Title of Invention

A METHOD FOR FABRICATING AN OPTICAL DEVICE AND AN OPTICAL DEVICE HAVING LIGHT-ABSORBING MASK

Abstract The invention relates to a method for fabricating an optical device (200 or 300) having a light-absorbing mask, the method comprising at least one active optical component and inactive areas formed over a transparent substrate (202), the method comprising: determining an area (216) of the optical device (200 or 300) that is to be light-absorbing wherein the determined area is laterally offset with respect to the at least one active optical component to mask off at least part of the inactive areas; fabricating a light-absorbing mask (218, 220 and 204 or 212) over the substrate (202) for masking in the determined area; and fabricating a mechanical membrane (210) over the light-absorbing mask, said mechanical membrane (210) forming part of said active optical component, the mechanical membrane (210) being configured to be driven closer to the substrate (202) to produce an optical response.
Full Text A DEVICE-HAVING A LIGHT ADSORBING MASK AND A METHOD FOR
FABRICATING SAME
FIELD OF THE INVENTION
[0001] This invention relates to optical devices. In particular it relates to
micro-optical electromechanical devices and to a method for fabricating same.
BACKGROUND
[0002] Today, a wide variety of optical devices such as
Microelectromechanical Systems (MEMS) devices may be fabricated using
micromachining and microelectronic fabrication techniques.
[0003] For example in some cases, MEMS devices may include optical
components and are more specifically referred to as micro-opto-electro-
mechanical systems or "MOEMS" devices. One example of such a MOEMS
device is the Interferometric Modulator (IMOD) device described in U.S. Patent
5.835,255. The IMOD devices of U.S. Patent 5,835,255 may be fabricated in
an array and used in a reflective display wherein each IMOD functions as a
pixel to provide a desired optical response.
[0004] In order to improve the desired optical response, the contribution of
reflected ambient light from certain inactive areas of the (MODS should be
reduced. Thus, these inactive areas of the IMODS should be made to be
light-absorbing, typifying a need to mask-off or make light-absorbing inactive
areas in optical devices in general.
SUMMARY OF THE INVENTION
[0005] According to one aspect of the invention there is provided a method
for fabricating a device comprising at least one optical component formed on a
transparent substrate, the method comprising determining an area of the
substrate that is to be light absorbing; and fabricating a light-absorbing mask on
the determined area prior to fabricating at least one optical component.
[0006] According to a second aspect of the invention, there is provided a
device comprising a substrate; and first and second optical components formed
on the substrate, wherein the first optical component has two modes, each
producing a different optical response to light incident thereupon, and wherein
the second optical component absorbs the light and is formed on the substrate
before the first optical component is formed.
[0007] According to a third aspect of the invention there is provided a method
for fabricating a device, the method comprising forming a static optical
component on a substrate, wherein the static optical component absorbs light;
and forming a dynamic optical component adjacent to the static optical
component, wherein the dynamic optical component comprises a driven and an
undriven state each having a characteristic optical response to incident light.
[0008] According to a further aspect of the invention there is provided a
device comprising a substrate; a static optical component on the substrate,
wherein the static optical component absorbs the light; and a dynamic optical
component adjacent to the static optical component, wherein the dynamic
optical component comprises a driven and an undriven state each having a
characteristic optical response to incident light.
BRIEF DESCRIPTION OF THE DRAWINGS
[0009] Figure 1 of the drawings shows an end view of a display having
inactive areas which have been masked-off in accordance with the present
invention;
[0010] Figure 2 of the drawings shows a cross-section through a MEMS
device having a black mask or light-absorbing region in accordance with one
embodiment of the invention;
[0011] Figure 3 shows another embodiment of a MEMS device having a
black mask or light-absorbing region in accordance with another embodiment of
the invention;
[0012] Figure 4 shows the various layers making up the light-absorbing or
black mask layers of the MEMS device Figure 2; and
[0013] Figures 5A to 5G show various steps in the fabrication of a MEMS
device in accordance with the invention.
DETAILED DESCRIPTION
[0014] In the following description, for purposes of explanation, numerous
specific details are set forth in order to provide a thorough understanding of the
invention. It will be apparent, however, to one skilled in the art that the
invention can be practiced without these specific details.

