Title of Invention

UV RESISTANT NAPHTHALATE POLYESTER ARTICLES AND A PROCESS FOR COATING THE ARTICLE

Abstract ABSTRACT 3212/CHENP/2005 "UV RESISTANT NAPHTHALATE POLYESTER ARTICLES AND A PROCESS FOR COATING THE ARTICLE" The present invention relates to an article comprising a support comprising a naphtha late polyester over coated wily a U V resistant coating comprising the polymerized reaction of a homogenous mixture comprising: a) at least one vinyl-functional crosslinkahle film former; b) more than 10 weight percent benzotriazole IJV absorber comprising a other than 2-(2-hydroxy-3-alpha-cuniyl-5-t-ootylphenyl)-5-tri-nuoromcthylbcnzoti-iazole, or more than 5 weight percent benzotriazole UV absorber or absorbers comprising 2-(2-hyclroxy-3-alpha-cmnyl-5-t-octyiphenyO-S-trifluoromethylbenzotriazclc; and c) at least one copolymerizable monomer that solubilize.
Full Text

This invention relates to UV resistant naphthalate polyester articles and a process for coating the article.
References relating to ultraviolet absorbers ("UVAs") in photopolymerizable coatings include U.S. Patent Nos. 5,318,850 (Pickett et al.), 5,559,163 (Dawson et al.), 5,977,219 (Ravichandran et al. '219), 6,187,845 (Renz et al.) and 6,262,151 (Ravichandran et al. ^151), and published PCT Application No. WO 98/34981 (Eastman Chemical Company). U.S. Patent No. 5,294,473 (Kawamoto) describes polyethylene 2,6-dinaphthalate ("PEN") photographic supports that can contain UVAs.
Articles made from PEN and other naphthalate-containing polyesters (collectively referred to below as "naphthalate polyesters") are undesirably prone to degradation in the presence of UV radiation. UVAs can be added to naphthalate polyester articles or included in polymerizable coating compositions applied to naphthalate polyester articles in order to extend the life of or protect the article. Many UVAs have only limited solubility in naphthalate polyesters. Also, the presence of the UVA in a polymerizable coating can compromise polymerization when ultraviolet light ("UV") curing is employed. UVAs may "bloom" (become apparent at the surface) of a naphthalate polyester article or cured coating if the UVA has been added at too high a loading level.
We have found that large amounts of benzotriazole UVAs can be dissolved in polymerizable compositions containing a vinyl-functional crosslinkable film former and a copolymerizable monomer that solubilizes the benzotriazole. The resulting compositions can be applied to a naphthalate polyester article to impart very good UV resistance to the article yet avoid blooming even at very high benzotriazole loading levels.
The present invention provides, in one aspect, an article comprising a naphthalate polyester overcoated with a UV resistant coating comprising the polymerized reaction product of a homogenous mixture comprising:

a) at least one vinyl-functional crosslinkable film former;
b) more than 10 weight percent benzotriazole UV absorber; and
c) at least one copolymerizable monomer that solubilizes the benzotriazole.
In another aspect, the invention provides an article comprising a support comprising a naphthalate polyester over coated with a UV resistant coating comprising the polymerized reaction product of a homogenous mixture comprising:
a) at least one vinyl-functional crosslinkable film former;
b) more than 5 weight percent benzotriazole UV absorber or absorbers comprising 2-(2-hydroxy-3-alpha-cumyl-5-t-octylphenyl)-5-trifluoromethylben2otriazole; and
c) at least one copolymerizable monomer that solubilizes the benzotriazole.
In another aspect, the invention provides a process for applying a UV resistant coating to a naphthalate polyester article comprising:
a) providing a support comprising a naphthalate polyester;
b) coating at least a portion of the support with a homogenous mixture comprising (i) at least one vinyl-functional crosslinkable film former; (ii) more than 10 weight percent benzotriazole UV absorber; and (iii) at least one copolymerizable monomer that solubilizes the benzotriazole; and
c) polymerizing the coating.
In yet another aspect, the invention provides a process for applying a UV resistant coating to a naphthalate polyester article comprising:
a) providing a support comprising a naphthalate polyester;
b) coating at least a portion of the support with a homogenous mixture comprising (i) at least one vinyl-functional crosslinkable film former; (ii) more than 5 weight percent benzotriazole UV absorber or absorbers comprising 2-(2-hydroxy-3-alpha-cumyl-5-t-octylphenyl)-5-trifluoromethylbenzotriazole; and (iii) at least one copolymerizable monomer that solubilizes the benzotriazole; and
c) polymerizing the coating.
These and other aspects of the invention will be apparent the detailed description below. In no event, however, should the above summaries be construed as

limitations on the claimed subject matter, which subject matter is defined solely by the attached claims, as may be amended during prosecution.
Brief Description of tile Drawing
Fig. 1 is a schematic cross-sectional view of a disclosed coated article;
Fig. 2 is a schematic cross-sectional view of a disclosed coated film;
Fig. 3 is a schematic cross-sectional view of a disclosed coated multilayer optical film; and
Fig. 4 is a schematic perspective view of a stack of two polymeric layers forming an interface.
Like reference symbols in the various figures of the drawing indicate like elements. The elements in the drawing are not to scale.
Detailed Description
By using the term "homogenous" with respect to a composition or mixture we refer to a liquid that on visual inspection appears to have a single phase free of precipitates or undissolved solids. A homogenous composition or mixture may be found on more detailed inspection to be a suspension, dispersion, emulsion or other microscopically multiphase form.
By using the term "polymer" we refer to homopolymers and copolymers, as well as to homopolymers or copolymers that may be formed in a miscible blend, e.g., by coextrusion or by reaction, including, e.g., transesterification. The term "copolymer" includes alternating, random and block copolymers.
By using the term "coating thickness" we refer unless otherwise specified to the thickness of a coating after it has been polymerized or otherwise cured.
By using the term "film former" we refer to a material that can be coated in a thin layer (e.g., of about 0.05 mm before polymerization) on a suitable support and polymerized to form a substantially continuous coating.
By using the term "vinyl-functional" with respect to a crosslinkable film former, we refer to a material having vinyl (-CH=CH2) groups that through the action of heat, light, electron beam or other activating energy (and if need be in the presence of a suitable initiator)

