Title of Invention | METHOD AND APPARTATUS FOR MANUFACTURING A JACK OR HYDRAULIC, PNEUMATIC OR OLEPNEUMATIC CYLINDER |
---|---|
Abstract | Method for manufacturing a jack or hydraulic, pneumatic and/or olepneumatic cylinder of the kind comprising a tubular cylindrical body (4) at the ends thereof a bottom (1) and a head (5) are fastened, inside thereof a piston (2) slides integral with a rod (3), characterized in that in order to fasten in an irremovable way the head (5) and the bottom (1) to the tubular body (4) of the jack without threading and/or welding procedures, it provides implementing at the end of the tubular body a controlled plastic deformation extended to the whole thickness of the tubular body itself, apt to locally deform the ends thereof by generating on each of them at least a circumferential ring radially projecting inwards so as to insert in atleast a specific groove (7) arranged on the bottom (1) and on the head (5) inserted in the tube itself, respectively, so as to lock them in sito. Said plastic deformation guarantees the mechanical seal of the coupling between tube and bottom and tube and head. |
Full Text | METHOD AND APPARATUS FOR MANUFACTURING A JACK OR HYDRAULIC, PNEUMATIC OR OLEPKEUMATIC CYLINDER. The present invention substantially relates to the method and an apparatus for manufacturing a jack or hydraulic, pneumatic or oleopneumatic cylinders. More specifically, the invention relates to a method for "closing" cylinder? by means of mechanical "rolling". Currently, the manufacturing of jacks and hydraulic, pneumatic or oleopneumatic cylinders provides welding the: bottom and the head to the tubular body of the cylinder itself, with evident labor and processing costs, as well as problems of inner tensions of the materials caused by the high temperatures locally reached during the welding procedures. Other processes used for closing cylinders., such as for example coining and lamination, have shown serious drawbacks due both to the presence of not-in-tolerance crackings in the plastic deformation area which cause a production wast.e of about 20%, and to the dishomogeneity of the plastic deformation with consequent failure in locking and mechanical sealing involving a production waste of about 70%. The main object of the present invention is to improve the implementing procedures, more precisely the step of closing hydraulic, pneumatic and oleopneumatic cylinders. This has been achieved, according to the invention, by providing a process which provides the elimination of welding and threading procedures, by replacing them with a particular processing of plastic deformation implemented by means of mechanical rolling. Means for implementing the above mentioned method are also object of the present invention. The inventive concept underlying the invention is to perform the "closing" of a cylinder or jack without threading and/or welding procedures in order to join the head and the bottom to the tubular body of the jack itself. These procedures are easily and cheaply implemented by means of a particular locking/closing method which performs a "plastic" deformation controlled by a rolling process implemented by a specific apparatus. According to the invention, in order to eliminate said drawbacks a mechanical rolling is provided implemented by a roiling machine equipped with a special, preferably multiroller, shaping head allowing to drastically reduce processing waste. A better understanding of the invention will take place with the following description and by referring to the accompanying drawings which illustrate a preferred embodiment, by way of example. In the accompanying drawings : figure 1 schematically shows an exploded view of the components of a jack according to the invention; figure 2 schematically shows the jack of fig. 1 already assembled and cLosed, ready to be used; figure 3 is a perspective view illustrating the multiroller head during the processing implementing the plastic deformation; figure 4 shows a second way for obtaining the plastic deformation according to the invention; figure 5 is a tridimensional section showing an exploded view of the end part of the jack head after the deformation; and figure 6 is a low-enlarged photographic image of the section. The present invention allows eliminating, in the procedures for manufacturing jacks and hydraulic, pneumatic and oleopneumatic cylinders, the threading and welding mechanical procedures by replacing them with a particular rolling procedure. As it is know, a jack (figures 1 and 2) is constituted by a bottom 1, a liner or tube 4, a piston 2, a rod 3 and a head 5. The bottom 1 and the head 5 must, be fastened in an