Title of Invention

A DEVICE AND METHOD FOR INSERTING AN ARTICULATION PIN

Abstract A device for inserting an articulation pin (28) to pivotally connect the outer plates (12) and the inner plates (14) of a chain, particularly a bicycle chain. The device comprises an articulation pin (2 8) and a guide element (30) which is to be separated from the pin (28) after the insertion of the pin (28) within aligned holes (16, 18) of said plates (12, 14). The pin (28) is provided at one end thereof with a snap engaging portion (38) shaped so as to expand the holes (16) of the outer plates (12) in a radial direction during the insertion of the pin. (Figure 1)
Full Text

The present invention relates to a device and a method for inserting an articulation pin for interconnecting a pair of inner plates and a pair of outer plates of a chain, particularly a bicycle chain.
The invention has been developed particularly to solve the problem of closing a chain loop, i.e. mutually connecting the two ends of a chain after that the chain has been arranged around the chain rings and the sprocket assembly of a bicycle. In particular, the present invention has the object of solving the problem due to the damage of the pin during insertion thereof within the aligned holes of the inner and outer plates of a chain.
US patent no. 4,494,945 describes an articulation pin for a chain, having a guide portion connected to a pin body by means of a narrow section. The insertion of the pin body within the aligned holes of the inner and outer plates of the chain is carried out by applying a drawing force to the guide element by tightening a nut which engages a threaded portion of the guide element. The guide element is separated from the pin body by breaking the narrow connecting section at the end of the inserting operation of the pin body.
The object of the present invention is to provide a device and a method for inserting an articulation pin which reduces the risk of damage to the pin and which is simpler to be used.
According to the present invention, this object is achieved by a device and a method having the features forming the subject of the claims.

The present invention will be now described in detail with reference to the annexed drawings, given purely by way of non limiting example, in which:
- Figure 1 is an axial cross-section showing the insertion step of an articulation pin according to the invention,
- Figures 2 and 3 show two further steps of the insertion operation of the pin of figure 1,
- Figure 4 shows a variant of the pin of figure 1, and
- Figure 5 shows an enlarged detail of the circled portion of figure 4.
With reference to the drawings, numeral 10 designates the connecting or closing portion of a bicycle chain. The closing step provides the connection of the leading and trailing ends of the chain. The ends to be connected to each other comprise, on one side, a pair of outer plates 12 and, on the other side, a pair of inner plates 14. The outer plates 12 have a pair of aligned holes 16 and the inner plates 14 have a pair of holes 18 defined by collars 20, on which a roller 22 is rotatably mounted. The articulation of all the outer plates 12 and the inner plates 14 of the chain, except for the articulation pin which provides the connection of the leading and trailing ends of the chain, is provided by means of pins 24 having riveted ends, only one of which is shown in the drawings. The connection of the leading and trailing ends of the chain is obtained by means of an articulation device 26 comprising a pin 28 and a guide element 30. The pin 28 has a cylindrical surface 32 with a diameter such that it can be coupled with a slight interference fit within holes 16 of the outer plates 12. The cylindrical surface 32 of the pin 28 provides instead a coupling with clearance within holes 18 of the inner plates 14.

In a variant not shown, the surface 32 could have different diameters along its axis and particularly slightly greater diameters at the portions which are to be coupled with interference fit within holes 16 and a slightly smaller diameter at the central portion.
At a first end of pin 28 there is formed a shoulder 34 having a frusto-conical surface 36. In a variant not shown, the frusto-conical surface 36 could be replaced by a radial surface. At a second end, which is opposite to the first end, pin 28 has a snap engaging portion 38. As shown in greater detail in figure 5, the snap engaging portion 38 has a frusto-conical portion 40 projecting from the cylindrical surface 32, a cylindrical portion 42 and an arcuate surface 44 connecting the cylindrical surface 42 to a front surface 46 of pin 28.
The guide element 3 0 has a cylindrical surface 48 having a diameter equal to or lower than the diameter of the cylindrical surface 32 of pin 28, so that it is inserted substantially with no interference within the aligned holes 16, 18 of plates 12, 14. The guide element 30 has an insertion end 50 with a frusto-conical shape and a second end having an integral pin-shaped projecting portion 52 having a cylindrical surface 54 which provides a shape coupling with no interference with a hole 56 of pin 2 8. The guide element 30 has a front surface 60 which rests against the front surface 46 of pin 28.
The pin 28 has a second hole 58 which opens on a second front surface 62 of pin 28, opposite to the surface 46 which rests against the guide element 30. In the preferred embodiment shown in the drawings, the first hole 56 and the second hole 58 communicate with each other so as to define a through aperture extending along the pin 28. In a non-illustrated variant, the pin