[0015] Reference in this specification to "one embodiment" or "an
embodiment" means that a particular feature, structure, or characteristic
described in connection with the embodiment is included in at least one
embodiment of the invention. The appearances of the phrase "in one
embodiment" in various places in the specification are not necessarily all
referring to the same embodiment, nor are separate or alternative
embodiments mutually exclusive of other embodiments. Moreover, various
features are described which may be exhibited by some embodiments and not
by others. Similarly, various requirements are described which may be
requirements for some embodiments but not other embodiments.
[0016] The present invention discloses, in one embodiment, a MEMS device
in the form of a MOEMS device comprising a static optical component and a
dynamic optical component, wherein the static optical component acts as
"black mask" to absorb ambient or stray light thereby to improve the optical
response of the dynamic optical component.
[0017] Although a MEMS device which includes an IMOD will be used to
describe the present invention, it is to be understood that the invention covers
other optical devices such as various imaging display and optoelectronic
devices in general, which have inactive areas which are required to be light-
absorbing, but which do not include IMOOS.
[0018] Referring now to Figure 1 of the drawings, an end view of display
device 100 is shown. It is to be understood that many components of the
display 100 have been omitted so as not to obscure the present invention. The
display device 100 includes two active optical components in the form of IMOD
devices 104 which typically comprise an arrangement of reflective films which
when driven towards a substrate 102 in a direction indicated by arrows 106
produces a desired optical response. The operation of the IMOD devices 104
has been described in U.S. Patent 5,835,255 which is hereby incorporated by
reference. Reference numerals 108 indicate inactive areas of the IMOD
devices 104 which are required to be light-absorbing or to function as a "black
mask" so that when a viewer looks at the display 100 from a direction indicated
by arrow 110, the actual optical response produced by the IMOD devices 104 is
not degraded by the reflection of ambient light from the inactive areas 108.

[0019] Each inactive area 108 may be fabricated from materials selected to
have an optical response which absorbs or attenuates light. According to
embodiments of the invention, each inactive area 108 may be fabricated as a
stack of thin films. For example, in one embodiment, the stack of thin films may
comprise a non-light-absorbing dielectric layer sandwiched between two light
reflecting chrome layers, as will be more fully described below. In other
embodiments, the inactive areas 108 may comprise a single layer of organic or
inorganic materials which attenuates or absorbs light.
[0020] Figure 2 of the drawings shows a cross section through an IMOD
device 200 in accordance with one embodiment of the invention. The IMOD
device 200 includes an active component comprising a chrome reflective layer
204, a silicon oxide layer 206, an air gap 208, and a mechanical membrane
210 fabricated on a substrate 202. The mechanical membrane 210 is
supported by polymer posts 212. In use, mechanical membrane 210 is driven
to contact silicon oxide layer 206 to produce a desired optical response when
viewed from the direction indicated by arrow 214.
[0021] Areas of each IMOD 200 on which the polymer posts 212 are formed
are not part of the active component of the IMOD and therefore need to be
light-absorbing in order to reduce stray or ambient light interfering with the
desired optical response of the active IMOD components. These inactive areas
define static components which are indicated by encircled areas 216, and are
fabricated to form a stack of films selected so that the stack has the optical
property that it is light-absorbing. In one embodiment, the invention involves
determining which areas of substrate 202 needs to be light-absorbing and
fabricating a light-absorbing or black mask on the determined areas prior to
forming the active optical components of the IMODS. The black mask may
include a stack of thin films which in one embodiment may comprise a chrome
base 218, an oxide middle layer 220 and the chrome layers 204.
[0022] Referring now to Figure 3 of the drawings, reference numeral 300
generally indicates another embodiment of an IMOD device in accordance with
one aspect of the invention. IMOD device 300 is similar to the IMOD device
200 and accordingly like or similar reference numerals have been used to
indicate like or similar components. The main difference between the IMOD

