Title of Invention

AN IMPROVED CLEANING SYSTEM

Abstract A cleaning system for cleaning tubing using cleaning balls (20) circulated with the fluid through tubing (8). The system includes a separator (12) having a perforated funnel, which permits the fluid, but not the cleaning balls (20), to pass through. A housing (21) having an apertured partition (28) is used to divide the housing (21) into an first compartment (19) and a second compartment (27). An entrance (2) of a fluid supply pipe (23) and an exit (3) of a ball supply pipe (24) are formed for creating a difference in pressure to create a suction force to recirculate the cleaning balls (20) from the housing (21) via the ball supply pipe (24), back to the tubing (8) for cleaning the walls of the tubing (8). An entrance (13) of a ball return pipe (17) and an exit (14) of a fluid return pipe (16) are formed for creating a difference in pressure to create a suction force to recirculate the cleaning balls (20) from the separator (12) via the ball return pipe (17), into the housing (21).
Full Text BACKGROUND AND FIELD OF THE INVENTION
This invention relates to a cleaning system which uses mobile cleaning elements for cleaning
the inside of tubing.
A heat distributing system typically has a condenser unit which includes tubing to conduct
fluids. There have been proposed different ways of cleaning the inside of such tubing to
prevent the build up of dirt or other unwanted deposits inside the tubing as the fluids travel
through the tubing.
One proposed way is the use of cleaning balls made of rubber or spongy material which have
a diameter slightly larger than the tubing so that when they travel through the tubing with the
fluid, the balls are compressed. In this way, the balls are made to rub against the walls of the
tubing so as to keep the walls clean and substantially free from deposits. Generally, the balls
and the fluid are passed through the tubing, in the direction of the fluid flow, from the
upstream side to the downstream side of the tubing. The balls are then separated from the
fluid at the downstream side and then recirculated back to the upstream side of the tubing. A
pump, such as that described in patent document US6, 070, 652, typically provides the means
to recirculate the balls.
However, a disadvantage of using a pump to recirculate the balls is that the pump is
susceptible to malfunctioning and such a system usually requires considerable downtime for
maintenance and repair.
To overcome the above disadvantage, there has been proposed a cleaning system that does not
use a pump to recirculate the balls, an example of which is described in patent document US
5,592, 990. In this prior art, the recirculating means comprises a housing disposed between
the upstream and downstream side of the tubing. The housing includes an apertured partition
which divides the housing into a upper compartment and a lower compartment. When the
balls are recirculated and collected by this housing, the partition permits the fluid to pass
through to the lower compartment while keeping the balls in the upper compartment. The
housing further comprises a first passageway which connects one end of the upper

compartment to the downstream side of the tubing, a second and third passageway connecting
the other end of the upper compartment to a first and second section in the upstream side of
the tubing such that the second section of the tubing has a slightly lower pressure compared to
the pressure at the first section but higher than that at the downstream side of the tubing. The
housing also comprises a fourth passageway connecting the lower compartment to a source of
lower pressure than that in any of three other passageways. The cleaning system disclosed in
this prior art also has a plurality of valves arranged to control the fluid flow along the different
passageways described above. A disadvantage of this prior art is the complexity of the design
which requires a sequence of actions to close and open the plurality of valves to recirculate
the balls. In addition, to draw the balls into the housing, the valve disposed at the fourth
passageway must be opened and this may discharge the fluid. As a result, the fluid is wasted
each time the balls are recirculated and the cost of maintaining such a system may be
relatively expensive.
It is an object of this invention to provide a cleaning system which alleviates at least one of
the disadvantages of the prior art.
SUMMARY OF THE INVENTION
The invention, in general terms, is to provide a system for cleaning tubing connected to an
inlet pipe and an outlet pipe, using cleaning elements, such as cleaning balls, which are
recirculated by controlling the opening and closing of two valves.
A first object of the invention is a system for cleaning tubing used for conducting a fluid
therethrough, the tubing being connected to an inlet pipe and an outlet pipe, the system having
a plurality of cleaning balls for circulating with the fluid through the tubing; a separator
disposed at the outlet pipe and arranged to separate the cleaning balls from the fluid ; a
recirculating means comprising a housing arranged to collect the cleaning balls, the housing
having a first and second compartment separated by an apertured partition, the apertured
partition arranged to allow the fluid to pass through to the second compartment but not the
cleaning balls ; a ball supply pipe having an entrance coupled to a first opening on the first
compartment of the housing and an exit coupled to a first opening on the inlet pipe; a fluid

