Title of Invention

A PROCESS FOR THE HEAT TREATMENT OF BALE FIBER FEED-STOCK

Abstract ABSTRACT A PROCESS FOR THE HEAT TREATMENT OF BALE FIBER FEED-STOCK The invention relates to a process for the heat treatment of bale fiber feedstock, to restrict biological activity and to improve the quality of the spun yarn, by forcing heated dry steam into the bale for at least one short period, comprising the steps of: (i) placing the bale in a sealed chamber; (ii) evacuating the chamber to a reduced pressure; (iii) introducing steam into the sealed chamber to raise the temperature of the bale to an elevated level; (iv) repeating steps ii and iii to effect a desired degree of conditioning of the bale; and (v) removing the bale from the chamber, characterized in that the reduced pressure in the evacuating steps is between 50 to 200 mbar.
Full Text Field of the Invention
The present invention relates to a process for the heat treatment of bale fiber feed-stock.
Background of the Invention
During conventional fabrication of textile feedstock, especially of cotton pressed in bales, numerous health, technical and economic problems often arise.
In US 3,802,030 cotton processing with improved procedure for reducing the byssinotic effect thereof is disclosed. In the EP-Al-0 275 812, a method and apparatus for conditioning of baled materials are proposed. The main object of the therein described invention is to facilitate further processing of wool fibers which has developed a set on storage and/or transportation. The special apparatus proposed presses at least two pads onto opposite sides of the bale and inserts dry steam through a plurality of openings in these pads. The steam flows under pressure into the bale. The temperature of the steam is about 105°C, the pressure 45 kPa and the process time is 180 s. A second step proposes to introduce compressed saturated air at a temperature of 50° to 65°C into the bale at pressures of up to 300 kPa by means of a fictitious liquid ring compressor.
This specific design has several disadvantages. A process applied in the open air, which infuses gas into a set, causes a lot of loss of energy and can never reach a homogenous effect in the bale. The high pressures applied to the set needs costly compressors to be developed and expensive maintenance. The installation is not able to solve any hygienic problems involved in the further processes in manufacturing textiles.
These problems include the development of health threatening molds, especially aflatoxines in the leaves (bracts); insufficient moisture for subsequent treatment steps; and wild behavior of the delivered material in the processing machine or gin before subsequent treatment depending on the quality of the cotton gin, its previous storage condition, press condition and moisture content.

Attempts to pretreat the feedstock to address the problems have been unsuccessful for technical and/or economic reasons.
It is therefore a purpose of the present invention to provide a process to solve health and technical problems which have affected prior art textile feedstock fabrication processes.
It is a further purpose of the invention to provide a process which allows an improvement in the quality of the spun yarn, with a raised yield.
Yet a further purpose of the present invention is to provide a feedstock preparation method which is reproducible, efficient, and which produces a feedstock which is greatly restricted in its biological activity, especially insuring that only a minimal further development of mold fungi can occur, even in the case of a new contamination occurring by means of airborne spores.
Brief Description of the Invention
The foregoing and other objects of the invention are achieved by a heat treatment of the feedstock in a pressed state, i.e. in the bale. By a specific, gradual heat treatment of the bale at least partial sterilization and a conditioning of the feedstock is effected simultaneously.
The heat treatment of the present invention comprises placing the feedstock in a treatment chamber and subjecting the feedstock to a plurality of treatment cycles comprising the evacuation of the chamber to a reduced pressure, and the application of steam to the feedstock for a treatment period to allow the steam to penetrate into the interior of the bale. At least 4, and preferably 5 treatment cycles are conducted.
The heat treatment can be accomplished by a type of fractional conditioning (alternating evacuation and steaming with holding times) which may be carried out by conventional treating systems.

It has been surprisingly found that the present invention makes it possible to successfully treat a heavily pressed cotton bale in an economically reasonable time with a economically justifiable expenditure of energy. The treatment installation is preferably operated according to WO 98/21390 and U.S. Pat. No. 6,094,840.
It has been found that a 5 cycle steaming procedure yields an ultimate temperature of about 80°C in the inner part of the bale. Higher bale temperatures may be desired or utilized when required for sterilization or destruction of biologically active material.
Brief Description of the Accompanying Drawings
A fuller understanding of the invention will be achieved upon consideration of the following description of the invention when considered in connection with the annexed drawings, in which:
Figs. 1 a-c are diagrams depicting the structure and placement of temperature probes in a cotton bale for test purposes.
Detailed Description of the Invention
It is known in the art that the conditioning of textile feedstocks, and particularly by conditioning by steam treatments, improve the process ability and quality of the resulting fabric. Conditioned knitting yams exhibit reduced unwinding tension and are of a softer quality than untreated yam, reducing needle wear. Further, consistency of the fmished products is improved with a substantial decrease in lint and fiber fly. Weaving processes utilizing yams which have been subject to such conditioning have fewer breaks, improved strength and elongation qualities, and yield softer fabrics. Similarly, treated fabrics expe-

