Title of Invention

METHOD AND APPARATUS FOR AUTOMATIC REPEAT REQUEST IN A WIRELESS COMMUNICATION SYSTEM

Abstract Upon successful decoding of a first set of slots of a first data packet, an Access Network (AN) can send an acknowledge message (ACK) to an Access Terminal (AT) to indicate that the AN has successfully decoded the data received in the first set of slots of the first data packet. Upon unsuccessful decoding of the first set of slots of the first data packet, the AN can send a negative acknowledge message (NAK) to the AT to indicate that the AN has not successfully decoded the data received in the first set of slots of a first data packet. Based upon receipt of the NAK, the AT can resend the data by sending a second set of slots of the first data packet containing redundant data. Based upon receipt of the ACK, the AT can send a first set of slots of another packet.
Full Text

REVERSE LINK AUTOMATIC REPEAT REQUEST
BACKGROUND
Field
[1001] The present invention relates generally to wireless communications, and more specifically to sending data in a wireless communication system.
Background
[1002] The cdma2000 High Rate Packet Data Air Interface Specification
published as TIA/EIA/IS-856, and more specifically the QUALCOMM
CDMA2000 1xEV-DO version, is an air interface optimized for the delivery of
high-speed wireless data to mobile and fixed terminals.
[1003] In 1xEV-DO, an access terminal (AT) is a device with a radio modem
and a data interface that allows the user to access a packet data network
through the 1xEV-DO access network. An AT is analogous to a Mobile Station
in IS-41 cellular network.
[1004] An Access Network (AN) is network equipment providing data connectivity between a packet-switched data network, for example, the Internet, and the ATs. As referred to herein, the AN can comprise a modem pool transceiver alone, and, additionally, other network equipment, for example, a modem pool controller.
[1005] The forward link (FL) refers to communications from the AN to the AT. Correspondingly, the reverse link (RL) refers to communications from the AT to
the AN.
[1006] Muliipie ATs can be communicating within a sector covered by a single BTS. The AN is limited by a received threshold power. The received power is a function of the number of ATs in the sector and the data rate of each AT in the sector. An AT transmitting at high data rate transmits signals at a higher power man an AT transmitting at a low data rate. When an AN approaches its received threshold power, the AN can send a message on the reverse link activity channel to all ATs in the AN's sector to reduce transmit rate. The reduction in transmit rate can result in reduced throughput, and the limit of

the received threshold power can be a limiting factor on the total data throughput of the ATs in the sector.
[1007] A need therefore exists for a method and apparatus for increasing the data throughput in a sector.
BRIEF DESCRIPTION OF THE DRAWINGS
[1008] FIG. 1 illustrates the transmission of signals between an AT and an
AN;
[1009] FIG. 2 illustrates a method of data transmission by the AT;
[1010] FIG. 3 illustrates a method of data transmission by the AN; and
[1011] FIG. 4 illustrates a block diagram of an AT and an AN in a wireless
communication system.
DETAILED DESCRIPTION
[1012] In a code division multiple access (CDMA) system that conforms to the "Tl A/El A/I S-95 Mobile Station-Base Station Compatibility Standard for Dual-Mode Wideband Spread Spectrum Cellular System," (IS-95) data packets can be retransmitted on the FL. A technique for FL transmission is described in U.S. Patent Application Number, "Method and Apparatus for High Rate Packet Data Transmission," Serial Number 08/963,386, filed November 3, 1997. For example, a data packet can comprise a predetermined number of data units, with each data unit identified by a sequence number. Upon incorrect reception of one or more data units by a mobile station, the mobile station can send a negative acknowledgment (NACK), on the RL ACK channel, indicating the sequence numbers of the missing data units for retransmission from the base station. The base station receives the NACK message and can retransmit the data units received in error.
[1013] No such acknowledgement or retransmission exists for data transmission in the RL in a CDMA system.
[1014] The transmission unit of the physical layer of Ix-EVDO is a physical layer packet. Data is contained in a physical layer packet. In the RL, physical layer packets are contained in frames. Frames can be of 26.66 milliseconds