supply pipe having an entrance coupled to a second opening on the inlet pipe and an exit
coupled to a second opening on the first compartment of the housing; a fluid return pipe
having an entrance coupled to an opening on the second compartment of the housing and an
exit coupled to an opening on the outlet pipe; a ball return pipe having an entrance coupled to
an opening on the separator and an exit coupled to a third opening on the first compartment of
the housing; a means for supply of cleaning balls to the inlet pipe whereby a high pressure is
formed at the entrance of the fluid supply pipe and a low pressure is formed at the exit of the
ball supply pipe, the difference in pressure causing a transfer of cleaning balls from the
housing to the inlet pipe; and a means for a return of cleaning balls to the housing whereby a
high pressure is formed at the entrance of the ball return pipe and a low pressure is formed at
the exit of the fluid return pipe, the difference in pressure causing a transfer of cleaning balls
from the separator back to the housing wherein the recirculating means, means for supply of
cleaning elements and means for return of cleaning balls are arranged to selectively transfer
the plurality of cleaning balls from the inlet pipe to the outlet pipe.
Preferably the recirculating means in the cleaning system further comprises a first valve
disposed along the fluid supply pipe, a second valve disposed along the fluid return pipe, a
first one-way valve disposed along the ball supply pipe, and a second one-way valve disposed
along the ball return pipe; the first one-way valve being operative to transfer the cleaning
elements from the housing to the inlet pipe and the second one-way valve being operative to
transfer the cleaning balls from the separator to the housing.
Preferably the recirculating means in the cleaning system further comprises a third valve
disposed along the ball return pipe and a fourth valve disposed along the ball supply pipe.
Preferably the means for supply of cleaning balls in a cleaning system is operative by opening
of the first valve and keeping the second valve closed creating a high pressure at the entrance
of the fluid supply pipe and a low pressure at the exit of the ball supply pipe, the high pressure
creating a suction force to draw the fluid from the inlet pipe into the housing through the fluid
supply pipe, the force of the fluid flowing through the housing carrying the cleaning balls
from the housing through the first one way valve, into the ball supply pipe in which the fourth
valve remains opened, causing the cleaning balls to flow into the inlet duct.

Preferably the means for return of cleaning balls in a cleaning system is by operative by
opening of the second valve and keeping the first valve closed creating a high pressure at the
entrance of the ball return pipe and a low pressure at the exit of the fluid return pipe, the high
pressure creating a suction force to draw the fluid and the cleaning balls from the separator
through the second one way valve and into the ball return pipe, the force of the fluid carrying
the cleaning balls through the second one-way valve, into the ball return pipe into the
housing, wherein said cleaning balls are retained in the housing while the fluid flows through
the apertured partition in the housing to return to the fluid return pipe in which the second
valve remains opened, and into the outlet duct.
Preferably the cleaning system has a separator in a shape of a funnel.
Preferably the separator in the cleaning system comprises perforations which allow the fluid
to flow through but not the cleaning balls.
Preferably the perforations of the separator are in the form of rectangular slots each having a
length direction.
Preferably the length directions of the rectangular slots of the separator are not parallel to the
centre axis of the funnel.
Preferably the cleaning system has a first means to rotate the fluid and the cleaning balls at the
inlet pipe before the tubing so that the cleaning balls enter the tubing randomly distributed.
Preferably the cleaning system has a second means to rotate the fluid and the cleaning balls is
at the outlet pipe before the separator so that the dirt accumulated on the surface of the
cleaning balls in its passage through the tubing is loosened from the surface of the cleaning
balls and carried away in the fluid.
Preferably the direction of the means to rotate the fluid and cleaning balls is opposite to the
length direction of the rectangular slots.

