Title of Invention | A PROCESS FOR PREPARING A COMPOUND |
---|---|
Abstract | A ketone of formula I as described in the specification is reacted with an aldehyde compound of formula II to obtain a ketone which is reduced, lactonized and then deprotected. |
Full Text | The invention relates to a process for preparing discodermolide and analogues thereof, to novel compounds utilized in the process and to novel compounds prepared by the process. (+)-Discodermolide is a novel polyketide natural product that was isolated from extracts of the marine sponge Discodermolide dissoluta by researchers at the Harbor Branch Oceanographic Institution (HBOI) (Gunasekera SP, Gunasekera M, Longley RE, Schulte GK. Discodermolide: a new bioactive polyhydroxylated lactone from the marine sponge Discodermia dissoluta. [published erratum appears in J. Org. Chem. 1991;56:1346]. J. Org. Chem. 1990;55:4912-15,). Discodermolide lacks obvious structural resemblance to paclitaxel, yet it shares with paclitaxel (the active substance in the drug Taxol) the ability to stabilize microtubules. In mechanism-based assays, discodermolide is more effective than paclitaxel. In fact, of the handful of compounds known to induce polymerization of purified tubulin, discodermolide is the most potent. However, microtubules, a major structural component in cells, are not simple equlibrium polymers of tubulin. They exist as regulated GTP-driven dynamic assemblies of heterodimers of a and p tubulin. Although the dynamics are relatively slow in interphase cells, upon entering mitosis, the rate of growing and shortening increases 20 to 100-fold — the average microtubule turns over half the tubulin subunits every ten seconds. This change in rate allows the cytoskeletal microtubule network to dismantle and a bipolar spindle-shaped array of microtubules to assemble. The spindle attaches to chromosomes and moves them apart. The response to complete suppression of microtubule dynamics in cells is death. However, mitotic cells are more sensitive and the tolerance threshold appears to be cell-type specific. Molecules like paclitaxel that bind with high affinity to microtubules disrupt the dynamics process in tumor cells with lethal results even when the ratio of bound drug to tubulin is very low. Discodennolide binds to tubulin competitively with paclitaxel. Since paclitaxel has proven to b© useful in treating some cancers, other compounds of the same mechanistic class may have utility against hyperproliferative disorders. Future development of discodermolide or structurally related analogues is hindered by the lack of a reliable natural source of the compound or a feasible synthetic route. Naturally occurring discodermolide is scarce and harvesting the producing organism presents logistical problems. Accordingly, there is an ever-growing need for improved synthe^s which enable the preparation of commercially acceptable quantities of discodemiolide and structurally related analogues. SUMMARY OF THE INVENTION The present invention relates to a more practical synthesis of discodermolide and analogues thereof. In another embodiment, the instant invention relates to novel compounds useful in the preparation of discodermolide and analogues thereof. In a further! embodiment, the instant invention relates to novel compounds which are prepared by the process of the instant invention. DETAILED DESCRIPTION OF THE INVENTION The essence of the instant invention is the discovery of a more practical synthesis for discodermolide and analogues thereof. More particularly, it has been discovered that discodemnolide and analogues thereof can be prepared by a three-step reaction as follows: where Ri is (Ci-e) alkyl, benzyl or an acid labile hydroxyl protecting group; R2 is (C1.6) all Step 2 concerns the