Title of Invention

A CROSS-LINKING COMPOSION.

Abstract A crosslinking composition comprising a compound having the structure of Formula 1: wherein Z is a hydrogen, an alcyl of 1 to about 18 carbon atoms, an aryl of about 6 to about 24 carbon atoms, an aralkyl of about 7 to about 24 carbon atoms, or -NR2R2; each R2 is independently hydrogen, an alkyl, aryl or an aralkyl of 1 to about 18 carbon atoms or R3; wherein R3 is -CHROR1 or wherein R is alcyl, halogenated alkyl, aryl, arakyl, halogenated aralkyl, alcoxyalkyl or an alkaryl, having from 1 to about 24 carbon atoms; R1 is hydrogen, alkyl, aryl, aralkyl, alkoxyalkyl or an alkaryl having from 1 to about 24 carbon atoms; and wherein the alkyl or aryl groups in each radical may optionally have heteroatoms in their structure; B is a residue of poly(alkylaldehyde) with n aldehyde groups; n is an integer of 2 to about 8; A is an amino moiety derived from the group consisting of guanamines and melamines.
Full Text FIELD OF THE INVENTION
The invention is directed to melamine and/or guanamine-based crosslinking.
compositions and their method of preparation. In particular, the invention relates to
melamine and/or guanamine-based crosslinking compositions, which are prepared by
reacting melamine and/or guanamine with mono(alkylaldehydes), poly(alkylaldehydes)
and/or alcohols.
BACKGROUND OF THE INVENTION
Traditional industrial coatings have for years been based in significant part on
backbone resins having active hydrogen groups crosslinked with various derivatives of
amino-1,3,5-triazines. Most notable among the amino-1,3,5-triazine derivatives are the
aminoplasts such as the alkoxymethyl derivatives of melamine and guanamines which,
while providing excellent results in a number of aspects, have the disadvantage of
releasing formaldehyde as a volatile by-product under curing conditions and requiring
relatively high temperatures to adequately crosslink the film.
Despite the excellent film coating properties, which can be achieved with
aminoplast crosslinked systems, the coatings industry is under great pressure to reduce
the environmentally undesirable emission of formaldehyde. In addition, high temperature
crosslinking systems require more energy to cure and/or crosslink slower resulting in less
throughput. As a result, it has long been a desire of industry to find acceptable alternative
crosslinkers and coatings systems, which emit no formaldehyde or low amounts of
formaldehyde and cure at lower temperatures.
U.S. Patent Nos. 3, 806, 508 and 4,180,488 disclose the preparation of resins
prepared by reacting melamine with a mono(alkylaldehyde) and an alcohol. However,
neither patent discloses nor teaches reacting melamine with a mono(alkylaldehyde) and a
mixture of alcohols.
U.S. Patent No. 4,454,133 discloses the preparation of antimicrobial compounds
prepared by reacting an amide or imide compound with poly(alkylaldehydes) (e.g.,
glutaraldehyde). However, the patent neither discloses nor teaches reacting a melamine
with a mono(alkylaldehyde) and a poly(alkylaldehyde).
SUMMARY OF THE INVENTION
This invention relates to a crosslinking composition comprising a compound having the
structure of Formula I:
where Z is a hydrogen, an alkyl of 1 to about 18 carbon atoms, an aryl of about 6 to about 24
carbon atoms, an aralky! of about 7 to about 24 carbon atoms, or -NR2R2; each R2 is
independently hydrogen, an alkyl, aryl or an aralkyl of 1 to about 18 carbon atoms or R3;
where R3 is -CHROR1 or
where R is alkyl, halogenated alkyl, aryl, aralkyl, halogenated araalkyl, alkoxyalkyl or an
alkaryl having from 1 to about 24 carbon atoms; R1 is a hydrogen, alkyl, aryl, aralkyl,
alkoxyalkyl or an alkaryl having from 1 to about 24 carbon atoms; and where the alkyl or aryl
groups in each radical may optionally have heteroatoms in their structure; B is a residue of a
poly(alkylaldehyde) with n aldehyde groups; n is an integer of 2 to about 4; and A is an amino
moiety derived from the group consisting of guanamine and melamine. The above
composition may be prepared by reacting a melamine or guanamine with a
mono(alkylaldehyde), a poly(alkylaldehyde) and an alcohol.
This invention also relates to a crosslinking composition comprising a compound
having the structure of Formula III:
where 2 is a hydrogen, an alkyl of 1 to about 18 carbon atoms, an aryl of 6 to about 24
carbon atoms, an aralkyl of 7 to about 24 carbon atoms, or -NR2R2; each R2 is independently
hydrogen, an atkyl, aryj or an aralkyJ of 1 to about 24 carbon atoms or R3; R3 is -CHROR1;
where R1 is hydrogen, alkyl, aryl, aralkyl, or an alkaryl having from 1 to about 24 carbon
atoms; and R is an alkyl, halogenated alkyl, aryl, aralkyl, halogenated aralkyl, or an alkaryl
having from 1 to about 24 carbon atoms; where the alkyl or aryl groups in each radical may
optionally have heteroatoms in their structures and with the provisos that at least some R1
groups are derived from a mixture of two or more alcohols and at least one R2 is R3. The
above compound of Formula III may be prepared by reacting a melamine and/or guanamine
with a mono(alkylaldehyde) and two or more alcohols.
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the term "mono(alkylaldehyde)" is an aldehyde having the
general formula: R-CHO, where R is alkyl, halogenated alkyl. aryl, aralkyl, halogenated
aralkyl, alkoxyalkyl or an alkaryl, having from 1 to about 24 carbon atoms, or about 1 to 12
carbon atoms, or about 1 to 4 carbon atoms.
The term "poly(alkylaldehyde)" is an aldehyde having the general formula: B-[-CHO]n
where B is a organic residue of a poly(alkylaldehyde) with n aldehyde groups and n is an
integer of 2 to about 8. A non-limiting example of a poly(a!ky!aldehyde) is glutaraldehyde
having the structure OHC-(CH2)3-CHO, where B is -(CH2)3- and n is equal to 2.