irremovable way to the liner 4: the first one; operating as closing member of the cylinder or the jack itself, the second one as member allowing the sliding of the rod 3 pushed by the used liquid or gas. The rod 3, in turn, is obviously integral with the piston 2. The latter, which is free to slide inside the liner or tube 4, is hydraulically or pneumatically sealed with one or more preferably ring-like (O-ring) gaskets G inserted in specific grooves 6 arranged on the piston 2 itself. The same system of gaskets G and grooves 6 is utilized to guarantee the seal between the rod 3 and the head 5, as well as for the seal between bottom 1 and liner 4 and between head 5 and liner 4. As it was already mentioned, in order to manufacture a jack several different methods are currently used utilizing two different techniques to join the head to the tube and the bottom to the tube: threading and welding. In practice, both techniques can be used both to fasten the bottom to the tube and the head to the tube, or more frequently the welding for anchoring the bottom to the tube and the threading for anchoring the head to the tube. The welding procedure, in particular, apart from the time required for the implementation thereof, causes a stress to the tube 4 and deforms it, by reducing the average life time of the cylinder or the jack itself. The rolling procedure according to the invention is performed by means of the above-mentioned mechanical rolling machine equipped with a special shaping multiroller head which, by properly acting on the tube, implements in an uniform, reproducible way and without crackings, a predetermined plastic deformation allowing the perfect mechanical seal in the coupling between tube 4 and bottom 1 and between tube 4 and head 5. To this purpose, the bottom and the head are equipped with at least a respective outer annular groove 7 wherein the deformed area of the tube 4 fits. As shown by figure 2, the innermost groove 6 of the bottom 1 and that of the head 5 act as seat for the gasket G of appropriate material which guarantees the hydraulic or pneumatic seal, whereas the respective outer grooves 7 are apt to receive the material of the tube 4 which is "shifted" by plastic deformation with the mechanical rolling processing which is described. Said plastic deformation of the tube or liner 4, in fact, forms an outer annular groove and a corresponding inner ring projecting in radial direction towards the axis of the tube itself, which ring, indeed, is apt to insert into a corresponding annular groove 7 arranged both on the bottom 1 and on the head 5. Advantageously, the utilized mechanical processing guarantees a uniform contact, inside the grooves 7, between the tube 4 and the components (bottom 1 and head 5) fastened at the ends thereof. The processing quality has been checked by means of scan electron microscopy analysis on several tube samples. SEM observations have involved the outer surface, the inner surface and the manufact section which has been prepared for the observation with metallographic techniques. The survey has demonstrated that there are crackings only on the outer surface in very small quantities and they are limited to a depth lower than 10-20m; the inner surfaces do not have crackings. In figure 6 a low-enlarged image of a section of the junction area between tube and bottom or head is shown, made according to the Longitudinal axis of the tube itself. The mechanical rolling procedures are performed by anchoring the preassembled cylinder to the special shaping multiroller head TM implementing the closing procedure. The procedure can take place in cold and/or hot status, with variable pressures in a very wide range and with likewise very variable revolution speeds of the shaping rollers R1: said several parameters, upon setting up the production, have to be fastened according to sizes and thicknesses of the tube 4, features of the constituting material, etc. The time for performing each rolling procedure var ies from few seconds to a maximum of 50-60 seconds. With respect to the solutions adopted up to now, the process which is described advantageously allows to securely anchor the bottom 1 and the head 5 to the tube 4 by reducing the production waste from values higher than 70% to values lower than 0,1". It is also to be pointed out that, the experimental data on a prototype production of 2000 pieces have demonstrated an absolute reproducibility of the rolling processing with respect to the structural homogeneity of the involved tube area, to the dimensional reproducibility of the generated plastic deformation, to the complete and homogeneous "filling-up" of the locking seat 7 (fig.6). These conditions guarantee an optimum mechanical and hydraulic seal. With the tests performed on the manufactured prototypes it has been found out that both :he mechanical and hydraulic seal are better than the current products available on the market. Furthermore, the average Life of the product obtained according to the invention is longer than that of the currently known cylinders and jacks, since with the process so far described the liner 4 is not subjected to deformations on allowances with the other components since no welding procedure has been performed. From the operating point of view, the "rolling" process so far described is performed as follows : a special shaping multiroller head TM of a rolling machine is positioned at the area of the tube or liner 4 wherein the plastic deformation must occur which generates the outer annular groove 7 thereto an inner annular jut of the liner itself corresponds, which radially projects towards the axis of the tube 4. Once in position, the shaping rollers R1 are approached in an uniform and gradual way to the tube 4, along a radial direction. During the approaching step to the tube 4, the rollers Rl symmetrically move in radial direction with respect to the cylinder and also have the same simultaneous rotating motion. In this way, once in contact with the tube 4 which is free to rotate about its own axis integrally with the bottom 1 and/or the head 5 positioned inside thereof, the: rolling machine causes to the same, by means of an adequate pressure of the shaping rollers Rl, a localized and predetermined annular plastic deformation (in cold or hot status). The rotating motion of the rollers Rl and, by the dragging effect, of the tube 4 (in opposite direction with respect to the rollers) makes such processing easier, by making optimum and constant the material shifting towards the inside of the corresponding groove 7 of the bottom 1 and/or of the head 5 by performing the locking thereof. Figure 5 shows an exploded view wherein the deformation subjected by the tube 4 at the head 5 is clearly seen. Such procedure avoids the cracking formation both outside and inside the tube 4 and allows an integral lock between tube and end components, without radial and/or axial slacks. From what said, it is clear that the process which is described substantially comprises the steps of: 1. Placing the gaskets G inside the corresponding annular grooves 6 arranged on the bottom 1; 2. Inserting the bottom 1 in the predetermined position thereof at one end of the liner 4 of the jack; 3. Positioning the multiroller head TM at the above- mentioned first end of the tube 4; 4. Contemporaneously approaching the shaping rollers R1 to the outer cylindrical surface of the tube 4 and performing the plastic deformation by means of rolling; 5. Taking the shaping rollers Rl away from the cylinder; 6. Placing the gaskets G inside the corresponding annular grooves 6 arranged on the piston 2 integral with the rod 3; 7. Placing the gaskets G inside the corresponding annular grooves 6 arranged on the outer and inner cylindrical surface of the head 5; 8. Inserting the piston 2 inside the tube 4 as well as the head 5, already inserted onto the rod 3, in its predetermined position at a second end of the liner 4 of the jack; 9. Repeating the steps 3 to 6 with respect to the above-mentioned second end. Obviously, it is also possible to exchange the sequence of steps to fasten first the head 5 and then the bottom 1. Furthermore, it has just to be noted that it is also possible to provide two multiroller heads TM which contemporarily act on the two ends of the cylinders 4, after having placed the parts to be fastened and the piston 2 with the rod 3 into the corresponding correct positions, already equipped with gaskets G. In the embodiment example just illustrated (fig. 3) , the multiroller head TM prefex-ably provides three shaping rollers R1 placed at 12 0° to make the apparatus self-centering, which guarantee an absolutely uniform and symmetrical distribution of loads and stresses, by reducing to the minimum the deformations and inner tensions which could create asymmetry and/or cracks. Anyway, it is clear that a number of rollers lower or higher than three can also be used. At last, a variant of the present invention shown in figure 4, provides replacing the multiroller head TM by a shaping-ring matrix Ml. With respect to the preceding solution, the plastic deformation is performed by a shaping ring constituted by two half-rings (matrixes) Ml, shaped on the inside, which gradually approach, by rotating at predetermined speed, to the tube 4 of the cylinder, by implementing the wished plastic