fms) in duration. A frame can comprise of 16 slots, with each slot 1.66 ms ir duration.
[1015] Data is modulated at varying data rates in the Reverse Traffic Channel. The data rates can be 9.6 kilobits per second (kbps), 19.2 kbps, 38.4 kbps, 76.8 kbps, and 153.6 kbps. At data rates less than 76.8 kbps, data can be repeated in a frame. For example, at 9.6 kbps: data can be sent in the first two slots of a frame, and the same data repeated 7 times in the next 14 slots of a 16-slot frame; at 19.2 kbps, the data can be sent in the first 4 slots of a frame, and then repeated 3 times in the next 12 slots of a 16-slot frame; at 38.4 kbps, the data can be sent in the first 8 slots of a frame, and then repeated once in the next 8 slots of a 16-slot frame. Although data is not repeated in a frame for a data rate of 76.8 kbps, redundancy is provided by encoding, such as Turbo encoding, as encoding provides redundancy for data at other data rates. [1016] The repetition of data within in a frame, and the redundancy provided by encoding, can advantageously be used to reduce the transmission of redundant data by individual ATs. By reducing the amount of redundant data transmitted by an individual AT in a sector, the data throughput is effectively increased for the sector because the data is transmitted in a shorter duration. [1017] For data rates less than 153.6 kbps, the 16-slot frame can be divided into 16/N sets of slots before transmission by the AT, where N can be 1, 2, 4, or 8. For example, when N equals 2, the AT can transmit the first half of the frame (8 slots) to the AN and hold the second half of the frame in a queue for possible re-transmission of the data depending upon the successful decoding of the data of the first half of the frame as received by the AN. [1018] Automatic repeat request (ARQ) refers to a protocol in which the receiver asks the transmitter to resend data. Upon successful decoding of the first half of the frame, the AN can send an acknowledge message (ACK) to the AT to indicate that the AN has successfully decoded the data received in the first half of the frame. Upon unsuccessful decoding of the first half of the frame, the AN can send a negative acknowledge message (NAK) to the AT to indicate that the AN has not successfully decoded the data received in the first half of the frame.
[1019] ACK is a message transmitted to indicate that some data has been received correctly. Typically, if the sender does not receive the ACK message

after some predetermined time, or receives a NAK me original data will be sent again.
[1020] NAK is a message transmitted to indicate that some data has been received incorrectly, for example the data may have a checksum error. An alternative to sending a NAK is to use only ACK messages, in which case the non-receipt of an ACK after a certain time is counted as a NAK. As used herein, NAK refers to the receipt of a NAK message or the non-receipt of an ACK.
[1021] The ACK or NAK can be sent over a FL ACK channel. In 1xEV-DO,
the FL ACK channel can be introduced as a new MAC subchannel. The existing
FL Medium Access Control (MAC) channel of 1xEV-DO includes a subchannel
referred to as a Reverse Link Power Control (RPC) channel. The RPC channel
uses binary phase-shift keying (BPSK) modulation for sending an RPC bit that
requests the ATs in the sector to increase or decease their power. The FL
ACK channel can use BPSK modulation on the pr.ase orthogonal to the phase
of the RPC channel.
[1022] Other techniques can be used to create the FL ACK channel. There
currently are 64 MAC subchannels. Some of these subchannels can be used
for the FL ACK channel. In this example, the modulation phase of the FL ACK
channel do not have to be orthogonal to the RPC channels.
[1023] When the AT is in a soft handoff, the ACK bit can be transmitted from
only a serving sector or from all sectors in the ATs Active Set.
[1024] FIG. 1 illustrates the transmission of signals between an AT 102 and
an AN 104 using an ARQ. The AT sends a first set of slots 106 of packet n. In
this example, the first set of slots comprises 8 slots. The first set of slots 114 of
packet n are received by the AN. Immediately after the first set of slots 106 of
packet n are sent by the AT, a first set of slots 108 of packet n+1 are sent by the
AT, and the first set of slots 116 of packet n+1 are received by the AN.
[1025] Also shown in FIG. 1, a first set of slots -.22 of a packet n-1 is sent by
AT 102 prior to sending the first set of slots 106 of packet n, and a first set of
slots 124 of the packet n-1 is received by AN 104.
[1026] Before sending a next set of slots, the AT receives an
acknowledgement signal, ACK or NAK, from the AN, that indicates whether the
first set of slots 114 of packet n has been successfully decoded or