The term "and/or" means either or both. For example, "A and/or B" means A or B, or
both A and B.
This invention relates to a crosslinking composition comprising a compound having
the structure of Formula I:
where 2 is a hydrogen, an alkyl of 1 to about 18 carbon atoms, an aryl of about 6 to about 24
carbon atoms, an aralkyl of about 7 to about 24 carbon atoms, or-NR2R2; each R2 is
independently hydrogen, an alkyl, aryl or an aralkyl of 1 to about 18 carbon atoms or R3;
where R3 is -CHROR, or
where R is alkyl, halogenated alkyl, aryl, aralkyl, halogenated aralkyl, alkoxyalkyl or an alkaryl
having from 1 to about 24 carbon atoms; R1 is a hydrogen, alkyl, aryl, aralkyl, alkoxyalkyl or
an alkaryl having from 1 to about 24 carbon atoms; and where the alkyl or aryl groups in each
radical may optionally have heteroatoms in their structure; B is a organic residue of a
poly(alkylaldehyde) with n aldehyde groups; n is an integer of 2 to about 8; and A is an amino
moiety derived from the group consisting of guanamine and melamine.
The above composition may be prepared by reacting a melamine and/or guanamine
with a mono(alkylaldehyde), a poly(alkylaldehyde) and an alcohol in a one-step or multi-step
process. In one embodiment of a multi-step process, the melamine and/or guanamine is first
reacted with the mono(alkylaldehyde) and poly(alkylaldehyde). The resulting reaction
product is then reacted with the alcohol to form the crosslinking composition.
Generally, one -NH group from the melamine or guanamine reacts with an aldehyde
group in the mono- or poly(alklyaldehydes) as set for below.

where A and R are defined above
During the etherification reaction, the hydroxyl groups may be etherified by the
reacting alcohol (R1-OH).

In this application, A would typically have the structure:

where Z and R2 are defined above.
It should be noted that more than one poly(alkylaldehyde) could react with a
melamine and/or guanamine resulting in an oligomer. The term "oligomer" in this application
means a compound having 2 or more melamine and/or guanamine moieties. Preferably, the
oligomer has a number average molecular weight of from about 500 to about 5000, or about
500 to about 3000, or about 500 to about 2000.
In the above structure of Formula I, is it theoretically possible that the mono and
poly(alklyaldehydes) would have six possible active sites to react with the melamine.
However, it is believed that practically there would be one reactive site for each nitrogen atom
off the triazine ring. In that case, the resulting crosslinking composition would comprise
compounds having the structure of Formula II:
where Z, B, R1 and R2 are defined above.
Preferably for Formulas I and II, Z is -NHR2, an alkyl of 1 to about 8 carbon atoms
or an aryl of 6 to about 24 carbon atoms; R is C, to C8 alkyl; R1 is a C1 to C8 alkyl or a C1 to
C8 alkoxyalkyl; B is methylene, ethylene, propylene or a structure of the formula:
which is the 1,4 Michael addition of crotonaldehyde with trimethylolpropane. Similarly, one
may use the reaction product of crotonaldehyde and polyhydritic alcohols, such as glycerol,
pentaerythritol, sorbitol, 1,4-butanediol, sugars, starches, cellulose and the like; or adducts
and polymers of a, ß-unsaturated aldehydes.
Also preferably, R1 is derived from an alcohol selected from the group consisting of:
methanol, ethanol, propanol, isopropanol, butanol, isobutanol, cyclohexanol, phenol, benzyl
alcohol, monoalkyl ether of ethylene or propylene glycol and mixtures thereof. More
preferably, R1 is derived from methanol, butanol, monomethyl ether of ethylene glycol or
monomethyl ether of propylene glycol.
In addition, it is also preferred that about 10% to about 90% of the R2 groups, or about
15% to about 70%, or about 30% to about 50% of the R2 groups on a molar basis are
-CHROR1.
As described above, the general process for preparing the crosslinking compositions
containing compounds of Formulas I and II comprises reacting a melamine and/or guanamine
with a mono(alkylaldehyde), a poly(alkylaldehyde) and an alcohol.
Non-limiting examples of mono(alkylaldehyde) that may be used in the reaction are
acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, valeraldehyde,
chloral, caproaldehyde, octylaldehyde, acrolein, crotonaldehyde and mixtures thereof.
Non-limiting examples of poly(alkylaldehyde) that may be used in the reaction are
glutaraldehyde; the reaction products of crotonaldehyde and polyhydritic alcohols, such as
glycerol, trimethylolpropane, pentaerythritol, sorbitol, 1,4-butanediol, sugars, starches,
cellulose and the like; or adducts and polymers of a, ß-unsaturated aldehydes.
Non-limiting examples of alcohols that may be used in the reaction are methanol,
ethanol, propanol, isopropanol, butanol, isobutanol, cyclohexanol, phenol, benzyl alcohol,
monoalkyl ether of ethylene or propylene glycol and mixtures thereof.
In the above reaction, the molar ratio of amino groups in the melamine and/or
guanamine to mono(alkylaldehyde) is about 1:0.1 to about 1:30, or about 1:0.25 to about
1:10 or about 1:0.5 to about 1:5. In this application "amino groups" include groups with
primary and/or secondary amines, i.e., -NH2 and -NHR groups respectively.
In addition, the molar ratio of amino groups in the melamine and/or guanamine to
aldehyde groups in the poly(alkylaldehyde) is about 0.1:1 to about 50:1, or about 0.5:1 to
about 25:1 or about 1:1 to about 10:1.
The molar ratio of aldehyde groups in the mono(alkylaldehyde) and
poly(alkylaldehyde) to alcohol is about 1:0.2 to about 1:50, or about 1:0.5 to about 1:25 or
about 1:1 to about 1:10.
