Title of Invention

ELECTRO-MECHANICAL CONTINUOUSLY VARIABLE TRANSMISSION

Abstract The invention comprises an electro-mechanical continuously variable transmission (EMCVT) that uses a planetary gear system to provide a combination of electric and mechanical power for a vehicle or for stationary equipment. The EMCVT includes a clutch and brake system that allows power from a energy storage unit to be combined, with the main power input (typically an engine) to provide a torque output greater than that available from the main power input alone.
Full Text FORM 2
THE PATENT ACT 1970 (39 of 1970)
&
The Patents Rules, 2 003 COMPLETE SPECIFICATION
(See Section 10, and rule 13)
TITLE OF INVENTION
ELECTRO-MECHANICAL CONTINUOUSLY VARIABLE TRANSMISSION

APPLICANT(S)
a) Name
b) Nationality
c) Address

SILVATECH GLOBAL SYSTEMS LTD.
BRITISH VIRGIN ISLANDS Company
P.O. BOX 957
OFFSHORE INCORPORATIONS CENTRE
ROAD TOWN, TORTOLA
BRITISH VIRGIN ISLANDS

PREAMBLE TO THE DESCRIPTION
The following specification particularly describes the invention and the manner in which it is to be performed : -

ELECTRO-MECHANICAL CONTINUOUSLY VARIABLE TRANSMISSION FIELD
This invention relates to a drive system useful as a vehicle propulsion system or stationary equipment drive, combining mechanical and electric power systems.
BACKGROUND
Electric drive systems have been commonly used for large vehicles or stationary equipment. However, as the output/ input speed ratio increases, the electric motor & generator no longer operate at their optimum operating speeds. This reduces the overall efficiency of the drive at the upper half of the drive's operating range. This problem may be overcome by having multiple gear settings to keep the motors and generators operating at or near their optimum speeds, but the complexity of the resulting transmission negates the benefits of using an electric drive.
An alternative to an electric drive system is a mechanically driven system. However, conventional mechanical drive systems are limited to discrete gear ratios, which do not allow for infinite speed ratios as found in electric drives. A great deal of power management between the engine and transmission at all output speeds is necessary for transmission effectiveness. A purely mechanical drive is inadequate to ensure the efficient use of the engine's available power due to the discrete speed ratios, while a purely electric drive has inherently lower efficiency at higher operational speeds.
With the increasing costs of fuel and more stringent emissions requirements there is a need for more efficient drive systems for large and small vehicles, as well as stationary equipment, to replace traditional electric and mechanical drive systems. U.S. Patent No. 6,592,484 issued to Tsai et al. discloses a parallel hybrid transmission utilizing a compound planetary gear set, two multi-disk clutches and a pair of band clutches operating in a variety of modes. Tsai discloses only a single electric device operating as either a motor or generator mechanically coupled to both sun gears of the compound planetary gear set, hence, simultaneous electrical generation and electrical motoring functions cannot be provided. Although this design may function as a continuously variable transmission between the engine and final drive, it can only do so for a limited time based on battery storage capacity.
Similarly, U.S. Patent No. 6,428,438 issued to Bowen, Canadian Patent No. 2,435,450 issued to Bowen and U.S. Patent No. 5,285,111 issued to Sherman all disclose hybrid systems with a single electrical device functioning either as a motor or a generator. As with the Tsai patent, operational modes are limited by the fact that simultaneous electrical generation and
2

electrical motoring are not possible.
U.S. Patent No. 5,704,440 issued to Urban et al. discloses a hybrid electric vehicle having a parallel electrical and mechanical system. The electrical system consists of a pair of electric motors mechanically connected to the input of a conventional transmission and a generator connected to one end of the engine output shaft thru a series of pulleys and clutches. The arrangement allows for pure engine, pure electric and electric supplemented engine modes as well as an electro-mechanical series continuously variable transmission mode. The Urban patent lacks a planetary gear set with at least three elements connected to the engine, generator and output and serving to distribute power between the latter 3 components which would allow for a more efficient electro-mechanical continuously variable transmission mode.
U.S. Patent No. 948,436 issued to Thomas et al. discloses an electro-mechanical continuously variable transmission. Thomas uses a double planetary gear set and a clutch connected to the shaft of the first motor/generator to change from input split/output coupled mode to output split/input coupled mode. In low range, the first motor/generator operates as a generator and the second motor/generator operates as a motor; in high range, the two devices reverse roles. Full vehicle speed range is achieved through these 2 ranges. Since the roles of the components change depending on the speed range, they may not be optimized for performance and efficiency in any one particular range. A better configuration using an input-split / output-coupled layout with a downstream range splitter for low and high range allows the components to be optimized for maximum performance and efficiency. An additonal mode in which both motor/generators drive the vehicle with the engine shut off is not provided in the Thomas patent since an electrical energy storage device and a means for disconnecting the engine from the drive train are not disclosed. Also lacking from the design is a mode allowing engine restart with the vehicle moving.
U.S. Patent No. 6,371,878 issued to Bowen discloses an electro mechanical continuously variable transmission with a pair of planetary gear sets connected to 2 motor/generators as well as a third motor generator driving an additional output (differential). The compound splitting of power results in one electrical and 2 mechanical paths from the engine to the output. 2 speed ranges are achieved by changing the direction of electrical power flow between first and second ranges requiring switching of motor/generator functions. As with Thomas, 948,436, the components may not be optimized for any one particular range. Bowen discloses a lockup brake for the first motor/generator allowing power to flow purely mechanically, however, the lockup brake is only functional when the first motor/generator
3

