Title of Invention

"A PROCESS FOR SWEETENING OF LPG, LIGHT PETROLEUM DISTILLATES BY LIQUID - LIQUID EXTRACTION USING METAL PHTHALOCYANINE SULPHONAMIDE CATALYST"

Abstract The present invention relates to a process for sweetening of LPG, light petroleum distillates by liquid-liquid extraction using metal phthalocyanine sulphonamide catalyst. The process steps comprising of liquid-liquid extraction of the mercaptans contained therein by alkali solution and regeneration of the mercaptan containing alkali solution by oxygen using metal phthalocyanine sulphonamide catalyst, whereby the mercaptans are converted to corresponding disulphides and the regenerated alkali solution can be reused for mercaptan extraction.
Full Text The present invention relates to a process for sweetening of LPG, light petroleum distillates by liquid-liquid extraction using metal phthalocyanine sulphonamide catalyst.
Particularly, the invention relates to a process for sweetening of LPG, light petroleum distillates like pentanes, light straight run naphtha (LSRN), comprising of liquid-liquid extraction of the mercaptans contained therein by alkali solution and regeneration of the mercaptan containing alkali solution by oxygen using metal phthalocyanine sulphonamide catalyst, whereby the mercaptans are converted to corresponding disulphides and the regenerated alkali solution can be reused for mercaptan extraction.
Metal phthalocyanine sulphonamide catalyst has been prepared by a procedure as discussed and described in our copending Indian patent application No 1032/DEL/2000.
It is known that the presence of mercaptans in the petroleum products like LPG, naphtha, gasoline, kerosene, ATF etc is highly undesirable due to their foul odour and highly corrosive nature. These are also poisonous to the catalysts and adversely affect the performance of tetraethyl lead as octane booster. Although there are several processes known for the removal of mercaptans from petroleum products, the most common practice is to oxidize the mercaptans present, to less deleterious disulphides with air in the presence of a catalyst. Generally, the lower mercaptans present in LPG, pentanes, LSRN and light thermally cracked naphtha are first extracted in alkali solution and then oxidized to disulphides with air in the presence of a catalyst. The disulphides, being insoluble in alkali solution is separated out from the top and the alkali is regenerated. In the liquid-liquid sweetening the lower mercaptans present in petroleum products like pentanes, LSRN, FCC cracked naphtha etc are converted to disulphides by direct oxidation with air in the presence of alkali solution and catalyst. The higher molecular weight mercaptans present in petroleum products like heavy naphtha, FCC gasoline, ATF and kerosene are oxidized to disulphides with air in a fixed bed reactor containing catalyst impregnated on a suitable support like activated carbon (Catal. Rev. Sci. Eng. 35(4), 571-609, 1993).
It is also well known that the phthalocyanines of the metals like cobalt, iron, manganese, molybdenum and vanadium catalyze the oxidation of mercaptans to disulphides in alkaline medium. Among these cobalt and vanadium phthalocyanines are preferred. As the metal phthalocyanines are not soluble in aqueous medium, for improved catalytic activity their derivatives like sulphonated and carboxylated metal phthalocyanines are used as catalyst for

sweetening of petroleum fractions. For example use of cobalt phthalocyanine monosulphonate as the catalyst in the fixed bed sweetening of various petroleum products (US Patents No. 3,371,031; 4,009,120; 4,207,173; 4,028,269; 4,087,378; 4,141,819; 4,121,998; 4,124,494; 4,124,531) and cobalt phthalocyanine disulphoante (US Patent No. 4, 250, 022) tetra sulphonate (US Patent No. 2,622,763) and the mixture thereof (US Patent No. 4,248,694) as catalysts for liquid-liquid sweetening and alkali regeneration in mercaptan extraction of light petroleum distillates has been reported. The use of phenoxy substituted cobalt phthalocyanine as sweetening catalyst (Ger Offen 3,816, 952), cobalt and vanadium chelates of 2, 9, 16, 23-tetrakis (3,4-dicarboxybenzoyl) phthalocyanine as effective catalyst for both homogeneous and fixed bed mercaptan oxidation (Ger Offen 2, 757, 476; Fr. Demande 2,375,201) and cobalt, vanadium chelates of tetrapyridinoporphyrazine as active catalysts for sweetening of sour petroleum distillates (Ger Offen 2,441, 648) has also been reported.
It is well known that the catalysts used for the sweetening of LPG and light petroleum distillates like pentanes, LSRN etc. by liquid-liquid mercaptan extraction and alkali regeneration are di-, tri-and tetra sulphonates of metal phthalocyanines particularly those of cobalt and vanadium phthalocyanines; cobalt phthalocyanine sulphonates being specially preferred. The cobalt phthalocyanine sulphonates, differ in activity and in their solubility characteristics depending upon the number of sulphonate functionalities leading to problems in their use as catalysts.
Cobalt phthalocyanine disulphonate a commonly used catalyst in sweetening of LPG and light petroleum fractions by liquid-liquid mercaptan extraction and alkali regeneration is extremely dusty in the dry fine powder form and causes handling problem. To overcome this problem cobalt phthalocyanine disulphonate is admixed with water and commonly used as a slurry. However, with insufficient mixing the cobalt phthalocyanine disulphonate precipitates out from the slurry. Moreover, even if the slurry is mixed sufficiently, it retains the cobalt phthalocyanine disulphonate in suspension for a particular length of time only, beyond which the slurry becomes extremely viscous and may form gel, making it very difficult to remove the material from packaging. Cobalt phthalocyanine tetrasulphonate, on the other hand, is highly soluble in water and its use can eliminate precipitation and gel forming problems associated with the use of cobalt phthalocyanine disulphonate. However, it is reported that cobalt pthalocyanine tetrasulphonate has lower catalytic activity than cobalt phthalocyanine disulphonate (US Patent 4, 885, 268).