The above reaction may be prepared in a one-step or multi-step process. In one
embodiment of a multi-step reaction, the melamine and/or guanamine are first reacted with
the mono(alkylaldehyde) and/or poly(alkylaldehyde) compounds, (alkylolation reaction) and
the etherification step would occur by the reaction with the alcohol. In another embodiment
of a multistep reaction, the melamine and/or guanamine are first reacted with the
mono(alkylaldehyde) followed by etherification with the alcohol, and then reacted with the
poly(alkylaldedyde) followed by another etherification step with the aicohol. In a further
embodiment of a multistep reaction, the melamine and/or guanamine are first reacted with
the poly(alkylaldehyde) followed by etherification with the alcohol, and then reacted with
the mono(alkylaldedyde) followed by another etherification step with the alcohol.
The alkylolation reaction is preferably conducted in the presence of a catalyst. An
acid or base catalyst may be used. Non-limiting examples of acid catalysts are: p-
toluenesulfonic acid, sulfamic acid, glacial acetic acid, mono or polychlorinated acetic
acids, sulfuric acid, nitric acid, napthylenesulfonic acid, alkyl phosphonic acids,
phosphoric acid and formic acid. Non-limiting examples of base catalysts are inorganic
basic salts such as the hydroxides, carbonates or bicarbonates of lithium, sodium,
potassium, calcium and magnesium, or the organic bases and basic salts such as amines
and guanidine, quaternary-ammonium, phosphonium hydroxide and (bi-)carbonate salts.
The etherification reaction is preferably conducted in a presence of an acid
catalyst. The same acid catalysts described above for the alkylolation reaction may also
be used in the etherification reaction.
The process for preparing the composition is carried out at a temperature from
about 0° C to about 125°C, or about 25°C to about 100°C or about 50°C to about 75°C for
a time of about 0.5 hours to about 48 hours, or about 1 hour to about 24 hours or about 1
hour to about 12 hours.
This invention also relates to a crosslinking composition comprising a compound
having the structure of Formula III:
where Z is a hydrogen, an alkyl of 1 to about 18 carbon atoms, an aryl of 6 to about 24
carbon atoms, an aralkyl of 7 to about 24 carbon atoms, or -NR2R2; each R2 is independently
hydrogen, an alkyl, aryl or an aralkyl of 1 to about 24 carbon atoms or R3;
R3 is -CHROR1 where R1 is hydrogen, alkyl, aryl, aralkyl, or an alkaryl having from 1 to
about 24 carbon atoms; and R is an alkyl, halogenated alkyl, aryl, aralkyl, halogenated
aralkyl, or an alkaryl having from 1 to about 24 carbon atoms; where the alkyl or aryl groups
in each radical may optionally have heteroatoms in their structure and with the provisos that
at least some R1 groups are derived from a mixture of two or more alcohols and at least one
R2 is R3. In one embodiment, one R2 group off each nitrogen is hydrogen.
The phrase "derived from a mixture of two or more alcohols" means that compound of
Formula III in the composition will have at least two different Rn alkyl groups because the
reaction is charged with two or more alcohols during the etherification reaction(s).
Preferably for Formula III, Z is -NHR2, an alkyl of 1 to about 8 carbon atoms or an
aryl of 6 to about 24 carbon atoms; R is C1 to C8 alkyl; R1 is a C1 to C8 alkyl or a C1 to C8
alkoxyalkyl.
Also preferably, R1 is derived from two or more alcohols selected from the group
consisting of: methanol, ethanol, propanol, isopropanol, butanol, isobutanol, cyclohexanol,
phenol, benzyl alcohol, monoalkyl ether of ethylene or propylene glycol and mixtures thereof.
More preferably, R1 is derived from two or more of methanol, butanol, monomethyl ether of
ethylene glycol or monomethyl ether of propylene glycol.
In addition, it is also preferred that about 10% to about 90% of the R2 groups, or about
15% to about 70%, or about 30% to about 50% of the R2 groups on a molar basis are
-CHROR1.
As described above the general process for preparing the crosslinking compositions
containing compounds of Formula III comprising reacting a melamine and/or guanamine with
a mono(alkylaldehyde) and two or more alcohols.
Non-limiting examples of mono(alkylaldehyde) that may be used in the reaction are
acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, valeraldehyde,
chloral, caproaldehyde, octylaldehyde, acrolein and crotonaldehyde.
Non-limiting examples of alcohols that may be used in the reaction are methanol;
ethanol, propanol, isopropanol, butanol, isobutanol, cyclohexanol, phenol, benzyl alcohol,
monoalkyl ether of ethylene or propylene glycol and mixtures thereof.
In the above reaction, the molar ratio of amino groups in the melamine and/or
guanamine to mono(alkylaldehyde) is about 1:0.1 to about 1:30, or about 1:0.25 to about
1:10 or about 1:0.5 to about 1:5.
The molar ratio of aldehyde groups in the mono(alkylaldehyde) to alcohol is about
1:0.2 to about 1:50, or about 1:0.5 to about 1:25 or about 1:1 to about 1:10.
The above reaction may be also be prepared in a one-step or multi-step process.
Preferably, the reaction is a multi-step reaction where the melamine and/or guanamine are
first reacted with the mono(alkylaldehyde) compound (alkylolation reaction) and the
etherification step would occur by the reaction with two or more alcohols. In another
embodiment, the etherification reaction step would be a two-step process (e.g., a trans-
etherification process) as illustrated in Example 1 below.
The alkylolation reaction is preferably conducted in the presence of a catalyst.
Preferably, the catalyst is an acid or base catalyst. Non-limiting examples of acid
catalysts are p-toluenesulfonic acid, sulfamic acid, glacial acetic acid, mono or
polychlorinated acetic acids, mono or polyhalogenated acetic acids, sulfuric acid, nitric
acid, napthylenesulfonic acid, alkyl phosphonic acids, phosphoric acid and formic acid.
Non-limiting examples of base catalysts are inorganic basic salts such as the
hydroxides, carbonates or bicarbonates of lithium, sodium, potassium, calcium and
magnesium, or the organic bases and basic salts such as amines and guanidine, quaternary-
ammonium, phosphonium hydroxide and (bi-)carbonate salts.
The etherification reaction is preferably conducted in a presence of an acid
catalyst. The same acid catalysts described above for the alkylolation reaction may also
be used in the etherification reaction.