300 and the IMOD 200 is that the entire polymer post 212 comprises of an
organic material e.g., a photo-definable black resin such as the material known
as DARC 100 by Brewer Science Inc., that functions effectively as a light-
absorbing or black mask. One advantage of the IMOD 300 is that the posts
212 perform two functions. Firstly, the posts 212 function as a mechanical
support for mechanical membrane 210. Secondly the posts 212 function as an
optical mask to mask off or make light-absorbing inactive areas of the IMOD.
[0023] Figure 4 shows a schematic drawing wherein various layers making
up thin film black mask in accordance with one embodiment of the invention is
shown.
[0024] Referring to Figure 4, a thin film black mask 402 shown fabricated on
substrate 400. The black mask 402 comprises three layers of film which
includes a chrome layer 404, a silicon oxide layer 406 and an aluminum layer
408. Various materials may be selected to produce the black mask. In one
embodiment, the films which make up the black mask are the same films which
are used in the fabrication of the active IMOD components, thus making it
possible to use the same deposition parameters to fabricate the inactive and
the active components.
[0025] The various stages in the manufacture of the thin film black mask 402
will now be described with reference to Figures 5A-5G of the drawings.
[0026] Referring to Figure 5A, after an initial preparatory step wherein a
glass substrate 500 is prepared, e.g. cleaned, a reflective chrome layer 502 is
deposited, e.g. by sputter coating it onto substrate 500. In one embodiment,
the thickness of chrome layer 502 may be about 60 angstroms.
[0027] Thereafter, the chrome layer 502 is patterned and developed using
conventional techniques to leave outcrops of chrome which will serve as a base
layer for a thin film stack which serves as a black mask (see Fig. 5B).
[0028] A black mask oxide layer, e.g. SiO2, typically about 300 to 800
angstroms is then deposited by sputter coating. The thickness of the black
mask oxide layer depends on the quality of the black state that is required.
[0029] Next, a further reflective chrome layer 506 is sputter coated on the
black mask oxide layer 504. The layer 506 is typically about 60 angstroms
thick, its exact thickness being dependent on the required brightness of the
ultimate display, a thinner layer yielding a brighter display.
[0030] Thereafter, layers 508 and 510 are respectively sputter coated on
layer 506. Layer 508 comprises silicon oxide and is about 300 to 800
angstroms whereas the layer 510 is a sacrificial layer comprising molybdenum
and will typically be about 0.2 to 1.2 microns thick. Thus, layers 504 to 510
define a thick film stack on substrate 502 as can be seen in Figure 5C.
[0031] Referring to Figure 50, a patterning and an etching step is performed
to form recesses 512 which extend through the thin film stack to chrome
outcrops 502.
[0032] Referring to Figure 5E, polymer posts 514 are formed in recesses 512
by spinning a negative photo-resist material, e.g. the material known as NR7-
350P by Futurex Inc., over the thin film stack; exposing it through a suitable
mask and developing to form posts 514. These steps are conventional and
therefore have not been further described.
[0033] Referring now to Figure 5F, a mechanical membrane 516 comprising
an aluminum alloy, in one embodiment, is deposited by sputter coating it onto
the molybdenum layer 510.
[0034] Thereafter, the molybdenum layer 510 is etched leaving an air gap
516 as shown in Figure 5G of the drawings.
[0035] Although the present invention has been described with reference to
specific exemplary embodiments, it will be evident that the various modification
and changes can be made to these embodiments without departing from the
broader spirit of the invention as set forth in the claims. Accordingly, the
specification and drawings are to be regarded in an illustrative sense rather
than in a restrictive sense.
We Claim
1. A method for fabricating an optical device (200 or 300) having a light-
absorbing mask, the method comprising at least one active optical
component and inactive areas formed over a transparent substrate (202),
the method comprising:
determining an area (216) of the optical device (200 or 300) that is to be
light-absorbing wherein the determined area is laterally offset with respect
to the at least one active optical component to mask off at least part of
the inactive areas;
fabricating a light-absorbing mask (218, 220 and 204 or 212) over the
substrate (202) for masking in the determined area; and
fabricating a mechanical membrane (210) over the light-absorbing mask,
said mechanical membrane (210) forming part of said active optical
component, the mechanical membrane (210) being configured to be
driven closer to the substrate (202) to produce an optical response.
2. The method as claimed in claim 1, wherein the active optical component
comprises a pixel, said inactive areas bordering the pixel.
3. The method as claimed in claim 1, wherein the active optical component
comprises part of an interferometric modulator.
4. The method as claimed in claim 1, wherein the light - absorbing mask
(218, 220 and 204 or 212) comprises an organic material.