unsuccessfully decoded. The acknowledgement signal informs the AT whether to resend the data, for example, by sending a second set of slots of packet n
containing redundant data, or to send new datar for example, a first set of slots
«
from a packet n+2.
[1027] In this example, an ACK 122 is sent by the AN to indicate that the first set of slots 114 of packet n has been successfully decoded. The AT receives the ACK, indicating that the first set of siots 110 of packet n+2 can be sent by the AT. The AN receives the first set of slots 118 of packet n+2. [1028] Before sending a next set of slots 112, the AT receives an acknowledgement signal, ACK or NAK, from the AN that indicates whether the first set of slots 116 of packet n+1 has been successfully decoded or unsuccessfully decoded. In this example, the AN sends a NAK. Based upon receipt of the NAK, the AT resends the data by sending a second set of slots 112 of packet n+1 containing redundant data. The AN receives the second set of slots 120 of packet n+1. The AN can combine the data contained in the first set of slots 116 of packet n+1 with the redundant data contained in the second set of slots 120 of packet n+1 and attempt to decode the data contained in the combined sets of slots. With the addition of the redundant data, the likelihood of successfully decoding the data is increased.
[1029] One of ordinary skill in the art will appreciate that the data throughput of the system has been increased by not transmitting the redundant data, that is, the second set of slots, when the AN has successfully decoded the data contained in the first set of slots. In this example of two sets of 8 slots, the data throughput can potentially be doubled.
[1030] FIG. 2 illustrates a method of data transmission by the AT. At 202, the AT sends the first set of slots of a first packet to the AN. At 204, the AT sends the first set of slots of a second packet to the AN. One of ordinary skill in the art will appreciate that when the packet is divided into more than two sets, for example, four sets of slots of four slots each, additional transmissions of first sets of packets can be performed before proceeding to 206. [1031] At 205. the AT determines whether an ACK or a NAK from the AN has been received by the AT. In this example, the ACK indicates that the first set of slots of the first packet has been successfully decoded by the AN, and the

NAK indicates that the first set of slots of the first packet has not been successfully decoded by the AN. - {1032] When the ACK has been received, the -T sends the first set of slots of a third packet at 210. When the NAK has be^i received, the AT sends a second set of slots of the first packet at 208.
[1033] The preceding example is for a packet tr.at is divided into two sets of eight slots. One of ordinary skill in the art will app-eciate that a packet can be divided into more than two halves.
[1034] For example, if the packet is divided intc 'our sets of slots of four slots each, the AT can send a first set of slots of a first packet at 202, and then the AT can send a first set of slots of a second packet at 204. When an ACK is received by the AT corresponding to successful decoding of the first set of slots of the first packet by the AN at 206, the AT can send a first set of slots of a third packet at 210. When a NAK is received b. the AT corresponding to unsuccessful decoding of the first set of slots of :ne first packet by the AN at 206, the AT can send a second set of slots of the first packet at 208. [1035] Furthermore, when an ACK, corresponding to successful decoding of the first set of slots of the second packet by the AN (not shown), is received by the AT; the AT can either send (a) a first set of slc:s of a fourth packet provided that the first set of slots of the first packet was alsc successfully decoded, or (b) the first set of slots of the third packet provided that the first set of slots of the first packet was unsuccessfully decoded.
[1036] When a NAK is received by the AT corresponding to unsuccessful decoding of the first set of slots of the second packet by the AN (not shown), the AT can send the second set of slots of the second zacket. [1037] The process can be continued similarly fcr other sets of slots. [1038] Additionally, the AT can sequentially send the first set of slots of the first packet at 202, the first set of slots of the second packet at 204. the first set of slots of the third packet (not shown) and the i.si set of slots of the fourth packet (not shown). The AN can receive the first three set of slots before sending an acknowledgement signal for the first set of slots of the first packet. When an ACK is received by the AT corresponding to successful decoding of the first set of slots of the first packet by the AN at 206, the AT can send a first set of slots of a fifth packet at 210. When a NAK is received by the AT

