PEG 7M.
15
Other ingredients which may be included are exfoliants such as polyoxyethylene beads, walnut shells and apricot seeds.
In a specific embodiment the invention relates to fatty acid 20 soap/fatty acid based bars comprising:
(1) 20 % to 75 % by wt. fatty acid/fatty acid soap;
(2) 0 to 20 % synthetic active;
(3) balance water and fillers (as defined);
25 wherein percent active of soluble active of (1) and (2) and (3) of if any) is less than about 35 % by wt. total bar; and
where PEF > 2.2 relative, preferred >2.3, more preferably >2.5 to a standard control bar.
30

WO 2005/068601

PCT/EP2004/O14468

- 16 -
In a further embodiment, the invention relates to a process of enhancing perfume performance (e.g. deposited/longevity) from a bar comprising:
(1) surfactant active; 5 (2) perfume;
(3) water; and
(4) filler
wherein said process comprises decreasing the level of soluble surfactant active relative to insoluble surfactant
10 active and/or filler. Specifically, the bar should have
level of soluble active less than 35 %, preferably less than 30 %, of final bar composition and PEF ^2.2 relative to a standard control.
15 In a further embodiment of the invention, the invention relates to an process of enhancing perfume deposition/ longevity from a bar comprising:
(1) surfactant active;
(2) perfume;
20 (3) water; and
(4) filler wherein said process comprises increasing level of perfume.
EXAMPLES
25
Except in the operating and comparative examples, or where otherwise explicitly indicated, all numbers in this description indicating amounts or ratios of materials or conditions or reaction, physical properties of materials
30 and/or use are to be understood as modified by the word "about".

WO 2005/068601

PCT/EP2004/014468

- 17 -
Where used in the specification, the term "comprising" is intended to include the presence of stated features, integers, steps, components, but not to preclude the presence or addition of one or more features, integers,
5 steps, components or groups thereof.
The following examples are intended to further illustrate the invention and are not intended to limit the invention in any way.
10
Unless indicated otherwise, all percentages are intended to be percentages by weight. Further, all ranges are to be understood to encompass both the ends of the ranges plus all numbers subsumed within the ranges.
15
EXAMPLE 1
To better understand how bar compositions can affect longevity of perfume, studies were conducted on the overall
20 effects of soluble and insoluble surfactant on fragrance
properties using a standard 85/15 soap bar (85 % tallow and 15 % coconut oil). In considering fatty acid soap ratios in an 85/15 soap bar, it is easy to predict how much soap will be solubilized upon dilution or in use. Since 50-60 % of
25 the bar is sodium oleate and sodium laurate (soluble soaps), it can be assumed at least this amount will solubilize with enough water.
Studies were performed to determine how much perfume
30 partitioned into the soluble and the insoluble portions of the diluted soap systems. With these learnings, two model

WO 2005/068601

PCT/EP2004/014468

- 18 -
"mortar" systems and three model soap systems were then investigated to determine the effects of soluble and insoluble surfactant in a bar on actual perfume performance.
5 To understand where the perfume partitioned during soap bar use, a 5 % dilution of fragrance 85/15 soap was made, filtered and solid rinsed. The three samples (solid, filtrate, rinse) were extracted (using a Scxtherm extractor) to see the amount of perfume in each phase. Extraction of
10 filtered 85/15 soap showed that about 74 % of the perfume was in the filtrate which contains about 45 % of the soap (soluble portion). Thus, upon dilution, the soluble soap to perfume ratio is actually 50 to 55:1 as could be predicted by the fatty acid distribution in a typical 85/15
15 (tallow/coconut oil) soap. This is seen from Figure 1.
This thus clearly showed partitioning of perfume into the soluble fraction.
EXAMPLE 2
20
Using the perfume partitioning information of Example 1 (e.g., most perfume went with soluble surfactant and therefore was not available for the enhanced perfume effect), the applicants established a set of model studies
25 with a range of soluble soap systems having different
soap : perfume ratios. Specifically, a soluble soap model with 1:1 ratio sodium laurate and sodium oleate was used with soap :perfume ratio 20:1 to 60:1 and compared to 85/15 soap bar containing 1 % perfume (1:1 benzyl acetate :limonene
30 mixture) . Five soap dilutions were made for each sample, 40 %, 25 %, 10 %, 5 % and 1 %. Figure 2 shows the equilibrium