The reaction is carried out at a temperature from about 0°C to about 125°C, or ,
about 25°C to about 100°C or about 50°C to about 75°C for a time of about 0.5 hours to
about 48 hours, or about 1 hour to about 24 hours or about 1 hour to about 12 hours.
In the preparation of the compounds of Formula III, oligomeric products resulting
from a self-condensation reaction may be obtained. Non-limiting examples of these self-
condensation products are given below in Formulas IV and V.
One embodiment is a crosslinking composition comprising an oligomer compound
having the Formula IV:
where Z is a hydrogen, an alkyl of 1 to about 18 carbon atoms, an aryl of 6 to about 24
carbon atoms, an aralkyl of 7 to about 20 carbon atoms, or -NR2R2; each R2 is
independently hydrogen, an alkyl, aryl or an aralkyl of 1 to about 24 carbon atoms or R3;
R3 is -CHROR1, wherein R1 is hydrogen, an alkyl, aryl, aralkyl, or an alkaryl having from 1 to
about 24 carbon atoms and R is an alkyl, halogenated alkyl, aryl, aralkyl, halogenated aralkyl,
alkoxyalkyl or an alkaryl having from 1 to 24 carbon atoms; n is 2 to about 50; where the alkyl
or aryl groups in each radical may optionally have heteroatoms in their structure and with the
provisos that at least some R1 groups are derived from a mixture of two or more alcohols and
at least one R2 is R3.
A further embodiment is a crosslinking composition comprising an oligomer
compound having the Formula V
where Z is a hydrogen, an alky! of 1 to about 18 carbon atoms, an aryl of 6 to about 24
carbon atoms, an aralkyl of 7 to about 24 carbon atoms, or -NR2R2; each R2 is independently
hydrogen, an alkyl, aryl or an aralkyl of 1 to about 18 carbon atoms or R3; R3 is -CHROR,;
wherein R1 is hydrogen, an alkyl, aryl, aralkyl, or an alkaryl, having from 1 to about 24 carbon
atoms and R is an alkyl, halogenated alkyl. aryl, aralkyl, halogenated aralkyl, alkoxyalkyl or
an alkaryl, having from 1 to about 24 carbon atoms; n is 2 to about 50; where the alkyl or aryl
groups in each radical may optionally have heteroatoms in their structure and with the
provisos that at least some R1 groups are derived from a mixture of two or more alcohols and
at least one R2 is R3.
An important use of the compounds and compositions described herein is based on
their ability to act as crosslinking agents in curable compositions, and especially those
curable compositions which contain materials or polymers having active hydrogen groups.
The crosslinkers of the present invention are capable of crosslinking active hydrogen
containing materials or polymers.
The active hydrogen-containing material of the curable compositions preferably
contains at least one class of a reactive functionality such as hydroxy, carboxy, amino,
amido, carbamato, mercapto, or a blocked functionality which is convertible to any of the
preceding reactive functionalities. These active hydrogen-containing materials are those
which are conventionally used in aminoresin coatings, and in general are considered well-
known to those of ordinary skill in the relevant art.
Suitable active hydrogen-containing materials include, for example, polyfunctional
hydroxy group containing materials such as polyols, hydroxyfunctional acrylic resins having
pendant or terminal hydroxy functionalities, hydroxyfunctional polyester resins having pendant
or terminal hydroxy functionalities, hydroxyfunctional polyurethane prepolymers, products
derived from the condensation of epoxy compounds with an amine, and mixtures thereof.
Acrylic and polyester resins are preferred. Examples of the polyfunctional hydroxy group
containing materials include DURAMAC® 203-1385 alkyd resin (Eastman Chemical Co);
BECKSOL® 12-035 Coconut Oil Alkyd (Reichhold Chemical Co. Durham, NC); JONCRYL®
500 acrylic resin (S. C. Johnson & Sons, Racine, Wis.); AT-400 acrylic resin (Rohm & Haas,
Philadelphia, Pa.); CYPLEX® polyester resin (Cytec Industries. West Paterson, N.J.);
CARGILL® 3000 and 5776 polyester resins (Cargill, Minneapolis, Minn.); TONE® polyester
resin (Union Carbide, Danbury, Conn.); K-FLEX® XM-2302 and XM-2306 resins (King
Industries, Norwalk, Conn.); CHEMPOL® 11-1369 resin (Cook Composites and Polymers
(Port Washington, Wis.); CRYLCOAT® 3494 solid hydroxy terminated polyester resin (UCB
CHEMICALS USA, Smyrna, Ga.); RUCOTE® 101 polyester resin (Ruco Polymer, Hicksville,
N.Y.); JONCRYL® SCX-800-A and SCX-800-B hydroxyfunctional solid acrylic resins (S. C.
Johnson & Sons, Racine, Wis.); and the like.
Examples of carboxyfunctional resins include CRYLCOAT® solid carboxy terminated
polyester resin (UCB CHEMICALS USA, Smyrna, Ga.). Suitable resins containing amino,
amido, carbamate or mercapto groups, including groups convertible thereto, are in general
well-known to those of ordinary skill in the art and may be prepared by known methods
including copolymerizing a suitably functionalized monomer with a comonomer capable of
copolymerizing therewith.
The curable compositions of the present invention may optionally further comprise a
cure catalyst. The cure catalysts usable in the present invention include sulfonic acids, aryl,
alkyL, and aralkyl sulfonic acids; aryl, alkyl, and aralkyl phosphoric and phosphonic acids ;
aryl, alkyl, and aralkyl acid pyrophosphates; carboxylic acids; sulfonimides; mineral acids and
mixtures thereof. Of the above acids, phosphoric and phosphonic acids are preferred when a
catalyst is utilized. Examples of the sulfonic acids include benzenesulfonic acid, para-
toluenesulfonic acid, dodecylbenzenesulfonic acid, naphthalenesulfonic acid,
dinonylnaphthalenedisulfonic acid, and a mixture thereof. Examples of the aryl, alkyl, and
aralkyl phosphates and pyrophosphates include phenyl, para-tolyl, methyl ethyl, benzyl,
diphenyl, di-para-tolyl, di-methyl, di-ethyl, di-benzyl, phenyl-para-tolyl, methyl-ethyl, phenyl-
benzyl phosphates and pyrophosphates. Examples of the carboxylic acids include benzoic
acid, formic acid, acetic acid, propionic acid, butyric acid, dicarboxylic acids such as oxalic
acid, fluorinated acids such as trifluoroacetic acid, and the like. Examples of the sulfonimides
include dibenzene sulfonimide, di-para-to!uene sulfonimide, methyl-para-toluene sulfonimide,
dimethyl sulfonimide, and the like. Examples of the mineral acids include nitric acid, sulfuric
acid, phosphoric acid, poly-phosphoric acid, and the like.