can form a substantially continuous coating of crosslinked polymer. The crosslinked state is generally characterized by solvent insolubility, but may be characterized by swellability in the presence of an appropriate solvent.
By using the term "copolymerizable" with respect to a monomer we refer to a monomer that can be polymerized with a vinyl-functional crosslinkable film former to form a substantially continuous coating of crosslinked polymer.
By using the term "blooming" we refer to the formation of a visible deposit or nonuniform discoloration at the surface of a cured polymer coating.
By using the term "solubilizes" with respect to liquids, we refer to dissolution of a solid into a liquid to form a homogeneous mixture. By using the term "solubilizes" with respect to cured coatings made from liquid monomers, we refer to the dissolution of a solid into the liquid monomers to form a homogeneous mixture, and to the retention of the solid in the cured coating without blooming, internal haze, or other visible signs of phase separation.
By using the term "visible light-transmissive" with respect to an article or element thereof, we mean that the article or element has an average transmission over the visible portion of the spectrum, Tyis of at least about 20%, measured along the normal axis.
By using the term "optically clear" with respect to an article or element thereof we refer to an absence of visibly noticeable distortion, haze or flaws as detected by the naked eye at a distance of about 1 meter, preferably about 0.5 meters.
By using words of orientation such as "atop", "on", "uppermosf and the like for the location of various elements in an article of the invention, we refer to the relative position of the element with respect to a horizontal support or reference plane. We do not intend that such elements or articles should have any particular orientation in space during or after their manufacture.
By using the term "overcoated" to describe the position of a layer with respect to a support or other element (e.g., an underlying layer) in an article of the invention, we refer to the recited layer as being atop the support or other element, but not necessarily contiguous to the support or other element. By using the term "separated by" to describe the position of a first element with respect to two other elements, we refer to the first element as being between the other elements but not necessarily contiguous to either other element.

By using the term "weathering" we refer to the effects of prolonged exposure to simulated or actual outdoor weather conditions including sun, rain, airborne contaminants and heat, or to simulated or actual indoor illumination conditions including high-intensity bulbs, indoor lighting and the like. For cured polymer coatings or polymeric substrates, common weathering failure modes include yellowing, cracking, peeling, delamination or haze.
Referring to Fig. 1, an article of the invention is shown generally at 10. Article 10 includes support ^2 "made of PEN or other naphthalate polyester, overcoated with primer layer \J3^nd a UV resistant coating layer 14 j Coating!, 14 fcontains a high percentage of a benzotriazole UV absorber (not shown in Fig. 1) that helps to protect support 12 Wm weathering including UV exposure.
Fig. 2 shows a film article of the invention(2d| having flexible film support 22 / made of PEN or other naphthalate polyester overcoated on its upper and lower surfaces with primer layers 23, 25 and UV resistant coating layers(24,26; Coating/26)is a hardcoat layer containing submicron inorganic particles,'28 that help protect the lower surface of article!20} from damage or abrasion.
Fig. 3 shows a multilayer optical film article of the invention^SOjhaving flexible film support 32 made from a large number (e.g., 10, 100, 1000 or even more) thin layers such as layers'34, 38, 42, ^6iand SOimade of a PEN or other naphthalate polyester first polymer and layers 36, 40, 44 and 48 made of a second polymer. Not all of these layers are shown in Fig, 3. The missing layers are indicated using an elhpsis. Outer skin layeri60)lies atop primer Iayer'58 and protects the underlying layers in article(30)from damage.
Referring to Fig. 4, two adjacent layers 36 and 38 are shown in perspective view. Layer 36 (and other layers of the same second polymer such as layers 40, 44 and 48, not shown in Fig. 4) have in-plane indices of refraction nix and nly in the x- and y-axis (in-plane) directions and index of refraction nlz in the z-axis (out-of-plane) direction. Naphthalate polyester layer 38 (and other naphthalate polyester layers such as layers 34, 38, 42, 46 and 50, not shown in Fig. 4) have in-plane indices of refi-action n2x and n2y in the x-and y-axis directions and index of refraction n2z in the z-axis direction. Incident light ray 75 will be refracted as it passes through layer 36, reflected at interface 77, refi-acted as it passes once again through layer 76 and then will exit layer 76 as reflected ray 79. The reflectance

characteristics of the multilayer optical film article will be determined by the respective indices of refraction for the layers within the support. In particular, reflectivity will depend upon the relationship between the indices of refraction of each layer material in the x, y, and z directions. A multilayer optical film article such as article 30 of Fig. 3 can have especially useful optical properties when formed using at least one uniaxially birefringent polymeric material having two indices (typically along the x and y axes, or nx and ny) that are approximately equal, and different from the third index (typically along the z axis, or nz). Multilayer optical films in which all the optical layers are isotropic in their refractive index can also be used.
A variety of naphthalate polyester supports can be employed in the invention. Representative naphthalate polyesters include but are not limited to PEN, naphthalate copolyesters ("coPENs") and polybutylene 2,6-naphthalate ("PBN"). PEN is an especially preferred support and can be made, for example, by reaction of naphthalene dicarboxylic acid with ethylene glycol. PEN has a large positive stress optical coefficient, retains birefiingence effectively after stretching, and has little or no absorbance within the visible range. PEN also has a large index of refraction in the isotropic state. Its refractive index for polarized incident light of 550 nm wavelength increases when the plane of polarization is parallel to the stretch direction from about 1.64 to as high as about 1.9. Increasing molecular orientation increases the birefringence of PEN. The molecular orientation may be increased by stretching the material to greater stretch ratios and holding other stretching condifions fixed. CoPENS are also preferred supports. An especially preferred coPEN employs carboxylate subunits derived from 90 mol% dimethyl naphthalene dicarboxylate and 10 mol% dimethyl terephthalate and glycol subunits derived from 100 mol% ethylene glycol subunits to provide a polymer having an intrinsic viscosity (IV) of 0.48 dL/g and an index of refi-action is approximately 1.63.
The support can be made entirely from naphthalate polyester or can include one or more naphthalate polyesters and one or more other materials. Representative other materials include cellulosic materials (e.g., cellulose triacetate or "TAC"); polyolefins such as low-density polyethylene ("LDPE"), linear low-density polyethylene ("LLDPE"), high density polyethylene ("HDPE"), polypropylene ("PP") and cyclic olefin copolymers (e.g., metallocene-catalyzed cyclic olefin copolymers or "COCs"); acrylates and methacrylates such