An advantage of the described embodiment of the invention is that the different pressures at
the inlet pipe and the outlet pipe create suction force which provides an easy and cost efficient
way of circulating the cleaning balls for cleaning the tubing. Such a system is also
environmental friendly since there is no wastage of the fluid.
The invention is particularly useful for cleaning the fluid-conducting tubing of a heat-
exchanger or a condenser, and the invention is therefore described below with respect to such
an application.
BRIEF DESCRIPTION OF THE DRAWINGS
An embodiment of the invention will now be described, by way of example, with reference to
the accompanying drawings, in which:-
Figure 1 illustrates a cleaning system according to the invention which comprises a housing to
collect the cleaning balls at rest and a separator.
Figure 2 illustrates the cleaning system of Figure 1 when the cleaning balls are caused to
circulate through the tubing commencing from the housing.
Figure 3 illustrates the situation when the cleaning balls have passed through the tubing and
are trapped by the separator of Figure 1.
Figure 4 illustrates the situation when the cleaning balls are caused to circulate back to the
housing of Figure 1.
Figure 5 illustrates a cross-sectional view of the separator of Figure 3 which traps the cleaning
balls after they have passed through the tubing.
Figure 6 shows a detailed view of the separator of Figure 5.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Figure 1 illustrates a cleaning system used to clean tubing 8 in a condenser 7. The tubing 8 is
in the form of a plurality of parallel spaced tubes which are connected to an inlet pipe 5 and
an outlet pipe 9. A cooling fluid such as water is passed through the tubing 8 in order to
condense another fluid, such as steam or a refrigerant gas, from an inlet 25 which circulates
through the spaces between the tubing 8 and to an outlet 29.
The cooling fluid (in a direction as indicated by WI) is circulated through the condenser
tubing 8 from an inlet duct 1, which is connected to the upstream side of the condenser tubing
8 by the inlet pipe 5, to an outlet duct 15 connected to the downstream side of the tubing 8 by
the outlet pipe 9.
The cleaning system comprises a plurality of cleaning elements and in this embodiment
cleaning balls 20 are used. Such cleaning balls 20 are typically made from spongy material
and have a diameter slightly larger than the diameter of the tubing 8 so that the balls 20 are
compressed when they are forced through the tubing 8 to prevent the lodging or settling of
particles within the tubing 8. In this way, unwanted deposits are prevented from building up
in the tubing 8 which may lower the efficiency of the heat exchange, or even cause corrosion.
The cleaning system further comprises a separator 12 and recirculating means to transfer the
cleaning balls 20 from the outlet pipe 9 to the inlet pipe 5.
The function of the separator 12 is to separate the cleaning balls 20 from the cooling fluid at
the outlet pipe 9 and in this embodiment, the separator 12 has a shape of a funnel. The
separator 12 is interposed between the outlet pipe 9 and the outlet duct 15 which releases the
fluid. The separator 12 comprises perforations arranged to allow the fluid to pass through to
the outlet duct 15 but not the cleaning balls 20.
Preferably, the perforations are in the form of rectangular slots 32 having a length direction
inclined in a particular direction, for example anti-clockwise, as viewed in the fluid flow
direction. Detailed views of the separator 12 according to this embodiment and the
rectangular slots 32 are shown in Figures 5 and 6, respectively. The separator 12 is connected

to the recirculating means for transferring the cleaning balls 20 from the outlet pipe 9 to the
inlet pipe 5.
In this embodiment, the recirculating means comprises a housing 21 for collecting the
cleaning balls 20. The housing 21 has an apertured partition 28 dividing the interior of the
housing 21 into an first compartment 19 and a second compartment 27 on opposite sides of
the partition 28. The partition 28 permits the fluid, but not the cleaning balls 20, to pass
through so that the cleaning balls 20 accumulate within the first compartment 19. The housing
21 may further include a cover 18 for covering the first compartment 19 and which is
removable therefrom in order to add or remove the cleaning BALLS 20.
The recirculating means further comprises a fluid return pipe 16 and a ball return pipe 17. The
fluid return pipe 16 is used to connect the housing 21 to the outlet duct 15 for transferring the
fluid (not the cleaning balls 20) from the housing 21 to the outlet duct 15. The fluid return
pipe 16 has an entrance 30 on the second compartment 27 of the housing 21 and an exit 14 on
the outlet duct 15. The ball return pipe 17 is used to connect the separator 12 to the housing
21 for transferring the cleaning balls 20 from the outlet pipe 9 to the housing 21. The ball
return pipe 17 has an entrance 13 on the separator 12 and an exit 31 on the first compartment
19 of the housing 21. The entrance open mouth 13 of the ball return pipe 17 is formed in the
direction against the fluid flow W3 of the outlet pipe 9 such that the pressure at the entrance
13 of the ball return pipe 17 is higher than that at the exit 14 of the fluid return pipe 16. The
ball return pipe 17 may include a hand valve HV2 which is always open except when
replacing or adding the cleaning balls 20.
The recirculating means also comprises a ball supply pipe 24 and a fluid supply pipe 23. The
ball supply pipe 24 is used to connect the housing 21 to the inlet pipe 5 for supplying the
cleaning balls 20 back to the inlet pipe 5 from the housing 21.
The ball supply pipe 24 has an entrance 26 on the first compartment 19 of the housing 21 and
an exit 3 on the inlet pipe 5. The ball supply pipe 24 may include a hand valve HV1 which is
always open except when changing the cleaning balls 20. The fluid supply pipe 23 is used to
connect the inlet pipe 5 to the housing 21 for supplying the fluid from the inlet pipe 5 to the