The curable composition may also contain other optional ingredients such as fillers,
light stabilizers, pigments, flow control agents, plasticizers, mold release agents, corrosion
inhibitors, and the like. It may also contain, as an optional ingredient, a medium such as a
liquid medium to aid the uniform application and transport of the curable composition. Any or
all of the ingredients of the curable composition may be contacted with the liquid medium.
Moreover, the liquid medium may permit formation of a dispersion, emulsion, invert emulsion,
or solution of the ingredients of the curable composition. Particularly preferred is a liquid
medium, which is a solvent for the curable composition ingredients. Suitable solvents include
aromatic hydrocarbons, aliphatic hydrocarbons, halogenated hydrocarbons, ketones, esters,
ethers, amides, alcohols, water, compounds having a plurality of functional groups such as
those having an ether and an ester group, and a mixture thereof.
Preferably, the weight ratio of the active hydrogen-containing material to the
crosslinking composition is in the range of from about 99:1 to about 0.5:1 or about 10:1 to
about 0.8:1 or about 4:1 to about 0.8:1.
The weight percent of the cure catalyst, if present, is in the range of from about 0.01 to
about 3.0 wt % based on the weight of the crosslinker and active hydrogen-containing
material components.
The present coating compositions may employ a liquid medium such as a solvent, or it
may employ solid ingredients as in powder coatings, which typically contain no liquids.
Contacting may be carried out by dipping, spraying, padding, brushing, rollercoating,
flowcoating, curtaincoating, electrocoating or electrostatic spraying.
The liquid or powder coating compositions and a substrate to be coated are contacted
by applying the curable composition onto the substrate by a suitable method, for example, by
spraying in the case of the liquid compositions and by electrostatic spraying in the case of the
powder compositions. In the case of powder coatings, the substrate covered with the powder
composition is heated to at least the fusion temperature of the curable composition forcing it
to melt and flow out and form a uniform coating on the substrate. It is thereafter fully cured by
further application of heat, typically at a temperature in the range of about 120°C to about
220°C for a period of time in the in the range of about 5 minutes to about 30 minutes and
preferably for a period of time in the range of 10 to 20 minutes.
In the case of the liquid compositions, the solvent is allowed to partially evaporate to
produce a uniform coating on the substrate. Thereafter, the coated substrate is allowed to
cure at temperatures of about 20°C to about 150°C, or about 25°C to about 120°C for a
period of time in the in the range of about 20 seconds to about 30 days depending on
temperature to obtain a cured film. In a particularly advantageous embodiment, coating
compositions formulated with crosslinker containing compositions of the present invention can
be heat cured at lower temperatures preferably ranging from about 20°C to about 90°C.
The heat cured compositions of this invention may be employed as coatings in the
general areas of coatings such as original equipment manufacturing (OEM) including
automotive coatings, general industrial coatings including industrial maintenance coatings,
architectural coatings, powder coatings, coil coatings, can coatings, wood coatings, and low
temperature cure automotive refinish coatings. They are usable as coatings for wire,
appliances, automotive parts, furniture, pipes, machinery, and the like. Suitable surfaces
include metals such as steel and aluminum, plastics, wood, and glass.
The curable compositions of the present invention are particularly well suited to coat
heat sensitive substrates such as plastics and wood which may be altered or destroyed
entirely at the elevated cure temperatures prevalent in the heat curable compositions of the
prior art.
The present invention will now be illustrated by the following examples. The
examples are not intended to limit the scope of the present invention. In conjunction with the
general and detailed descriptions above, the examples provide further understanding of the
present invention.
EXAMPLES
Example 1. Preparation of Tris(propylol)melamine Mixed Methoxy/Butoxy Ethers
A. Methoxy Resin
In a suitable flask was mixed 126 grams of Melamine (1 mole) with 388 grams of
propionaldehyde (6 moles), 750 ml of methanol and 2.5 grams of p-toluenesulfonic acid,
monohydrate (p-TSA:H2O) as the catalyst. The mixture was heated to 65°C and kept for
2 hours. The solution was then stripped under vacuum at a temperature less than 60°C
and at a pressure less than 75 mm Hg. Liquid chromatography (LC) showed that the
resulting mixture contained bis-substituted in addition to tris(propylol)melamine methyl
ether. GPC analysis showed an oligomeric content of about 15%.
B. Methoxy/Butoxy Resin
The product in 1A was mixed with 200 grams of butanol and 2.0 grams of p-
TSA:H2O. The mixture was then heated to reflux. When refluxing temperature reached
85°C, the solution was cooled. A filter agent, Celite® 545 from Aldrich® (1 gram) was
added, and the salts were filtered off. The resulting foil solid content of the resin was
65.8%. LC analysis showed the product was a mixture of methoxy and butoxy derived
from the trans-etherification in butanol.
Example 2. Preparation of Tris(propylol)melamine Mixed Methoxy/Methoxy-2-
Propoxy Ethers
The product from lA above was mixed with 300 grams of 1-methoxy-2-propanol
and 2.0 grams of p-TSA:H2O. The mixture was then heated to 93°C for 2 hours. The
solution was then cooled and Celite® 545 (1 gram) was added for filtration. The foil solid
content of the resin was 55.7%. LC analysis showed the product was a mixture of
methoxy and 1-methoxy-2-propoxy derived from the trans-etherification in 1-methoxy-2-
propanol.