rience increased sewing efficiency with fewer needles breaks and improved needle wear. While conventional condi¬tioning treatments are applied to the yarns and threads, the present invention provides an improved methodology for such general heat treatment, and is of particular benefit in connection with cotton, which in accordance with the in¬vention may be treated in the bale, rather than in the form of yarn or finished fabric, thus increasing treatment effi¬ciency. By applying a repeated procedure of evacuation and steam application treatment through the entirety of the bale can be effected in an economical manner.
In general, the present procedure comprises placing the cotton bale to be treated in a closed container, and evacu¬ating the container to a reduced pressure in the range of about 50 to 200 mbar. Steam is then introduced, and the steam is allowed to permeate the bale for a treatment pe¬riod typically between 5 and 15 minutes, during which steaming step the internal temperature of the bale in¬creases to roughly between 60° and 80° C. The container is again evacuated, the remaining steam being simultaneously withdrawn and condensed exterior to the container, and the procedure is repeated. Preferably, the fabric is subjected to a minimum of 4 steaming cycles. The the end of the treatment the cotton bale is removed. After an appropriate cool-down period, during which time a small amount of re¬sidual moisture evaporates, the bale can be wrapped for shipment.
Each steam treatment step may be of a chosen duration, on the order of 5 minutes, which typically allows the interior of the bale to reach between 60° and 80° C, the bale tempe¬rature increasing with each steaming cycle. A final inte-

rior temperature of 80° C is preferred to insure extermina¬tion or elimination of bacteria and/or mold. Temperature monitoring of the bale may be conducted using temperature sensor probes, with the treatment step time being dictated by the interior bale temperature desired. Similarly, the vacuum employed may be at levels of between about 50 and 200 mbar, with the greatest vacuum typically being applied in the initial treatment step. Vacuums of 50, 200, 2000 and 200 mbar for a five cycle process may be acceptable, the vacuum serving primarily to facilitate the entry of the steam deep into the bale and thus improving heat transfer between the steam and bale. Overall process time, includ¬ing treatment steps and the time necessary to re-evacuate the chamber between treatment steps, is in the order of less than 2 hours.
The procedure may be carried out in a vacuum steamer cham¬ber of the type known in the art having an internally lo¬cated water bath which is heated to generate the steam. Alternatively, the steam can be generated exterior to the chamber and introduced to the evacuated chamber through ap¬propriate valved piping. Vacuum pumps and condensers as known in the art establish the vacuum and exhaust the re¬maining water vapor/steam at the end of a steaming cycle. When an external steam source is used, as opposed to a heated water bath, it may be advantageous to have a drain to allow condensate to be withdrawn before or during vacuum establishment.
The following sets forth a series of tests carried out in accordance with the invention and are exemplary of the pa¬rameters which may be employed in connection therewith.

A bale having the dimensions 1380 x 530 x 900 vm, a vol¬ume V = 660 cm\ weight G approx. 250 kg and a density y= 0.38 kg/dm was subjected to a treatment in accordance with the present invention. Temperature probes were inserted at different locations within the bale as depicted in Figs-la-lc. A treatment with a Xorella CONTEXXOR unit with a volume of 10.2 m was utilized for the treatment process.
The bale was subjected to a steaming/evacuation program with four vacuum cycles, as follows:

Weight increase of bale with 4 measuring probes and pallet:
Before conditioning: 258.60 kg = 100 % weight
05 minutes after conditioning: 268.90 kg = + 3.98 %
weight increase. 90 minutes after conditioning: 267.40 kg =+3.40%
weight increase.


