Title of Invention


Abstract A wheelchair which shifts between forward and reverse by virtue of a roller mechanism which grabs in one direction and slips an opposite direction, thereby preventing binding. The shift mechanism is initiated by rotation of a shift paddle which is located on a extremity of a lever arm remote from the roller mechanism.
Full Text Title
Wheelchair Drive Mechanism
Technical Field
The following invention relates generally to instrumentalities for driving land vehicles. More particularly, the instant invention is directed to an occupant propelled wheelchair.
Background Art
Occupant propelled wheelchairs typically require that the occupant of the chair grasp a portion of a rim adjacent a wheel thereof and propel the wheelchair by moving one's hand through an arc of a circle immediately adjacent the wheel of the chair.
Some wheelchair occupants, however, cannot easily perform this movement due to limitations in their own range of motion and typically, therefore must resort to propelling a wheelchair by other means, such as via battery power.
Certain earlier patents held by the present Patentee, having recognized this deficiency, teach alternative mechanisms to accommodate a wheelchair occupant to self-propel the wheelchair using a different range of motion. The following patents reflect Patentee's prior activities:
5,263,729 November 23,1993 Watwood et al.
6,007,082 December 28,1999 Watwood et al.
Disclosure Of Invention
The present invention chronicles Patentee's ongoing efforts to provide an improved operating mechanism to allow a wheelchair occupant to enjoy improved wheelchair transportation.
The present invention particularly addresses gear loading in the drive transmission, which heretofore prevented facile shifting in certain circumstances, particularly when the wheelchair was located adjacent an abutment or was poised on an incline.
The instant invention features a system which is substantially impervious to the kind of gear loading that normally resides in such instances such that the direction of

car engagement between forward and reverse can proceed substantially unencumbered irrespective of the terrain associated with the wheelchair.
An instrumentality is provided which is operatively intercoupled with the forward and reverse gear sets to promulgate shifting there between by virtue of a plurality of cylindrical rollers each of which provide the driving link between trains of gears. The plurality of rollers are biased in either of two directions against spring pressure which dictate the drive direction. These plurality of rollers collectively distribute the load over relatively small arcs of the roller surface. As a consequence, very little work is required to shift the plurality of rollers from a first orientation to a second orientation merely against the spring pressure which thus reverses the direction. A third medial orientation of the rollers is possible which defines a neutral position.
Statement of Invention
The present invention relates to a wheelchair (150) drive mechanism comprising in combination: a lever arm(33) having a hand grip end(47) and a drive end, a wheel(l 10), a gear train and characterized in that a transmission interposed between said lever arm(33) and said wheel, said transmission including spring means(14) to bias said transmission into either a forward direction or a reverse direction, said biasing means attached at said lever arm hand grip end, and wherein said biasing means includes a shift paddle(41) projecting radially from said hand grip end, said paddle operatively coupled to a cable(49) having an end terminating in said transmission.
Industrial Applicability
The industrial applicability of this invention shall be demonstrated through discussion of the following objects of the invention.
Accordingly, an object of the present invention to provide a new and novel drive system for a land vehicle such as a wheelchair.
A further object of the present invention is to provide a wheelchair as characterized above which is safe to use, easy to operate and the structure lends itself to mass-production techniques.
A further object of the present invention is to provide a device as characterized above which minimizes gear train loading when the wheelchair is on an incline or against an abutment.
A further object of the present invention is to provide a device as characterized above which can be readily retrofitted onto existing wheelchairs or can be the subject of new manufacture.
A further object of the present invention is to provide a device as characterized above which is extremely durable in construction and reliable in use.
Viewed from a first vantage point, it is an object of the present invention to provide a wheelchair drive mechanism, comprising, in combination: a lever arm having a hand grip end and a drive end, a wheel, a transmission interposed between the lever arm and the wheel including means to bias the transmission into either a