reduction of the p-hydroxyketone compound of formula III and, more particularly, the ketone group common to such compounds, to obtain a 1,3-diol compound of formula IV. The reduction is conducted in the presence of: 1) a ketone reducing agent, preferably a borohydride such as tetramethylammonium triacetoxyborohydride; 2) a polar organic solvent, preferably acetonitrile; and 3) a protic solvent, preferably a carboxylic acid, such as acetic acid, at a temperature of between 76-C and 20°C, preferably between -40°C and -10°C, for a period of between 2 and 72 hours, preferably for 16 hours. As to Step 3, it involves the lactonization and deprotection of the acid labile hydroxyl protecting groups of a compound of formula IV to obtain a compound of formula V. The lactonization and deprotection reaction is conducted in the presence of: 1) a protic acid, preferably an aqueous protic acid solution, preferably an aqueous hydrogen halide solution, such as aqueous hydrogen chloride; and 2) a polar organic solvent, preferably a mixture of polar organic solvents, more preferably a mixture of an aliphatic alcohol and an ether, such as methanol and tetrahydrofuran, at a temperature of between -2p-C and 4(^°C, preferably between 20-C and 26-C, for a period of 8 hours and 7 days) preferably between 16 and 72 hours, more preferably between 24 and 48 hours, ^"^^ ' ^ "^ ' where R1 is (C1-6) alkyl, benzyl, or an acid labile hydroxyl protecting group; R2 is (C1-6) alkyl, or benzyl; R3 is hydrogen, (C1-6) alkyl, benzyl, C(O)(C1-12) alkyl, C(0)Ph, C(0)0(Ci-12)alkyl, C(0)OPh, C(0)NH(Ci.i2)alkyl, C(0)NHPh, or an acid labile hydroxyl protecting group; R4 is hydrogen or methyl; and X is O, NH, NCH3, S or CH2. Preferred compounds are those of formula la: where each of Ri* and R2' is (Ci-e) alkyl; X is O, or CH2; and R3 and R4 are as defined above. More preferred compounds are those of fomiula lb: where R3' is (C1-6)alkyl, C(0)(CM2)alkyl, benzyl, C(0)0(C1-12)alkyl, or an acid labile hydroxyl protecting group; and R1and R2' are as defined above. where R3" is an acid labile hydroxyl protecting group. In the above definitions: the term "(C1-6) alkyl" as used herein refers to a straight or branched chain group consisting solely of carbon and hydrogen and having from 1 to 6 carbon atoms, whereas the term "(C1-12) alkyP as used herein refers to a straight or branched chain group consisting solely of carbon and hydrogen and having from 1 to 12 carbon atoms. Examples of "alkyl" groups include methyl, ethyl, propyl, butyl, pentyl, 3-methylpentyl, etc. The term "acid labile hydroxyl protecting groups" as used herein refers to any oxygen bound group that can be removed upon exposure to an acid. Numerous examples of these groups are known by those skilled in the art and can be found in Greene and Wuts, Protective Groups in Organic Synthesis, 2d edition, John Wiley & Sons, New York, 1991. Specific examples include, but are not limited to, t-butyldimethylsilyl, triethylsilyl, t-butyldiphenylsilyl, triisopropylsilyl, methoxymethyl, and tetrahydropyranyl. In a further embodiment, the instant invention relates to a process for preparing the novel compounds of formula I. More particularly, the compounds of formula I may be prepared as depicted below: where R1, R2, R3, R4 and X are as defined above. As to the individual steps, Step A involves the addition of a methyl or ethyl group to an aldehyde compound of formula VI to obtain an alcohol compound of formula VII, The addition is carried out in the presence of 1) an organometallic reagent, preferably an alkyllithium or alkylmagnesium halide such as methylmagnesium bromide; and 2) a polar organic solvent, preferably an ether such as diethyl ether, at a temperature of between -78°C and 40°C, preferably at -78°C and 0°C., more preferably