5. The method as claimed in claim 4, wherein the organic material comprises
a photo - definable black resin.
6. The method as claimed in claim 1, wherein the mechanical membrane
(210) includes driven and an undriven state each state having a
characteristic optical response to incident light, wherein the mechanical
membrane (210) is driven closer to the substrate (202) in the driven state
than in the undriven state; and wherein the mechanical membrane (210)
is formed over the light absorbing mask (218, 220 and 204 or 212).
7. The method as claimed in claim 1, comprising fabricating at least one
support (212) positioned over the substrate (202) to support the
mechanical membrane (210).
8. The method as claimed in claim 7, wherein said at least one support (212)
comprises a post.
9. The method as claimed in claim 8, wherein said at least one post
comprises at least part of said inactive areas (216).
10.The method as claimed in claim 1, comprising fabricating a reflective layer
(204) over said substrate (202), wherein said mechanical membrane (210)
being disposed over said reflective layer (204).
11.The method as claimed in claim 1, wherein the light - absorbing mask
reduces reflection of ambient light from the inactive areas that passes
through the substrate (202) and is seen by a viewer.
12.The method as claimed in claim 1, wherein the light - absorbing mask
(218, 220 and 204 or 212) is fabricated prior to fabricating the at least
one active optical component.
13.The method as claimed in claim 1, wherein the light - absorbing mask
(218, 220 and 204 or 212) is fabricated prior to fabricating the mechanical
membrane (210).
14.The method as claimed in claim 8, wherein said post functions as a black
mask.
15.An optical device (200 or 300) having a light - absorbing mask,
comprising:
a substrate (202); and
first and second optical components (218, 220 and 204 or 212) formed on
the substrate (202),
wherein the first optical component (218,220,204) has a first and a
second mode, each mode producing a different optical response to light
incident thereupon;
wherein the first optical component comprises a mechanical membrane
(210) that is driven closer to the substrate (202) in the first mode than in
the second mode;
wherein the second optical component (218, 220 and 204 or 212) absorbs
light; and
wherein the second optical component (218, 220 and 204 or 212) is
formed over the substrate (202) and below the mechanical membrane
(210).
16.The device as claimed in claim 15, wherein the first optical component
comprises part of an interferometric modulator.
17.The device as claimed in claim 15, wherein the second optical component
(218, 220 and 204 or 212) comprises an organic material.
18. The device as claimed in claim 15, comprising at least one support (212)
positioned over the substrate (202) to support the mechanical membrane
(210).
19.The device as claimed in claim 18, wherein said support (212) comprises a
post.
20.The device as claimed in claim 19, wherein said second optical component
(218, 220 and 204 or 212) reduces reflection of ambient light reflected
from said post that passes through the substrate (202) and is seen by a
viewer.
21.The device as claimed in claim 15, wherein said second optical component
(218, 220 and 204 or 212) comprises at least one post to support said
mechanical membrane (210), said at least one post that functions as a
black mask.
22.The device as claimed in claim 21, wherein said at least one post
comprises a black resin.
23.The device as claimed in claim 15, comprising a reflective layer (204) over
said substrate (202), said mechanical membrane (210) being disposed
over said reflective layer (204).
24.The device as claimed in claim 15, wherein the second optical component
(218, 220 and 204 or 212) forms a support for the first optical
component.
25.The device as claimed in claim 15, wherein the second optical component
(218, 220 and 204 or 212) forms a support for the mechanical membrane
(210).
26.The device as claimed in claim 15, wherein the second optical component
(218, 220 and 204 or 212) comprises a black mask.
27.The device as claimed in claim 18, wherein the at least one support (212)
comprises an organic an organic material.
28.The device as claimed in claim 27, wherein the organic material comprises
a photo - definable black resin.
The invention relates to a method for fabricating an optical device (200 or 300)
having a light-absorbing mask, the method comprising at least one active optical
component and inactive areas formed over a transparent substrate (202), the
method comprising: determining an area (216) of the optical device (200 or 300)
that is to be light-absorbing wherein the determined area is laterally offset with
respect to the at least one active optical component to mask off at least part of
the inactive areas; fabricating a light-absorbing mask (218, 220 and 204 or 212)
over the substrate (202) for masking in the determined area; and fabricating a
mechanical membrane (210) over the light-absorbing mask, said mechanical
membrane (210) forming part of said active optical component, the mechanical
membrane (210) being configured to be driven closer to the substrate (202) to
produce an optical response.