is in generator mode i.e. in high range. Bowen does not disclose any features for cycling the engine on and off during vehicle operation.
U.S. Patent No. 5,558,595 issued to Schmidt et al. discloses a compound-split electromechanical continuously variable transmission. As with Thomas 948,436 and Bowen 6,371,878, the roles of the two motor/ generators reverse depending on which speed range is desired although the Schmidt patent uses a pair of clutches to change the function of the elements of the compound planetary. Again, this may require compromises in component selection to operated acceptably in low and high range. Schmidt does not disclose a lockup brake to provide a pure mechanical power path but relies on the ability of the first motor/generator to generate power at or near 0 RPM. Without a mechanical locking device, the motor/genera for will fail if the vehicle is held at this speed. Finally, Schmidt does not disclose any method of cycling the engine on and off during vehicle operation. U.S. Patent No. 6,478,705 issued to Holmes discloses an electrically variable transmission having two planetary gearsets coupled to an engine and two motor/generators. As with Schmidt 5,558,595 and Bowden 6,371,878, the roles of the motor/generators are reversed to provide low and high ranges and, therefore, suffer the similar limitations. Low range configures the planetary sets in an input-split/output coupled system while high range configures the system as a compound split system. Shifting between the two modes occurs at a zero speed point of one of the motor/generators and requires the motor/generator generate power at or near 0 RPM. Since a lockup brake is absent from this design, failure of the motor/generator could result if the vehicle is held at this speed.
Neither Bowen, 6,371,878, Schmidt, 5,558,595, nor Holmes, 6,478,705, disclose a pure electric drive mode in which the engine is off and both motor/ generators function as motors drawing power stored from the electrical storage unit for an extended period of time. It is an object of this invention to provide a more efficient drive system for large and small vehicles and stationary equipment by combining electric and mechanical power systems. It is a further object of this invention to provide a transmission system for optimizing use of combined drive systems.
SUMMARY
The invention comprises an electro-mechanical continuously variable transmission (EMCVT) that uses a planetary gear system to provide a combination of electric and mechanical power for a vehicle or for stationary equipment. The EMCVT includes an input shaft to receive power from the engine, an output shaft, a generator and a planetary gear set coupled to the input shaft, the output shaft and to an input of the generator. An electric
4

motor is coupled to the output shaft by a gear set having a fixed speed ratio. An energy storage device is coupled to the generator and to the motor and is operative to accept power from and supply power to the generator and the motor. A controller couples to the motor, the generator and the battery and is operative to regulate power flow between the energy storage device and the generator, the energy storage device and the motor and between the generator and the motor. A split speed clutch coupled to two elements of the planetary gear set and is operative to lock the two elements together and permit direct transfer of all power between the generator and the input shaft. A generator output clutch is coupled between the generator and the motor and is operative in a locked mode to lock the generator to the motor. A mechanical drive clutch is coupled between one element of the planetary gear set and the output and is operative to lock together the one element of the planetary gear set to the output allowing the planetary to split power between the generator, the input shaft and the output shaft. The foregoing structure provides both for splitting the torque from the input shaft between the output shaft and the generator or to disengage the mechanical drive clutch and transfer all mechanical energy to the generator. In the latter case the electric motor would drive the output shaft alone. In the split speed mode, mechanical energy can flow into the generator at the same time as the motor is supplying energy to the output shaft and then switch to another mode to provide a completely fluid dynamic system. The EMCVT may also include a range splitter system to expand the operating parameters of the vehicle or stationary equipment.
The EMCVT may further include a regenerative steering system to control power distribution between the two ends of the main output shaft.
The EMCVT may include a regenerative braking system to enable energy from braking to be stored in the energy storage unit.
The generator and motor may be arranged around a shaft parallel to the output shaft. Alternatively, the motor and generator may be arranged coaxially around the output shaft.
While the EMCVT can provide output in both forward and reverse direction, it may optionally include a reversing gear system coupled at either the main power input or the main output shaft. The reversing gear system allows the EMCVT to provide an output in the reverse direction while the components in the electrical and mechanical operate in the same fashion as the forward direction.
The split speed clutch is engaged and all other clutches disengage to enable the generator to operate as a motor and crank the input. Electro-mechanical continuously variable transmissions can provide major fuel savings by keeping the engine within it
5