housing 21. The fluid supply pipe 23 has an entrance 2 on the inlet pipe 5 and an exit 22 on
the first compartment 19 of the housing 21. The entrance 2 of the fluid supply pipe 23 is
formed in the direction against the fluid flow Wl of the inlet pipe 5 such that the pressure at
the entrance 2 of the fluid supply pipe 23 is higher than that at the exit 3 of the ball supply
pipe 24.
The means for supply of cleaning balls and means for return of cleaning balls comprises two
VALVES VI and V2 disposed along the fluid supply pipe 23 and the fluid return pipe 16 to
control the flow of the cleaning balls 20 from the downstream side of the condenser tubing 8
to the upstream side of the condenser tubing 8 via the housing 21. The means to supply
cleaning balls 20 is operative by the opening of the first VALVE VI and keeping the second
valve V2 closed so that the cleaning balls 20 are sucked from the housing 21 to the inlet pipe
5. The means to return cleaning balls 20 is operative by the opening of the second valve V2
and keeping the first valve VI closed, so that the cleaning balls 20 are sucked from the
separator 12 back to the housing 21.
The housing 21 also comprises two check valves or one-way valves, CV1 and CV2 disposed
along the ball supply pipe 24 and the ball return pipe 17.
The first check valve CV1 only permits the fluid and the cleaning balls 20 flow in the
direction from the housing 21 to the inlet pipe 5, and not vice versa. The second check valve
CV2 only permits the fluid and the cleaning balls 20 flow in the direction from the separator
12 to the housing 21, and not vice versa.
The cleaning system may further comprise rotation means arranged at the inlet pipe 5 and
outlet pipe 9 and in this embodiment propellers are used.
A first propeller 4 is placed at the inlet pipe 5 and before the tubing 8 to rotate the cleaning
balls 20 so that the cleaning balls 20 enter the tubing 8 in a random pattern, as indicated by
reference numeral 6. The rotation means are to ensure the cleaning balls 20 are randomly
distributed by centrifugal force as they enter the condenser 7. A second propeller 10 is placed
at the outlet pipe 9 and before the separator 12 so that the fluid and the cleaning balls 20 are

rotated to let the cleaning balls 20 collide with each other at the mouth 11 of the separator 12.
This is to increase the number of collisions amongst the cleaning balls 20 so as to remove the
dirt accumulated on the surfaces of the cleaning balls 20 after their passage through the tubing
8.
Having described the various components of the cleaning system, an operation of the cleaning
system will now be described with reference to Figures 1,2, 3 and 4.
We assume an initial position, which is illustrated in Figure 1, whereby the valves VI and V2
are closed and the cleaning balls 20 are accumulated within the first compartment 19 of the
housing 21. There is no flowing of fluid in the ball supply pipe 24 and the ball return pipe 17
because of the pressure at the exit 3 of the ball supply pipe 24 is higher than that at the
entrance 13 of the ball return pipe 17 and the function of the two check VALVES CVI and
CV2.
When the condenser 7 is operating, the cooling fluid is going through the inlet pipe 5.
According to a principle of fluid mechanics, the static pressure at the entrance 2 of the fluid
supply pipe 23 would be higher than that at the exit 3 of the ball supply pipe 24 because of the
entrance 2 of the fluid supply pipe 23 is formed in the direction against the fluid flow Wl of
the inlet pipe 5.
This difference in pressure creates a suction force to draw or suck the fluid from the inlet pipe
5 into the housing 21 via the fluid supply pipe 23 and to draw or suck the fluid and the
cleaning balls 20 from the housing 21 into the inlet pipe 5 via the ball return pipe 24.
To allow the cleaning balls 20 to be drawn out from the housing 21 to the inlet pipe 5, the first
valve VI is opened with the second valve V2 is closed, so that the fluid drawn from the inlet
pipe 5 to the housing 21 and the cleaning balls 20 are then sucked out from the housing 21
and into the inlet pipe 5 for circulating to the tubing 8 to clean the internal walls of the tubing
8. This is the condition illustrated in Figure 2. The direction of the fluid flow from the fluid
supply pipe 23 into the housing 21 and the flow of cleaning balls 20 from the housing 21
through the one way check valve CVI is shown in Figure 2 by the bold arrows.

