Title of Invention

A LOADING PLATFORM FOR DISPLACING GOODS

Abstract The present invention relates to a loading platform (2,3) for displacing goods, comprising a support frame for goods (8) and at least one double roller device (7,9) arranged in longitudinal direction, wherein the double roller device comprises a number of first roller elements (9) situated at regular mutual distances and having a rolling surface (15), and a number of second roller elements (7) situated above the first roller elements and having a rolling surface (15), and wherein the rolling surface of the first roller elements lies against the rolling surface of the second roller elements, characterized in that the roller elements engage movably on the ftame in vertical direction.
Full Text The present invention relates to a loading platform for displacing goods, comprising a support frame for goods and at least one double roller device arranged in longitudinal direction, wherein the double roller device comprises a number of first roller elements situated at regular mutual distances and having a rolling surface, and a number of second roller elements situated above the first roller elements and having a rolling surface, and wherein the rolling surface of the first roller elements lies against the rolling surface of the second roller elements.
Such a device is known from US 4,355,940. For transport of goods such a loading platform can be arranged under goods. Such a loading platform is however suitable for transport over short distances.
The invention has for its object to provide a device for efficiently displacing goods over a greater distance.
This object is achieved with the invention by providing a loading platform as according to claim 1. The second roller element will hereby have at least two positions, a first position, when goods are carried during transport, wherein the second roller elements have no contact with the goods but are guided to a lower position in the frame. The goods engage on the support frame and will not begin to shift during transport. In the second position the first roller elements engage on the support surface on which the goods are placed and the second roller elements can engage on the goods.
Coupling means are preferably present. These are adapted such that the loading platform can be coupled to a lifting device. The coupling means can be assembled in diverse ways. The coupling means in any case reduce the

chance of the loading platform shifting relative to the lifting device to which the platform is coupled.
The support frame of the loading platform is adapted to carry goods, such as for instance a container or boxes. The loading platform is adapted to be pushed beneath a load and removed in efficient manner.
The invention also relates to and provides a lifting device equipped with a loading platform of the present type.
The lifting device, such as a (fork-)lift truck, a crane or other lifting devices which carry goods during transport, and the loading platform engaging thereon move toward the load for displacing. The loading platform is held for this purpose in the desired position in front of the lifting device at the height of a supporting surface. This can be a loading floor or a ground surface.
The loading platform according to the invention comprises a first set of roller elements with a rolling surface. In this position the roller elements make friction contact with the supporting surface and execute a rolling movement.
The loading platform according to the invention comprises a second set of roller elements with a rolling surface which are arranged above the first set, wherein the rolling surface of the first set of roller elements lies against the rolling surface of the second set of roller elements. When in fact the loading platform rolls over the supporting surface with the first roller elements, the rolling surfaces of both roller elements make contact such that the second roller elements also roll. In the case of a loading platform moving to the right, the first roller elements roll clockwise. Conversely, the second roller elements roll counter¬clockwise .

The second roller elements protrude partly out of the interior of the loading platform through recesses in the upper surface of the loading platform. The protruding rolling surfaces of the second roller elements carry the load arranged on the upper side of the loading platform. The rolling movement of the second roller elements ensures that the load is stationary relative to the supporting surface, while the loading platform is moved under the load. The load is thus shovelled onto the loading platform.
The loading platform preferably tapers to a point at the front end. The loading platform is pushed with the point under a load situated on the supporting surface. The loading platform shovels the load so that the loading platform is arranged between load and surface. The whole of the loading platform is arranged under the load by the forward moving lifting device.
The lifting device is operated in usual manner to lift the loading platform from the floor surface. The load is now displaced to the position where it must be placed. The loading platform supports the load. The upper surface of the loading platform is of a high-friction material so that the load will not shift during displacement of the load.
The loading platform is lowered in usual manner by the lifting device. The loading platform is situated once again in a position in front of the lifting device, wherein the first roller elements make contact with a supporting surface and take up a higher position relative to the loading platform through the agency of free vertical mounting. The rolling surface of the second roller elements supports the load.
When the lifting device is travelling backward, the loading platform will move from under the load. The roller elements co-act such that the load is shifted off