After a cooling time of 90 minutes, the measuring probes were removed and the bale was wrapped in foil with a pallet binder. In practice it takes about 1-1 1/2 hours before the bales can be packed. A weight increase of 3.0% to a maximum of about 3.2% can therefore be expected.
Notes on test procedure
The test was erroneously carried out in 2 phases, because on startup and after the first cycle the CPU failed due to software intervention with the programming unit. After the first cycle (96 %, 60°C - 5 min) and after reaching the first intermediate vacuum, the program stopped when the heating was switched on, and the evaporator was vented. The process was then restarted. The process was restarted af¬ter correcting the above-mentioned fault. And the program ran according to the pre-selected process steps. In gen¬eral, phase 1 had no effect, on the test parameters. This test can be evaluated as a normal steam program with 4 cy¬cles with a prior warm-up program.
Vacuum
The startup vacuum of 50 mbar = 95 % of the vacuum was gen¬erated with a gas jet at the vacuum pump intake. The gas jet was not switched on until vacuum had reached 90%.
The intermediate vacuum up to 100 mbar was generated with a tube bank condenser at the vacuum pump intake.

Measuring point MPl reached the setpoint temperature Tl = 60° C after the first cycle, and followed the pre-selected temperatures in the subsequent cycles". Steam penetration to a depth of 100 mm occurred by the end of the first cycle.
Temperatures at depths of 150 and 200 mm respectively for MP 2 and MP 3 started to rise significantly during the warm-up phase of the second vacuum cycle to the setpoint temperature T2 = 70°C , although the setpoint temperatures was not yet reached. The MP2 setpoint temperature T = 80° C at the 150 mm depth was not reached until the holding phase of the third vacuxxm cycle.
The MP 3 setpoint temperature T = 80°C at the 200 mm depth was reached during the fourth vacuum cycle. By this time steam had penetrated the bale to a depth of about 200 mm.
The temperature rise at MP 4 inside the bale was slow. The temperature rose at 0-75°C per minute on average. However, the temperature rise was steeper after the end of each vac¬uum cycle, indicating that steam penetration is accelerated by the intermediate vacuum.
The setpoint temperature at measuring point MP 4 was reached 10 minutes after reaching the fourth cycle tempera¬ture.
Steam penetration is theoretically complete after reaching the setpoint temperature T4 = 8 0°C inside the bale. Further steaming time does not increase humidity since the entire bale is then heated up to a temperature of 80°C.

Weight loss after packaging
After a cooling time of 90 minutes, the measuring probes were removed and the bale was wrapped in foil with a pallet binder for storage. The temperature inside the bale was still high at this time, as shown by the following read¬ings :

Weight loss of the packaged bale after 2 weeks of storage was 0.3 % referred to the original weight of 267.45 kg. No weight change occurred during the following week.
Assuming that the wrapping foil is impermeable to air, no further weight losses are expected. The above-mentioned weight loss of 0.80 kg also includes that of the timber pallet weighing about 15 kg. Steaming increased the pallet

weight by about 4 % due to 0.60 Jcg additional water con¬tent, which evaporates during storage.
If this pallet weight loss of about 0.60 kg is deducted from the total weight loss, weight loss attributable to the foil is practically negligible at only 0,20 kg or 0.075%.
Condensate accumulation
After 2 hours of cooling time a condensate film is formed inside the packaging foil, which about 2 days later had consolidated into water drops. These water drops were still clearly visible two days later, but they were no longer visible when the weight measurement was taken 6 days after packaging.
The cotton bales cooled down within about 4 days, when evaporation ceased and the cotton bales reabsorbed the con¬densate drops. Cotton can absorb up to about 15 % of its own weight in moisture at 100 % air humidity.
Steam penetration can be accelerated by increasing the tem¬perature as rapidly as possible to the setpoint value of about 80° C after reaching 100 mbar vacuum. Since steam has a vapor saturation pressure of about 450 mbar at 80°C, the pressure differential is then 450 - 100 = 350 mbar; this helps to force steam into the bale more efficiently and rapidly.
Theoretical considerations
The weight increase after steaming was 3.98%. This fact

alone establishes that 100% of the bale mass was heated up by steaming.
The theoretical weight increase is calculated as follows based on the given data:

The bale is hfeated with saturated steam. The steam trans¬fers its vaporization heat to the cotton through condensa¬tion. Cotton is hygroscopic and can store up to 18 % by weight of moisture at 20°C. Since the cotton absorbs the condensate, its weight increases according to the amount of steam required.
With an evaporation heat of r = 2309 kJ per kg steam, the following steam quantity D is required:

D = 19,500/2350 •= 8.29 kg steam
8.29 kg of steam is therefore required to heat the cotton bale to 8 0°C. The steam then condenses into 8.29 kg of wa¬ter, which is absorbed by the cotton. This weight increase

of 8.29 kg corresponds to a 3.32% increase.
Since the above calculation does not take into account the original moisture content of about 6 %, the actual weight increase is about 13% more than calculated, i.e. about 3.75%. The difference between this figure and the measured weight increase of 3.93% - which is greater than theoreti¬cally calculated - is attributable to weighing precision of the balance of +/- 0.2 kg and of the physical data.
In a second test in accordance with the invention, a 5-cy-cle procedure was performed on a bale under the following conditions:



After about 10 minutes the bale, probes and pallet were wrapped in foil.

On OP 5 a 1-cycle program was programmed with T = 80°C for 99 minutes. During the holding time of 99 minutes the vac¬uum pump was switched on and off manually. The holding time for each cycle was maintained until it was clearly estab¬lished that the temperatures at measuring points 1 to 4 ei¬ther changed or remained unchanged.
Vacuum
Startup vacuum - 50 mbar
The startup vacuum of 50 mbar = 95 % was generated with a gas jet at the vacuum pump intake. The gas jet was not

switched on vmtil vacuum had reached 90 %. The time re¬quired to reach the correct vacuum with cold water bath was rather long at 15 minutes. According to calculation (t = 60 X V/S X In pl/p2 = 60 X 10,2/400 x 3 = 5), the vacuum should be attained within about 5 minutes. With a cooling water temperature of 15 °C and dry air extraction, vacuum pump operating conditions were optimal. The long time re¬quired may be attributable to evaporator leakage or to vac¬uum piomp power deficiency.
Intermediate vacuum - 200 mbar
The intermediate vacutim up to 200 mbar was generated with a tube bank condenser at the vacuum pump intake. The first 2 vacuums after the 1st and 2nd cycles lasted 7 minutes, and 8-9 minutes after the 3rd and 4th cycles. The reason for this longer vacuum time after cycles 3 and 4 was that part of the bale mass had already been heated up after the 3rd cycle and had to be cooled down again during the vacuum phase.
Measuring point temperature sequence
Temperatures at the 4 measuring points were recorded during the process .
Measuring point MP 1: depth 100mm (black)
The temperature at this point did not begin to rise until the 2"" cycle heating and holding phase. It reached the setpoint value at the beginning of the 3' cycle.
Measuring point MP 2: depth 150 mm (green)
The temperature at this point did not begin to rise until the 3rd cycle heating and holding phase. It then rose in

parallel with the steam temperature, but only reached the setpomnt temperature at the beginning of the 5 cycle heating phase. During the 4 cycle holding phase the tem¬perature no longer rose and remained constant. Extending the holding time would therefore have been pointless since the temperature would not have increased any further.
Measuring point MP 3: depth 200 mm (blue)
This temperature characteristic was similar to that at MP 2, but at rather lower temperature level. The setpoint temperature was reached together with MP 2 at the beginning of the 5" cycle heating phase.
The temperature characteristics at MP 2 and MP3 clearly show that 4 cycles are not enough: the fifth cycle is es¬sential. The 4 cycle holding time, can however be short¬ened from 7 to 5 or even 3 minutes.
Measuring point MP 4; depth 250 mm (brown)
As in test No. 1, the temperature at MP 4 inside the bale rose only slowly at approx. 0.75 °C per minute. The set-point temperature was not reached until during the 5" cy¬cle holding time. Here again, the temperature rise was steeper after the end of each cycle.
Weight loss after packaging
After a short cooling time of only 10 minutes the bale was wrapped with the four probes inserted in order to record the temperature characteristics on cool down. See comments on A Bale weight increase.

The total weight of the wrapped bale including probes and pallet on the steaming day was 271.35 kg. The probes (weight 1.25 kg) were removed after temperature measure¬ments 6 days later. The starting weight (100% reference for weight loss measurements) was: 271,35 kg - 1.25 kg = 270.10 kg

The percentage weight loss of 0.37 % after 12 days was 0.07% more, or 20% higher than in test No. 1. So even after 12 days, the percentage weight loss was still about 0.3%. This large difference may be attributable to a lower qual¬ity packaging with stretch-foil, or to weighing inaccuracy. It can also be due to higher vapor diffusion through the foil with excessively warm packing in the case of bale No. 3.
If the 0.60 kg pallet weight is deducted as with test No. 1, the weight loss after 12 days is 0.40 kg or 0.15%.
Condensation inside the packaging foil
Condensate formed inside the foil and was re-absorbed by the cotton fibers within 5 to 6 days.