The means for supply of cleaning balls 20 arising from the transfer of cleaning balls 20 is
operative by opening the first valve VI and keeping the second valve V2 closed. In this
manner, cleaning balls 20 from the housing 21 are drawn or sucked from the housing 21 to the
upstream side of the tubing 8, based on the difference in pressure of the entrance 2 of the fluid
supply pipe 23 and the exit 3 of the ball supply pipe 24.
After all the cleaning balls 20 are drawn into the inlet pipe 5, VALVE VI is then closed and
V2 remained closed. The supply of cleaning balls 20 is stopped when the first VALVE VI is
closed, as illustrated in Figure 3.
The first propeller 4, at the time when the first valve VI is opened, is also activated to force
the fluid flow W2 and also the cleaning balls 20 to rotate and as a result the cleaning balls 20
enter the tubing 8 randomly.
After the cleaning process, the second propeller 10 again rotates the cleaning balls 20 so that
the cleaning balls 20 collide with each other and the dirt particles, which were removed by the
cleaning balls 20 from tubing 8 and are now attached to the cleaning balls 20, are"rubbed"off.
The dirt particles would then be carried by the fluid flow W3 for discharge though the outlet
duct 15. It should be noted that the direction of rotation of the second propeller 10 and thus
the cleaning balls 20 is preferably in the opposite direction when compared to the inclined
slots 32 of the separator 12. For example, if the length direction of the inclined slots 32 is
anti-clockwise, then the rotation of the cleaning balls 20 by the propeller 10 should,
preferably, be clockwise. This would increase the collision of the cleaning balls 20 with each
other.
After the rotation, the cleaning balls 20 accumulate at the mouth 11 of the separator 12, as
illustrated in Figure 3.
According to a principle of fluid mechanics, the static pressure at the entrance 13 of the ball
return pipe 17 would be higher than that at the exit 14 of the fluid return pipe 16 because of

the entrance 13 of the ball return pipe 17 is formed in the direction against the fluid flow W3
of the outlet pipe 9.
This difference in pressure creates a suction force to draw or suck the fluid (and the cleaning
balls 20) from the separator 12 and into the housing 21 via the ball return pipe 17 and to draw
or suck the fluid (not the cleaning balls 20, because of the apertured partition 28 of the
housing 21) from the housing 21 to the outlet duct 15 via the fluid return pipe 16.
The means for return of cleaning balls 20 from the separator 12 back to the housing 21 is
operative by the opening of the second valve V2 and keeping the first VALVE VI CLOSED,
so that the cleaning balls 20 are sucked from the separator 12 to the housing 21 and the fluid
(not the cleaning balls 20, because of the apertured partition 28 of the housing 21) drawn from
the housing 21 to the outlet duct 15. This is the condition illustrated in Figure 4.
The direction of flow of fluid and cleaning balls 20 from the ball return pipe 17 into the
housing 21 and flow of fluid from the first compartment 17 into the second compartment 27
and then into the fluid return pipe 16 is shown by the bold arrows.
Finally, when all the cleaning balls 20 have arrived back at the first compartment 19 of the
housing 21 and are accumulated there, both valves VI and V2 are then closed, as illustrated in
Figure 1. The operation for return of cleaning balls 20 is stopped when the second valve V2 is
closed.
It can be seen that the means for return of cleaning balls 20 into the housing 21 is operative by
opening the second valve V2 and keeping the first valve VI closed. The means for supply of
cleaning balls 20 from the housing 21 into the cleaning system is operative by opening the
first valve VI and keeping the second valve V2 closed. In both operations, the cleaning balls
20 are circulated through the recirculating means by operation of the means for supply of
cleaning balls and operation of the means for return of cleaning balls. In both operations, it is
the opening and closing of two valves VI and V2 and vice versa which creates the differences
in pressure between the entrance 13 of the ball return pipe 17 and the exit 14 of the fluid
return pipe 16 and differences in pressure between the entrance 2 of the fluid supply pipe 23