forward direction or a reverse direction, the biasing means attached at the lever arm hand grip end.
These and other objects will be made manifest when considering the following detailed specification when taken in conjunction with the appended drawing figures.
Brief Description Of The Drawings
Figure 1 is an exploded parts perspective of the drive train according to the present invention.
Figures 2A -2C are details of the roller mechanism which allows shifting to occur easily.
Figure 3 is a perspective view of a spring element associated with the Figure 2 drawing.
Figure 4 is a perspective view of the assembly to be incorporated within a wheel.
Figure 5 shows a magnified view of one portion of Figure 4.
Figure 6 is a perspective of the wheelchair with the device integral therewith.
Figure 7 is a perspective of the shift cage.
Figure 8a is a front view of one post on the shift cage.
Figure 8b is a front view of the shift cage.
Figure 9 is a rear perspective view of the wheelchair.
Figure 9a is a perspective view taken from Figure 9.
Figures 10A - IOC are an alternative to Figure 2.
Figure 11 is a perspective further detailing the invention.
Figure 12 is a top view of Figure 11.
Figure 13 elaborates a variation of Figures 10A - IOC.
Best Mode(s) For Carrying Out The Invention
Referring to the drawings, wherein like reference numerals denote like parts, reference numeral 100 is directed to the wheelchair transmission mechanism according to the present invention.
In its essence, a lever arm 33 is operatively coupled to each wheel 110 of a wheelchair 150 (Fig. 6) through a transmission mechanism 100 so that arcuate motion of the lever arm 33 along arrow "A" causes corresponding movement of the wheelchair wheel 110 to propel the wheelchair 150. In addition, a shift paddle 41 (Fig. 1) is operatively coupled to a set of gears 4, 10,11, and 23 through a shift cage 2 having a

plurality of rollers 3 supported therein by means of a plurality of springs 5 to exert pressure on the rollers and to cause forward or rearward engagement.
More particularly, the lever arm 33 includes an upper end, a lower end and a medial portion. The lower end is substantially disc shaped and connects to a lever base 32 by a means of a plurality of screws 36. The medial portion of the lever arm 33 is formed as an elongate somewhat cylindrical stock member having sufficient thickness to retard flexure while the upper end is a clamp 35 formed from two halves, one half 35a integral with the medial portion, and another half 35b adapted to be fastened to the integral half by means of a pair of screws 36. The handle clamp 35 supports a handle grip 47 by means of a lower handle ball 46 frictionally held in the upper portion of lever arm 33 by the handle clamp 35. The handle ball 46 can allow a multipEcity of orientations of the handle grip 47 by articulation of the ball 46 within a complementarily formed socket located within the halves of the handle clamp 35 and held into place by means of the screws 36.
A shift retainer 38 projects up from the handle grip 47 and has a shaft portion which receives in the order shown, a wedge 40 lying between a retaining cap 39 and a shift spring 42 which underlies the shift paddle 41. Next follows a lock shim 44, then a shift paddle retainer 45 concluded by a shift cap 48. A shift cable 49 is centrally located within the shift retainer 38 and has a free end projecting upwardly operatively coupled to the shift paddle 41 and will be explored further. The remainder of cable 49 extends through grip 47, ball 46 and arm 33, exiting into the transmission 100, connected to bevel gear 17.
The lever base 32 appears as a generally cylindrical band of material on its exterior. It has a closed end wall 32a adjacent the disc shaped lever arm 33 lower end to allow attachment of the lever arm lower end thereto and includes a hollow interior. In addition, the lever base 32 supports at its hollow interior thereof at approximately 2 o'clock and 10 o'clock, a pair of brake pads 34 whose operation will be discussed shortly. Interposed between the brake pads and located at 12 o'clock, is a first slit 32b. At a bottommost portion of the lever base 32, (i.e. at 6 o'clock) is a second slit 32c. Collectively these two slits support a drive link 1 and, as shown in the drawings, the drive link 1 has a bore lc which is pinned via clevis pin 37 at a lower-most extremity thereof to the six o'clock slit 32c via apertures 32d shown in the drawing. The drive link 1 is centrally supported on an axle 8. Interposed between the drive link 1 and the lever base 32 is a lever stop 9 which is constrained on the axle 8. More particularly, a free end