optimum operating range as well as limiting the engine operation to periods when power requirements exceed the capacity of the electric drive system. Seamless stop and restart of the engine with the vehicle in motion becomes very important to such a transmission. In addition, using one of the motor/generators to restart the engine eliminates the need for a separate engine starter motor and allows the engine to crank at a much higher speed reducing startup emissions.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention itself, both as to organization and method of operation, as well as additional objects and advantages thereof, will become readily apparent from the following detailed description when read in connection with the accompanying drawings:
Figure 1 shows a block diagram of an EMCVT with two outputs, a parallel shaft configuration, and an SRC planetary gear set-Figure 2 shows a simplified diagram of a three-planet planetary gear set;
Figure 3 shows a block diagram of an EMCVT with two outputs, a coaxial shaft configuration and an SRC planetary gear set;
Figure 4 shows a block diagram of an EMCVT with one output, a coaxial shaft configuration and an SCR planetary gear set;
Figure 5 shows a block diagram of the EMCVT of Figure 1 with a two-speed range doubler;
Figure 6 shows a block diagram of the EMCVT of Figure 1 with a regenerative steering system;
Figure 7 shows a block diagram of the EMCVT of Figure 1 with a two-speed range doubler and a regenerative steering system;
Figure 8 shows a table listing the engine, brake and clutch configurations for various operating modes of the EMCVT; and
Figure 9 shows a block diagram of the EMCVT of Figure 1 with a geared reverser coupled to the power input.
DETAILED DESCRIPTION OF THE INVENTION
The electro-mechanical continuously variable transmission (EMCVT) shown in Figure 1 is designed to split power from an input 40 between an electric drive branch 20, using an electric generator 22 and an electric motor 24, and a parallel mechanical drive branch 21, using shafts and/or gears, recombining the power from each branch into a single main output 26.
6

A simple planetary gear set 10, as shown in more detail in Figure 2, consisting of sun gear
12, planet gear(s) 14, carrier 16, and ring gear 18 is used to split power from input 40, derived
from an internal combustion engine or other primary power source (not shown), between the
electrical drive branch 20 and the mechanical drive branch 21.
Although six planetary element combinations are possible, the preferred embodiment is an
SRC configuration i.e. sun gear 12 connected to the electrical branch 20, ring gear 18
connected to the mechanical branch 21 and the carrier 16 connected to the input 40 (see
Figure 1).
The electrical drive branch consists of a primary generator 22, a primary motor 24, and is
connected to an energy storage system 100. The energy storage system consists of a battery
bank 130, an optional capacitor bank 140, inverters 110 and 120 and a controller 150. Power
flow is normally directed between the generator 22 and the motor 24 by a controller 150. The
inverters 110 and 120 match the differing power characteristics (current, current type, voltage
and frequency) of the generator 22, motor 24, battery bank 130 and capacitor bank 140. The
battery bank 130 may be charged in one of 2 ways; by absorbing power from the input 40 or
by absorbing energy from braking.
The combiner gear set 28 couples the electrical branch 20 to the main output shaft 26.
The combiner gear set 28 is shown as a pair of spur gears, however, a planetary gear set (as
shown in Figures 3 and 4) may also be used for more advanced power control systems.
Power from the electrical branch 20 is combined with power from the mechanical branch 21
at this point.
The mechanical drive branch 21 is shown as a simple shaft directly connecting one of the
elements of the planetary gear set 10 to the main output shaft 26, but may be a more
extensive assembly of shafts and gears to accommodate the physical layout requirements of
the transmission.
Several brakes and clutches shown in Figure 1 may be used to control various aspects of the
power distribution between the mechanical 21 and electrical 20 branches. The lockup brake
80 selectively connects/disconnects the electrical output element (sun gear 12 in the SRC
configuration) of the planetary gear set 10 to ground, preventing that element of the
planetary gear set 10 from transmitting any power.
The generator input clutch 160 selectively connects/disconnects the electrical output
element of the planetary gear set 10 to the primary generator 22. Engaging the input clutch
160 to connect the electrical output element (sun gear 12 in the SRC configuration) of
7

planetary gear set 10 also allows the primary generator 22 to absorb power from the
planetary gear set 10.
The generator output clutch 170 selectively connects/disconnects the primary generator 22
to/from the combiner gear set 28. This allows the generator 22 to supplement power
provided by the primary motor 24 to the combiner gear set 28.
The mechanical drive clutch 90 selectively connects/ disconnects the mechanical output (ring
gear 18 in the SRC configuration) of the planetary gear set 10 to/from the mechanical
branch.
The split speed clutch 180 selectively locks/unlocks two elements of the planetary gear set
10 together preventing any differential speed between the elements. During certain
operating modes, it is desirable to lock all three elements (sun 12, ring 18, carrier 16) of the
planetary gear set 10 together. In Figure 1, the split speed clutch 180 is located between the
carrier 16 and sun gear 12. The clutch 180 may alternatively be located between the sun gear
12 and ring gear 18 or between the ring gear 18 and carrier 16.
Energizing the split speed clutch 180 locks the carrier 16 and sun gear 12 together. Due to
the nature of the planetary gear set 10, the ring gear 18 is forced to turn at the same speed as
the other two elements. A reaction torque is now only required at two of the three elements
and the planetary gear set 10 is now acting as a rigid coupling between three input/outputs.
The ability to lock the planetary gear set 10 in this manner is required for "Burst" mode as
well as the engine starting modes described below.
Energy Storage System
Incorporating an energy storage system 100 in the electrical 20 branch can increase the
performance and efficiency of the transmission in two ways: energy normally lost during
braking by conventional mechanical methods may be recovered for later use; and energy
stored in the system 100 may be applied to the transmission output 26 at the same time as
peak engine power is applied resulting in a higher power output than is possible with the
engine alone.
During periods of low power demand at the main output 26, some of the power drawn from
the engine at input 40 may be directed to the battery bank 130 by the controller 150 using
generator 22 to convert it into electrical power. Engine output power will have to be slightly
increased to accommodate the extra power demand. The specific requirements for charging
are covered in the discussion of the various operating modes.
8