In one of our application 1032/del/2000 we reported an improved process for the preparation of metal phthalocyanine sulphonamide catalyst useful for sweetening and obviate the drawback as detailed above.
The main objective of the present invention is to provide a process for sweetening of LPG, light petroleum distillates by liquid-liquid extraction and alkali regeneration using metal phthalocyanine sulphonamide catalyst, which obviates the drawbacks as detailed above.
Accordingly the present invention provides a process for sweetening of LPG, light petroleum distillates by liquid- liquid extraction which comprises extracting the mercaptans contained in LPG, light petroleum distillate like pentanes, light straight run naphtha by liquid-liquid extraction using alkali solution of an aqueous or alcoholic solution of alkali metal hydroxide of concentration ranging between 1 wt% to 50 wt% in the presence of a metal phthalocyanine sulphonamide catalyst such as herein described in the concentration ranging from 5-4000 ppmw, at a temperature ranging from 10°C to 80°C, at a pressure ranging from 1 kg/cm2 to 50 kg/cm2 in a continuous or batch manner, converting the mercaptans present in above said extract into corresponding disulphides by passing air, oxygen or any oxygen containing gas at the above temperature and pressure, regenerating mercaptide sulphur containing alkali solution with catalyst by separating the upper layer of disulphides from said alkali solution of catalyst.
In an embodiment of the present invention metal phthalocyanine sulphonamide catalyst used is selected from the group consisting of cobalt, manganese, nickel, iron, vanadium phthalocyanine sulphonamide and their N-substituted sulphonamide derivatives most preferably cobalt phthalocyanine sulphonamide.
In an embodiment of the present invention the alkali solution used for mercpatan extraction is selected from aqueous or alcoholic solution of alkali metal hydroxides selected from the group consisting of sodium hydroxide, potassium hydroxide, lithium hydroxide, rubidium hydroxide, and cesium hydroxide most preferably aqueous solution of sodium and potassium hydroxide.
In yet another embodiment of the present invention the concentration of the alkali solution used is preferably in the range 7% to 25% by weight.

In yet another embodiment of the present invention the metal phthalocyanine sulphonamide catalyst used is preferably in the concentration ranging between 10 to 1000 ppmw related to alkaline reagent.
In yet another embodiment of the present invention the conversion of mercaptanes to disulphides is effected preferably at 35°C to 60°C.
In yet another embodiment of the present invention the conversion of mercaptanes to disulphides is effected preferably at 1 kg/cm2 to 15 kg/cm2 pressure.
In yet another embodiment of the present invention the conversion of mercaptanes to disulphides is preferably effected by air.
In still another embodiment of the present invention the regeneration of alkali solution is effected with the mercaptide sulphur ranging from 10 ppmw to 40,000 ppmw in feed stocks.