WO 2005/068601

PCT/EP2004/014468

- 19 -
headspace measurements for each sample at every dilution point (graphed as mg perfume in sample instead of percent dilution).
5 As can be seen, as the surfactant :perfume ratio increase (a function of more soluble soap components) for each of these perfume components, perfume impact or GC (gas chromatography) area count decreases and that, at a soap :perfume ratio of 60:1, perfume impact approaches that of a 85/15 bar.
10
Without wishing to be bound by theory, it is believed that, since limonene is so volatile, it reaches perfume saturation at low perfume levels and thus, even in 5 % soap samples, perfume headspace plateaus. Benzyl acetate is less volatile
15 so, in most samples, headspace saturation has not yet been
achieved. Even under these conditions, it is clear for both molecules that the amount of soluble surfactant greatly impacts perfume performance and that a soap .-perfume ratio of 60:1 more clearly represents results from a bar than any
20 other total sample.
EXAMPLE 3
The experiments of Example 2 were repeated with a 2:1 sodium 25 oleate :sodium laurate system. The 2:1 base system showed similar trends in perfume performance, again indicating that increasing the surfactant-.perfume ratio results in decreasing perfume impact of a benzyl acetate .-limonene mixture (1:1)(Figure 3).
30

WO 2005/068601

PCT/EP2004/014468

- 20 -EXAMPLE 4
A mathematical model for similar dilution profiles as shown Figures 4 was used to calculate the theoretical perfume
5 performance based on the perfume type and the
Perfume :surfactant ratio. Dilution curves were calculated for sodium dodecylsulfate (SDS)/benzyl acetate and SDS/limonene. These curves correlate very well with the experimental values obtained. The calculated data is
10 depicted as solid lines in the figures, while the symbols
represent actual data points (Figure 4). This validates the assumption that the actual surfactant :perfume ratio achieved during use with an 85/15 bar is -50-60:1, and this is most likely driving the perfume performance.
15
EXAMPLE 5 - Effect of Soluble/Insoluble Soap on Perfume Performance in Bars
The GC analysis of model soap systems and theoretical
20 predictions indicate that the amount of soluble soap in a bar directly correlates to the perfume performance. That is, the higher the soluble soap content in a bar, the lower the fragrance impact and hence deposition.
25 To test this theory in real soap bars, several simplified soap systems were identified that contained varying levels of soluble/insoluble soap. The simplest approach toward preparing these bars was to add insoluble long chain soaps (sodium stearate) to the 2:1 sodium oleate :sodium laurate
30 model mortar. Three model bar systems were chosen and
compared directly to a standard 85:15 soap. The first model

WO 2005/068601

PCTYEP2004/014468

- 21 -
bar was a "low solids" sample composed of 20 % sodium stearate and 80 % 2:1 sodium oleate/sodium laurate and the second was a "high solids" sample composed of 80 % sodium stearate and 20% 2:1 sodium oleate/ sodium laurate. In
5 addition to these systems, an 85/15 model system composed of 47.5 % sodium ASAD (mixture of sodium stearate and sodium palmatate)/14.9 % sodium cocoate/37.6 % sodium oleate was prepared.
10 The addition of the 85/15 model system was to determine if small changes in the composition of soap with similar I.V. values (iodine values - relate to level of unsaturation) would effect perfume performance. The two perfumes tested in these bases were 1:1 benzyl acetate :limonene mix and a
15 standard perfume mixture, both dosed at 1 wt.%.
After preparation of these soap bar systems, equilibrium GC headspace measurements were conducted on the solid samples at different bar dilutions (40 %, 25 %, 10 %, 5 %, and 1 %).
20 As predicted, decreasing the level of soluble soap ("high solids" bar) directly enhances the perfume impact in the soap base. The GC results show that the 85/15, the 85/15 model system and the "low solids" bars all have similar perfume headspace profiles, while the "high solids" bar with
25 only 20 % soluble soap has significantly higher fragrance headspace (Figure 5).
EXAMPLE 6 - Decreasing Ratio by Adding Perfume
30 Another way to decrease the soluble soap :perfume ratio is to add more perfume to the bar. If the goal is to get