of the axle 8 has a plurality of threads thereon and a central portion of the lever stop 9 has an aperture 9a which passes thereover. A spanner nut 15 securely locates the lever stop 9 adjacent the threaded end of the axle 8. The axle 8 permits motion of lever stop 9 as to be described. A pair of bearings 7 appear on the axle 8 on both sides of the drive link 1. With the mechanism as thus described, the drive link 1 is free to move in conjunction with the lever arm 33 by virtue of its free ends being disposed within the slits 32b, c described on the lever base 32. The degree to which the drive link 1 can move may be determined by the relationship of the lever stop 9 to the drive link 1 on the axle 8. For example, when the drive link 1 co-acts with the lever stop 9, the arcuate motion of the lever arm 33 may stop. Figure 5 shows that the drive link 1 has a central hub la provided with a raised boss lb followed by a notch lc adjacent to upper drive link Id. Lever stop 9 includes a detent 19 having a detent ball 19b biased by spring and grub screw 19a. Ball 19b rests in notch lc to provide a stop for drive link 1. The purpose of the lever stop 9 and detent 19 is to allow manual use of wheel 110 without the lever arm 33 interfering with grasping the wheel 110. This occurs when the transmission is in neutral.
The central hub la of the drive link 1 also serves as a supporting area to receive a gear retainer 18 thereon. The gear retainer 18 supports a bevel gear 17 such that a portion of the bevel gear is exposed. This bevel gear 17 is dimensioned to mesh with a disc shaped shift cage 2 in which a peripheral portion of the shift cage is also provided with teeth 2a that mesh with the bevel gear 17. An end of the cable 49 remote from the hand grip 47 terminates on an end of the bevel gear 17 whereby rotation of the cable 49 causes corresponding rotation of the bevel gear 17. By virtue of the meshing connection between the bevel gear 17 and the gear teeth 2a on the shift cage 2, the shift cage 2 can be moved in an arc of a circle. Note the shift cage 2 has a central hollow. Note also the teeth 2a preferably do not circumscribe the entire disc portion 2b of shift cage 2.
The shift cage 2 (Figs. 2, 3, 5, 7 and 8) also includes a plurality of spring support posts 2c projecting from one side of the disc 2b remote from the drive link 1. Each of the posts 2c is spaced one from the other by a slightly larger diameter than a plurality of interposed cylindrical roller pin bearings 3 therebetween. Each roller 3 is a substantially cylindrical construct and serves as a bearing disposed between two posts 2c. Each post 2c also supports a spring 5 such as the one shown in figure 3. The spring 5 is dimensioned such that one spring 5 can ride over each post 2c in secure