Process Description
In the sweetening process herein contemplated the undesirable mercaptans contained in LPG and light petroleum distillates like, pentanes, LSRN are extracted with alkali solution containing metal phthalocyanine sulphonamide catalyst through a counter current liquid-liquid extraction. The sweetened petroleum distillate is then passed through an alkali settler and sand filter to remove entrained alkali. The mercaptans and catalyst containing alkali solution obtained from the extractor is oxidized by oxygen or oxygen containing gas like air in on oxidizer whereby the mercaptans present in alkali solution are converted into corresponding disulphides and alkali is regenerated. The disulphide oil being insoluble separates from alkali solution as upper layer and is drained. The regenerated alkali solution is reused for mercaptan extraction.
In the sweetening process with this catalyst system extraction of mercaptans from light petroleum distillates can be effected at 10°C to 80°C but the preferred range is 10°C to 40°C. The extraction can be effected at a pressure from ambient to 50 kg/cm2 or more with the preferable pressure range ambient to 20 kg/cm2. The alkali solution used in the extraction is aqueous / alcoholic solution of alkali metal hydroxide such as sodium hydroxide, potassium hydroxide, lithium hydroxide, rubidium hydroxide, cesium hydroxide, aqueous solution of sodium hydroxide and potassium hydroxide being preferred. The concentration of the alkali solution used is 1% to 50% the preferred range being 7 to 25%.
The sweetening process is effected with the metal phthalocyanine sulphonamide catalyst like cobalt, manganese, nickel, iron and vanadium phthalocyanine sulphonamide and their N-substituted derivatives, the preferred catalyst is cobalt phthalocyanine sulphonamide. The catalyst is used in the concentration 4 to 1000 ppmw related to alkali solution, the preferred range is 10-1000 ppmw.
The regeneration of mercaptans containing alkali solution with metal phthalocyanine sulphonamide catalyst is effected at ambient to 90°C temperature. The preferred range being 35°C to 60°C.
The regeneration of alkali solution is effected at atmosphere to 50 Kg/cm2 pressure, the preferred range being 1-15 Kg/cm2.
The regeneration of alkali solution is effected by air, oxygen or any other oxygen containing gas, air being especially preferred.

The following examples are given by way of illustration and therefore should not be construed to limit the scope of the invention.
Example 1
Preparation of Cobalt Phthalocyanine Sulphonamide Catalyst as describe in our Patent Application no. 1032/del/2000
Preparation of Cobalt Phthalocyanine Sulphonyl Chloride
For the preparation of cobalt phthalocyanine sulphonyl chloride, 30 parts by weight of cobalt phthalocyanine were slowly added with stirring to 315 parts by weight of chlorosulphonic acid. The reaction mixture was heated to about 75°C in one hour and from 75°C to about 130°C in 1.5 hours by controlling the heating rate, with constant stirring. The reaction mixture, after maintaining 130-135°C for additional 4 hours, was cooled to 60-65°C, and then 123 parts of thionyl chloride were slowly added. The whole contents were heated to 79°C and maintained at this temperature for one hour. The reaction product was cooled to room temperature and slowly added to crushed ice, keeping the temperature preferably below 5°C. The precipitated cobalt phthalocyanine sulphonyl chloride was filtered and washed thoroughly with cold water. The filtered cake was stored wet at 0°C till further processing.
Preparation of Cobalt Phthalocyanine Sulphonamide
In a typical preparation of cobalt phthalocyanine sulphonamides, total wet cake of cobalt phthalocyanine sulphonyl chloride, obtained was dispersed in 900 parts of ice water and 190 parts of methanol added to get homogeneous dispersion. The reaction mixture was stirred at 5-8°C and ammonia gas was passed till the mixture was fairly alkaline (pH 8-9). Pyridine (1.2 parts) was then added and the mixture stirred at room temperature for 20 minutes. This was followed by addition of 6 parts of 10% sodium hydroxide solution followed by stirring the reaction mixture for 40 minutes at room temperature. The contents were then heated to 80°C and after maintaining at this temperature for 1 hour, cooled to room temperature and poured over a mixture of ice and concentrated hydrochloric acid keeping the pH fairly acidic (2-3). The precipitated cobalt phthalocyanine tetrasulphonamide was filtered, washed thoroughly with cold water and dried in vacuum oven to yield 44 gms of the product. The FAB mass spectral analysis of the Sulphonamide obtained using cobalt phthalocyanine as the starting material showed the presence of tetra Sulphonamide as the major isomer, followed by trisulphonamide and disulphonamide isomers.