WO 2005/068601

PCT/EP2004/014468

- 22 -
comparable perfume performance in a soap bar to that in a shower liquid, matching the soluble surfactant :perfume ratio is important. Typical shower liquids are formulated with 15-20 % surfactant and 1 % perfume, so the soluble
5 soap :perfume ratio is -20:1.
To mimic this in a standard 85:15 soap bar in which the soluble soap: perfume ratio is -65:1, 4 % perfume would have to be formulated in the bar (i.e. soluble soap :perfume ratio
10 of -65:4). A standard 85:15 soap bar with 4 % perfume was prepared to test the theory. As expected, decreasing the ratio of surfactant: perfume from 85:1 to 20:1 significantly increases the perfume headspace over the product compared to an 85:15 soap bar with 1 % perfume (Figure 10).
15
EXAMPLE 7 - Solid Phase Micro extraction Results
Perfume performance over washed skin is the ultimate test to
determine if the experimental differences measured as impact
20 from diluted products can predict actually fragrance
deposition in an in-use situation. Solid phase
micro extraction (SPME) is used to collect perfume over skin
after it is washed with a product and the SPME needle is
then injected in the GC for analysis.
25
This SPME experiment was performed with the "high solids"
bar (-20:1 soluble soap .-perfume ratio) versus an 85/15
control (-65:1 soluble soap .-perfume ratio) both with 1 %
perfume (Figure 6). The surfactant :perfume ratio is 20:1 in
30 the "high solids" bar, achieved by lowering the amount of
soluble surfactant in the actual bar. Again, as expected,

WO 2005/068601

PCT/EP2004/014468

- 23 -
the analysis results indicate that lowering the amount of soluble surfactant in a bar significantly increases perfume deposition.
5 Another way to decrease the soluble soap .-perfume ratio is to add more perfume to the bar. If the goal is to get comparable perfume performance in a soap bar to that in a shower liquid, matching the soluble surfactant :perfume ratio is important. To mimic a low active bar with only 20 % 10 soluble active and 1 % perfume, a standard 85:15 soap bar in which the soluble soap: perfume ratio is -65:1 would have to be formulated with 4 % perfume in the bar (i.e. soluble soap :perfume ratio of -65:4).
15 A standard 85:15 soap bar with 4 % perfume was prepared to test the theory, and a similar SPME deposition experiment was conducted on arms washed with 0.5g of an 85/15 soap bar containing 1 % perfume and 0.12 g of an 85/15 bar with 4.25 % perfume (Figure 7) . Therefore in both experiments, an
20 equal amount of perfume was dosed to the skin, with the only difference between the samples being the surfactant :perfume ratio. The results of this SPME analysis suggests that when formulated perfume amount was increased so that soluble surfactant .-perfume ratio is -20:1 in a soap bar, . the amount
25 of perfume deposited on the skin increases significantly, although the results are not as great as lowering over soluble active content in the bar.
While increasing the perfume amount in a typical 85/15 soap 30 bars provides greater deposition, it. does so at a
prohibitive cost, and a standard soap bar with 4 % perfume

WO 2005/068601

PCT/EP2004/014468

- 24 -
smells very strong (too strong for consumer liking). A more effective use of the 1 % perfume typically added to a soap bar would be the preferred technology option, and formulating soap bars with lower soluble active content
5 achieves this goal.
EXAMPLE 8
One example of a bar cleansing composition with a low amount
10 of soluble surfactant includes predominantly soap/fatty acid compositions which can be made by reacting components having a low mol% of unsaturated fatty acid (0-12.5 mol%) (unsaturates are generally quite soluble); 50 to 87.5 mol% fatty acid of chain length C16 or greater; and 12.5 to 50
15 mol% caustic (50 % resulting in full neutralization) to form a bar precursor which can then be blended with up to 25 % synthetic. Such a final bar has high amounts of soap/fatty acid, yet processes will and lathers unexpectedly well.
20 Such bars are described in co-pending application entitled
wFatty Acid Soap/Fatty Acid Bars Which Process And Have Good Lather" to Kerschner et al., filed on the same date as the subject application, and which is hereby incorporated by reference into the subject application.
25
One example of such compositions (which can be prepared by neutralizing fatty acid with caustic, as noted, or by simply blending pre-formed soap with fatty acid) is as follows:

WO 2005/068601

PCT/EP2004/014468

- 25 -

Molar Ratio of Soap/Fatty Acid

C16/C18 C 18:1 NaOH
75 0 25

Nominal Composition Weight %

Soap 46
Fatty Acid 25
Anionic (Fatty Alcohol Ether Sulfate) 7.5
Sodium Cocoyl Isethionate 7.5
Water 9
Sodium LAS 5
EXAMPLE 9
5 Many different personal cleansing bars were prepared, and fragrance deposition was measured by collecting the fragrance above washed arms immediately after the wash using SPME, and then analyzing the absorbed fiber with GC.
10
If the deposition of fragrance from a standard 85/15 soap bar is set at 1.0, a perfume enhancement factor (PEF) can be calculated for each product by determining the ratio of perfume deposited from different personal cleansing bars
15 compared to the standard control. Typically a consumer perceivable difference in fragrance deposition is noted if the PEP is ^2.2-2.5. The following table lists the perfume enhancement factors for different personal cleansing

WO 2005/068601

PCT/EP2004/014468

- 26 -
formulations as averaged from several washes on different people with respect to the total soluble active content in the product. As the amount of soluble surfactant is reduced to
5 2.2).

Product # % Soluble Active PEF(ave.)
1 50 1
2 45 1.06
3 40 2.1
4 40 1.8
5 30 2.75
6 30 3.2
7 23 3.9
8 22 5.1
9 20 3.8
10 20 4.2
11 20 4.7
12 20 6.0
13 18 2.5
14 18 3.3
15 15 3.5
The formulation ingredients for products 1-14 are summarized 10 as follows:
Product 1 (85/15 soap formulation) contains 84.75 % 85 (Tallow)/15 (Coconut) Soap, 14.25 % Water and 1 % Perfume;

WO 2005/068601

PCT/EP2004/014468

- 27 -
Product 2 contains 80 % 85 (Tallow)/15 (Coconut) Soap, 8.57 % Sorbitol, 4 % Glycerine, 1 % perfume, 1.5 % triethanolamine, 1.5 % propylene glycol, 2.87 % water, 0.56 % sodium chloride;
5
Product 3 contains 65.50 % 85 (Tallow)/15 (Coconut) Soap, 20 % Sodium Stearate, 13.5 % Water and 1 % Perfume;
Product 4 contains 65.5 % 85 (Tallow)/15 (Coconut) Soap, 20 10 % saponified hardened tallow, 13.5 % Water and 1 % Perfume;
Product 5 contains 45.5 % 85 (Tallow)/15 (Coconut) Soap, 40 % Sodium Stearate, 13.5 % Water and 1 % perfume;
15 Product 6 contains 45.5 % 85 (Tallow)/15 (Coconut) Soap, 40 % saponified hardened tallow, 13.5 % water and 1 % perfume;
Product 7 contains 51.9 % Sodium stearate/palmate mixture, 10 % Dove noodles, 7.24 % Water, 7 % disodium lauryl
20 sulfosuccinate, 7 % sodium laureth sulfate; 5 % glycerin, 4 % cocamidopropyl betaine, 3.11 % fatty acid, 3 % PEG 1450, 1.75 % perfume;
Product 8 contains 33.65 % stearic/palmitic acid mix, 18.28
25 % sodium soap, 10.57 % sodium citrate, 10 % fatty acid ester sulfonate (Alpha-Step PC-48), 10 % sodium cocoylisettiionate, 9 % water, 5 % glycerin, 2 % sodium dodecylbenzene sulfonate, 1 % perfume and 0.5 % titanium dioxide;