and the exit 3 of the ball supply pipe 24. The operation of the whole cleaning system can
therefore be easily controlled via the two valves VI and V2, which can be manually operated
or mechanically operated.
When a need arises, when the cleaning balls 20 need to be replaced, the hand valves HVI and
HV2 are closed and the cover 18 is opened, so that the cleaning balls 20 can be replaced.
While the invention has been described with respect to one preferred embodiment, it will be
appreciated that this is set forth merely for purposes of example, and that many variations,
modifications and applications of the invention may be made therein by one skilled in the art
without departing from the scope of the invention as defined in the appended claims.
ADVANTAGEOUS EFFECTS OF THE INVENTION
From the described embodiment, it can be observed that the operation of the whole cleaning
system can easily be controlled via the two valves VI and V2, which can be manually
operated or means provided to operate them automatically. Furthermore, the whole cleaning
system have limited moving parts and is therefore more reliable and requires less
maintenance.
In addition, the cleaning system does not waste the cooling fluid which can easily be
recirculated together with the cleaning balls 20.

WE CLAIM :
1. A system for cleaning tubing used for conducting a fluid therethrough, the tubing being
connected to an inlet pipe (5) and an outlet pipe (9), the system having :
- a plurality of cleaning balls (20) for circulating with the fluid through the tubing ;
- a separator (12) disposed at the outlet pipe (9) and arranged to separate the
cleaning balls (20) from the fluid, said separator comprising perforations which
allow the fluid to flow through but not the cleaning balls (20);
a recirculating means comprising :
a housing (21) arranged to collect the cleaning balls (20), the housing (21) having
a first compartment (19) and second compartment (27) separated by an apertured
partition (28), the apertured portion (28) being arranged to allow the fluid to pass
through to the second compartment (27) but not the cleaning balls (20);
a ball supply pipe (24) having an entrance (26) coupled to a first opening on the
first compartment (19) of the housing (21) and an exit (3) coupled to a first
opening on the inlet pipe (5);
- a fluid supply pipe (23) having an entrance (2) coupled to a second opening on the
inlet pipe (5) and an exit (22) coupled to a second opening on the first
compartment (19) of the housing (21);
- a fluid return pipe (16) having an entrance (30) coupled to an opening on the
second compartment (27) of the housing (21) and an exit (14) coupled to an
opening on the outlet pipe (9);

a ball return pipe (17) having an entrance (13) coupled to an opening on the
separator (12) and an exit (31) coupled to a third opening on the first compartment
(19) of the housing (21);
a means for supply of cleaning balls to the inlet pipe (5) whereby a high pressure
is formed at the entrance (2) of the fluid supply pipe (23) and a low pressure is
formed at the exit (3) of the ball supply pipe (24), the difference in pressure
causing a transfer of cleaning balls (20) from the housing (21) to the inlet pipe
(5);
- and a means for a return of cleaning balls (20) to the housing (21) whereby a high
pressure is formed at the entrance (13) of the ball return pipe (17) and a low
pressure is formed at the exit (14) of the fluid return pipe (16), the difference in
pressure causing a transfer of cleaning balls (20) from the separator (12) back to
the housing (21), wherein said recirculating means, said means for supply of
cleaning balls and said means for return of cleaning balls are arranged to
selectively transfer the plurality of cleaning balls (20) from the inlet pipe (5) to
the outlet pipe (9), characterized in that said separator (12) comprises rectangular
perforations (32) which allow the fluid to flow through but not the cleaning balls
(20) and in that said system further comprises means (10) to rotate the fluid and
the cleaning balls (20) at the outlet pipe (9) before the separator (12) and
cooperating with said rectangular slots (32) for increasing the number of
collisions between said cleaning balls (20) so as to remove the dirt accumulated
on the surfaces of the cleaning balls (20) after their passage through the tubing
(8).
2. A cleaning system according to claim 1, wherein the recirculating means further
comprises a first valve (VI) disposed along the fluid supply pipe (23), a second valve
(V2) disposed along the fluid return pipe (16), a first one-way valve (CV1) disposed
along the ball supply pipe (24), and a second one-way valve (CV2) disposed along the
ball return pipe (12); the first one-way valve (CV1) being operative to transfer the