as polymethyl methacrylate ("PMMA"), ethylene ethyl acrylate ("EEA"), ethylene methyl acrylate ("EMA") and ethylene vinyl acrylate ("EVA"); styrenics such as polystyrene ("PS"), acrylonitrile-butadiene-styrene ("ABS"), styrene-acrylonitrile ("SAN"), styrene/maleic anhydride ("SMA") and poly a-methyl styrene ; polyamides such as nylon 6 ("PA6"); polyvinyl chloride ("PVC"); polyoxymethylene ("POM"), polyvinylnaphthalene ("PVN"), polyetheretherketone ("PEEK"), polyaryletherketone ("PAEK"), fluoropolymers (e.g., DYNEON'"'^ HTE terpolymer of hexafluoropropylene, tetrafluoroethylene, and ethylene), polycarbonates such as polycarbonate of bisphenol A ("PC"), polyarylate ("PAR"), polysulfone ("PSul"), polyphenylene oxide ("PPO"), polyetherimide ("PEI"), polyarylsulfone ("PAS"), poly ether sulfone ("PES"), polyamideimide ("PAF'), polyimide, polyphthalamide, polyethylene terephthalate ("PET") and heat stabilized PET ("HSPET").
For multilayer optical film supports containing a plurality of naphthalate polyester first polymer layers and a plurality of layers of a second polymer, preferred second polymers include vinyl polymers and copolymers made from monomers such as vinyl naphthalenes, styrene, maleic anhydride, acrylates, and methacrylates. Examples of such second polymers include polyacrylates, polymethacrylates such as PMMA, and isotactic or syndiotactic polystyrene. Other second polymers include condensation polymers such as polysulfones, polyamides, polyurethanes, polyamic acids, polyimides, polyesters and polycarbonates.
Preferred second polymers for use in multilayer optical film supports include but are not limited to PMMA homopolymers such as those sold under the trade designations CP71 and CP80 (both commercially available from hieos Acrylics, Inc.), polyethyl methacrylate ("PEMA", Tg = 65° C), PMMA copolymers ("coPMMA"), such as a coPMMA made from 75 wt% methylmethacrylate ("MMA") comonomer units and 25 wt% ethyl acrylate ("EA") comonomer units (PERSPEX'"'^ CP63, commercially available from Ineos Acrylics, Inc.), a coPMMA formed with MMA comonomer units and «-butyl methacrylate ("nBMA") comonomer units, or a blend of PMMA and poly(vinylidene fluoride) (PVDF) such as that sold under the trade designation SOLEF^"^ 1008 (commercially available from Solvay Polymers). Additional preferred second polymers include polyolefm copolymers, e.g., poly (ethylene-co-octene) ("PE-PO") copolymers such as ENGAGE''^ 8200 (commercially available from Dow-Dupont Elastomers), poly (propylene-co-ethylene) ("PPPE") copolymers

such as that sold under the trade designation Z9470 (commercially available from Fina Oil and Chemical Company), and copolymers of atactic polypropylene ("aPP") and isotactic polypropylene ("iPP") such as the copolymer formerly sold under the trade designation REXFLEX'"'^ Wl 11 (Huntsman Chemical Corporation). Further preferred second polymers include functionalized polyolefins, e.g., linear low density polyethylene-g-maleic anhydride ("LLDPE-g-MA") such as BYNEL^M 4105 (commercially available from E.I. duPont de Nemours & Co., Inc.), copolyester ether elastomers, e.g., ECDEL'^'^ elastomer (commercially available from Eastman Chemical Company, fluoropolymers, e.g., THV'"'^ fluoropolymer (commercially available from 3M Company), copolymers of PET employing a second glycol such as cyclohexanedimethanol ("PETGs"), and syndiotactic polystyrene ("sPS").
In addition to the first (naphthalate polyester) and second polymer layers, multilayer optical film articles of the invention optionally include one or more non-optical layers. Suitable non-optical layers include one or more skin layers at one or both major surfaces of the film, and one or more interior non-optical layers such as protective boundary layers between packets of optical layers. Non-optical layers can be used to impart rigidity, thickness or other structural characteristics to the multilayer optical film or to protect it from harm or damage during or after processing. For some applications, it may be desirable to include sacrificial protective skins, wherein the interfacial adhesion between the skin layer(s) and the remainder of the film stack is controlled so that the skin layers can be stripped from the film stack before use.
For applications where optical performance is important, the cured coating preferably has a visible light transmission of at least about 70% at 550 nrn, and more preferably at least about 80%. The support can if desired be uni-directionally oriented, biaxially oriented or heat-stabilized, using heat setting, annealing under tension or other techniques that will discourage shrinkage up to at least the heat stabilization temperature when the support is not constrained. The support can have any desired thickness. For applications involving flexible film supports that are made or coated using roU-to-roll processing equipment, the support preferably has a thickness of about 0.005 to about 1 mm, more preferably about 0.025 to about 0.25 mm. If skin layers and other optional non-optical layers are employed in multilayer optical films containing first and second polymer layers, the

skin layers and non-optical layers can be thicker than, thinner than, or the same thickness as the first and second polymer layers. The thickness of the skin layers and non-optical layers is generally at least four times, typically at least 10 times, and can be at least 100 times, the thickness of at least one of the individual first and second polymer layers.
A variety of vinyl-fimctional crosslinkable film formers (sometimes referred to below as "film formers") can be employed in the invention. Representative film formers typically will be monomers or oligomers having di- or higher vinyl functionality such as alkyl di-, tri-, tetra- and higher-functional acrylates and methacrylates, and monomers and oligomers having allyllic, fumaric or crotonic unsaturation. Preferred film formers (and in some cases their glass transition temperature or "Tg" values) include, but are not limited to, stearyl acrylate (e.g., SR-257, Tg = about 35° C, commercially available from Sartomer Company), stearyl methacrylate (e.g., SR-324, Tg = about 38° C, commercially available from Sartomer Company), glycidyl methacrylate (e.g., SR-379, Tg = about 41° C, commercially available from Sartomer Company), 1,6-hexanediol diacrylate (e.g., SR-238, Tg = about 43° C, commercially available from Sartomer Company), urethane methacrylates (e.g., CN-1963, Tg = about 45° C, commercially available from Sartomer Company), 1,4-butanediol diacrylate (e.g., SR-213, Tg = about 45° C, commercially available from Sartomer Company), alkoxylated aliphatic diacrylates (e.g., SR-9209, Tg = about 48° C, commercially available from Sartomer Company), alkoxylated cyclohexane dimethanol diacrylates (e.g., CD-582, Tg = about 49° C, commercially available from Sartomer Company), ethoxylated bisphenol A dimethacrylates (e.g., CD-541, Tg = about 54° C, SR-601, Tg = about 60° C and CD-450, Tg = about 108° C, all commercially available from Sartomer Company), 2-phenoxyethyl methacrylate (e.g., SR-340, Tg = about 54° C, commercially available from Sartomer Company), epoxy acrylates (e.g., CN-120, Tg = about 60° C, CN-124, Tg = about 64° C and CN-104, Tg = about 67° C, all commercially available from Sartomer Company), tripropylene glycol diacrylate (e.g., SR-306, Tg = about 62° C, commercially available from Sartomer Company), trimethylolpropane triacrylate (e.g., SR-351, Tg = about 62° C, commercially available from Sartomer Company), diethylene glycol dimethacrylate (e.g., SR-231, Tg = about 66° C, commercially available from Sartomer Company), epoxy methacrylates (e.g., CN-151, Tg = about 68° C, commercially available from Sartomer