During braking operations, the energy normally absorbed by conventional brakes may be directed back through the transmission to the engine (engine braking). The motor 24 functions as a generator and the generator 22 functions as a motor. Power that normally flows back to the generator 22 may be diverted to the battery bank 130 by the controller 150. Under heavy or prolonged braking conditions, the battery charge rate or overall capacity may be exceeded. Under these conditions, the excess power can be directed back to the engine or to a capacitor bank 140, which has a much higher charging rate than the battery bank 130. When braking demands cease, energy stored in the capacitor bank 140 may be used to charge the battery bank 130. The various braking procedures are discussed in more detail below.
Power from the battery bank 130 may be used to supplement the power drawn from the engine at input 40 during periods of high demand. Consequently, the engine may be reduced to a more economical size to meet average operating conditions while relatively high performance peaks may still be obtained. This "boost" mode is discussed under forward operating modes below.
Layout The EMCVT core is shown in, but not limited to, three basic Iayouts. Figure 1 shows a parallel shaft arrangement with two outputs. The planetary gear set 10 is arranged coaxially around the main output shaft 26, and the primary generator 22 and primary motor 24 are arranged parallel shaft to the main output shaft 26. The input 40 uses a separate parallel shaft. The input 40 may alternatively use a shaft perpendicular to the main output shaft 26, driving the input to the planetary gear set 10 through a bevel gear set (not shown). The parallel shaft arrangement is suited but not limited to an application where transmission width is an issue but major components may be stacked vertically or front to back. An example would be the drive for a tracked vehicle with limited width between tracks. Figure 3 shows a coaxial shaft arrangement with two outputs and parallel shaft input. Here the components of the electrical 20 and mechanical 21 branches are arranged coaxially around the main output shaft 26, except for energy storage system 100, which is located separately. Combiner gear set 28 is a planetary gear set. The input 40 uses a shaft parallel to the main output shaft 26. The input may alternatively use a shaft perpendicular to the main output shaft 26, driving the input to the planetary gear set 10 through a bevel gear set. The coaxial, dual output arrangement is suited but not limited to an application requiring a relatively compact transmission with little or no width limitation. An example would be a front wheel drive vehicle utilizing a transverse engine.
9

Figure 4 shows a coaxial shaft arrangement with one output and a coaxial input shaft. The
components are arranged are in Figure 3, except that power input 40 is set at one end of
main output shaft 26, leaving only one end for output. This arrangement creates a long,
narrow inline power train suited to long narrow drive bays. An example of this would be a
conventional front engine, rear wheel drive vehicle.
Operation
Referring to Figure 1 and Figure 8, several modes of operation are possible but five forward
power modes, three reverse power modes and four braking modes are deemed useful.
During a typical duty cycle, the transmission may be switched several times between the
available modes to optimize efficiency and output power.
The operating modes of the transmission are listed in the table in Figure 8, along with
engine, clutch and brake setting for each mode. These modes can be divided into four
categories: Forward, Reverse, Braking and Engine Starting.
Forward Operation:
Five modes of operation are available for forward rotation of the output i.e. forward vehicle
motion. Not all modes need be available for any given application of the EMCVT.
Forward Full Electrical Mode:
In forward full electrical mode, the generator output clutch 170 is engaged. The primary
generator 22 and primary motor 24 both function as motors and draw energy stored in the
capacitor and battery banks 140,130. No engine power is drawn from the input 40 and the
primary power source (engine) may be allowed to idle or may be shut off completely. This
mode is best used for short periods of high torque output such as during initial startup and
high acceleration to a higher speed. Electrical mode also drains the capacitor bank 140 and
battery bank 130.
Forward Full Electrical + Engine Mode ("Burst" mode):
In "Burst" mode, the engine is in operation and mechanical drive clutch 90, generator output
clutch 170 and split speed clutch 180 are all engaged. The primary generator 22 and primary
motor 24 both function as motors and draw energy stored in the capacitor and battery banks
140,130. Engine power is drawn from input 40 and is delivered directly to the output shaft
26 through the planetary gear set 10 (with all elements locked by split speed clutch 180) and
mechanical drive clutch 90. This mode is used to provide a maximum torque output for a
short duration (burst) that exceeds that available from the main input 40 alone. Burst mode
also drains the capacitor bank 140 and battery bank 130.
Forward Economy Mode:
10