at about -40°0,, for a period of between 5 minutes and 24 hours, preferably between 30 minutes and 2 hours, more preferably for about 1 hour. Step B involves the oxidation of an alcohol compound of formula VII to obtain the desired ketone compound of formula I. The oxidation is carried out in the presence of: 1) an oxidant, preferably a combination of dimethylsulfoxide and an activating agent, more preferably a combination of dimethylsulfoxide and sulfur trioxide complex with pyridine; 2) a base, preferably an organic base, more preferably a trialkylamine such as triethylamine; and 3) a polar organic solvent, preferably a chlorinated hydrocarbon such as dichloromethane. The oxidation is suitably carried out a temperature of between -78^C and 40-C, preferably between 5-C and 20-C, for a period of between 5 minutes and 24 hours, preferably between 1 hour and 12 hours, more preferably between 4 and 6 hours. The aldehyde compounds of formulae II and VI are either known or may be prepared analogous to processes set forth in the literature for other structurally similar aldehydes. In still another embodiment, the instant invention relates to the novel p-hydroxy-ketone compounds of formula III and the novel 1,3-diol compounds of formula IV, Although the product of each reaction described above may, if desired, be purified by conventional techniques such as chromatography or recrystallization (if a solid), the crude product of one reaction is advantageously employed in the following reaction without purification. As is evident to those skilled in the art, compounds of formulae I and III-V contain asymmetric carbon atoms and, therefore, it should be understood that the individual stereoisomers are contemplated as being included within the scope of this invention. Accordingly, the present invention provides a process for preparing a compound of formula V and, in a third step, lactonizing and deprotecting the acid labile hydroxyl protecting groups of the 1,3 diol obtained in the second step by treating it with a hydrogen halide dissolved in a polar solvent or mixture of solvents to obtain the desired compound of formula V, where R1 is (C1-6) alkyl, benzyl or an acid labile hydroxyl protecting group; R2 is (Cue) alkyl or benzyl; R3 is hydrogen, (C1-6) alkyl, benzyl, C(0)(C1-12) alkyl, C(O)Ph, C(O)O(C1-12) alkyl, C(0)OPh, C(0)NH(C1-12) alkyl, C(0)NHPh or an acid labile hydroxyl protecting group; R3" is an acid labile hydroxyl protecting group; R4 is hydrogen or methyl; and X is 0, NH, NCH3, S or CH2, with the proviso that when X is O and R3 is an acid labile hydroxyl protecting group in the compound of formula I, the "-X-R3" moiety in the compound of formula V is -OH. Accordingly, the present invention also provides a process for preparing a compound of formula I such as herein described which comprises, in a first step, addition of a methyl or ethyl lithium or methyl or ethyl magnesium reagent to an aldehyde of formula VI and, in a second step, oxidizing the alcohol compound prepared in the first step by treating it with a combination of dimethyl sulphoxide and sulphur trioxide complex and a trialkylation in a polar organic solvent to obtain the desired compound of formula I, wherein R1, R2, R3, R4 and X are such as herein described. The following examples are for purposes of illustration only and are not intended to limit in any way the scope of the instant invention. EXAMPLE 1 (2R,3S,4/7)-3-[[(1,1-dimethylethyl)dimethy!silyl]oxy]-N-methoxy-/V,2,4-trim^^^ hexanamide To a solution of 13.1 g (39.5 mmol) of the diastereomeric mixture prepared in Stage 1.1 in a mixture comprising 150 mL of methylene chloride, 50 mL of dimethylsulfoxide and 25 mL of triethylamine is added, dropwise via an addition funnel, 19.0 g (120 mmol) of sulfur trioxide pyridine complex in 150 mL of dimethylsulfoxide at 0-C. The resultant solution is then stinted for 11/2 hours at 0-C. after which time the reaction mixture is concentrated via a rotary evaporator in a cooling both at ^H NMR (300 MHz, CDCI3) 5 4.23 (dd, J = 7.5, 4.2 Hz, 2H), 3.61 (s, 3H), 3.01 (s, 3H), 2.92 (m, 2H), 2.64 (m, 2H), 2.08 (s, 3H), 1.03 ( d, J = 6.8 Hz. 3H), 0.98 (d, J = 7.2 Hz, 3H). 