the loading platform such that the load does not move relative to the ground surface.
The thickness of the stacked roller elements is in any case greater than the thickness of the loading platform, since the roller elements could otherwise not protrude simultaneously at both the top and bottom of the loading platform.
The roller elements can be assembled with the same diameter. The diameter of a roller element from the first set is substantially equal to the diameter of a roller element from the second set with which the rolling surface of the first roller element is in contact. This measure ensures that the relative speed of the load relative to the ground surface is zero.
In a preferred embodiment the thickness of the loading platform increases from the front to the rear. The diameter of the roller elements then increases in proportionally equal manner from the front to the rear.
According to the invention the roller elements can comprise all roller elements suitable for this application which have a rolling surface, such as for Instance round balls. Preferably however, the first and second roller elements comprise rollers. The cylindrical rollers are preferably locked on a shaft.
In a preferred embodiment the loading platform comprises a nose at the front end. The nose forms a small part of the loading platform. The nose forms the pointed front end of the loading platform. The nose is Tiade up of a strong material with a smooth surface, for Instance teflon. The nose is manufactured such that it can be arranged under a load as the first component of the loading platform. The nose is connected to the loading platform. The nose can be replaced in the case of wear. The nose can also be replaced by a nose which

is specially embodied for efficient co-action with the load for displacing.
The shafts of the roller elements of the respective sets of roller elements can lie in one vertical plane. Preferably however, the shafts lie obliquely one above another. The diameters of the respective roller elementa hereby do not lie mutually in line, whereby the loading platform becomes less thick,
A loading platform preferably comprises more than one double roller device. These are placed adjacently of each other. In this manner it is possible to embody a large surface area with double roller device.
The loading platform replaces the normal fork of a usual fork-lift truck, or forms an attachment for a usual fork. The loading platform can be placed over the usual fork and be coupled thereto.
It is favourable to arrange the double roller device in a reverse U-shaped profile with a base and legs, wherein the rollers are mounted on the legs. The roller elements are mounted on the profile for movement in vertical direction along the legs. Recesses are arranged in the base so that the second roller elements can protrude therethrough when they are arranged on the inside of the U-profile.
In the embodiment as fork for a fork-lift truck, the fork preferably comprises two u-shaped profiles, each comprising two double roller devices.
The invention is further elucidated with reference to the following figures.
Figure 1 shows a perspective view of a fork-lift truck with an embodiment of the loading platform as fork according to the invention.
Figure 2 shows a partly cut-away detail view of the loading platform according to figure 1.

Figure 3 shows a perspective view of a fork-lift truck with an embodiment of the loading platform as fork according to the invention.
Figure 4 shows a partly cut-away detail view of the loading platform according to figure 3.
Figure 5 shows a partly cut-away view of the loading platform as attachment for a fork according to the invention.
Figure 6 shows a detail of figure 5.
Figure 7 shows a hand pallet truck with a loading platform.
Figure 8 shows a universal crane hook with two loading platforms according to the invention.
Figure 9 shows an attachment according to the invention with four double roller devices.
Figure 10 shows a partly cut-away loading platform with two double roller devices according to a second embodiment.
Figure 1 shows a usual fork-lift truck 1 equipped with two loading platforms 2,3 according to the invention. Loading platforms 2,3 are embodied as fork. A fork 3 has two rows of roller elements 4,5 running along the length of the loading platform. Loading platform 2,3 has an upper surface with recesses 6. The recesses 6 are formed at a position where a corresponding roller element 7 of the second roller elements is situated in the loading platform.
Forks 2,3 are held above the ground by fork-lift truck 1. Forks 2,3 carry a load 8 (indicated with dotted lines) . The first roller elements 9 of the fork do not make contact with supporting surface 10, the ground, or with load 8. The load is carried by the upper surface 11,12 of fork 2,3. Fork-lift truck 1 can move freely. This takes place in the usual manner.