In Economy mode, none of the clutches are engaged. Only the primary motor 24 is used to power the main output shaft 26. Energy is drawn from capacitor and battery banks 140,130 to power motor 24. No engine power is drawn from the input 40 and the primary power source (engine) may be allowed to idle or shut off completely for maximum fuel savings. The duration of operation for this mode is determined by the capacities of battery and capacitor bank 130,140. This mode is used to maximize fuel economy and/or to operate with minimum noise levels. Forward Parallel Mode;
In parallel mode, the mechanical drive clutch 90 and generator input clutch 160 are engaged, and the engine is in operation. Power provided by the primary power source is drawn from the input 40 of the EMCVT and is split between the mechanical branch 21 and the electrical branch 20. Since the planetary gear set 10 divides input torque according to a fixed ratio, power is split according to the speed of the particular element connected to each branch. Initially, the mechanical branch 21 does not turn as it is directly connected to the output shaft 26. The primary generator 22 is forced to turn near its upper speed limit. The primary generator 22 produces electrical power that is directed by the controller to the primary motor 24. The primary motor 24 then forces the output shaft 26 to turn. Adjusting the current/frequency characteristics of the motor 24 and generator 22 varies the effective gear ratio of the electrical branch 20. At the lower half of the EMCVT speed band, power is transferred primarily electrically.
As the output speed increases, so does the speed of the mechanical branch 21. Since input speed is being held constant, the speed of the primary generator 22 must decrease. To do this, the effective gear ratio of the electrical branch 20 is altered by adjusting the current/frequency characteristics to reduce the power supplied by the primary motor 24 to the combiner gear set 28. The net result is that more of the input power is being delivered mechanically and less electrically.
Finally, near the upper end of the EMCVTs speed range, the primary generator 22 barely turns, producing very low power levels in the electrical branch 20 with power from input 40 being delivered to output 26 almost exclusively through the mechanical branch 21. Ideally, the primary generator 22 stops turning completely with only a holding torque generated against the corresponding planetary gear set 10 element. 'Full Mechanical" mode, below, discusses how this unique stage of EMCVT operation can be achieved. During intermediate stages of the RPM range, a small amount of electrical power (approximately 10%) can be diverted from the primary motor 24 and used to charge the
11

battery bank 130. The stored energy is then available at a later time for other modes of
operation as described above.
Parallel mode is the primary mode of operation for the majority of EMCVT applications and
is designed for periods of medium power demands over varying output speed, i.e.
conventional driving. Parallel mode allows the use of a smaller, more efficient primary
power source (engine) to suit cruise power as well as reducing the size of the
battery/capacitor bank compared to a conventional (non-parallel) hybrid internal
combustion/electric drive.
Forward Full Mechanical Mode:
Mechanical Mode is an extension of the parallel mode. As stated above, in parallel mode, at
the upper end of the EMCVT's speed range, the primary generator 22 barely turns and
ideally should stop. Limitations of current motor/generator technology makes it impractical
to hold the generator 22 at zero speed. In order to run the EMCVT in full mechanical mode,
a lockup brake 80 is introduced to provide the torque reaction necessary against the
planetary gear set 10 by locking the electric output element (sun gear 12 in SRC
configurations) to ground, typically the outer casing of the transmission. As a result, the
generator 22 is locked out and the mechanical branch 21 is responsible for supplying all the
power to the output shaft 26. Otherwise, operation is the same as Parallel mode.
Mechanical mode is designed for use when the EMCVT is operating near or at maximum
speed for a period of time.
Reverse Operation:
Three modes of operation are available for reverse rotation of the output. Equivalents to the
forward Burst mode and Mechanical mode are not available for reverse operation. Should
the full range of forward modes be required for reverse operation, an optional geared
reverse may be installed at the input 40 of the transmission. See "Optional Components"
after this section.
Reverse Full Electrical Mode:
The generator output clutch 170 is engaged as described for forward Electrical mode above.
The difference is that the generator 22 and motor 24 are run in reverse to effect reverse
output. Electrical mode is used for short periods of reverse operation where high torque is
required.
Reverse Economy Mode:
12