may have a solid portion between the fist hole 56 and the second hole 58.
The sequence of operation for inserting the pin 28 into the aligned holes 16, 18 of plates 12, 14 is shown in figures 1 through 3. In the first operative stage shown in figure 1, the guide element 30 is inserted into holes 16, 18. This insertion is carried out without the use of any tools, since the coupling within the outer surface 4 8 of the guide element 3 0 and the holes 16, 18 is accomplished with no interference. Then, on pin 28 there is applied an insertion force in the direction shown by arrow F in figure 1 by using an inserting tool of a conventional type having a tip 64 which engages the second hole 58, as diagrammatically shown in figure 1. The guide element 30 substantially has the function of keeping holes 16, 18 aligned to each other during the insertion of the pin 28.
During the insertion of the pin 28, the snap engaging portion 38 expands the holes 16 of the outer plates 12 radially and elastically. At the end of the inserting operation, the pin 28 is in the configuration shown in figures 2 and 3, in which the shoulder 34 rests against of the first outer plates 12 and the portion 38 snap engages the outer plates 12. It can be noted that the outer plates 12 have f rusto-conical counter sunk portions 66, 68 at the holes 16, having substantially the same inclination as the conical surfaces 36 and 40 of pin 28, so that at the end of the inserting operation the frusto-conical surfaces 36, 40 of pin 28 provide a shape coupling respectively with the frusto-conical surfaces 66, 68 of the outer plates 12. In the case in which the shoulder 34 has a surface 36 which is radial rather than frusto-conical, the counter sunk portion 66 would be replaced by a seat with a support surface which is radial with respect to

hole 16. As shown in figure 3, after the insertion of the pin 28, the portion 52 of the guide element 30 is extracted from the hole 56 of pin 30. This extraction does not require the use of any tools since there is no coupling with interference fit between the surfaces 54 and 56. With reference to figure 3, when the insertion of pin 28 is completed, the front surface 62 is substantially flush with the outer surface of the respective plate 12, similarly to the front surface of riveted pins 24. The front surface 46 of the snap engaging portion 38 projects a little more than the front surface of the riveted pins 24, but the length of proj ection is very reduced and, being present only of one of the pins of the chain, it does not give rise to problems of interference with the sprockets, not even when the distance between these sprockets is very reduced such as in the case of units comprising ten sprockets, also because the snap engaging portion 38 is preferably oriented towards the sprockets with lower number of teeth.
In figure 4 there is shown a variant of the articulation device according to the invention. The only difference with respect to the embodiment described in the foregoing lies in that the guide element 30 is provided with an annular slot 70 where an o-ring 72 of elastic material is housed which, in an underformed condition, projects outwardly from the cylindrical surface of the guide element to provide a slight interference fit with the inner surfaces of the holes 18 in order to provisionally hold the guide element before carrying out the inserting operation.
From the foregoing description it is clearly apparent that the system according to the present invention enables a pin 28 to be inserted with snap engagement of one end within one of the outer plates,

obtaining thereby a very secure engagement against an extraction in the direction of the pin axis. The arcuate surface 44 of the snap engaging portion 38 of the pin provides for the holes 16 to be enlarged in a radial direction during the insertion of the pin. In this manner a snap anchoring is obtained which is particularly efficient and reduces the risk of damaging the outer surface of the pin during the insertion.
Naturally, while the principle of the invention remains the same, the details of construction and the embodiments may widely vary with respect to what has been described and illustrated, without departing from the scope of the present invention as defined in the following claims.