deformation. An additional variant of the head which, performs the plastic deformation according to the invention, as alternative to the shaping rollers (Rl), provides a single shaping roller (Rl) and one or more thrust rollers to counterbalance the stresses generated by the plastic deformation. The present invention has been described by referring to an embodiment and some variants thereof, but it is clear that any person skilled in the art could apply modifications and/or replacements equivalent from the technical and/or operating point of view, however comprised within the protective scope of the present industrial invention. We Claim : 1. Method for manufacturing a jack or hydraulic, pneumatic or oleopneumatic cylinder of the kind comprising a cylindrical tubular body or liner (4) at the ends of which a bottom (1) and a head (5) are fastened, inside of which tubular body, a piston (2)integral with a rod (R) slices, characterized in that in order to fasten in an irremovable manner the heaa (5) and the bottom (1) to the tubular body (4) of the jack without; threading and/or welding procedures, at the ends of the tubular body (4) a controlled plastic deformation is carried out to extend to the whole thickness of the tubular body itself, so as to locally deform the encs thereof by generating on each of them at least a circumferential ring radially projecting inwards so as to insert in at least a speci fie groove (7) arranged, respectively, on the bottom (1) and on the head (5) inserted in the tubular body itself,, so as to lock then in situ; said plastic deformation ensuring the mechanical seal of the coupling between tubular body (4) and bottom (1) and between the tubular body(4) and head (5); said controlled plastic deformation being performed by rotating means which drive in rotation the tubular body (4) and the head (5) inserted therein. 2. Method as claimed in claim 1, wherein said controlled plastic deformation is performed by means of mechanical rolling. 3. Method as claimed in claim 1 or 2, wherein in order to ensure the seal of the bottom (1), of the head (b), of the piston (2) and of the rod (3), gaskets (G)are placed in specific grooves (6) arranged on the outer cylindrical surfaces of the bottom, of the piston as well as on the outer and inner cylindrical surfaces of the head inside which the rod slides. 4. Method as claimed in claim L, wherein said plastic deformation of the tubular body or liner (4) is carried out to involve the whole thickness of the tube itself by generating an outer annular groove and a corresponding inner ring projecting in radial direction towards the axis of the tube itself, which ring inserts into a respective annular groove (7) arranged both on the bottom (1) and on the head (5) . 5. Method as claimed in claim 2, wherein the mechanical rolling procedures are carried out: by anchoring the preassembled cylinder or jack to at least a spacial multiroller nead (TM) comprising one or more shaping rollers (R1) which performs the closing procedure of the cylinder; the plastic deformation being able to take place in cold or hot status, with variable pressures and revolution speeds of the shaping rollers (R1). 6. Method as claimed in claim 5, wherein the rollers (R1) are movable simmetrically in radial direction with respect to the cylinder (4) and have the same simultaneous rotating motion, so that, once in contact with the tubular body (4) which is free to rotate about its own axis integrally with the bottom (1) and/or to the head (5) positioned inside thereof, the multiroller head (TM) causes to the cylinder itself an annular plastic deformation localized and predetermined by means of an adequate pressure of said shaping rollers (R1). 7. Method as claimed in anyone of the preceding claims, comprising the following steps of : (a) placing appropriate gaskets (G) inside corresponding annular grooves (6) provided on the bottom (1); (b) inserting the bottom (1) in a predetermined position at a first end of the liner (4) of the tack; (c) positioning a special multiroller head (TM), comprising one or more shaping rollers (Rl), at the said first: end of the tubular body or liner (4); (d) simultaneously approaching the shaping rollers (Rl) to the outer cylindrical surface of the tubular body or liner (4) and performing a plastic deformation by means of rolling: (e) taking the shaping rollers (R1) away from the cylinder; (f) placing the gaskets (G) inside the corresponding annular grooves (6) provided in the piston (2) integral with the rod (3); (g) placing additional gaskets (G) inside the corresponding annual grooves (6) provided on the outer and inner cylindrical surfaces of the head (5); (h) inserting the piston (2) inside the tubular body or liner (4) as well as the head (5), already inserted on the rod (3), in a predetermined position thereof at a second end of the tubular body or liner (4) of the jack; (i) positioning a special multiroller head (TM) , comprising one or more shaping rollers (Rl), at the said end of the tubular body or liner (4); (j) simultaneously approaching the shaping rollers (Rl) to the outer cylindrical surface of the tubular body or liner (4) and performing a plastic deformation by means of rolling; and (k) taking the shaping rollers (Rl) away from the cylinder. 