Company), triethylene glycol diacrylate (e.g., SR-272, Tg = about 70° C, commercially available from Sartomer Company), urethane acrylates (e.g., CN-968, Tg = about 84° C and CN-983, Tg = about 90° C, both commercially available from Sartomer Company, PHOTOMERTM 6210, PHOTOMER 6010 and PHOTOMER 6230, all commercially available from Cognis Corporation, EBECRYL™ 8402, EBECRYL 8807 and EBECRYL 4883, all commercially available from UCB Radcure, and LAROMER™ LR 8739 and LAROMER LR 8987, both commercially available from BASF), dipentaerythritol pentaacrylates (e.g., SR-399, commercially available from Sartomer Company, Tg = about 90° C), epoxy acrylates blended with styrene (e.g., CN-120S80, commercially available from Sartomer Company, Tg = about 95° C), di-trimethylolpropane tetraacrylates (e.g., SR-355, commercially available from Sartomer Company, Tg = about 98° C), diethylene glycol diacrylates (e.g., SR-230, commercially available from Sartomer Company, Tg = about 100° C), 1,3-butylene glycol diacrylate (e.g., SR-212, commercially available from Sartomer Company, Tg = about 101° C), pentaacrylate esters (e.g., SR-9041, commercially available from Sartomer Company, Tg = about 102° C), pentaerythritol tetraacrylates (e.g., SR-295, commercially available from Sartomer Company, Tg = about 103° C), pentaerythritol triacrylates (e.g., SR-444, commercially available from Sartomer Company, Tg = about 103° C), ethoxylated (3) trimethylolpropane triacrylates (e.g., SR-454, commercially available from Sartomer Company, Tg = about 103° C), alkoxylated trifunctional acrylate esters (e.g., SR-9008, commercially available from Sartomer Company, Tg = about 103° C), dipropylene glycol diacrylates (e.g., SR-508, commercially available from Sartomer Company, Tg = about 104° C), neopentyl glycol diacrylates (e.g., SR-247, commercially available from Sartomer Company, Tg = about 107° C), cyclohexane dimethanol diacrylate esters (e.g., CD-406, commercially available from Sartomer Company, Tg = about 110° C), cyclic diacrylates (e.g., IRR-214, commercially available from UCB Chemicals, Tg = about 208° C), polyester acrylates (e.g., CN 2200, Tg = about -20° C, and CN2256, both commercially available from Sartomer Company) and tris (2-hydroxy ethyl) isocyanurate triacrylate (e.g., SR-368, commercially available from Sartomer Company, Tg = about 272° C), acrylates of the foregoing methacrylates and methacrylates of the foregoing acrylates. Hexanediol diacrylate, butanediol diacrylate, pentaerythritol triacrylate ("PETA"), pentaerythritol tetraacrylate,

trimethylolpropane triacrylate ("TMPTA") and aliphatic or cycloaliphatic urethane acrylate oligomers are especially preferred film formers. Use of film formers containing urethane functionality can contribute to toughness in the cured coating. Use of oligomeric film formers can reduce shrinkage, curl, and residual stress but may also compromise hardness. Mixtures of film formers can be employed. The composition should contain sufficient film former to provide a cured coating having the desired thickness and durability. Preferably, the composition contains about 10 to about 90 vi^eight percent film former based on the total weight of solids in the composition. More preferably, the composition contains about 20 to about 80 weight percent film former, and most preferably about 25 to about 60 weight percent film former.
A variety of benzotriazoles can be employed in the invention. Representative benzotriazoles include, but are not limited to, those described in U.S. Patent No. 3,004,896 (Heller et al. '896), 3,055,896 (Boyle et al.), 3,072,585 (Milionis et al.), 3,074,910 (Dickson, Jr.), 3,189,615 (Heller et al. '615), 3,230,194 (Boyle), 4,127,586 (Rody et al. '586), 4,226,763 (Dexter et al. '763), 4,275,004 CWinter et al. '004), 4,315,848 (Dexter et al. '848), 4,347,180 (Winter et al. '180), 4,383,863 (Dexter et al. '863), 4,675,352 (Winter et al. '352), 4,681,905 (Kubota et al.), 4,853,471 (Rody et al. '471), 5,436,349 (Winter et al. '349), 5,516,914 (Winter et al. '914), 5,607,987 (Winter et al. '987), 5,977,219 (Ravichandran et al. "219), 6,187,845 (Renz et al.) and 6,262,151 (Ravichandran et al. '151). Polymerizable benzotriazoles can be employed if desired. Most preferably the benzotriazole is substituted in the 5-position of the benzo ring by a thio ether, alkylsulfonyl or phenylsulfonyl moiety such as the benzotriazoles described in U.S. Patent Nos. 5,278,314 (Winter et al. '314), 5,280,124 (Winter et al. '124), Winter et al. '349 and Winter et al. '914, or subsfituted in the 5-position of the benzo ring by an electron withdrawing group such as the benzotriazoles described in Ravichandran et al. '219. Further preferred benzotriazoles also include 2-(2-hydroxy-3,5-di-alpha-cumylphenyl)-2H-benzotriazole (TINUVIN™ 234 or TINUVIN 900, both commercially available from Ciba Specialty Chemicals), 5-chloro-2-(2-hydroxy-3-tert-butyl-5-methylphenyl)-2H-benzotriazole (TINUVIN 326, commercially available from Ciba Specialty Chemicals), 5-chloro-2-(2-hydroxy-3,5-di-tert-butylphenyl)-2H-benzotriazole (TINUVIN 327, commercially available from Ciba Specialty Chemicals), 2-(2-hydroxy-3,5-

di-tert-amylphenyl)-2H-benzotriazole (TINUVIN 328, commercially available from Ciba Specialty Chemicals), 2-(2-hydroxy-3-alpha-cumyl-5-tert-octylphenyl)-2H-benzotriazole (TINUVIN 928, commercially available from Ciba Specialty Chemicals) and 5-trifluoromethyl-2-(2-hydroxy-3-alpha-cumyl-5-tert-octylphenyI)-2H-benzotriazole (CGL-139, commercially available from Ciba Specialty Chemicals). Mixtures of benzotriazoles can be employed. TINUVIN 328, TINUVIN 928 and CGL-139 are especially preferred benzotriazoles due to their high solubility in monomers such as isobomyl acrylate. CGL-139 is a particularly preferred benzotnazole due to its efficacy in shielding naphthalate polyester supports from the effects of weathering.
The compositions of the invention contain more than 5 weight percent benzotnazole when CGL-139 alone or a mixture of benzotriazoles including CGL-139 is employed. The compositions of the invention contain more than 10 weight percent benzotriazole when a benzotnazole or mixture of benzotriazoles other than CGL-139 is employed. The benzotriazole upper amount limit will depend in part on the chosen benzotriazole, monomer and other ingredients in the composition. The upper amount limit generally corresponds to the level at which blooming, hazing or phase separation is observed. Blooming may not be observed until after cure and some aging has taken place. Heat or solvents (e.g., ethyl acetate, toluene, acetone or hexanes) can be used to facilitate quick dissolution of the benzotriazole in the coating composition. Preferably the composition contains about 11 to about 35 weight percent benzotriazole, more preferably about 16 to about 35 weight percent benzotriazole and most preferably about 21to about 35 weight percent benzotriazole.
A variety of copolymerizable monomers that solubilize the UV absorber (sometimes referred to below as "solubilizing monomers") can be employed in the invention. Usually the solubilizing monomer will be monofunctional, and when combined by itself with an appropriate UV photoinitiator and appropriately irradiated with UV light usually will cure or gel but will not readily form a substantially continuous coating of crosslinked polymer. However, some bifunctional monomers (e.g., butanediol diacrylate) having a suitably lov/ viscosity and suitable solubilizing power for a UV absorber may be employed in the invention as both a vinyl-functional crosslinkable film former and as a solubilizing monomer. In most