engagement. Each post 2c is substantially a hybrid inverted T-shape hourglass (e.g., Fig. 2a) and the spring 5 has a somewhat complemental contour to the inverted T part 2c which lies on shift cage 2 closest to the central hollow. That is spring base 5d underlies 2d of post 2c and webs 5b gird sides 2e of the "T". In addition, each spring 5 includes a pair of outwardly flared walls 5a having a compound contour that terminates in four bearing surfaces 5c such that two springs 5 contact and co-act against the annular surface of each roller 3 between two posts 2c. Thus, each roller 3 is contacted by two different springs 5. Also each spring contacts two rollers 3. The roller pins 3 are held in position on the shift cage 2 by means of a shim 6 (Fig. 1) located on a side of the post 2 opposite the drive link 1.
In addition to the shim 6 retaining the rollers 3 in position, a large annular gear 4 overlies the shift cage 2 and receives rotary motion as a function of the orientation of the rollers in the cage 2 as it is biased by the springs 5 and influenced in turn by the orientation of the bevel gear 17 and the corresponding gear 2a on the shift cage 2. That is to say, in one direction (Figure 2a) the gear 4 engages forward, while in the opposite direction (Figure 2c) it engages reverse, depending upon the proximity of the roller 3 with respect to cam disc 50 located on drive link 1. Cam disc 50 passes through the central hollow of shift cage 2 and cam points 52 contact roller 3. When the points 52 contact with roller 3, the point location (Fig. 2A, 2C) determines the direction of drive. When the roller is shown in the neutral position of figure 2B, it is biased for traction in neither direction and defines neutral which allows manual rotation of wheels 110 as is conventional.
Another variation to the cam points 52 of Figure 2 is shown in Figures 10A - 10C. Only the salient divergence will be delineated here. Whereas in Figure 2 one roller 3 transitions between two cam points 52, in Figures 10A - 10C it is seen that two rollers 3 are relegated, one to each of a pairs of cam points 52, one roller per cam point.
Further, the cam point pairs 52 are both located with an intervening cam pocket 52a (Fig. 13) disposed there between which pocket 52a captures the two rollers 3 as well as the spring 5 and post 2. Spring 5 and post 2 separate the two rollers 3. As shown in Figure 10a, when going "forward" only the "right" viewed roller is working; in "reverse", only the left viewed roller (Fig. 10c) is working. Figure 10b shows neutral when neither roller works.
Adjacent pockets 52a are spaced one from the other by abutments 2d formed on cage 2. The shift case posts 2C are inverted in Figures 10A-C (compared to Figure 8A)

as are the springs 5. Spacers 50a separate adjacent rollers in differing pockets and can be integral with annular disc 50 or separate. Notice also that compared to figure 2, the cam points 52 are located on gear 4 in Figure 10A - 10C, not on cam disc 50 which is pictured as annular in Figure 10A - 10C where it is in contact with rollers 3. Detailed examples of how these machine elements (e.g. roller and cam) can operate may be found in conventional clutches. See U.S. Patents 3,476,226 and 6,044,944.
Figure 13 shows a further variation over Figure 2. Notice a single roller 3 is disposed in a pocket 52a and the cam points 52 are located on the outer coupling to gear 4.
In all cases, rotation of bevel gear 17 coacts with teeth 2a to change the roller orientation between forward, reverse and neutral. The bevel gear 17 is rotated by paddle 41 through cable 49.
As the drive link 1 rotates, it co-acts with the lever stop 9 as described. A free end 9c of the lever stop 9 may support two gears 10, 11 on a bolt 12 and pinned together with spring pins 14 allowing both gears 10, 11 to move together in an arc. Gear 10 is oriented to mesh with gear 4. Gear 11 is oriented to mesh with a final output gear 23 which is axially aligned with the gear 4 but spaced therefrom by a bearing 7. Gears 4, 23 overlie axle 8. This configuration allows gear changes by substituting different combinations of gears having different gear ratios and supports installation of different sets of gears to correlate with operator strength. This also provides the incremental periodic driving contact that occurs during the motion of the lever arm 33 in only one arc of travel.
The final output gear 23 is operatively coupled to a spoked wheel 24 via spring pins 14. Spoked wheel 24 has a plurality of spokes emanating radially outward therefrom. These spokes are preferably rod like. The exterior periphery of the spoked wheel 24 nests within an inner rim 25 that is operatively coupled to the wheel 110 on the wheelchair 150 via wire spokes thinner than rod like spokes on wheel 24. Thus, rotation of the gear 23 induces rotation of the spoked wheel 24 and thence to the inner rim 25. Bolts 27 fix wheel 24 to a hub 22 which overlies axle sleeve 16 which, in turn, connects to axle 8 on an end thereof opposite spanner nut 15.
The inner rim 25 has a brake disc 26 disposed on a face thereof adjacent the brake pads 34. As can be seen, contact of the brake pads 34 against the brake disc 26 will discourage wheel rotation. The brake pads 34 move toward disc 26 by movement