Figure 2 shows a detail as according to II in figure 1. It shows the situation of fork 2, when fork 2 is held in the air. The first roller elements 9 hang from their shafts 13 in the longitudinal slots 14 of fork 2. The second roller elements 7 are supported by the roller elements 9 situated thereunder. The second roller elements 7 are arranged at a higher position, but between the first roller elements 9 situated at regular distances.
In figure 3 the load 8 is placed on ground surface 10. The loading platforms in the form of forks 2,3 are moved doiwiward relative to the position in figure i. Forks 2,3 are situated in the lowest position. The undersides of forks 2,3 make contact with ground surface 10. Roller elements 7,9 are hereby moved upward relative to fork 2,3, whereby the rolling surface 15 of the second roller elements 7 protrude through recesses 6 in the upper surface 11 of fork 2. These roller elements 7 carry load 8.
Fork-lift truck 1 moves rearward as according to arrow 16. Fork 3 slides out from under load 8. Roller slements 7,9 ensure that the load is held in the same Dosition relative to ground surface 10 and thus rolled Dff the forks 2,3.
Figure 4 shows a detail according to IV in figure i. Fork 2 shows the roller elements which are situated In a higher position vertically relative to figure 2. The first roller elements 9 make contact with ground surface 10. Shafts 13 are situated higher in Longitudinal slots 14. The rolling surface 15 of second roller elements 7 protrudes through recesses 6 of upper lurface 11 of fork 2 and engage on load 8.
During a movement of fork 2 as according to arrow ,7 when fork-lift truck 1 moves as according to arrow ,6, the first roller elements 9 will move counter-

clockwise as according to arrow 18. Owing to the contact between the rolling surfaces of roller elements 7,9 the second roller elements move as according to arrow 19. Load 8 will remain stationary relative to ground surface 10.
The illustration also shows the moment at which a load 8 is engaged, before it is displaced. In similar manner, but in opposing directions, forks 2,3 are pushed under load 8 and load 8 is shovelled.
Figure 5 shows a loading platform 30 according to a second embodiment. The loading platfoirm is placed as an attachment over fork 31 of a lifting device. Attachment 30 does not comprises any separate coupling means to fork 31, but is fixed on the fork by friction caused by its own weight. Fork 31 of for instance a fork-lift truck extends beneath the middle pert of loading platform 30. The two double rol"lef devices are located on both sids of the fork 31. Loading platform 30 sloping toward point 3 8 and having vertical longitudinal slots 32 can be seen.
The shaft 33 of the cylindrical rollers of first roller elements 34 is mounted in longitudinal slots 32. Rollers 34 are locked onto shaft 33. As shown, the shaft 3 3 and roller element 34 hang in the bottom of longitudinal slot 32 of the frame under the influence of gravity. This corresponds with the situation shown in figure 1. When the fork is placed on a ground surface, attachment 30 will be carried by rollers 34 and their shafts 33 through the effect of gravity, wherein shafts 3 3 are situated at the upper end of longitudinal slot 32.
Also shown are second roller elements 35. These are situated above first roller elements 34. The shaft 3 6 of each cylindrical roll of a second roller element 35 is situated, seen vertically, between first roller elements

34 and the upper surface 37 of attachment 30 and, seen
horisontally, also in each case between first roller
elements 34.
A nose 38 is arranged on the front end of attachment 30. Nose 38 tapers to a point, so that it can be pushed efficiently under a load. Nose 38 can be replaced and can also be adapted specifically to the load to be carried.
The double roller devices are arranged around a middle part. This part is placed over a usual fork 31 of a fork-lift truck. The fork according to the invention thus lies over the still present fork of the fork-lift truck. In this manner no special requirements necessary for assembly of the fork.
The fork is less thick at its front end. The thickness increases toward the rear. The same applies for the diameter of the respective roller elements. The increasing thickness corresponds with the increasing moment of inertia which the fork has to support when it lifts a load.
Figure 6 shows a detail of figure 5 as according to arrow VI. Shown is the situation of the attachment of the fork when the fork is in the air. The cylindrical rollers of the first set of roller elements hang on shafts 33 in longitudinal slots 32 of attachment 30. Shaft 33 is situated in Che bottom part of longitudinal slot 32. It can also be seen that second roller elements
35 do not protrude through the recesses in upper surface
37.
Figure 7 shows a hand pallet truck 40 with two loading platforms 41,42. The loading platforms are attachments on the fork of hand pallet truck 40 and function in accordance with the description given in respect of the fork-lift truck.