instances however the vinyl-functional crosslinkable film former and the solubilizing monomer will be distinct chemical species. The solubilizing monomer should be able to solubilize a sufficient amount of the benzotnazole so that a composition of the invention will form a homogenous mixture. Unlike a solvent, the solubilizing monomer will largely remain in the coafing composition after application of the coating composition to the support and exposure to suitable drying conditions, and will largely be incorporated into the cured composition. Representative solubiHzing monomers include, but are not limited to, monofuncfional monomers such as isooctyl acrylate (e.g., SR-440, commercially available from Sartomer Company, Tg = about -45 to -54° C), 2-ethylhexyI acrylate (Tg = about -50° C), cyclohexyl acrylate (Tg = about 19° C), t-butyl acrylate (Tg = about 41° C), n-octyldecyl acrylate (Tg = about 42° C), glycidyl methacrylate (e.g., SR-379, commercially available from Sartomer Company, Tg = about 41-74° C), 1,4-butanediol diacrylate (e.g., SR-213), benzyl methacrylate (Tg = about 54° C), isobomyl acrylate (e.g., SR-506, commercially available from Sartomer Company, Tg = about 88-94° C), isobornyl methacrylate (e.g., SR-423, commercially available from Sartomer Company, Tg = about 110° C), t-butylcyclohexyl acrylate, 1-adamantyl acrylate, dicyclopentenyl acrylate and n-vinyl caprolactam. Higher Tg solubilizing monomers are preferred where harder cured coatings are desired. Acrylates are preferred over methacrylates where rapid reactivity is desired. Those skilled in the art will appreciate that lower Tg solubilizing monomers may be preferred where softer cured coatings are desired and that methacrylates may be preferred where slower reacfivity is desired. Isobomyl acrylate and t-butylcyclohexyl acrylate are especially preferred solubilizing monomers. Mixtures of solubilizing monomers can be employed. The composition should contain sufficient solubilizing monomer to solubilize the benzotnazole in the composition and form a homogenous mixture that does not exhibit blooming after cure. Preferably, the composition contains about 5 to about 95 weight percent solubilizing monomer based on the total weight of solids in the composition. More preferably, the composition contains about 10 to about 80 weight percent solubilizing monomer, and most preferably about 15 to about 60 weight percent solubilizing monomer.
Preferably the compositions of the invention are photopolymerizable. When a photoinitiator is not employed, then a curing technique such as e-beam irradiation can be used

to effect photocuring. More preferably the compositions contain a photoinitiator, e.g., a UV photoinitiator or a photoinitiator that can be activated by UV or visible light ("UV/Vis" photoinitiator), and will be light polymerizable. A variety of photoinitiators can be employed to facilitate photopolymerization. Care should be taken in selection of the photoinitiator so that the coating will be both photopolymerizable and UV protecting after cure. Exemplary photoinitiators include, but are not limited to, l-phenyl-2-hydroxy-2-methyl-l-propanone; oligo{2-hydroxy-2 methyl-l-[4-(methylvinyl)phenyl]propanone}; 2-hydroxy 2-methyl 1-phenyl propan-1 one (DAROCURE'^'** 1173, commercially available from Ciba Specialty Chemicals); bis (2,6-dimethoxybenzoyl)-2,4,4-trimethylpentyl phosphine oxide; 2,4,6-trimethyl benzoyl-diphenyl phosphine oxide; 2-methyl -1- [4(methylthio) -2-morpholinopropan]-l-one; 1-hydroxycyclohexyl phenyl ketone; 4-(2-hydroxy) phenyl-2-hydroxy-2-(methylpropyl)ketone; 2,2-dimethoxy-2-phenyl acetophenone; benzophenone; benzoic acid; (n-5,2,4- cyclopentadien-1-yl) [1,2,3 ,4,5,6-n)-(l-methylethyl) benzene]-iron(+) hexafluorophosphate; 4-(dimethyl amino)-ethyl ether; and mixtures thereof. Commercially available photoinitiators include 1-hydroxycyclohexylphenylketone (IRGACURE''^ 184, commercially available from Ciba Specialty Chemicals); a 50:50 weight basis mixture of 1-hydroxycyclohexylphenylketone and benzophenone (IRGACURE 500, commercially available from Ciba Specialty Chemicals); bis(n,5,2,4-cyclopentadien-l-yl)-bis[2,6 -difluoro-3-(lH-pyrrol-l-yl)phenyl]titanium (IRGACURE 784 DC, commercially available from Ciba Specialty Chemicals); 2-benzyl -2-N,N- dimethyl amino -I-(4-morpholinophenyl) -1-butanone (IRGACURE 369, commercially available from Ciba Specialty Chemicals); 2,2-Dimethoxy-l,2-diphenylethan-l-one (IRGACURE 651, commercially available from Ciba Specialty Chemicals); bis(2,4,6-trimethylbenzoyl) phenylphosphineoxide (IRGACURE 819); and the EB3, KBl, TZT, KIP lOOF, ITX, EDB, X15 and KT37 series of ESACURE™ photoinitiators (commercially available from Sartomer Company). Mixtures of photoinitiators can be employed, and can be especially useful for obtaining good absorption at short wavelengths for surface cure together with good absorption at long wavelengths for bulk cure. When oxygen is present during curing at levels above about 400 ppm then it may be preferable to employ a second photoinitiator that absorbs at a wavelength less than about 360 nm. Suitable second photoinitiators include IRGACURE 184, DAROCURE 1173, hydroxy-