0.81 (s, 9H), 0.00 (s, 6H). stage 1.1: (2R,3S,4S)-3-[[{1 1-"dimethylethyl)dimethylsilyl]oxy]-5-hydroxy-N-methoxy-N,2,4-trimethyl-hexanamide To a solution of 6.9 g (21.8 mmol) of (2fl,3S,4f?)-3-[[(1,1"dimethylethyl)dimethyl-silyl]oxy]-N-methoxy-/V,2,4-trimethyl-5"OXO-pentanamide in 50 mL of ether is added 10.2 mL (30.5 mmol) of a 3M solution of methylmagnesium bromide in ether, dropwise, at -40-0, after which the mixture is stirred at -20°Cfor 1 hour. The reaction mixture is then diiluted with 200 mL of ether and the reaction is quenched by adding the reaction mixture to 20 g of crushed ice at 0°C. The mixture is then washed with 100 mL of 1M sodium hydrogen sulfate solution and partitioned with two 150 mL portions of ether. The organic layers are then combined and dried over sodium sulfate. The crude product mixture is then chromatographed employing an eluent mixture of 20 % ethyl acetate in hexane Initially and then an eluent mixture of 40% ethyl acetate in hexane to yield two diastereomers as light yellow oils which are used in the next step without further purification. Diastereomer 1: ^H NMR( 300 MHz, CDCIa): 5 4.08 (dd, J = 9.8, 6.8 Hz, 2H), 3.64 ( s, 3H ), 3.54 (d, J = 2.6Hz, 2H ), 3.08 (s, 3H), 3.00 (m, 2H), 1.48 (m, 2H), 1.07 (d, J = 6.8 Hz. 3H). 1.05 (d, J = 6.4 Hz. 3H), 0.81 (s, 9H). 0.76 (d. J = 7.2Hz. 2H), 0.01 (d, J = 3.8 Hz, 6H). Diastereomer 2: 1H NMR( 300 MHz, CDCI3): 8 4.19 (dd, J = 12.1, 6.0 Hz, 2H), 3.86 (dd, J = 9.0,1.51 Hz, 2H), 3.56 (s, 3H), 3.18 (m, 2H). 3.01 (s, 3H), 1.28 (m. 2H), 1.06 (d, J = 6.8 Hz, 3H). 0.94 (d, 6.4 Hz, 3H), 0.88 (d, 7.2 Hz, 3H), 0.78 (s, 9H), 0.01 (d, 1.3Hz, 6H). EXAMPLE 2 (2/?,3S,4R,7S.8Z,10S,11S,12S.13Z.16S,17fl.18R19S.20S,21E)-19-[(aminocarbonyl)oxyl] 3,11,17-rris[[(1,1 -dimethylethyl)dimethylsilyl]oxy]-7-hydroxy-/\/-methoxy-A/,2,4,10,12,14, 16,18,20-nonamethyl-5-oxo-8,13,21,23-tetracosatetraenamide To a stirred solution of 2.18 g (6.79 mmol. 10 equiv.) of (+)-p-chlorodiisopinocamphenyl-borane in 4 mL of diethyl ether at 0-C is added 1.04 mL (11 equiv., distilled over calcium hydride) of triethylamine and then a solution of 2.25 g (6.79 mmol, 10 equiv.) of the compound of Example 1 in 3 mL of diethylether. After stirring for 2 hours at O°C. the mixture is cooled to -78^C, after which time a pre-cooled (-78°C) solution of 450 mg (0.679 mmol) of (2Z,4S,5S,6S,7Z.10S, 11RJ 2/7,13S.14SJ 5£)-13-[(amino-carbonyl)oxyl]-5 J1-d/s[[(11 -dimethylethyO 4,6,8,10,12,14-hexamethyl-2,7,15,17-octadecatetraenal in 4mL of diethylether is added via cannula. After the resultant mixture is maintained at a temperature of -78-C for 3 hours, it is transferred to a freezer (-27^C) for 16 hours. The reaction is then quenched with 8 mL of methanol (the pH of which is adjusted to 7 with 12 mL of buffer solution) and 4 mL of 50% hydrogen peroxide solution at 0-C. After stirring for 2 hours at 25°C, the organic layers are separated. The aqueous layer is then extracted five times with 25 mL portions of dichloromethane. The combined organic layers are then dried over magnesium sulfate, concentrated using a rotary evaporator and chromatographed (Biotage, silica gel, gradient 10-30% ethyl acetate/hexane) to yield the desired compound as a colorless, highly viscous oil. [a]D+12,56^ (c= 1.0. CH2CI2); IR (CH2CI2) 3547 (m, OH). 3359 (m. CONH2), 2958 (vs). 2990 (vs), 1729 (vs. C=0). 1664 (m). 1462 (s). 1385 (s), 1254(s). 1037 (s), 1037 (s). 