In order to reach steaming temperature as quickly as possi¬ble, direct steam injection is preferred. At T = 80°C the vapor pressure is about 500 mbar, so that steam is forced into the bale by a pressure differential of 300 mbar over the previous 200 mbar vacuum.
Direct steam injection can eliminate the problem of water batch contamination by cotton fibers.
At least four cycles are required. With adequate heating capacity, it should be possible to complete the process in less than 2 hours.
Energy consumption per ton of cotton fiber - approx. 45 kWh
The theoretical energy consumption per ton of yarn with temperature rise of AT = 50°C is 1.3 x 1000 x 60 = 78,000 kJ = 22kWh. Taking into account the 4 to 5 reheatings - re¬quired after the intermediate cycles, each time by about 20°C, as well as other losses, about 100 % additional en¬ergy is required. In general we should expect here an opti¬mistic energy consumption of about 45 kWh per ton of yarn.


WE CLAM:
1. A process for the heat treatment of bale fiber feedstock, to restrict biological
activity and to improve the quality of the spun yarn, by forcing heated dry steam into
the bale for at least one short period, comprising the steps of:
(i) placing the bale in a sealed chamber;
(ii) evacuating the chamber to a reduced pressure;
(iii) introducing steam into the sealed chamber to raise the temperature of the bale to an elevated level;
(iv) repeating steps ii and iii to effect a desired degree of conditioning of the bale; and
(v) removing the bale from the chamber,
characterized in that the reduced pressure in the evacuating steps is between 50 to 200 mbar.
2. The process as claimed in claim 1, wherein step (iv) is performed at least 3 times.
3. The process as claimed in claim 1, wherein step (iv) is performed 4 times.

4. The process as claimed in claim 2, wherein the temperature of the bale during the last repetition of step (iii) is 80°C.
5. The process as claimed in claim 2, wherein step (iv) is performed three times and the reduced pressure in the evacuating steps is 50, 100, 100 and 200 mbar.
6. The process as claimed in claim 3, wherein the reduced pressure in the five
evacuating steps is 50, 200, 200, 200 and 200 mbar, respectively.
7. The process as claimed in claim 3, wherein the temperature of the bale to be
obtained during step (iii) is 60°, 70°, 80°, and 80° C, respectively.

8. The process as claimed in claim 5, wherein each step (iii) is maintained for
about 5 minutes
9. The process as claimed in claim 5, wherein step (iii) is maintained for a period
of 5 minutes, 5 minutes, 10 minutes and 15 minutes, respectively.


Documents:

in-pct-2002-1731-che abstract-duplicate.pdf

in-pct-2002-1731-che abstract.jpg

in-pct-2002-1731-che abstract.pdf

in-pct-2002-1731-che claims-duplicate.pdf

in-pct-2002-1731-che claims.pdf

in-pct-2002-1731-che correspondence-others.pdf

in-pct-2002-1731-che correspondence-po.pdf

in-pct-2002-1731-che description(complete).pdf

in-pct-2002-1731-che description(complete)duplicate.pdf

in-pct-2002-1731-che drawings.pdf

in-pct-2002-1731-che form-1.pdf

in-pct-2002-1731-che form-18.pdf

in-pct-2002-1731-che form-26.pdf

in-pct-2002-1731-che form-3.pdf

in-pct-2002-1731-che form-5.pdf

in-pct-2002-1731-che others.pdf

in-pct-2002-1731-che petition.pdf


Patent Number 223090
Indian Patent Application Number IN/PCT/2002/1731/CHE
PG Journal Number 47/2008
Publication Date 21-Nov-2008
Grant Date 04-Sep-2008
Date of Filing 22-Oct-2002
Name of Patentee XORELLA AG
Applicant Address HARDSTRASSE 41, CH-5430 WETTINGEN,
Inventors:
# Inventor's Name Inventor's Address
1 WANGER FREDDY RIEDMATTENSTR 11, CH-5452 OBERROHRDORF,
PCT International Classification Number D01G37/00
PCT International Application Number PCT/IB01/00708
PCT International Filing date 2001-04-30
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 60/200,804 2000-05-01 U.S.A.