alkyl phenyl ketone photoinitiators and benzophenone. When a photoinitiator is employed in the composition, sufficient photoinitiator should be present to attain the desired rate, degree and depth of photocuring without unduly harming storage stability. Preferably, the composition contains about 0.1 to about 8 weight percent photoinitiator based on the total weight of solids in the composition. More preferably, the composition contains about 0.5 to about 5 weight percent photoinitiator, and most preferably about 1 to about 4 weight percent photoinitiator.
The compositions of the invention can also contain submicron inorganic particles such as silica or alumina particles. Inclusion of such particles can alter the hardness, scratch resistance or abrasion resistance of the cured coating, sometimes accompanied by a decrease in UV resistance. Preferably the inorganic particles are submicron particles having an average particle diameter less than about 100 nm. Most preferably the inorganic particles are functionalized or are treated with a suitable coupling agent (e.g., a silanol) to increase the available loading level or to improve particle retention in the cured coating. Representative inorganic particles are described in U.S. Patent No. 5,104,929 (Bilkadi) and Pickett et al., and include but are not limited to fumed sihcas such as AEROSIL™ OX-50 silica (commercially available from Degussa-Huls AG) and CABOSIL''^ M5 silica (commercially available from Cabot Corp.); silica hydrosols such as the NALCO'"'^ series of colloidal silica sols (commercially available from Nalco Chemical Company), the LUDOX'^'^ series of silica sols (commercially available from DuPont Silica Products) and the KLEBOSOL™ and HIGHLINK''^ series of colloidal silica sols (commercially available from Clariant Corporation). Representative aluminas include but are not limited to Aluminum Oxide C (commercially available from Degussa-Hiils AG) and KLEBOSOL 30CAL25 alumina modified colloidal silica (commercially available from Clariant Corporation). When hydrosols are employed, suitable control or adjustment of pH may be desirable to maintain a dispersion of the inorganic particles and to prevent undesired side reactions or inadvertent cure. When employed, the composition should contain sufficient inorganic particles to provide the desired degree of hardness and scratch or abrasion resistance. When silica is used as the submicron particle, the composition preferably contains about 1 to about 65 weight

percent inorganic particles based on the total weight of solids in the composition, more preferably about 15 to about 60 weight percent inorganic particles, and most preferably about 25 to about 50 weight percent inorganic particles. Hardness and scratch or abrasion resistance are often more dependent on particle volume fraction than on particle weight fraction, so these values preferably are adjusted as appropriate when inorganic particles having a density significantly different from that of silica are employed.
The compositions of the invention can contain a variety of adjuvants to alter the behavior or performance of the composition before or after application to a support. Preferred adjuvants include fillers (e.g., particles of about 1 to about 10 micrometers average particle diameter), which can impart a hazy or diffuse appearance to the cured coating. Other preferred adjuvants include pigments, dyes, optical brighteners, leveling agents, flow agents and other surface-active agents, defoamers, solvents to aid in coating and to accelerate or to slow the drying rate, waxes, indicators, light stabilizers (e.g., hindered amine light stabilizers or "HALS") and antioxidants. The types and amounts of such adjuvants will be apparent to those skilled in the art.
The smoothness, continuity, weathering characteristics or adhesion of the coating composition to the underlying support preferably can be enhanced by priming, application of a tie layer or other appropriate pretreatment. Preferred pretreatments include low solids solutions of polyvinylidene dichloride; solvent-borne mixtures of polyester resins and aziridine crosslinkers; solvent-bome or aqueous polyol resins with optional crosslinkers such as aziridines or melamines; electrical discharge in the presence of a suitable reactive or non-reactive atmosphere (e.g., plasma, glow discharge, corona discharge, dielectric barrier discharge or atmospheric pressure discharge); chemical pretreatment and flame pretreatment. These pretreatments help make the support more receptive to the cured coating composition. When a tie layer is employed, it may have a thickness of a few run (e.g., 1 or 2 nm) to about 500 nm, and can be thicker if desired. The coating compositions of the invention can be applied using conventional coating methods such as roll coating (e.g., gravure roll coating), spin coating, spray coating (e.g., conventional or electrostatic spray coating), padding or other techniques that will be familiar to those skilled in the art. Preferably the coating is applied at a rate that will yield a cured coating thickness less than about 0.1 mm, more preferably less

than about 0.05 mm, and most preferably between about 0.01 mm and about 0.025 mm. On single-side-coated thin supports, excessive curl may be observed when coating thicknesses greater than about 0.05 mm are employed. When high levels of inorganic particles are incorporated into the coating composition then thinner coating thicknesses may be desired in order to achieve through curing.
If the coating composition contains a solvent, the applied coating can be dried using air, heat or other conventional techniques. The applied coating can be crosslinked using any appropriate method. When crosslinking using UV radiation, light having a wavelength between about 360-440 nm is preferred, with light having a wavelength of about 395-440 nm being most preferred. A variety of UV light sources can be employed. Representative sources include but are not limited to a FUSION'^'^ H-bulb high-intensity mercury lamp (which emits three bands centered at 254, 313, 365 nm and is commercially available from Fusion UV Systems, Inc.), a FUSION D-bulb iron-doped mercury lamp (which adds emission at 380-400 nm but which may emit less at lower wavelengths, and is commercially available from Fusion UV Systems, Inc.) and a FUSION V-bulb gallium-doped mercury lamp (which adds emission at 404-415 nm but which may emit less at lower wavelengths, and is commercially available from Fusion UV Systems, Inc.). In general, lower wavelengths promote surface cure and higher wavelengths promote bulk cure. A FUSION D-bulb generally represents a desirable overall compromise. Curing can take place under a suitable atmosphere, e. g., a nitrogen atmosphere to provide inerted curing.
The cured coating preferably is visible light transmissive and more preferably is optically clear. The cured coating preferably provides significant protection against not only UV exposure but also weathering in general. The benzotriazole component in the coating can provide useful absorbance at wavelengths beyond 400 nm when used in a suitably high concentration, while exhibiting permanence in the polymer network and an absence of blooming. Most preferably the cured coating enables an underlying support to have at least a 5 and most preferably at least a 10 year useful life when weathered outdoors in Miami, Florida at a 45° south-facing exposure angle. End of useful life in such an evaluation can be taken as the time at which excessive yellowness occurs (as indicated by an increase of 4 or more in the b* value obtained using a D65 light source, reflected mode and the CIE L*a*b*

color space); or by significant cracking, peeling or delamination; or by sufficiently intense haze to be objectionable to the naked eye. Weathering can also be evaluated using the same criteria and a suitable accelerated weathering testing cycle such as the cycle described in ASTM G155 or equivalent. When so evaluated, the cured coating preferably maintains acceptable appearance through a radiant dose of 17,000 kJ/m^ at 340 nm (believed to be equivalent to about 5 years of Miami, Florida 45° south-facing exposure), and more preferably maintains acceptable appearance through a radiant dose of 34,000 kjW at 340 nm (believed to be equivalent to about 10 years of Miami, Florida 45° south-facing exposure). Unacceptable appearance is taken to be an increase of the b* value by 4 units or more, or the onset of significant cracking, peeling, delamination or haze. In contrast, unprotected naphthalate polyester films have a useful life of only about 6 to 12 months when weathered outdoors in Miami, Florida at 45° south-facing exposure angle, and maintain acceptable appearance through a radiant dose of about 2,340 kjW at 340 nm when evaluated using an accelerated weathering testing cycle.
Various functional layers or other supplemental coatings can be applied to the cured coating composition to alter or improve the cured coating composition's physical or chemical properties. Such supplemental coatings can include but are not limited to antireflective coatings; anti-fogging coatings; antistatic coatings; flame retardants; additional abrasion resistant or hardcoat layers; visible light-transmissive conductive layers or electrodes (e.g., of indium tin oxide); magnetic or magneto-optic coatings or domains; photographic emulsions or images; prismatic coatings; holographic coatings or images; adhesives such as pressure sensitive adhesives or hot melt adhesives; primers to promote adhesion by adjacent layers; and low adhesion backsize materials for use when the coated support is to be used in adhesive roll form.
The coatings of the invention can be treated with, for example, inks or other printed indicia such as those used to display product identification, orientation information, advertisements, warnings, decoration, or other information. Various techniques can be used to print on such articles, including but not limited to screen printing, Inkjet printing, thermal transfer printing, letterpress printing, offset printing, flexographic printing, stipple printing, laser printing, and so forth. A variety of inks can be used, including one and two component