corresponding to unsuccessful decoding of the firs; set of slots of the first packet by the AN at 206, the AT can send the second se: of slots of the first packet at
208.
[1039] Furthermore, when an ACK is receiveo oy the AT corresponding fo successful decoding of the first set of slots of the second packet by the AN, the AT can send a first set of slots of a sixth packet (not shown). When a NAK is received by the AT corresponding to unsuccessful decoding of the first set of slots of the second packet by the AN, the AT can send the second set of slots of the second packet (not shown).
[1040] The process can be continued similarly for other sets of slots. [1041] Moreover, one of ordinary skill in the art will appreciate that other combinations of sending slots by the AT and sending acknowledgment signals by the AN can be made and fall within the scope of the appended claims. [1042] FIG. 3 illustrates a method of da;a transmission by the AN corresponding to the method of data transmission by the AT shown in FIG. 2. [1043] At 302, the AN receives the first set of slots of the first packet. At 304, the AN receives.the first set of slots of the second packet. At 306, the AN attempts to decode the first set of slots of the first packet. Although the attempt to decode 306 is shown after the receipt of the first set of slots of the second -packet, the AN can attempt to decode the first set of slots of the first packet before or after the receipt of the first set of slots of the second packet, or in parallel with the receipt of the first set of slots of the second packet. [1044] At 308, the AN determines whether the first set of slots of the first packet has been successfully decoded. When the AN is successful in decoding the first set of slots of the first packet, the AN sends an ACK to the AT at 310, and receives the first set of slots of the third packet at 312. When the AN is unsuccessful in decoding the first set of slots of the first packet, the AN sends a NAK to the AT at 314, receives the second set of slots of the first packet at 316, and attempts to decode the combination of the first set of slots of the first packet and the second set of slots of the first packet at 315.
[1045] The preceding example is for a packet tnat is divided into two sets of eight slots. One of ordinary skill in the art will appreciate that a packet can be divided into more than two halves as described with reference to FIG. 2.

[1046] The timing of the sending of the ACK o- the NAK can be independent of the number of sets of slots received. The AN can send the ACK or the NAK at a time after decoding a corresponding recei.ed set or sets of slots fo example, at 308, and before the AT needs the acknowledgement signal to make the determination to send a particular set of slo:s at 206. The timing of the sending of the ACK or the NAK can be independent of the interleaving of the sets of slots.
[1047] FIG. 4 illustrates a block diagram of an AT 102 and an AN 104 in wireless communication system. Conventional hardware and software techniques can be employed by the AT and the AN. Both the AT and the AN can comprise a logic and processing unit 402 or ^04, respectively, and a radio frequency unit 406 and 408, respectively, for carrying out the above-described functionality. For example, one of ordinary skill in the art will appreciate that the radio frequency units can send and receive sign=.s between the AN and AT, and that the logic and processing units can perform the logical operations and processing of signals.
[1048] Although the foregoing description was made with specific reference to the 1xEV-DO communication system, the reverse link automatic repeat request can also be utilized in other CDMA systems.
[1049] The previous description of the disclosed embodiments is provided to enable a person.skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art. and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein. [1050] WHAT IS CLAIMED IS:


CLAIMS
1. A method of automatic repeat request for a reverse link of a high rate
packet data code division multiple access wireless communication system,
comprising:
sending, by an Access Terminal, a first sei of slots of a first packet to an
Access Network;
sending, by an Access Terminal, a first se: of slots of a second packet to
an Access Network;
determining, by the Access Terminal, whether an ACK or a NAK corresponding to the successful or unsuccessful decoding of the first set of slots, respectively, of the first packet from the Access Network has been received by the Access Terminal; and
when the ACK has been received, sending, by the Access Terminal, a first set of slots of a third packet.
2. The method of claim 1 further comprising;
when the NAK has been received, sending, by the Access Terminal, a second set of slots of the first packet.
3. The method of claim 1 further comprising;
receiving, by the Access Network, the first set of slots of the first packet;
attempting, by the Access Network, to decode the received first set of slots of the first packet;
determining, by the Access Network, whether the received first set of slots of the first packet has been successfully decoced; and
when the Access Network is successful in decoding the received first set of slots of the first packet, sending, by the Access Network, the ACK to the Access Terminal.
4. The method of claim 3 further comprising:
when the Access Network is unsuccessful in decodino the received first set of slots of the first packet, sending, by the Access Network, the NAK to the