In Economy mode all clutches are disengaged as described for forward Economy mode above. The primary motor 24 is run in reverse to effect reverse output. Economy mode can be used for short periods of reverse operation with low power demands. Reverse Parallel Mode:
In Parallel mode the mechanical drive clutch 90 and generator input clutch 160 are engaged as described for Forward Parallel mode above. Power provided by the primary power source (not shown) is drawn from the input 40 of the EMCVT and is split between the mechanical branch 21 and the electrical branch 20. In order to effect reverse output speed during Parallel mode, the primary motor 24 is used to reverse the main output shaft 26. The element of the planetary gear set 10 connected to the mechanical branch 21 (hence, the main output shaft 26) is forced to turn opposite to its normal (Forward mode) direction. The elements of the planetary gear set 10 connected to the input 40 and electrical branch 20 (primary generator 22) turn in the same direction as in Forward mode. Since the torque applied to each of elements of the planetary gear set 10 is in the same direction as in Forward mode, the resultant negative power flow in the mechanical branch 21 must be compensated for by increasing the power flow in the electrical branch 20. For the same output speed in reverse in Parallel mode, the electrical branch 20 must pass a greater amount of power than in forward. The components of the electrical branch 20 must either be increased in capacity or reverse must be limited to slow to medium speeds. During this mode, charging of the battery/capacitor banks 130,140 may take place. Parallel mode is the primary operating mode for the reverse direction and may be used for extended periods of reverse operation with medium power demands over varying slow to medium output speed or when little or no energy has been stored in the battery/capacitor banks 130,140. Braking Operation:
A significant advantage of the EMCVT over conventional transmissions is the use of regenerative braking - the recovery and storage of braking energy for later use. Conventional braking (retarding) systems reduce speed by removing kinetic energy from the vehicle or machine and dissipating it as heat. These conventional systems may consist of a mechanical, hydraulic or electromagnetic braking system. The EMCVT removes kinetic energy and stores it as electrical/chemical energy in the battery/capacitor banks 130,140. A conventional braking system incorporated into the overall design may be greatly reduced in size since additional braking force can be provided by the transmission. Note that a
13

mechanical braking system is not shown in any of the configurations but may be added if
desired.
Four braking modes are available depending on the required braking force and state of
charge of the battery/ capacitor banks 130,140.
Braking - Maximum Regeneration:
For maximum regenerative braking, the generator input clutch 160 and generator output
clutch 170 are engaged. The input 40 (engine) does not apply or absorb any power and, in
fact, may be shut off. Both primary motor 24 and primary generator 22 function as
generators charging the battery/capacitor banks 130/140. Large amounts of kinetic energy
are absorbed from the transmission output 26 until the battery/capacitor banks 130/140 are
fully charged; braking ability in this mode is limited by the amount of energy that can be
absorbed by the banks 130,140. At that point, either a conventional braking system or Full
Engine braking (described below) must be used.
Maximum regenerative braking is used during short periods of high braking loads such as a
panic stop in a vehicle or an emergency shut-off of a stationary machine.
Braking - Light Regeneration:
For light regenerative braking, none of the clutches are engaged. Energy is handled as
described in Maximum Regeneration Mode above except that only the primary motor 24
functions as a generator. As described above, the battery/capacitor bank 130,140 capacity
limits the amount of braking energy absorbed.
Light regeneration mode is used during short periods of low to medium braking alternating
with "Economy Mode" in Forward or Reverse. An example would be a vehicle traveling in
"stop and go" traffic.
Braking - Parallel:
In parallel braking mode, the mechanical drive clutch 90 is engaged, resulting in a power
split between the engine input 40 and the electrical branch 20. As a result, the kinetic energy
absorbed from the transmission output 26, can also be split. Part of energy can be converted
as described above and stored by the battery/capacitor banks 130/140 and the balance is
absorbed/dissipated by the engine (as in conventional engine braking).
Parallel mode is most suitable for, but not limited to, the situation in which braking energy
to be absorbed/ dissipated exceeds the storage capacity of the battery/capacitor banks 130,
140. An example of this would be controlling a heavy vehicle down an unusually steep
grade.
Braking - Full Engine Mode:
14

In full engine braking mode, the lockup brake 80 is engaged in addition to mechanical drive clutch 90 and generator input clutch 160. Kinetic energy is absorbed from the transmission output 26 and dissipated by the engine alone in the same fashion as conventional engine braking. This mode may be applied when the battery/capacitor bank 130, 140 is full and maximum braking is required. Engine Starting
As mentioned above, the duty cycle of the transmission may require cycling through the different modes many times. In order to realize maximum fuel economy the primary power source (engine) should be shut off during modes where it is not required (full electrical and economy modes with regenerative braking). This is especially true if the primary power source happens to be an internal combustion engine. Of course, the primary power source will then need to be started or restarted to enter one of the other operating modes. A conventional engine starter motor could be used but it has two major drawbacks: the engine cannot be started near its operating speed and the starter motor does not have the duty cycle required for the high frequency of engine restarts. By using the primary generator 22 as a starting motor for the engine, no extra components are added and the engine can be cranked near its required operating speed, which reduces emissions and increases fuel economy. Starting - Output Stopped:
With the main output shaft 26 stopped, the generator input clutch 160 and split speed clutch 180 are engaged. The primary generator 22 functions as a motor, drawing stored energy from the battery/capacitor bank 130, 140. Since all other brakes and clutches are disengaged, the primary generator 22 is able to turn the engine through the planetary gear set 10, which has its elements locked together by the split speed clutch 180. Once the engine is operating, the split speed clutch 180 is disengaged and any of the Forward/Reverse modes engaged. Starting - Output in Motion
From a condition where the EMCVT is initially in one of the forward/reverse modes listed in table 1 where the engine is off and output shaft 26 is in motion, the generator input clutch 160 and split speed clutch 180 are engaged. The primary generator 22 operates as a starting motor for the engine. Once the engine is operating, the transmission is switched to one of the forward/reverse modes listed in Figure 8 where the engine is on.
15