Documents:

110-KOLNP-2005-(07-02-2012)-CORRESPONDENCE.pdf

110-KOLNP-2005-ASSIGNMENT.pdf

110-KOLNP-2005-CORRESPONDENCE 1.3.pdf

110-KOLNP-2005-CORRESPONDENCE-1.1.pdf

110-KOLNP-2005-CORRESPONDENCE-1.2.pdf

110-KOLNP-2005-CORRESPONDENCE.pdf

110-KOLNP-2005-FOR ALTERATION OF ENTRY IN THE PATENT REGISTER.pdf

110-KOLNP-2005-FORM 13.pdf

110-KOLNP-2005-FORM 16.pdf

110-KOLNP-2005-FORM-27.pdf

110-kolnp-2005-granted-abstract.pdf

110-kolnp-2005-granted-assignment.pdf

110-kolnp-2005-granted-claims.pdf

110-kolnp-2005-granted-correspondence.pdf

110-kolnp-2005-granted-description (complete).pdf

110-kolnp-2005-granted-drawings.pdf

110-kolnp-2005-granted-examination report.pdf

110-kolnp-2005-granted-form 1.pdf

110-kolnp-2005-granted-form 13.pdf

110-kolnp-2005-granted-form 18.pdf

110-kolnp-2005-granted-form 2.pdf

110-kolnp-2005-granted-form 26.pdf

110-kolnp-2005-granted-form 3.pdf

110-kolnp-2005-granted-form 5.pdf

110-kolnp-2005-granted-form 6.pdf

110-kolnp-2005-granted-reply to examination report.pdf

110-kolnp-2005-granted-specification.pdf

110-KOLNP-2005-OTHERS-1.1.pdf

110-KOLNP-2005-OTHERS-1.2.pdf

110-KOLNP-2005-OTHERS.pdf

110-KOLNP-2005-PA.pdf


Patent Number 225429
Indian Patent Application Number 110/KOLNP/2005
PG Journal Number 46/2008
Publication Date 14-Nov-2008
Grant Date 12-Nov-2008
Date of Filing 31-Jan-2005
Name of Patentee IDC, LLC
Applicant Address 2415 THIRD STREET, SUITE 235, SAN FRANCISCO, CA
Inventors:
# Inventor's Name Inventor's Address
1 MILES, MARK, W. BUILDING 43, FORT MASON, SAN FRANCISCO, CA 94123
PCT International Classification Number G02F 1/03, G02B 1/10
PCT International Application Number PCT/US2003/020433
PCT International Filing date 2003-06-27
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 10/190,400 2002-07-02 U.S.A.