1004 (s). 835 (vs); ^H NMR (500MHz. CDCI3) 5 6.61 (1H, ddd, J= 17.1.10,5,10,5Hz. H23). 6.03 (1H. dd, J = 11.0. 11.0 Hz. H22). 5.50 (1H. dd, J = 10.6.10,6 Hz, H9). 5.37 (1H, dd. J = 10.6. 10.5Hz. H21). 5.35 (1H, dd, J= 10.8, 8.5 Hz. He). 5.23 (1H. dd. J= 15.3. 2.1 Hz. H24A), 5.13 (1H, d, J= 10.2 Hz. H24B). 5.05 (1H, d, J = 10.0 Hz. H13), 4.79 (1H, t. J= 8.0 Hz. H7). 4.72 (1H. t. J= 5.9 Hz, H19), 4.60-4.50 (2H. br, CONH2). 4.33 (1H, dd, J= 6.9, 4.3 Hz. H3). 3.74 (3H, s, NOCH 3). 3.43 (1H. dd, J = 5.0. 4.1 Hz. H17). 3.31 (1H. dd, J= 5.2. 5.1 Hz, Hn). 3.13 (3H, s, NCH3). 3.08 (1H. br, OH), 3.00 (1H, m. H20), 2.78-2.69 (2H, m, H4 +H6A). 2.70-2.62 (1H, m, HIO). 2.66-2.54 (2H, m, H2 + Hee), 2.49-2.45 (1H, m, H12), 2.12(1H, dd, J= 12.4, 12.3 combined organic layers are then washed with brine, dried with sodium sulfate and concentrated in vacuo. The resultant residue is then purified by flash chromatography (Biotage, silica gel, gradient 10-30% ethyl acetate/hexane) to yield the desired compound as a white solid. [a]+29.75 degree (c= 0.87, CH2CI2); 1H NMR (499.87MHz, CDCI3) 5 6.60 (1H, ddd, J = 16.8, 10.5, 10.5Hz, H23). 6.02 (1H, t, J= 11.0, H22), 5.48 (1H, dd, J= 10.0, 9.8 Hz, Hg), 5.37 (1H, dd, J= 10.6, 11.2Hz, H21), 5.35 (1H, dd, J= 10.8, 8.5 Hz, Ha), 5.22 (1H, d, J= 15.8 Hz, H24A), 5.12 (1H, d, J= 10.2 Hz, H24B). 4.98 (1H, d, J = 10.1 Hz, H13), 4.79 (1H, t, .^ 6.3 Hz, H7), 4.65 (1H, t, J= 5.9 Hz, H19), 4.60-4.50 (2H, br, CONH2), 4.20 (1H, dd, J= 7.7, 2.3 Hz, H3), 3.92, (1H, m, H5), 3.73 (3H, s, NOCH 3). 3.45 (1H, br, OH-5). 3.41 (1H, dd, J = 10.9, 4.7 Hz, H17), 3.31 (1H, dd, J= 5.2, 5.1 Hz, H„), 3.18 (3H, s, NCH3), 3.08 (1H, br, OH), 2.99 (1H, m, H20), 267 (1H, m, H,o), 2.43-2.41 (2H, m), 2.11 (1H, t, J= 12.3 Hz), 1.90-1.87 (2H, m), 1.76-1.58 (10H, m), 1.25 (3H, t, Me), 1.17 (3H, d, J=7.1 Hz, Me), 0.99 (3H, d, J=6.4 Hz, Me), 0.97 (3H, d, J= 6.5 Hz, Me), 0.93-0.83 (30H, m, Me + 3xSiC(CH3)3), 0.71 (3H, d, J = 6.8 Hz.Me), 0.10 & 0.08 & 0.04 & 0.03 & 0.03 & 0.01 (6x3H, 3xSi(CH3)2). 13C NMR (100.6MHz, CDCI3) 5 156.88,140.02, 134.19, 133.66, 132.10,131.88,131.40, 131.30, 131.11, 130.06, 129.79, 117.91, 115.44, 80.79, 80.69, 78.61, 78.32, 74.31, 70.68, 65.55, 81.66, 45.69, 40.38, 38.36, 37.92, 37.83, 37.29, 36.29, 35.07, 34.91, 34.45, 32.36, 29.68, 26.21, 26.12, 26.03, 25.95, 22.95, 18.52, 18.43, 18.12, 17.41, 17.07, 16.57, 13.44, 12.29, 10.32, 10.14, -3.20, -3.43, -3.96, -4.16, -4.48. m/z (ESI+) 1019 (100 (MNa)). EXAMPLE 4 Preparation of (+)- discodermolide To a solution of 450 mg (0.452 mmol) of the compound of Example 3 in 56 mL of tetrahydrofuran is added 56 mL of an aqueous solution of 4N hydrochloric acid. The resultant solution is then stirred at room temperature for 24 hours, 10 mL of methanol is then added, and this solution is then stirred for an additional 24 hours at room temperature. To the solution is then added 50 mL of ethyl acetate, followed by the addition of sodium bicarisonate at 0°C to a pH of 8. The organic solution is then washed with brine. The aqueous layer is then extracted three times with 30 mL portions of ethyl acetate, and the combined extracts are dried over sodium sulfate. Filtration and concentration followed by flash chromatography employing an eluent mixture of 50% methylene chloride in ethyl acetate initially and then 100% ethyl acetate yields (+)- discodermolide. [al+22.0' (c= 1.41, MeOH); mp 122- 124 °C; °C NMR (100.6MH2, CDCI3) 6 176.8, 160.33, 134.17. 