inks, oxidatively drying and UV-drying inks, dissolved inks, dispersed inks, and 100% ink systems.
The coatings of the invention can be used for a variety of applications. Representative applications include but are not limited to coatings on multilayer visible mirror films such as those used in mirrors, light tubes, lamp and bulb cavity reflectors, solar collectors, mirror finishes and imitation chrome; multilayer infrared ("IR") mirror applications such as vehicular or architectural glazing, greenhouse panels and sensors; solar cells; signage; graphic arts films; point of purchase displays; decorative films; in-mold decoration for cell-phone bodies; apparel (e.g., athletic shoes) and home appliances.
The invention will now be described with reference to the following non-limiting examples, in which all parts and percentages are by weight unless otherwise indicated.
Examples 1-12 and Comparative Examples 1-5
The solubility of the benzotriazole 2-(2-hydroxy-3-alpha-cumyl-5-t-octylphenyl)-5-trifluoromethylbenzotriazole (CGL-139, experimentally available from Ciba Specialty Chemicals) in various monomers was determined. Mixtures were made up using 5% increments of the benzotriazole. The benzotriazole and monomer to be tested were mixed with gentle heating to 70° C in a water bath until dissolved, then allowed to stand for 48 hours at room temperature. After 48 hours, each mixture was inspected for benzotriazole precipitation. Solubility was determined to within 5% by recording the highest concentration tested for which there was no precipitation and the lowest concentration for which precipitation occurred. The results are set out below in Table 1. Where reported in the literature, the Tg of a polymer made entirely of the tested monomer is also given.

Table 1

Example or Benzotriazole 48
Comparative hr Solubility, wt.
Example No. Monomer % Tg(°C)
1 t-butyl acrylate 40-45% 41
2 cyclohexyl acrylate 35-40% 19
3 t-butylcyclohexyl acrylate 35-40%
4 isobomyl acrylate 25-30% 94
5 isooctyl acrylate 25-30% -45
6 2-ethylhexyl acrylate 25-30% -50
7 isobomyl methacrylate 25-30% 110
8 benzyl methacrylate 25-30% 54
9 n-octyldecyl acrylate 20-25% 42
10 glycidyl methacrylate 20-25% 74
11 n-vinyl caprolactam 20-25%
12 butanediol diacrylate 15-20%
Comp. Ex. 1 hexanediol diacrylate 10-15% 43
Comp. Ex. 2 phenoxyethyl acrylate 5-10%
Comp. Ex. 3 trimethylolpropane triacrylate 0-5%
Comp. Ex. 4 polyethylene glycol 200 diacrylate 0-5%
Comp. Ex. 5 tripropyleneglycol diacrylate 0-5%
As shown in Table 1, acrylates tended to provide better benzotriazole solubilization than methacrylates, and monofunctional monomers solubilized the benzotriazole at higher levels without precipitation than did di- and higher-functional monomers. However, the difunctional monomer butanediol diacrylate also solubilized the benzotriazole at a very high level.
Examples 13-20
Using the method of Example 1, the solubility of a variety of benzotriazoles in isobomyl acrylate was determined. The formula for each of the tested benzotriazoles is set out above. These benzotriazoles can also be represented using the general structure 2-(2-hydroxy-3-R2-5-R3-phenyl)-5-Ri-benzotriazole. For CGL-139, Ri = trifluoromethyl, R2 =
alpha-cumyl, and R3 = t-octyl. For TINUVIN 928, Ri = H, R2 = alpha-cumyl, and R3 = t-
octyl. For Tinuvin 328, Ri = H, R2 = t-amyl, and R3 - t-amyl. For TINUVIN 327, Rj =
chloro, R2 = t-butyl, and R3 = t-butyl. For TINUVIN 326, Ri = chloro, R2 = t-butyl, and R3

= methyl. For both TINUVIN 234 and TINUVIN 900, Rj = H, R2 = alpha-cumyl, and R3 alpha-cumyl. The results are set out below in Table 2.
Table 2

Example Benzotriazole 48 hr Solubility,
No. UV Absorber wt %
13 TINUVIN 928 30-35%
14 CGL-139 25-30%
15 TINUVIN 328 20-25%
16 TINUVIN 327/928 (50:50 Blend) 10-15%
17 TINUVIN 326 5-10%
18 TINUVIN 327 5-10%
19 TINUVIN 900 0-5%
20 TINUVIN 234 0-5%
As shown in Table 2, very high solubilities could be obtained, especially when using the benzotriazoles TINUVIN 928 and CGL-139.
Examples 21-48
Several coating compositions were prepared by adding varying amounts of CGL-139 benzotriazole to mixtures containing isobornyl acrylate ("IBOA", obtained as SR-506 from Sartomer Company), hexanediol diacrylate ("HDODA", obtained as SR-238 from Sartomer Company), pentaerythritol tetraacrylate ("PETA", obtained as SR-295 from Sartomer Company), and urethane acrylate oligomer ("UA", obtained as CN966B85 from Sartomer Company in a blend believed to contain 85% urethane acrylate oligomer and 15% HDODA) or an optional silane-treated colloidal silica hydrosol.
The silane-treated colloidal sihca hydrosol was prepared as the reaction product of NALCO'^'^ 2327 silica hydrosolhydrous all (commercially available from Ondeo Nalco Co.) with 3-(trimethoxysilyl)propyl methacrylate (obtained as A174 from Sigma-Aldrich Co.) in the presence of 1-methoxy-2-propanol (commercially available from Dow Chemical Co.). 400 Parts of the hydrosol were charged to a reaction vessel. 450 Parts of the l-methoxy-2-propanol and 25.22 parts of the 3-(trimethoxysilyl)propyl methacrylate were mixed together and added to the vessel while stirring. The vessel was sealed and heated at 80° C for 16.5 hours. This product was combined with 228 parts of a 40/40/20 mixture of

SR295/SR238/SR506, and water and alcohol were removed via rotary evaporation. The resulting silane-treated colloidal silica hydrosol contained 38.5% Si02 as measured by
thermogravimetric analysis. Analysis using gas chromatography confirmed that no alcohol remained in the hydrosol.
The coating compositions also contained 1% of a hindered amine light stabilizer (TINUVIN 123, commercially available from Ciba Specialty Chemicals), 1% of a photoinitiator (IRGACURE 819, commercially available from Ciba Specialty Chemicals) and 0.15 to 0.2% of a coating leveling aid (TEGO^M RAD 2100, commercially available from the Tego Division of Degussa Corporation). 0.2% of the coating leveling aid was used in compositions containing silane-treated colloidal silica hydrosol. 0.15% of the coating leveling aid was used in the remaining compositions. The coating compositions were applied to a developmental multilayer visible mirror optical film (similar to Radiant Mirror Film VM2000, commercially available from 3M) having PEN layers and PVdC priming, by dissolving the coating composition in ethyl acetate to form coating solutions containing 40% ethyl acetate and 60% coating solids. The coatings were applied using a standard coater, dried and cured in-line using a 12 m/min line speed at thicknesses ranging from 6 to 35 micrometers in an inert atmosphere having an oxygen concentration below 100 ppm. UV photocuring energy was supplied using a high intensity FUSION D-bulb powered with 236 Joules/sec-cm input power. Under those conditions the D-bulb yielded doses and intensities in the various UV wavelength regions set out below in Table 3.