Example 2
Alkali Regeneration in LPG Mercaptan Extraction
As the metal phthalocyanirie sulphonamide catalyst has no effect in mercaptan extraction from LPG and it only catalyse the oxidation of mercaptide to disulphide to regenerate the caustic being used for extraction, the experiments were designed to study caustic regeneration by using ethane thiol mercaptan as the model mercaptan.
In the model experiments the calculated amount of ethyl mercaptan was added to light naphtha. Its mercaptan sulphur content was estimated by UOP method 163-89. Thus prepared feed was taken in a round bottom flask. The mercaptan present in naphtha was extracted with 14% aqueous sodium hydroxide solution containing 200 ppmw of the catalyst with stirring under inert atmosphere. After extraction the mercaptan sulphur content of naphtha was estimated. The spent alkali thus obtained was regenerated by passing air into it. The alkali regeneration time (as indicated by reappearance of the blue colour in the solution) was monitored in the repeated experiments by reusing the same catalyst solution. The strength of the sodium hydroxide solution was also monitored. The mercaptide sulphur content of the regenerated sodium hydroxide solution was found to be below 1 ppmw by above method (UOP 163-89) throughout the entire study showing complete alkali regeneration. Results are given in Table-1.
Table-1
Mercaptan sulphur in feed, 'S1 ppmw : 1500
Catalyst concentration in alkali ppmw : 200
Volume of alkali taken for extraction : 50ml
(Table Removed)

Example 3
Alkali Regeneration in LPG Mercaptan Extraction in Glass Column
As the metal phthalocyanirie sulphonamide catalyst has no effect in mercaptan extraction from LPG and it only catalyze the oxidation of mercaptide to disulphide to regenerate the alkali solution used for extraction, experiments were designed to study caustic regeneration by using ethane thiol as the model mercaptan. The laboratory experimental set-up consist of a glass column with air inlet at the bottom connected to air cylinder through control valve. Calculated amount of ethane thiol was added to 14 % aqueous sodium hydroxide containing 200 ppmw metal phthalocyanine sulphonamide catalyst and its mercaptan sulphur content was estimated by UOP method 163-89. The mixture was then transferred to the glass column and oxidized by passing air till all the ethyl mercaptide was converted to disulphide indicated by the appearance of blue colour. Thus formed diethyl disulphide clearly separated from catalyst containing alkali solution in the upper layer. The conversion of mercaptide to disulphide was monitored by analyzing the mercaptide concentration in the \reaction mixture at different intervals. The results are given in Table-2.
Table-2
Mercaptan sulphur in 14 % sodium hydroxide solution ppmw : 3307
Concentration of the catalyst in alkali olution ppmw : 200
Total volume of reaction mixture, taken ml : 230
Air rate, lit/min : 0.8
(Table Removed)

Example 4
Alkali Regeneration in LPG Mercaptan Extraction in Glass Column
Procedure followed and experimental details were same as given in Example 3. The results obtained are presented in Table-3.
Table-3
Mercaptan sulphur in 14 % sodium hydroxide solution ppmw : 8533
Concentration of the catalyst in alkali solution ppmw : 200
Total volume of reaction mixture, taken ml : 230
Air rate, lit/min : 0.83
(Table Removed)
Example 5
Alkali Regeneration in LPG Mercaptan Extraction in Glass Column
Procedure followed and experimental details were same as given in Example 3. The results
obtained are presented in Table-4.
TabIe-4
Mercaptan sulphur in 14 % sodium hydroxide solution ppmw : 13129
Concentration of the catalyst in alkali solution ppmw : 200
Total volume of reaction mixture, taken ml : 230
Air rate, lit/min : 0.8
(Table Removed)

Example 6
Alkali Regeneration in LPG Mercaptan Extraction in Glass Column
Procedure followed and experimental details were same as given in Example 3. The results obtained are presented in Table-5.
Table-5
Mercaptan sulphur in 14 % sodium hydroxide solution ppmw : 17626
Concentration of the catalyst in alkali solution ppmw : 200
Total volume of reaction mixture, taken ml : 230
Air rate, lit/min : 0.0.75
(Table Removed)
Advantages of the Invention
The main advantages of the present invention over the previous inventions are :
(a) The present invention provides a process for sweetening of LPG, light petroleum
distillates like pentanes, light straight run naphtha (LSRN) by liquid-liquid extraction and
alkali regeneration using metal phthalocyanine sulphonamide catalyst.
(b) Metal Phthalocyanine sulphonamide catalyst used in the present invention are found to be
highly active for alkali regeneration in sweetening of LPG and light petroleum distillates.
(c) Metal phthalocyanine sulphonamide catalyst used in the present invention are not dusty
and do not create handling problems as encountered with the conventional cobalt
phthalocyanine disulphonate catalyst. Therefore, admixing with water to make slurry is
not required.
(d) As the metal phthalocyanine sulphonamide used as catalyst in this invention are insoluble
in acidic medium their isolation is easier than conventional cobalt phthalocyanine
sulphonate catalyst.