Example 3C. Preparation of Tris(propyiol)melamine Methyl Ether Comparison
In a suitable flask was mixed 12.6 grams of melamine (0.1 mole) with 34.8 grams
of propionaldehyde (0.6 moles), 75 ml of methanol and 0.25 grams of p-TSA:H2O. The
mixture was heated to 65°C, and kept for 2 hours. The acid catalyst was then neutralized
by a caustic solution after the solution was cooled to 50°C. The solution continued to cool
to precipitate solids, which were then separated by filtration. The solids had a melting
point of 152-154°C.
Example 4C. Preparation of Tris(propylol)melamine Butyl Ether Comparison
In a suitable flask was mixed 12.6 grams of melamine (0.1 mole) with 46.4 grams
of propionaldehyde (0.8 moles), 75 ml of butanol and 0.25 grams of p-TSA:H2O. The
mixture was heated to 65°C and kept for 2 hours. The acid catalyst was then neutralized
by a caustic solution after the solution was cooled to 50°C. Butanol (30 g) was then
added, and the insoluble solids were filtered. The foil solids content of the resin was
54.1%.
Example 5. Reaction of Bis(propylol)melamine Methyl Ether with Glutaraldehyde
A. Preparation of Bis(propy!ol)melamine Methyl Ether
In a suitable flask was mixed 63 grams of melamine (0.5 mole) with 87 grams of
propionaldehyde (1.5 moles), 750 ml of methanol and 2.5 grams of p-TSA:H2O. The
mixture was heated to 65°C, and'kept for 5 hours. The solution was cooled to ambient
temperature. The precipitated solids, which were separated by filtration, had a melting
point of 242°C. NMR showed that the compound was bis(propylol)melamine methyl
ether.
B. Reaction with Glutaraldehyde
The solid in 5A above (2.7 grams) was mixed with 1.0 gram of a 50% aqueous
glutaraldehyde solution, 20 grams of methanol and 10 grams of water. The mixture was
heated to reflux for 2 hours and became clear. The volatiles were removed by vacuum
distillation to give 6.2 grams of a resin (50% solid).
Examples 6 and 7. Solvent Resistance of Mixed Melamine Ethers Coatina
Formulations
Coating Compositions containing the crosslinking resins of Examples 1B and 2
were prepared by mixing 40 parts crosslinking resin with 60 parts acrylic backbone resin
(Joncryl® 500) and 0.5 parts dimethyl acid pyrophosphate catalyst in butanol. Both
formulations were applied on iron phosphate treated cold roll steel panels and baked at
75°C for 30 minutes. The resulting film thickness was approximately 1 mil. Solvent
resistances of the baked films were measured using a methylethyl ketone (MEK) rub. The
results are shown in table 1 below.
Example 8. Cure Response of Coating Containing the Crosslinking Resin Prepared by
Reacting Bis(propylol)melamine Methyl Ether with Glutaraldehyde
A coating compositions containing the crosslinking resin of Example 5B was.
prepared by mixing 50 parts crosslinking resin with 50 parts acrylic backbone resin
(Joncryl® 500) and a 0.5 parts dimethyl acid pyrophosphate catalyst in butanol. The
formulations were applied on iron phosphate treated cold roll steel panels and baked at
75°C for 10, 20 and 30 minutes. Solvent resistances of the baked films were measured
using a methylethyl ketone (MEK) rub. The results are shown in Table 2 below.
Examples 9 and 10. Solvent Resistance of Coatings Containing the Crossiinking
Resins of Examples 1B and AC.
Coating Compositions containing the crossiinking resins of Examples 1B and 4C
were prepared by mixing 40 parts crossiinking resin with 60 parts acrylic backbone resin
(Joncryl® 500) and a 0.5 parts dimethyl acid pyrophosphate catalyst in butanol. Both
formulations were applied on iron phosphate treated cold roll steel panels and baked at
75°C for 30 minutes. Solvent resistance of the baked films were measured using a
methylethyl ketone (MEK) rub. The results are shown in Table 3 below.
The results show that the mixed ether melamine resin showed vastly superior
results over the tris(propylol)melamine butyl ether melamine comparison.
Attempts were made to prepare a coating composition containing the crossiinking
resin of Example 3C (tris(propylol)melamine methyl ether) to compare with the coating
composition of Example 9. The resin of Example 3C was added to a number of solvents
typically used in the coating industry such as toluene, methyl ethyl ketone, butylacetate,
butanol and methanol. High temperatures were required in order to prepare homogenous
solutions. However, when the temperature of the mixture was cooled to ambient.
temperature, the crosslinker resin precipitated from the solution. Therefore, a coating
composition containing the resin of Example 3C could not be prepared.
The invention described and claimed herein is not to be limited in scope by the
specific embodiments herein disclosed, since these embodiments are intended as
illustrations of several aspects of the invention. Any equivalent embodiments are
intended to be within the scope of this invention. Indeed, various modifications of the
invention in addition to those shown and described herein will become apparent to those
skilled in the art from the foregoing description. Such modifications are also intended to
fall within the scope of the appended claims.
What is claimed is:
1. A crosslinking composition comprising a compound having the structure of Formula
wherein Z is a hydrogen, an alkyl of 1 to about 18 parbon atoms, an aryl of about 6 to about
24 carbon atoms, an aralkyl of about 7 to about 24 carbon atoms, or -NR2R2;
each R2 is independently hydrogen, an alkyl, aryl or an aralkyl of 1 to about 18 carbon atoms
or R3;
wherein R3 is -CHROR1 or
wherein R 4s alkyl, halogenaied alkyl, -aryl, aralkyl, halogenated aralkyl, alkoxyalkyl or an
alkaryl, havina from 1 to about 24 carbon atoms; R1 is a hydrogen, alkyl, aryl, aralkyl
alkoxyalkyl or an alkaryl having from 1 to about 24 carbon atoms and wherein the alkyl or
aryl groups in each radical may optionally have heteroatoms in their structure;
B is a residue of a poly(alkylaldehyde) with n aldehyde groups;
n is an integer of 2 to about 8;
A is an amino moiety derived from the group consisting of guanamines and melamines.