8. Method as claimed in claim 1, therein there are two multiroller heads (TM) , and the steps (a), (b) , and (f) to (h) are firstly carried out, whereas the subsequent steps (c) to (e) and (i) to (k) are carried out at the same time. 9. Apparatus for manufacturing a jack or hydraulic, pneumatic or oleopneumatic cylinder by mens of the method as claimed in any preceding claim, said apparatus having a multiroller head (TM) comprising at: Least, two opposed rotating shaping rollers (R1) which approach to the surface of the tubular body or liner (4) in a simultaneous and symmetrical way; said rotating rollers (Rl) being adapted to drive in rotation the tubular body or liner (4) which is free to rotate about its own axis . 10. Apparatus for manufacturing a jack or hydraulic, pneumatic or oleopneumatic cylinder by means of the method as claimed in any of claims 1-8, said apparatus comprising a single shaping roller (Rl) ana one or more thrust rollers to counterbalance the stresses generated by the plastic deformation when they approach to the surface of the tubular body or liner (4) in a simultaneous and symmetrical way; said single roller (Rl) being adapted to drive in rotation the tubular body or liner (4) which is free to rotate about its own axis. 11. Apparatus as claimed in claim 9, wherein three rotating shaping rollers (Rl) are placed at 120° from one another to make the apparatus self-centering, which ensures an absolutely uniform and symmetrical distribution of the leads and the stresses, by reducing to the minimum the inner deformations and tensions which could create asymmetries and/or cracks. Method for manufacturing a jack or hydraulic, pneumatic and/or olepneumatic cylinder of the kind comprising a tubular cylindrical body (4) at the ends thereof a bottom (1) and a head (5) are fastened, inside thereof a piston (2) slides integral with a rod (3), characterized in that in order to fasten in an irremovable way the head (5) and the bottom (1) to the tubular body (4) of the jack without threading and/or welding procedures, it provides implementing at the end of the tubular body a controlled plastic deformation extended to the whole thickness of the tubular body itself, apt to locally deform the ends thereof by generating on each of them at least a circumferential ring radially projecting inwards so as to insert in atleast a specific groove (7) arranged on the bottom (1) and on the head (5) inserted in the tube itself, respectively, so as to lock them in sito. Said plastic deformation guarantees the mechanical seal of the coupling between tube and bottom and tube and head. |
---|
1700-KOLNP-2004-CORRESPONDENCE 1.1.pdf
1700-KOLNP-2004-CORRESPONDENCE 1.2.pdf
1700-KOLNP-2004-CORRESPONDENCE-1.3.pdf
1700-KOLNP-2004-FORM 1.1.1.pdf
1700-kolnp-2004-granted-abstract.pdf
1700-kolnp-2004-granted-assignment.pdf
1700-kolnp-2004-granted-claims.pdf
1700-kolnp-2004-granted-correspondence.pdf
1700-kolnp-2004-granted-description (complete).pdf
1700-kolnp-2004-granted-drawings.pdf
1700-kolnp-2004-granted-examination report.pdf
1700-kolnp-2004-granted-form 1.pdf
1700-kolnp-2004-granted-form 13.pdf
1700-kolnp-2004-granted-form 18.pdf
1700-kolnp-2004-granted-form 3.pdf
1700-kolnp-2004-granted-form 5.pdf
1700-kolnp-2004-granted-gpa.pdf
1700-kolnp-2004-granted-reply to examination report.pdf
1700-kolnp-2004-granted-specification.pdf
1700-KOLNP-2004-LETER PATENTS.pdf
Patent Number | 226415 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Indian Patent Application Number | 1700/KOLNP/2004 | ||||||||||||
PG Journal Number | 51/2008 | ||||||||||||
Publication Date | 19-Dec-2008 | ||||||||||||
Grant Date | 17-Dec-2008 | ||||||||||||
Date of Filing | 09-Nov-2004 | ||||||||||||
Name of Patentee | KARBOREK SRL | ||||||||||||
Applicant Address | VIA F.ILI PERITO, 26. I-85010 PIGNOLA | ||||||||||||
Inventors:
|
|||||||||||||
PCT International Classification Number | B21D 39/04 | ||||||||||||
PCT International Application Number | PCT/IT03/00255 | ||||||||||||
PCT International Filing date | 2003-04-23 | ||||||||||||
PCT Conventions:
|