Figure 8 shows a universal crane hook 50 with two loading platforms 51,52. Crane hook 50 can be connected with hook 53 to the tackle of a crane (not shown) .
Figure 9 shows an attachment according to the invention with four double roller devices. An attachment 61 is placed according to the invention over the forks (not shown) of a hand pallet truck 60. This loading platform 61 comprises four double roller devices 62-65. This loading platform can be arranged as a whole under a load (not shown).
Figure 10 shows a partly cut-away loading platform 70 with two double roller devices 71,72 according to a second embodiment. Rollers 73 of the second roller elements are placed straight above rollers 74 of the first roller elements. Shafts 75 of the second roller elements lie substantially in one vertical plane with the shafts 76 of the first roller elements. This is favourable in respect of load distribution but requires a greater thickness of the profile and the fork.


WE CLAIM :
1. A loading platform (2, 3; 30; 41, 42; 51,52; 61;70) for displacing goods (8),
comprising:
a support frame having a length in a longitudinal direction and an upper surface for placement thereon or there above of the goods (8) to be displaced; and
at least one double roller device (4; 5; 62-65; 71, 72), wherein the double roller device comprises a number of first roller elements (9; 34; 74) situated at regular mutual distances and having a rolling surface, and a number of second roller elements (7; 35; 73) situated above the first roller elements and having a rolling surface, and wherein the rolling surface of the first roller elements lies against the rolling surface of the second roller elements, wherein at least the roller elements engage the frame movably in vertical direction in a guided manner to selectively protrude the second roller elements above the upper surface of the support frame, characterized in that said first and said second roller elements of the double roller device extend in respective rows over substantially the length of the support frame, wherein the thickness of the support frame increases along the length thereof in the longitudinal direction, and the diameter of at least one of the roller elements exhibits at least one increase along said direction.
2. The loading platform as claimed in claim 1, wherein the frame comprises longitudinal vertical slots (14; 32), in which the shaft (13; 33; 76) of a corresponding one of the first roller elements is movably guided.
3. The loading platform as claimed in claim 1 or 2, wherein the loading platform (30) also comprises coupling means for coupling the loading platform to a lifting device (31)
4. The loading platform as claimed in any one of the preceding claims, wherein roller elements are locked onto a shaft (13; 33; 76), which is in bearing-mounted engagement with the
frame.

5. The loading platform as claimed in any one of the preceding claims, wherein the roller elements are cylindrical rollers.
6. The loading platform as claimed in any one of the preceding claims, wherein drive means are cormected to at least one of the roller elements.
7. The loading platform as claimed in any one of the preceding claims, wherein the second roller elements (7; 35; 73) are arranged between the first roller elements (9; 34; 74).

8. The loading platform as claimed in any one of the preceding claims, wherein the loading platform comprises a detachable point made from Teflon.
9. The lifting device comprising at least one loading platform as claimed in any of the preceding claims.

Documents:

1979-chenp-2003 abstract duplicate.pdf

1979-chenp-2003 abstract.pdf

1979-chenp-2003 claims duplicate.pdf

1979-chenp-2003 claims.pdf

1979-chenp-2003 correspondence others.pdf

1979-chenp-2003 correspondence po.pdf

1979-chenp-2003 description (complete) duplicate.pdf

1979-chenp-2003 description (complete).pdf

1979-chenp-2003 drawings duplicate.pdf

1979-chenp-2003 drawings.pdf

1979-chenp-2003 form-1.pdf

1979-chenp-2003 form-18.pdf

1979-chenp-2003 form-26.pdf

1979-chenp-2003 form-3.pdf

1979-chenp-2003 form-5.pdf

1979-chenp-2003 pct.pdf

1979-chenp-2003 petition.pdf


Patent Number 227953
Indian Patent Application Number 1979/CHENP/2003
PG Journal Number 10/2009
Publication Date 06-Mar-2009
Grant Date 27-Jan-2009
Date of Filing 11-Dec-2003
Name of Patentee GEBR. MEIJER ST. JABIK B.V
Applicant Address GIJSBERT VAN SWIETENSTRAAT 15, NL-9079 LV SINT JACOBIPAROCHIE,
Inventors:
# Inventor's Name Inventor's Address
1 MEIJER, SJOERD OUDE BILDTDIJK 894, NL-9079 NG SINT JACOBIPAROCHIE,
PCT International Classification Number B66F9/12
PCT International Application Number PCT/NL02/00370
PCT International Filing date 2002-06-07
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 1018793 2001-08-22 Netherlands
2 1018259 2001-06-11 Netherlands