2. The composition of claim 1, wherein said compound having the Formula I is an
oligomer having an number average molecular weight of from about 500 to about 5000.
3. A crosslinking composition comprising a compound having the structure of Formula II:
wherein Z is a hydrogen, an alkyl of 1 to about 18 carbon atoms, an aryl of 6 to about 24
carbon atoms, an aralkyl of 7 to about 24 carbon atoms, or-NHR2;
each R2 is independently hydrogen, an alkyl, aryl or an aralkyl of 1 to about 18 carbon atoms
or R3;
wherein R3 is -CHROR, or
wherein R is alkyl, halogenated alkyl, aryl, aralkyl, halogenated aralkyl, alkoxyalkyl or an
alkaryl having from 1 to about 24 carbon atoms; R1 is a hydrogen, alkyl, aryl, aralkyl.
alkoxyalkyl or an alkaryl having from 1 to about 24 carbon atoms; and wherein the alkyl or
aryl groups in each radical may optionally have heteroatoms in their structure;
B is a residue of a poly(alkylaldehyde) with n aldehyde groups;
n is an integer of 2 to about 8;
A is an amino moiety derived from the group consisting of guanamines and melamines,
4. The composition of claim 3, wherein said compound having the Formula II is in the
form of an oligomer having an number average molecular weight of from about 500 to about
5000.
5. The crosslinking composition of claim 3, wherein R1 is derived from an alcohol
selected from the group consisting of: methanol, ethanol, propanol, isopropanol, butanol,
isobutanol, cyclohexanol, phenol, benzyl alcohol, monoalkyl ether of ethylene or propylene
glycol and mixtures thereof.
6. The crosslinking composition oi claim 3, wherein Z is -NHR2, an alkyl of 1 to about 8
carbon atoms or an aryl of 6 to about 24 carbon atoms.
7. The crosslinking composition of claim 3, wherein B is derived from glutaraldehyde,
the reaction products of crotonaldehyde and polyhydritic alcohols or adducts and polymers
of a, ß-unsaturated aldehydes.
8. The crosslinking composition of claim 6, wherein R is C1 to C8 alkyl and R1 is a C1 to
C8 alkyl or a C1 to C8 alkoxyalkyl.
9. The crosslinking composition of claim 1, wherein about 10% to about 90% of the R2
groups on a molar basis are -CHROR1.
10. The crosslinking composition of claim 3, wherein R1 is derived from methanol,
butanol, monomethyl ether of ethylene glycol or monomethyl ether of propylene glycol.
11. A crosslinking composition comprising a compound having the structure of Formula
III:
wherein Z is a hydrogen, an alkyl of 1 to about 18 carbon atoms, an aryl of 6 to about 24
carbon atoms, an aralkyl of 7 to about 24 carbon atoms, or -NR2R2;
each R2 is independently hydrogen, an alkyl, aryl or an aralkyl of 1 to about 24 carbon atoms
or R3;
R3 is -CHROR,; wherein R1 is hydrogen, alkyl, aryl, aralkyl, or an alkaryl having from 1 to
about 24 carbon atoms; and R is an alkyl, halogenated alkyl, aryl, aralkyl, halogenated
aralkyl, alkoxyalkyl or an alkaryl having from 1 to about 24 carbon atoms;
wherein the alkyl or aryl groups in each radical may optionally have heteroatoms in their
structure and with the provisos that at least some R1 groups are derived from a mixture of two
or more alcohols and at least one R2 is R3.
12. A crosslinking composition comprising the structure of formula:
wherein Z is a hydrogen, an alkyl of 1 to about 18 carbon atoms, an aryl of 6 to about 24
carbon atoms, an aralkyl of 7 to about 24 carbon atoms, or -NHR2;
each R2 is independently hydrogen, an alkyl, aryl or an aralkyl of 1 to about 24 carbon atoms
or R3;
R3 is -CHROR1, wherein R1 is hydrogen, alkyl, aryl, aralkyl or an alkaryl having from 1 to
about 24 carbon atoms; and R is an alkyl, halogenated alkyl, aryl, aralkyl, halogenated
aralkyl, alkoxyalkyl or an alkaryl having from 1 to about 24 carbon atoms;
wherein the alkyl or aryl groups in each radical may optionally have heteroatoms in their
structure and with the provisos that at least some R1 groups are derived from a mixture of two
or more alcohols and at least one R2 is R3.
13. The crosslinking composition of claim 12, wherein R1 is derived from two or more
alcohols selected from the group consisting of: methanol, ethanol, propanol, isopropanol,
butanol, isobutanol, cyclohexanol, phenol, benzyl alcohol, monoalkyl ether of ethylene or
propylene glycol and mixtures thereof.
14. The crosslinking composition of claim 12, wherein about 10% to about 90% of the R2
groups on a molar basis are R3.
15. The crosslinking composition of claim 12, wherein Z is -NHR2, an alkyl of 1 to 8
carbon atoms or an aryl of 6 to 24 carbon atoms.
16. The crosslinking composition of claim 15, wherein R is d to C8 alkyl and R1 is a C1 to
C8 alkyl or a C1 to C8 alkoxyalkyl.
17. A process foproducing the crosslinking composition of claim 3, comprising reacting a
melamine and/or guanamine with a mono(alkylaldehyde) a Doly(alkylaldehyde) and an
alcohol.
18. The process off claim 17, wherein said alcohol is selected from the group consisting
of: methanol, ethanol, propanol, isopropanol, butanol, isobutanol, cyclohexanol, phenol,
benzyl alcohol, monoalkyl ether of ethylene or propylene glycol and mixtures thereof.
19. The process of claim 17, wherein said poly(alkylaldehyde) is glutaraldehyde, the
reaction products of crotonaldehyde and polyhydritic alcohols or adducts and polymers of
a, ß-unsaturated aldehydes.
20. The process of claim 17, wherein said mono(alkylaldehyde) is selected from the
group consisting of acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde,
valeraldehyde, chloral, caproaldehyde, octylaldehyde, acrolein and crotonaldehyde.