133.92, 133.88, 133.59, 133.28,131.59, 131.00, 118.80, 80.66, 80.22, 78.48, 76.48, 73.66, 63.70, 44.56, 42.60, 38.79, 37.71, 36.92, 36.77, 36.69, 34.97, 34.62, 23.45, 19.73, 18.25, 18.11, 16.05, 15.84, 13.27, 9.44. m/z (ESI+) 594 (100 (M+l*)). WE CLAIM: 1. A process for preparing a compound of formula V which comprises, in a first step, coupling a ketone compound of formula I with an aldehyde compound of formula II in the presence of a dialkyl boron halide or triflate, an amine base, and a polar organic solvent to obtain a p-hydroxyketone of formula III in a second step, reducing the ketone compound obtained in the first step by treating it with a borohydride reagent in a polar organic solvent and a protic solvent to obtain a 1,3-diol of formula IV and, in a third step, lactonizing and deprotecting the acid labile hydroxyl protecting groups of the 1,3 diol obtained in the second step by treating it with a hydrogen halide dissolved in a polar solvent or mixture of solvents to obtain the desired compound of formula V, where Ri is (Ci.6) alkyl, benzyl or an acid labile hydroxyl protecting group; R2 is (C\.^) alkyl or benzyl; R3 is hydrogen, (C1-6) alkyl, benzyl, C(O)(C1-12) alkyl, C(0)Ph, C(O)O(CM2) alkyl, C(0)OPh, C(0)NH(Ci_i2) alkyl, C(0)NHPh or an acid labile hydroxyl protecting group; R3" is an acid labile hydroxyl protecting group; R4 is hydrogen or methyl; and X is O, NH, NCH3, S or CH2, with the proviso that when X is O and R3 is an acid labile hydroxyl protecting group in the compound of formula I, the "-X-R3" moiety in the compound of formula V is -OH. 2. The process according to claim 1, wherein the coupling step is carried out in the presence of p-chlorodiisopinocamphenylborane, triethylamine and diethyl ether, at a temperature of between -78°C and -20°C. 3. The process according to claim 1, wherein the reduction step is carried out in the presence of tetramethylammonium triacetoxyborohydride, acetonitrile and acetic acid, at a temperature of between -40°C and -10°C. 4. The process according to claim 1, wherein the lactonization and deprotection of the acid labile hydroxyl protecting groups step is carried out in the presence of aqueous hydrogen chloride, methanol and tetrahydrofuran, at a temperature of between -20°C and 40°C. 5. A process for preparing a compound of formula I according to claim 1 which comprises, in a first step, addition of a methyl or ethyl lithium or methyl or ethyl magnesium reagent to an aldehyde of formula VI and, in a second step, oxidizing the alcohol compound prepared in the first step by treating it with a combination of dimethyl sulphoxide and sulphur trioxide complex and a trialkylammonium in a polar organic solvent to obtain the desired compound of formula I, wherein R1, R2, R3, R4 and X are as claimed in claim 1. 6. The process according to claim 5 wherein the addition step is carried out in the presence of methylmagnesium bromide and diethyl ether, at a temperature of between-78°C and 40°C. 7. The process according to claim 5 wherein the oxidation step is carried out in the presence of sulfur trioxide-pyridine complex, triethylamine and dichloromethane, at a temperature of between -78°C and 40°C. 8. A process for preparing a compound substantially as herein described and exemplified. |
---|
0166-chenp-2003 abstract-duplicate.pdf
0166-chenp-2003 claims-duplicate.pdf
0166-chenp-2003 description (complete)-duplicate.pdf
166-chenp-2003-correspondence others.pdf
166-chenp-2003-correspondence po.pdf
166-chenp-2003-description complete.pdf
Patent Number | 221651 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Indian Patent Application Number | 166/CHENP/2003 | ||||||||
PG Journal Number | 37/2008 | ||||||||
Publication Date | 12-Sep-2008 | ||||||||
Grant Date | 30-Jun-2008 | ||||||||
Date of Filing | 28-Jan-2003 | ||||||||
Name of Patentee | NOVARTIS AG | ||||||||
Applicant Address | LICHTSTRASSE 35, CH-4056 BASEL, | ||||||||
Inventors:
|
|||||||||
PCT International Classification Number | C07D309/30 | ||||||||
PCT International Application Number | PCT/EP01/09068 | ||||||||
PCT International Filing date | 2001-08-06 | ||||||||
PCT Conventions:
|