WO 2005/068601

PCT7EP2004/014468

- 28 -
Product 9 contains 45.4 % Stearic/Palmitic acid mixture, 24.53 % Sodium stearate/palmatate mixture, 20 % Sodium cocoyl glycinate, 9.07 % water and 1 % perfume;
5 Product 10 contains 42.8 % stearic/palmitic acid mixture, 23.16 % sodium stearate/palmatate mixture, 20 % primary-alcohol sulfate sodium salt (Sasolfin 23S), 7.54 % water, 5 % glycerin, 1 % fragrance and 0.5 % titanium dioxide;
10 Product 11 contains 60 % saponified hardened tallow, 25.5 % 85 (Tallow)/15 (Coconut) Soap, 13.5 % water and 1 % perfume;
Product 12 contains 60 % sodium stearate, 25.5 % 85 (Tallow)/15 (Coconut) Soap, 13.5 % water and 1 % perfume;
15
Product 13 contains 55 % Sucrose, 5 % Polyvinylpyrolidone 40K, 15 % Sodium laurate, 2 % Sodium dodecylsulfate, 1.75 % Perfume, 0.5 % Ti02, 0.2 % EDTA, 0.5 % EHDP and 20.05 % Water;
20
Product 14 contains 40 % Sucrose, 20 % Maltodextran 250, 15 % Sodium laurate, 2 % Sodium dodecylsulfate, 1.75 % Perfume,
0.5 % Ti02, 0.2 % EDTA, 0.5 % EHDP and 20.05 % Water;
25 Product 15 contains 42.6 % stearic/palmitic acid mixture, 23 % sodium stearate/palmatate mixture, 15 % primary alcohol sulfate sodium salt (Sasolfin 23S), 8 % talc, 5 % glycerin, 5.4 % water and 1 % perfume.

WO 2005/068601

PCT/EP2004/014468

- 29 -
EXAMPLE 10 - Sensory Panel Results
To determine whether the increase in measured fragrance
5 release from skin is actually perceivable by humans, a
trained sensory panel was used to evaluate and measure the fragrance intensity over arms washed with these products. In this study, the two products compared were Product 1 (85/15 soap control) and Product
10 (a low active bar) from 10 Example 9. This study would provide information on whether a PEF of >2.5 is perceivable by the human nose.
In this study all "washes" were washed with both products so a direct comparison of the products could be assessed
15 without having to take into account the differences in
fragrance properties in the individual people (different deposition, different fragrance smell and different background odors) . This will allow a comparison of the product performance regardless of the characteristics of the
20 individual being washed. The results are shown in Table 2, and the sensory responses were recorded as an average of the magnitude estimation score recorded by the panelists for all three washes at the different time points.

WO 2005/068601

PCT/EP2004/014468

- 30 -
Table 2: Fragrance Intensity Sensory Scores for Product 1 and Product 10

Time After Wash Average Sensory Score
Product 1 (-50% soluble surfactant) 5 minutes 28.5
60 minutes 12.2
Product 10 (-20% soluble surfactant) 5 minutes 51.5*
60 minutes 26.5*
5 *different at the 95% confidence level
The results in Table 2 represent the average scores for the panel for all six washed arms, 5 minutes and 60 minutes after the wash. Each person was washed with both products,
10 one product on one arm and the other product on the second
arm (washed arms were randomized). As is quite evident from the results, the fragrance impact from skin washed with Product 10 was perceived greater than that washed with Product 1 and these differences valid to a 95 % confidence
15 level. The sensory panel results correspond well with the analytical measurements and similar results were noted with the other products that provided a measurable PEF of greater than 2.5.

WO 2005/068601

PCT/EP2004/014468

- 31
CLAIMS
1. A bar composition comprising:
(a) 0.5 % to 35 % soluble surfactant active or actives; 5 (b) perfume;
(c) 0.5 % to 20 % by wt. water;
(d) 0.1 % to 99 % by wt. filler,
wherein solubility is defined by dissolution of surfactant active or active combination of greater than about 1 % by 10 wt. in water at 40°C;
wherein the bar has performance enhancement factor j> 2 .2 PEF based on ratio of perfume deposited from the bar relative to that deposited from a standard control.
15 2. A bar composition according to claim 1 having no more than 3 0 % by wt. soluble surfactant active.
3. A bar composition according to claim 1 or claim 2,
wherein the surfactant active is selected from anionic,
20 nonionic, amphoteric/zwitterionic/cationic surfactants and mixtures thereof.
4. A bar composition according to any one of the preceding
claims, wherein filler is everything other than
25 surfactant, water or perfume.
5. A bar composition according to claim 4, wherein filler
comprises polyethylene glycol, starch, maltodextrin,
polysaccharides or mixtures thereof.
30