We Claim:
1. A process for sweetening of LPG, light petroleum distillates by liquid- liquid
extraction which consists of extracting the mercaptans contained in LPG, light
petroleum distillate like pentanes, light straight run naphtha by liquid-liquid
extraction using alkali solution of an aqueous or alcoholic solution of alkali metal
hydroxide of concentration ranging between 1 wt% to 50 wt% in the presence of a
metal phthalocyamine sulphonamide catalyst such as herein described in the
concentration ranging from 5-4000 ppmw, at a temperature ranging from 10°C to
80°C, at a pressure ranging from 1 kg/cm2 to 50 kg/cm2 in a continuous or batch
manner, converting the mercaptans present in above said extract into
corresponding disulphides by passing air, oxygen or any oxygen containing gas at
the above temperature and pressure, regenerating mercaptide sulphur containing
alkali solution with catalyst by separating the upper layer of disulphides from
said alkali solution of catalyst.
2. A process as claimed in claim 1, wherein metal phthalocyanine sulphonamide
catalyst used is selected from the group consisting of cobalt, manganese, nickel,
iron, vanadium phthalocyanine sulphonamide and their N-substituted
sulphonamide derivatives most preferably cobalt phthalocyanine sulphonamide.
3. A process as claimed in claims 1&2, wherein the alkali solution used for
mercaptan extraction is selected from aqueous or alcoholic solution of alkali
metal hydroxide selected from the group consisting of sodium hydroxide,
potassium hydroxide, lithium hydroxide, rubidium hydroxide and cesium
hydroxide most preferably aqueous solution of sodium and potassium hydroxide.
4. A process as claimed in claims 1-3, wherein concentration of the alkali solution
used is preferably in the range 7 to 25 wt %.
5. A process as claimed in claims 1-4 wherein the metal phthalocyanine
sulphonamide catalyst used is preferably in the concentration ranging between 10
to 1000 ppmw related to alkaline reagent.
6. A process as claimed in claims 1-5, wherein the conversion of mercaptans to
disulphide is effected preferably at 35°C to 60°C.

7. A process as claimed in claims 1-6, wherein the conversion of mercaptans to
disulphide is effected preferably at 1 kg/cm" to 15 kg/cm2 pressure.
8. A process as claimed in claims 1-7, wherein the conversion of merccaptans to
disulphide is preferably effected by air.
9. A process as claimed in claims 1-8, wherein the regeneration of alkali solution is
effected with the mercaptide sulphur ranging from 10 ppmw to 40,000 ppmw in
feed stocks.
10. A process for sweetening of LPG, light petroleum distillates by liquid-liquid
extraction using metal phthalocyanine sulphonamide catalyst substantially as here
described with reference to the examples.

Documents:

475-del-2001-abstract.pdf

475-del-2001-claims.pdf

475-del-2001-correspondence-others.pdf

475-del-2001-correspondence-po.pdf

475-del-2001-description (complete).pdf

475-del-2001-form-1.pdf

475-del-2001-form-18.pdf

475-del-2001-form-2.pdf

475-del-2001-form-3.pdf

475-del-2001-petition-137.pdf


Patent Number 226702
Indian Patent Application Number 475/DEL/2001
PG Journal Number 03/2009
Publication Date 16-Jan-2009
Grant Date 23-Dec-2008
Date of Filing 12-Apr-2001
Name of Patentee COUNCIL OF SCIENTIFIC AND INDUSTRIAL RESEARCH
Applicant Address RAFI MARG, NEW DELHI-110 001, INDIA.
Inventors:
# Inventor's Name Inventor's Address
1 BUR SAIN PETROLEUM, DEHRADUN-248005, INDIA
2 SOM NATH PURI, India Uttaranchal India
3 GAUTAM DAS, India Uttaranchal India
4 BHAGWATI PRASAD BALODI, India Uttaranchal India
5 SUNIL KUMAR India Uttaranchal India
6 ANIL KUMAR India Uttaranchal India
7 VIRENDRA KUMAR KAPOOR, India Uttaranchal India
8 VIRENDRA KUMAR BHATLA, India Uttaranchal India
9 TURUGA SUNDARA RAMA PRASDA RAO India Uttaranchal India
10 GUR PRATAP RAI LIMITED MAHUL, MUMBHI-400 074, INDIA
PCT International Classification Number C07C 7/11
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 NA