WE CLAIM:
1. A device for inserting an articulation pin (28) for pivotally connecting a pair of outer plates (12) to a pair of inner plates (14) of a chain, particularly a bicycle chain, comprising an articulation pin (28) and a guide element (30) which is to be separated from the pin (28) after insertion of the pin (28) within aligned holes (16, 18) of said plates (12, 14), the pin (28) being provided at one end thereof with a snap engaging portion (38) which is so shaped as to expand the holes (16) of the outer plates (12) elastically in a radial direction during the insertion of the pin, characterized in that the guide element (30) is a separate piece from the pin (28) and in that said articulation pin (28) and said guide element (30) are slidingly engaged with each other.
2. The device as claimed in claim 1, wherein the guide element (30) and the pin (28) are provided with mutually co-operating surfaces (54, 56) which provide a shape coupling.
3. The device as claimed in claim 1, wherein the pin (28) has a first hole (56) adapted to receive a pin-shaped projecting portion (52) of said guide element (30).
4. The device as claimed in claim 1, wherein said guide element (30) is provided at one end with a pin-shaped projecting portion (52) adapted to engage a hole (56) of said pin (28).
5. The device as claimed in claim 3 and 4, wherein said pin-shaped projecting portion (52) has a surface (54) which engages said first hole (56) without interference.
6. The device as claimed in claim 3, wherein the pin (28) has a second hole (58) adapted to receive a tip (64) of an inserting tool.

7. The device as claimed in claim 6, wherein the pin (28) has a through aperture between said first and second hoJe (56, 58).
8. The device as claimed in claim 6, wherein the pin (28) has a solid portion between said first and second hole (56., 58).
9. The device as claimed in claim 1, wherein said snap engaging portion (38) comprises a frusto-conical surface (40) adjacent to a cylindrical surface (42) and an arcuate surface which connects a front surface (46) of the pin (28) to said cylindrical surface (42).
10. The device as claimed in claim 1, wherein the pin (28) comprises at least one frusto-conical surface (36, 40) which is for engaging a co-operating frusto-conical surface (66, 68) or said outer plates (12).
11. The device as claimed in claim 1, wherein the pin (28) comprises at least one radial surface which is for engaging a co-operating radial support surface of said outer plates (12).
12. The device as claimed in claim 1, wherein the pin (28) has a cylindrical surface (32) adapted to engage said aligned holes (16), and in that said guide element (30) has an outer cylindrical surface (48) with a diameter equal to lower than the diameter of said cylindrical surface (32) of the pin (28).
13. A method for inserting an articulation pin (28) within aligned holes (16, 18) of a pair of outer plates (12) and a pair of inner plates (14) of a chain, particularly a bicycle chain, characterized by comprising the following steps: a) inserting a guide element (30) within said aligned holes (16, 18), said guide element (30) being a

separate piece from the pin (28); b) slidingly coupling the pin (28) with the guide element (30); c) applying an insertion force to said pin (28) for inserting the pin (28) within said aligned holes (16, 18); and d) separating said guide element (30) from said pin (28) after insertion of the pin (28) in said holes (16, 18).
14. The method as claimed in claim 13, wherein said inserting guide element (30)
is provided at one of its ends with a pin-shaped projecting portion (52) and by the fact
that said articulation pin (28) is provided at one of its ends with a hole (56) adapted to
slidingly receive said pin-shaped projecting portion (52).
15. The method as claimed in claim 14, wherein said coupling between the pin-
shaped projecting portion (52) of said guide element (30) and the hole (56) of said pin
(28) is made without interference.
16. The method as claimed in claim 13, comprising the step of elastically
expanding the holes (16) of the outer plates (12) in a radial direction during the
insertion of said pin (28) by means of a snap engaging portion (38) provided on an end
portion of the pin (28).


Documents:

438-mas-2002 abstract duplicate.pdf

438-mas-2002 abstract.pdf

438-mas-2002 claims duplicate.pdf

438-mas-2002 claims.pdf

438-mas-2002 correspondence others.pdf

438-mas-2002 correspondence po.pdf

438-mas-2002 description (complete) duplicate.pdf

438-mas-2002 description (complete).pdf

438-mas-2002 drawings duplicate.pdf

438-mas-2002 drawings.pdf

438-mas-2002 form-1.pdf

438-mas-2002 form-18.pdf

438-mas-2002 form-26.pdf

438-mas-2002 form-3.pdf

438-mas-2002 form-5.pdf

438-mas-2002 others.pdf


Patent Number 226816
Indian Patent Application Number 438/MAS/2002
PG Journal Number 07/2009
Publication Date 13-Feb-2009
Grant Date 24-Dec-2008
Date of Filing 11-Jun-2002
Name of Patentee CAMPAGNOLO SrI
Applicant Address VIA DELLA CHIMICES 4, I-36100 VICENZA,
Inventors:
# Inventor's Name Inventor's Address
1 MEGGIOLAN MARIO VIA BUONARROTI 26, I-36051 CREAZZO VICENZA,
PCT International Classification Number B62M9/00
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 TO2001 A000561 2001-06-12 Italy