5. A method of automatic repeat request for a reverse link of a high rate packet data code division multiple access wireless communication system, comprising:
sending, by an Access Terminal, a first se: of slots of a first packet to an Access Network;
determining, by the Access Terminal, wheiner an ACK or a NAK from the Access Network has been received by the Access Terminal; and
when the NAK has been received, sending, by the Access Terminal, a second set of slots of the first packet.
5. The method of claim 5 further comprising:
receiving, by the Access Network, the first set of slots of the first packet;
attempting, by the Access Network, to decide the received first set of slots of the first packet;
determining, by the -Access Network, whether the received first set of slots of the first packet has been successfully decoded; and
when the Access Network is unsuccessful in decoding the received first set of slots of the first packet, sending, by the Access Network, the NAK to the Access Terminal.
7. The method of claim 6 further comprising:
when the Access Network is successful in decoding the received first set of slots of the first packet, sending, by the Access Network, the ACK to the Access Terminal.
8. A method of automatic repeat request for a reverse link of a high rate
packet data code division multiple access wireless communication system,
comprising:
receiving, by an Access Network, a first set o; slots of a first packet from an Access Terminal;
attempting, by the Access Network, to decoae the received first set of slots of the first packet;
determining, by the Access Network, whether the received first set of

slots of the first packet has been successfully decoded; and
when the Access Network is successful in decoding the received first set of slots of the first packet, sending, by the Access Network, an ACK to an Access Terminal.
9. The method of claim 8 further comprising:
when the Access Network is unsuccessful in decoding the received first set of slots of the first packet, sending, by the Access Network, a NAK to the Access Terminal.
10. The method of claim 9 further comprising:
receiving, by the Access Network, a second set of slots of the first packet from the Access Terminal; and
attempting, by the Access Network, to decode the combination of the received first set of slots of the first packet and the received second set of slots of the first packet.
11. The method of claim 8, wherein the ACK is sent by the Access Network on a binary phase-shift keying modulated forward link ACK channel, wherein the ACK is sent in a phase orthogonal to the phase of a reverse link power control bit sent on a reverse link power control channel.
12. A method of automatic repeat request for a reverse link of a high rate packet data code division multiple access wireless communication system, comprising:
sending, by an Access Terminal, a first set of slots of a first packet to an Access Network:
receiving, by an Access Network, the firs: set of slots of the first packet;
attempting, by the Access Network, to decode the received first set of slots of the first packet;
determining, by the Access Network, whether the received first set of slots of the first packet has been successfully decoded; and
when the Access Network is unsuccessful in decoding the received first set of slots of the first packet,

sending, by the Access Network, a \-K to the Access Terminal, determining, by the Access Terminal, whether the Access Terminal has received the NAfvfrom the Access N~:work, and
when the NAK has been received by r-e Access Terminal,
sending, by the Access Terr,;-,al, a second set of slots of the first packet,
receiving, by the Access Network, the second set of slots of the first packet from the Access Terminal, and
attempting, by the Access Network, to decode the combination of the received first set of slots of the first packet and the received second set of slots of the first packet.
13. The method of claim 12 further comprising:
sending, by the Access Terminal, a first set :: slots of a second packet. wherein when the Access Network is successful in decoding the received first set of slots of the first packet,
sending, by the Access Network, an A3K to the Access Terminal, determining, by the Access Terrrvnal, whether the Access Terminal has received the ACK from the Access Ne:work, and
when the ACK has been received by tre Access Terminal,
sending, by the Access Termi-.al, a first set of slots of a third packet.
14. The method of claim 12, wherein the \AK is sent by the Access Network on a binary phase-shift keying moduiaiec -orward link ACK channel, wherein the NAK is sent in a phase orthogonal tc ;ne phase of a reverse link power control bit sent on a reverse power link centre' channel.
15. An Access Terminal for a high rate :acket data code division multiple access wireless communication systerr..' the Access Terminal comprising;
a radio frequency unit configured to,
send a first set of slots of a first packet
send a first set of slots of a second packet, and