of lever arm 33 along arrow B. The brake pads 34 reside within pockets 32e formed on lever base 32. The disc 26 is held on rim 25 by bolts 29.
The wheelchair 150 (Figures 6,9, and 9A) include a seat 152, a back 154, a pair of lateral rails 156 which support the seat 152 interconnected to a pair of vertical rails 158 which support the back. These rails are supported on frame grid formed of vertical struts 162 connected to horizontal struts 164. Horizontal struts 164 and lateral rails 156 terminate in an inverted U shaped forward located down tube 160. Casters 170 depend from forward portions of horizontal struts 164. Wheels (Fig. 9A) mount to the frame grid via spaced, parallel horizontal braces 172 spanning the two vertical struts 162 on each side of the wheelchair 150. As shown, the axle sleeve 16 is captured on braces 172 and holds the transmissions on each wheel by a pair of captive nuts 16a which straddle the braces 172. A locking pin 252 passing through the sleeve and/or optionally through outboard nut 16a adds security.
Moreover, having thus described the invention, it should be apparent that numerous structural modifications and adaptations may be resorted to without departing from the scope and fair meaning of the instant invention as set forth hereinabove and as described hereinbelow by the claims.

We claim:
1. A wheelchair (150) drive mechanism comprising in combination: a lever arm(33) having a hand grip end(47) and a drive end, a wheel(l 10), a gear train and characterized in that a transmission interposed between said lever arm(33) and said wheel, said transmission including spring means(14) to bias said transmission into either a forward direction or a reverse direction, said biasing means attached at said lever arm hand grip end, and wherein said biasing means includes a shift paddle(41) projecting radially from said hand grip end, said paddle operatively coupled to a cable (49) having an end terminating in said transmission.
2. A wheelchair (150) drive mechanism as claimed in claim 1 wherein said transmission includes a shift cage (2) having a plurality of gear teeth disposed on an outer peripheral arc of said shift cage (2), and a bevel gear(17) meshes with said shift cage gear teeth through an arc of a circle to select forward, reverse and neutral, said bevel gear operatively coupled to said cable.
3. A wheelchair drive mechanism as claimed in claim 2 wherein said shift cage (2) is supported on an axle (8) which supports a drive link (1) coupled to said lever arm to impart motion there from, and plural cam points separated from each other by cam pockets associated with said shift cage (2), rollers (3) supported in said cam pockets to migrate to said cam points to provide drive force either in forward or reverse.
4. A wheelchair drive mechanism as claimed in claim 1 including a gear train formed in clusters to provide mechanical advantage interposed between said rollers (3) and said wheel (110).
5. A wheelchair drive mechanism as claimed in claim 4 wherein said gear train includes an output gear coupled to a spoked wheel (24) which nests within an inner rim which is operatively coupled to said wheel.
6. A wheelchair drive mechanism as claimed in claim 3 wherein said drive link(l) includes a notch which receives a lever stop (9), said lever stop dimensioned to hold said lever in one position defined by said notch when said transmission is in neutral.

7. A wheelchair drive mechanism substantially as herein described with reference to the foregoing description and the accompanying drawings.













2937-delnp-2005-description (complete)-09-06-2008.pdf

2937-DELNP-2005-Description (Complete)-13-06-2008.pdf













Patent Number 221625
Indian Patent Application Number 2937/DELNP/2005
PG Journal Number 31/2008
Publication Date 01-Aug-2008
Grant Date 27-Jun-2008
Date of Filing 01-Jul-2005
Name of Patentee WATWOOD, BRIAN, M.
# Inventor's Name Inventor's Address
PCT International Classification Number B62M 1/14
PCT International Application Number PCT/US2003/035983
PCT International Filing date 2003-12-01
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 10/308,511 2002-12-02 U.S.A.