Alternatively, the EMCVT can operate in either Forward or Reverse Parallel mode and use the energy stored in the battery/capacitor bank 130,140 to maintain power to output shaft 26 as well as providing power to start the engine. Optional Components Geared Reverser:
As stated in the section "Reverse Operation", the full range of forward modes is not normally available in reverse. This suits most conventional vehicles and industrial applications where the performance demand for reverse operation is very low or not required at all. However, some applications may require all forward modes of operation (including all braking modes) in reverse. A simple solution to this problem is to install a geared reverser at either the input 40 or the output 26 of the EMCVT.
Placing a reverser 190 at the input 40 of the transmission as shown in Figure 9 simply reverses the direction of all the components downstream of the input 40. Since all speed and torque directions have been reversed, there is no negative power flow through any branch. The transmission will operate using any of the forward modes but with reverse output rotation.
An alternative (not shown) is to place the reverser 190 at the output 26. The result is that the transmission components turn in one direction only regardless of final output direction. The major drawback to an output reverser is the higher torque requirements placed on the reverser components compared to a reverser installed at the transmission input 40. The resultant increase in size and weight makes the input reverser a better choice. Since the transmission serves to increase the torque available at the transmission input, a reverser installed at the output 26 must be much stronger than one installed at the input 40. The resulting increase in weight and complexity would make an output reverser unsuitable for the majority of applications. Range Splitter:
Due to the limitations of current generator/motor technology, a range splitter or doubler may be incorporated at the main output shaft 26 to increase the operating envelope of the transmission. Figure 5 shows a parallel shaft EMCVT with a two-speed range splitter based on a planetary gear set 30 and a low-speed 32 and high-speed 34 clutch. The two-speed range splitter suits most applications although a three (or more) speed range splitter could also be incorporated if necessary.
Regenerative Steering System:
16

When the EMCVT is used to drive a tracked vehicle with two outputs, precise steering may be accomplished with a regenerative steering system as shown in Figure 6. If one output is required to turn slower than the other output, power is transferred from the slower side to the faster side rather than being bled off as heat as in a conventional brake-to steer system. The steering generator 54 is driven either directly by or thru idlers by the input 40 of the transmission. When the power split is equal between outputs, the zero shaft 58 is prevented from turning by the steering motor 56 and the outputs of the steering planetaries 60 turn at the same speed. If more power is required to turn one output faster than the other, the steering motor 56 turns the zero shaft 58 in one direction or the other changing the relative speeds of the steering planetary 60 outputs. Alternatively, the steering generator 54 may be omitted with power supplied to the steering motor 56 from the battery/capacitor banks 130/140, the primary generator 22, the primary motor 24 or a combination of these elements. Another considerable advantage of the EMCVT lies in the ability of the configured systems as shown in Figures 1 and 3 to enable a driven output on both ends of the transmission via a common output shaft 26. This is particularly useful in vehicles or stationary equipment that require duplicated output shafts to two drives such as tracks and/or differentials. Furthermore, one or both of the outputs can be engaged or disengaged eliminating the need for a transfer case when configured for multiple output drives.
The EMCVT speed can be controlled in any conventional manner, however an electronic control system is preferred to best optimize the power splitting in connection with the output speed when operating in either forward or reverse Parallel mode. Furthermore, the electronic control system can also include control means for the optional range splitter and regenerative steering system as well as the various clutches and brakes discussed above. Accordingly, while this invention has been described with reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications of the illustrative embodiments, as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to this description. It is therefore contemplated that the appended claims will cover any such modifications or embodiments as fall within the scope of the invention.
17

Claims:
1. An electro-mechanical continuously variable transmission comprising;
(a) an input shaft to receive power from an engine;
(b) an output shaft;
(c) a generator;
(d) a planetary gear set coupled to said input shaft, to said output shaft and to an input of said generator;
(e) a motor coupled to said output shaft by a gear set having a fixed speed ratio;
(f) an energy storage device coupled to said generator and to said motor and operative to accept power from and supply power to said generator and to said motor;
(g) a controller coupled to said motor, generator and battery is operative to regulate power flow between said energy storage device and said generator, said energy storage device and said motor and between said generator and said motor;
(h) a split speed clutch coupled to two elements of said planetary gear set and
operative to lock said two elements together and permit direct transfer of all
power between said generator and said input shaft; (i) a generator lockup brake coupled to said generator and operative to lock said
generator from rotating; (j) a generator output clutch coupled between said generator and said motor and
operative in a locked mode to lock said generator to said motor; and (k) a mechanical drive clutch coupled between one element of said planetary gear set
and said output and operative to lock together the one element of said planetary
gear set to said output allowing said planetary to split power between said
generator/ said input shaft and said output shaft.
2. The transmission of claim 1, further including a range splitter coupled to said output shaft to enable two or more separate operating ranges for said transmission.
3. The transmission of claim 1, further including a regenerative steering system operative to split power between output ends when said main output shaft is use to provide drive force at two ends of said main output shaft
18