receive an ACK or a NAK; a logic and processing unit configured to,
determine whether the ACK or the NAK has been received; wherein the radio frequency unit is further configured to,
send a first set of slots of a third packet when the ACK has been received, and
send a second set of slots of the first packet when the NAK has been received.
16. An Access Network for a high rate packet data code division multiple access wireless communication system, the Access Network comprising: a radio frequency unit configured to,
receive a first set of slots of a first packet; and a logic and processing unit configured to,
attempt to decode the received first sei of slots of the first packet, and
determine whether the received first set of slots of the first packet has been successfully decoded,
wherein the radio frequency unit is further configured to,
send an ACK when the logic and processing unit is successful in decoding the received first set of slots .of the first packet, and
send a NAK when the logic and processing unit is unsuccessful in decoding the received first set of slots of the first packet.
17. The Access Network of claim 16, wherein:
the radio frequency unit is further configured to.
receive a second set of slots of the first packet; the logic and processing unit is further configured to,
attempt to decode the combination of the received first set of slots of the first packet and the received second set of slots.of the first packet.
18. The Access Network of claim 16, wherein the radio frequency unit is
further configured to:
send a reverse link power control bit on a binary phase-shift keying

modulated reverse link power control channel; arrj
send the ACK or the NAK on a binary -ase-shift keying modulated toward link ACK channel, wherein the ACK :- NAK is sent in a phase orthogonal to the phase of the reverse link power control channel.
19. A code division multiple access (CDMA) wireless communication system for automatic repeat request for a reverse i nk of a high rate packet data, the CDMA wireless communication system comprising: an Access Terminal comprising,
a first radio frequency unit configured to,
send a first set of slots of a firs: packet, send a first set of slots of a second packet, and receive an ACK or NAK; and a first logic and processing unit confic-ed to,
determine whether an ACK or a NAK has been received; wherein the first radio frequency unit is further configured to,
send a first set of slots of a thrd packet when the ACK has been received, and
send a second set of slots of tre first packet when the NAK has been received; and
an Access Network comprising:
a second radio frequency unit configured to,
receive the first set of slots of the first packet; and a second logic and processing unit co-figured to.
attempt to decode the receive: first set of slots of the first packet, and
determine whether the receivec first set of slots of the first packet has been successfully decoded,
wherein the second radio frequency unit is further confiaured to
send the ACK when the second logic and processing unit is
successful in decoding the received first set of slots of the first packet, and
send the NAK when the second iogic and processing unit is
unsuccessful in decoding the received first set of slots of the first packet.

20. The CDMA wireless communication system of claim 19, wherein:
the second radio frequency unit is further configured to,
receive the second set of slots of the first packet; the second logic arid processing unit is further configured to,
attempt to decode the combination of the received first set of slots of the first packet and the received second set of siots of the first packet.
21. The CDMA wireless communication system of claim 19, wherein
the second radio frequency unit is further configured to send the ACK or the
NAK on a binary phase-shift keying modulated forward link ACK channel,
wherein the ACK or the NAK is sent in a phase orthogonal to the phase of a
reverse link power control channel.
22. An apparatus of automatic repeat request for a reverse link of a high
rate packet data code division multiple access wireless communication system,
comprising:
means for sending, by an Access Terminal, a first set of slots of a first packet to an Access Network;
means for sending, by an Access Terminal, a first set of slots of a second packet to an Access Network;
means for determining, by the Access Terminal, whether an ACK or a NAK corresponding to the successful or unsuccessful decoding of the first set of slots, respectively, of the first packet from the Access Network has been received by the Access Terminal; and
means for when the ACK has been received, sending, by the Access Terminal, a first set of slots of a third packet.
23. An apparatus of automatic repeat request for a reverse link of a high rate packet data code division multiple access wireless communication system, comprising:
means for sending, by an Access Terminal, a "first set of slots of a first packet to an Access Network;
means for determining, by the Access Terminal, whether an ACK or a NAK from the Access Network has been received by the Access Terminal; and