cleaning balls (20) from the housing (21) to the inlet pipe (5) and the second one-way
valve (CV2) being operative to transfer the cleaning balls (20) from the separator (12) to
the housing (21).
3. A cleaning system according to claim 1 or 2, wherein the recirculating means further
comprises a third valve (HV2) disposed along the ball return pipe (17) and a fourth valve
(HV1) disposed along the ball supply pipe (24).
4. A cleaning system according to any one of the preceding claims, wherein said separator
(12) is in a shape of a funnel.
5. A cleaning system according to claim 4, wherein said perforations in the form of
rectangular slots (32) have a length direction not parallel to the center axis of the funnel.
6. A cleaning system according to claim 5, wherein said rectangular slots (32) have a length
direction inclined clockwise or anti-clockwise, as viewed in the fluid flow direction.
7. A cleaning system according to claims 1 and 6, further comprising rotational means (10) to
rotate the fluid and the cleaning balls (20) at the mouth of the separator (11) after the outlet
pipe (9).
8. A cleaning system according to any one of the preceding claims, wherein the direction of
rotation of the rotational means at the outlet pipe (9) before the separator (12) is opposite
to the length direction of said rectangular slots (32).

A cleaning system for cleaning tubing using cleaning balls (20) circulated with the fluid
through tubing (8). The system includes a separator (12) having a perforated funnel,
which permits the fluid, but not the cleaning balls (20), to pass through. A housing (21)
having an apertured partition (28) is used to divide the housing (21) into an first
compartment (19) and a second compartment (27). An entrance (2) of a fluid supply pipe
(23) and an exit (3) of a ball supply pipe (24) are formed for creating a difference in
pressure to create a suction force to recirculate the cleaning balls (20) from the housing
(21) via the ball supply pipe (24), back to the tubing (8) for cleaning the walls of the
tubing (8). An entrance (13) of a ball return pipe (17) and an exit (14) of a fluid return
pipe (16) are formed for creating a difference in pressure to create a suction force to
recirculate the cleaning balls (20) from the separator (12) via the ball return pipe (17),
into the housing (21).

Documents:

1620-KOLNP-2004-(19-03-2012)-CORRESPONDENCE.pdf

1620-KOLNP-2004-(19-03-2012)-FORM-27.pdf

1620-KOLNP-2004-CORRESPONDENCE.pdf

1620-KOLNP-2004-FORM 27.pdf

1620-kolnp-2004-granted-abstract.pdf

1620-kolnp-2004-granted-assignment.pdf

1620-kolnp-2004-granted-claims.pdf

1620-kolnp-2004-granted-correspondence.pdf

1620-kolnp-2004-granted-description (complete).pdf

1620-kolnp-2004-granted-drawings.pdf

1620-kolnp-2004-granted-examination report.pdf

1620-kolnp-2004-granted-form 1.pdf

1620-kolnp-2004-granted-form 18.pdf

1620-kolnp-2004-granted-form 2.pdf

1620-kolnp-2004-granted-form 3.pdf

1620-kolnp-2004-granted-form 5.pdf

1620-kolnp-2004-granted-pa.pdf

1620-kolnp-2004-granted-reply to examination report.pdf

1620-kolnp-2004-granted-specification.pdf

1620-kolnp-2004-granted-translated copy of priority document.pdf


Patent Number 228097
Indian Patent Application Number 1620/KOLNP/2004
PG Journal Number 05/2009
Publication Date 30-Jan-2009
Grant Date 28-Jan-2009
Date of Filing 01-Nov-2004
Name of Patentee HYDROBALL TECHNICS HOLDINGS PTE LTD.
Applicant Address BLOCK 1, ROCHOR ROAD, #02-500 ROCHOR CENTER, SINGAPORE 180001
Inventors:
# Inventor's Name Inventor's Address
1 SOH, BENG KIAT, PETER CARE OF BLOCK 1 ROCHOR ROAD #02-500 ROCHOR CENTER
PCT International Classification Number F28G 1/12
PCT International Application Number PCT/SG2003/00065
PCT International Filing date 2003-03-28
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 200205422-9 2002-09-09 Singapore
2 20020346-4 2002-05-30 Singapore