4. The transmission of claim 1, further including a regenerative braking system to enable energy from braking to be stored in said energy storage unit.
5 The transmission of claim 1, wherein said generator and motor are arranged around
a shaft parallel to said main output shaft.
6. The transmission of claim 1, wherein said generator and motor are arranged coaxially around said main output shaft.
7. The transmission of claim 1, wherein said generator and motor are arranged coaxially around said main output shaft and said main power input is at one end of said main output shaft.
8. The transmission of claim 1, further including a reverse gear system coupled to said main power input which reverse the output direction of said transmission.
9. The transmission of claim 1, further including a reverse gear system coupled to said main output shaft operative to reverse the output direction of said transmission.
10. The transmission of claim 1, wherein said split speed clutch is engaged, allowing said generator to act as a starting motor and send power to said input.
Dated this 3rd day of March, 2006

19

Abstract
The invention comprises an electro-mechanical continuously variable transmission (EMCVT) that uses a planetary gear system to provide a combination of electric and mechanical power for a vehicle or for stationary equipment. The EMCVT includes a clutch and brake system that allows power from a energy storage unit to be combined with the main power input (typically an engine) to provide a torque output greater than that available from the main power input alone.
To
The Controller of Patent
The Patent Office
Mumbai
20

Documents:

291-mumnp-2006-abstract(19-12-2008).doc

291-mumnp-2006-abstract(19-12-2008).pdf

291-mumnp-2006-abstract.doc

291-mumnp-2006-abstract.pdf

291-mumnp-2006-cancelled pages(19-12-2008).pdf

291-mumnp-2006-claims(granted)-(19-12-2008).doc

291-mumnp-2006-claims.doc

291-mumnp-2006-claims.pdf

291-mumnp-2006-correspondence(18-12-2008).pdf

291-mumnp-2006-correspondence(ipo)-(23-1-2009).pdf

291-mumnp-2006-correspondence-others.pdf

291-mumnp-2006-correspondence-received.pdf

291-mumnp-2006-description (complete).pdf

291-mumnp-2006-drawing(19-12-2008).pdf

291-mumnp-2006-drawings.pdf

291-mumnp-2006-form 1(19-12-2008).pdf

291-mumnp-2006-form 13(19-12-2008).pdf

291-mumnp-2006-form 18(19-12-2008).pdf

291-mumnp-2006-form 2(granted)-(19-12-2008).doc

291-mumnp-2006-form 2(granted)-(19-12-2008).pdf

291-mumnp-2006-form 3(3-3-2006).pdf

291-mumnp-2006-form 5(13-9-2006).pdf

291-mumnp-2006-form-1.pdf

291-mumnp-2006-form-2.doc

291-mumnp-2006-form-2.pdf

291-mumnp-2006-form-3.pdf

291-mumnp-2006-form-5.pdf

291-mumnp-2006-form-pct-ib-311.pdf

291-mumnp-2006-form-pct-ipea-409.pdf

291-mumnp-2006-form-pct-ipea-416.pdf

291-mumnp-2006-form-pct-isa-210(19-12-2008).pdf

291-mumnp-2006-form-pct-isa-220.pdf

291-mumnp-2006-form-pct-isa-237.pdf

291-mumnp-2006-form-pct-ro-101.pdf

291-mumnp-2006-form-pct-ro-102.pdf

291-mumnp-2006-form-pct-ro-105.pdf

291-mumnp-2006-form-pct-ro-106.pdf

291-mumnp-2006-form-pct-ro-132.pdf

291-mumnp-2006-power of attorney(13-6-2006).pdf

abstract1.jpg


Patent Number 227907
Indian Patent Application Number 291/MUMNP/2006
PG Journal Number 10/2009
Publication Date 06-Mar-2009
Grant Date 23-Jan-2009
Date of Filing 13-Mar-2006
Name of Patentee SILVATECH GLOBAL SYSTEMS LTD
Applicant Address P.O.BOX 957 OFFSHORE INCORPORATIONS CENTRE ROAD TOWN, TORTOLA,
Inventors:
# Inventor's Name Inventor's Address
1 Dyck Gerald 37667 Dawson Road Abbotsford, British Columbia V3G 2K9
2 Dries Paul 2739 Mara Drive Coquitlam, British Columbia V3C 5L6
3 Bagherpour Mohsen 907-2008 Fullerton Avenue North Vancouver British Columbia V7P 3G7
4 Czepak John 7037 Gibson Street Burnaby, British Columbia V5A 1N7
PCT International Classification Number F16H03/72
PCT International Application Number PCT/CA2004/001518
PCT International Filing date 2004-08-16
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 10/641,137 2003-08-15 U.S.A.