means for when the NAK has been recei.-l sending, by the Access Terminal a second set of slots of the first packet.
24. An apparatus of automatic repeat request for a reverse link of a high rate packet data code division multiple access wireless communication system, comprising:
means for receiving, by an Access Network, a first set of slots of a first packet from an Access Terminal;
means for attempting, by the Access Network, to decode the received first set of slots of the first packet;
means for determining, by the Access Network, whether the received first set of slots of the first packet has been successfully decoded; and
means for when the Access Network is successful in decoding the received first set of slots of the first packet, sendinc oy the Access Network, an ACK to an Access Terminal.
"25. An apparatus of automatic repeat request for a reverse link of a high rate packet data code division multiple access wireless communication system, comprising:
means for sending, by an Access Terminal, a first set of slots of a^ first packet to an Access Network;
means for receiving, by an Access Network, the first set of slots of the first packet;
means for attempting, by the Access Network, to decode the received first set of slots of the first packet;
means for determining, by the Access Netwck, whether the received first set of slots of the first packet has been successfully oecoded; and
means for when the Access Network is unsuccessful in decoding the received first set of slots of the first packet,
means for sending, by the Access Nev.vork, a NAK to the Access Terminal.
means for determining, by the Access Terminal, whether the Access Terminal has received the NAK from the Access Network, and
means for when the NAK has been received by the Access

Terminal,
means for sending, by the Access Terminal, a second set of slots of the first packet,
means for receiving, by the Access Network, the second set of slots of the first packet from the Access Terminal, and
means for attempting, by the Access Network, to decode the combination of the received first set of slots of the first packet and the received second set of slots of the first packet.


Documents:

0671-chenp-2005 abstract granted.jpg

0671-chenp-2005 abstract granted.pdf

0671-chenp-2005 claims granted.pdf

0671-chenp-2005 description (complete) granted.pdf

0671-chenp-2005 drawings granted.pdf

0671-chenp-2005-abstract.pdf

0671-chenp-2005-assignement.pdf

0671-chenp-2005-claims.pdf

0671-chenp-2005-correspondnece-others.pdf

0671-chenp-2005-correspondnece-po.pdf

0671-chenp-2005-description(complete).pdf

0671-chenp-2005-drawings.pdf

0671-chenp-2005-form 1.pdf

0671-chenp-2005-form 18.pdf

0671-chenp-2005-form 3.pdf

0671-chenp-2005-form 5.pdf

0671-chenp-2005-pct.pdf


Patent Number 226656
Indian Patent Application Number 671/CHENP/2005
PG Journal Number 02/2009
Publication Date 09-Jan-2009
Grant Date 23-Dec-2008
Date of Filing 20-Apr-2005
Name of Patentee QUALCOMM INCORPORATED
Applicant Address 5775 MOREHOUSE DRIVE, SAN DIEGO, CALIFORNIA 92121,
Inventors:
# Inventor's Name Inventor's Address
1 BLACK, PETER, J 2961 FIRST AVENUE, SAN DIEGO, CA 92103,
2 MA, JUN 10016 MAYA LINDA ROAD, #4202, SAN DIEGO, CA 92126,
3 ESTEVES, EDUARDO 4028 RUA SAO BENEDITO 873, #223, 04735-002 SAO PAULO,
4 LOTT, CHRISTOPHER, GERARD 3783 BALBOA AVENUE, #C, SAN DIEGO, CA 92117,
PCT International Classification Number H04L 1/18
PCT International Application Number PCT/US03/34516
PCT International Filing date 2003-10-24
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 10/280,740 2002-10-24 U.S.A.