21. The process of claim 17, wherein the molar ratio of amino groups in said melamine
or guanamine to mono(alkylaldehyde) is about 1:0.1 to about 1:30, the molar ratio of amino
groups in said melamine or guanamine to the aldehyde groups in the poly(alkylaldehyde) is
about 0.1:1 to about 50:1 and the molar ratio of aldehyde groups in said
mono(alkylaldehyde) and said poly(alkylaldehyde) to alcohol is about 1:0.2 to about 1:50.
22. The process of claim 17, further comprising conducting the reaction in the presence of
an acid catalyst.
23. The process of claim 17, further comprising conducting the reaction in the presence of
a base catalyst.
24. A process for producing the crosslinking composition of claim 12, comprising reacting
a melamine or guanamine with a mono(alkylaldehyde) and two or more alcohols.
25. The process of claim 21, wherein said two or more alcohols are selected from the
group consisting of: methanol, ethanol, propanol, isopropanol, butanol, isobutanol,
cyclohexanol, phenol, benzyl alcohol, monoalkyl ether of ethylene or propylene glycol and
mixtures thereof.
26. The process of claim 21, wherein said alkylaldehyde is selected from the group
consisting of acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde,
valeraldehyde, chloral, caproaldehyde, octylaldehyde, acrolein and crotonaldehyde.
27. The process of claim 21, wherein the molar ratio of amino groups in said melamine or
guanamine to mono(alkylaldehyde) is about 1:0.1 to about 1:30, and the molar ratio of
mono(alkylaldehyde) to alcohols is about 1:0.2 to about 1:50.
28. The process of claim 21, further comprising conducting the reaction in the presence of
an acid catalyst.
29. The process of claim 21, further comprising conducting the reaction in the presence of
a base catalyst.
30. A crosslinking composition comprising an oligomer compound having the Formula
IV:
wherein Z is a hydrogen, an alkyl of 1 to about 18 carbon atoms, an aryl of 6 to about 24
carbon atoms, an aralkyl of 7 to about 20 carbon atoms, or -NR2R2;
each R2 is independently hydrogen, an alkyl, aryl or an aralkyl of 1 to about 24 carbon atoms
or R3;
R3 is -CHROR1; wherein R1 is hydrogen, an alkyl, aryl, aralkyl, or an alkaryl having from 1 to
about 24 carbon atoms and R is an alkyl, halogenated alkyl, aryl, aralkyl, halogenated aralkyl,
alkoxyalkyl or an alkaryl having from 1 to 24 carbon atoms;
n is 2 to about 50;
wherein the alkyl or aryl groups in each radical may optionally have heteroatoms in their
structure and with the provisos that at least some R groups are derived from a mixture of two
or more alcohols and at least one R2 is R3.
31. A crosslinking composition comprising an oligomer compound having the Formula
V:
wherein Z is a hydrogen, an alkyl of 1 to about 18 carbon atoms, an aryl of 6 to about 24
carbon atoms, an aralkyl of 7 to about 24 carbon atoms, or -NR2R2;
each R2 is independently hydrogen, an alkyl, aryl or an aralkyl of 1 to about 18 carbon atoms
or R3;
R3 is -CHROR1; wherein R1 is hydrogen, an alkyl, aryl, aralkyl, or an alkaryl, having from 1 to
about 24 carbon atoms and R is an alkyl, nalogenatd alkyl, aryl, aralkyl, halogenated aralkyl,
alkoxyalkyl or an alkaryl, having from 1 to about 24 carbon atoms;
n is 2 to about 50;
wherein the alkyl or aryl groups in each radical may optionally have heteroatoms in their
structure and with the provisos that at least some R1 groups are derived from a mixture of two
or more alcohols and at least one R2 is R3.
32. A curable composition comprising:
(i) the crosslinking composition of claim 3;
(ii) an active-hydrogen containing material; and
(iii) optionally a cure catalyst.
33. A curable composition comprising:
(iv) the crosslinking composition of claim 12;
(v) an active-hydrogen containing material; and
(vi) optionally a cure catalyst.
A crosslinking composition comprising a compound having the structure of
Formula 1:
wherein Z is a hydrogen, an alcyl of 1 to about 18 carbon atoms, an aryl of
about 6 to about 24 carbon atoms, an aralkyl of about 7 to about 24 carbon
atoms, or -NR2R2; each R2 is independently hydrogen, an alkyl, aryl or an aralkyl
of 1 to about 18 carbon atoms or R3; wherein R3 is -CHROR1 or
wherein R is alcyl, halogenated alkyl, aryl, arakyl, halogenated aralkyl,
alcoxyalkyl or an alkaryl, having from 1 to about 24 carbon atoms; R1 is
hydrogen, alkyl, aryl, aralkyl, alkoxyalkyl or an alkaryl having from 1 to about 24
carbon atoms; and wherein the alkyl or aryl groups in each radical may
optionally have heteroatoms in their structure; B is a residue of
poly(alkylaldehyde) with n aldehyde groups; n is an integer of 2 to about 8;
A is an amino moiety derived from the group consisting of guanamines and
melamines.

Documents:


Patent Number 223801
Indian Patent Application Number 01768/KOLNP/2005
PG Journal Number 39/2008
Publication Date 26-Sep-2008
Grant Date 23-Sep-2008
Date of Filing 06-Sep-2005
Name of Patentee CYIEC TECHNOLOGY CORP.
Applicant Address 300 DELAWARE AVENUE, WILMINGTON, DE
Inventors:
# Inventor's Name Inventor's Address
1 JACOBS III, WILLIAM 9 OLD LANTERN, BETHEL, CT 06801
2 LIN, LON-TANG, WILSON 3 FALLS LANE, BETHEL, CT 06801
3 VERHAGE, DIMITRI PLANTAGE 16, VS KRIMPEN AAN DEN IJSSEL
4 WU, KUANG-JONG 55 HONEYSUCKLE HILL LANE, EADTON, CT 06612
PCT International Classification Number C08G 12/40, 12/42
PCT International Application Number PCT/US2004/005719
PCT International Filing date 2004-02-26
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 10/403,442 2003-03-31 U.S.A.