WO 2005/068601

PCT/EP2004/014468

- 32 -
6. A bar composition according to claim 4, wherein the
filler is a mixture of long chain saturated fatty acids and long chain saturated fatty acid soaps.
5 7. A bar composition according to claim 6, comprising 0 -
12.5 mol% unsaturated fatty acid and less than 5% by wt.
C14 or lower chain length in final soap/fatty acid
mixture.
10 8. A bar composition according to any one of the preceding claims, wherein the bar has PEF ?>2 .3.
9. A bar composition according to any one of the preceding
claims, wherein the bar has PEF ^2.5.
15
10. A process for enhancing performance of perfume from bar
comprising (a) surfactant, (b) perfume (c) water and (d)
filler, which process comprises decreasing the level of
soluble surfactant relative to insoluble surfactant
20 active and/or filler.
11. A process according to claim 10, wherein the resulting
bar has a level of soluble active less than 35 % by wt.
and final bar composition has perfume enhancing factor :
25 2.2.
12. A process according to claim 10 or claim 11 wherein
perfume performance is defined by enhanced deposition
and/or longevity.
30

WO 2005/068601

PCT/EP2004/014468

- 33
13. A process for enhancing performance of perfume from bar which comprises increasing level of perfume relative to soluble active content.
Dated this 30th day of June 2006
HWOUSTAN LEVER LIMITED
(S. Venkatramani) Senior Patents Manager

Documents:

764-mumnp-2006 claims (granted) -(7-11-2007).doc

764-mumnp-2006 form 2 (granted) -(7-11-2007).doc

764-mumnp-2006-cancelled pages(7-11-2007).pdf

764-mumnp-2006-claims(granted)-(7-11-2007).pdf

764-mumnp-2006-claims.doc

764-mumnp-2006-claims.pdf

764-mumnp-2006-correspondance-received.pdf

764-mumnp-2006-correspondence 1(27-10-2006).pdf

764-mumnp-2006-correspondence 2(7-11-2007).pdf

764-MUMNP-2006-CORRESPONDENCE(8-2-2012).pdf

764-mumnp-2006-correspondence(ipo)-(30-5-2008).pdf

764-mumnp-2006-description (complete).pdf

764-mumnp-2006-drawings(7-11-2007).pdf

764-mumnp-2006-drawings.pdf

764-mumnp-2006-form 1(30-6-2006).pdf

764-mumnp-2006-form 13(4-10-2007).pdf

764-mumnp-2006-form 18(27-10-2006).pdf

764-mumnp-2006-form 2(granted)-(7-11-2007).pdf

764-mumnp-2006-form 3(30-6-2006).pdf

764-mumnp-2006-form 5(30-6-2006).pdf

764-mumnp-2006-form-1.pdf

764-mumnp-2006-form-2.doc

764-mumnp-2006-form-2.pdf

764-mumnp-2006-form-3.pdf

764-mumnp-2006-form-5.pdf

764-mumnp-2006-form-pct-ipea-409.pdf

764-mumnp-2006-form-pct-ipea-416.pdf

764-mumnp-2006-form-pct-isa-210(7-11-2007).pdf

764-mumnp-2006-pct-search report.pdf

764-mumnp-2006-power of attorney(11-11-2005).pdf

abstract1.jpg


Patent Number 220633
Indian Patent Application Number 764/MUMNP/2006
PG Journal Number 43/2008
Publication Date 24-Oct-2008
Grant Date 30-May-2008
Date of Filing 30-Jun-2006
Name of Patentee HINDUSTAN UNILEVER LIMITED
Applicant Address HINDUSTAN LEVER HOUSE, 165/166, BACKBAY RECLAMATION, MUMBAI 400 020
Inventors:
# Inventor's Name Inventor's Address
1 KERSCHNER JUDITH LYNNE 22 RAVINE DRIVE W., HAWTHORNE, NEW JERSEY 07506,
2 SHAFER Georgia Lynn Unilever Home & Personal Care USA,40 Merritt Boulevard,Trumbull,Connecticut 06611
3 NUNN Charles Craig 185 Orient Way,Rutherford,New Jersey 07070,
4 FARRELL Terence James Unilever Home & Personal Care USA,40 Merritt Boulevard,Trumbull,Connecticut 06611,
PCT International Classification Number C11D17/00
PCT International Application Number PCT/EP2004/014468
PCT International Filing date 2004-12-16
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 10/756617 2004-01-13 U.S.A.