Table 3
Wavelength Region Dose (J/cm^) Intensity (W/cm^)
UVA (320-380 nm) 1.294 5.512
UVB (280-320 nm) 0.625 2.030
UVC (250-260 nm) 0.040 0.131
UVV (395-445 mn) 0.690 2.716

The coated articles were exposed to an accelerated weathering test similar to the procedure in ASTM G155, using a modified cycle 1 with a black panel temperature of 70° C during the light only cycle, and were then evaluated at intervals corresponding to UV dose levels of 9,400, 18,700, and 30,500 kjW at 340 nm. These doses are believed to be equivalent to more than 2.5, 5, and 8.25 years, respectively, of outdoor weathering in Miami, Florida at a 45° south-facing exposure angle. The change in the b* value was measured at each interval using a BYK Gardner TCSII Colorimeter and a D65 light source, large area reflected mode, specular included, CIE L*a*b* color space. Set out below in Table 4 are the Example No., benzotriazole amount, relative amounts of IB0AyHD0DAyPETAAJAl/Si02, and the measured change in the b* value at each weathering interval. The symbol "R" indicates that a sample was retired due to significant cracking, peeling, delamination or haze.



As shown in Table 4, coatings containing more benzotriazole and articles with thicker coatings tended to give better weathering performance. All the coated articles exhibited better weathering perfonnance than is typically observed for a bare PEN film. Silica-containing coatings also showed improved weathering, but had somewhat shorter Ufe than silica-free coatings. The articles of Examples 25-32, 44 and 48 did not reach or exceed a 4 unit b* increase until a dose of 23,400 to 28,100 kJ/m^, and the articles of Examples 33-37 and 39 exhibited exceptionally good Hfetimes currently exceeding a dose of 28,100 kjW.
Examples 49-62 and Comparison Examples 6-13
Using the method of Example 20, several coating compositions were prepared by adding varying amounts of CGL-139 benzotriazole to mixtures containing IBOA, HDODA, PETA, and one of three different urethane acrylate oligomers. The three urethane acrylate oligomers were obtained in blends containing IBOA or HDODA, and are further identified as "UA2" (obtained as CN981B88 from Sartomer Company in a blend believed to contain 88% urethane acrylate oligomer and 12% HDODA), "UA3" (obtained as CN966J75 from Sartomer Company in a blend believed to contain 75% urethane acrylate oligomer and 25% IBOA) and "UA4" (obtained as CN963B80 from Sartomer Company in a blend believed to contain 80% urethane acrylate oligomer and 20% HDODA). The mixtures contained a blend of two UV photoinitiators, namely 1% bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide (ERGACURE 819, obtained from Ciba Specialty Chemicals) and 3% 1-hydroxy-cyclohexyl-phenyl-ketone (IRGACURE 184, obtained from Ciba Specialty Chemicals), and 0.2% of a silicone acrylate flow agent (EBECRYL'^'^ 350, obtained from Radcure Specialties). The mixtures also contained 1% TESTUVIN 123 hindered amine light stabilizer. The coating compositions were applied to a primed visible mirror optical film like that of Example 21. The coated articles were exposed to an accelerated weathering test using the method of Example 21 and evaluated at various intervals. Set out below in Table 5 are the Example No. or Comparison Example No., benzotriazole amount, relative amounts of IBOA/HDODA/PETA/UA (where "UA" is UA2, UA3 or UA4), urethane acrylate blend employed, coating thickness, article lifetime and article condition at end of life. Articles described as being "Yellowed" at their end of life exhibited more than a 4 unit change in b* value using the L*a*b* color space.

Articles described as being "Delaminated" split apart or showed separation of the coating from the support. Articles described as being "Hazy" exhibited visible haziness in the coating or in the support.



As shown in Table 5, coatings containing more benzotriazole and articles with thicker coatings tended to give better weathering performance. All the coated articles provided better weathering performance than is typically observed for a bare PEN film. The articles of Examples 52-54, 56-58, 60 and 61-62 exhibited particularly good lifetimes in comparison to articles having similar coatings of the same caliper but containing only 5% benzotriazole.
Example 63
A coating solution was prepared in which butanediol diacrylate served both as the vinyl functional crosslinkable film former and as the solubilizing monomer. 13.58 Parts SR-213 (1,4-butanediol diacrylate), 2.72 parts CGL-139 (UVA), 0.17 parts TINUVIN 123 (HALS), 0.17 parts IRGACURE 819 and 0.34 parts IRGACURE 184 (photoinitiators), 0.02 parts TEGO RAD 2100 (leveling agent), and 3 parts ethyl acetate (solvent) were combined and blended until the solids had dissolved. This corresponded to a CGL-139 loading of 16.0% of the total coating solids. The solution was coated onto a PVdC primed VM2000 film (commercially available from 3M). The solvent was flashed off at 70° C. The coating was cured under nitrogen using a FUSION D-bulb. One specimen of the coated article was left at room conditions for one week. The specimen exhibited no blooming during this time. Two additional specimens of the coated article were oven treated at about 100° C for one week. One specimen was allowed to hang free in the oven, while the other was placed horizontally between two glass plates, with a piece of plain polyester film between the upper glass plate and the coated side of the specimen. Neither specimen exhibited signs of blooming.
Various modifications and alterations of this invention will be apparent to those skilled in the art without departing from this invention. This invention should not be restricted to that which has been set forth herein only for illustrative purposes.





WE CLAIM :
1. An article comprising a support comprising a naphlhalate polyester over coated wit a U V resistant coating comprising the polymerized reaction product of a homogenous mixture comprising;
a) at least one vinyl-functional crosslinkable film former;
b) more than 10 weight percent benzotriazole UV absorber comprising a ben/otria/-ole other than 2-(2-hydroxy-3-alpha-cumyI-5-t-octylphenyl)-5-trifluoromcthylbcnzotriazole, or more than 5 weight percent benzotriazole UV absorber or absorbers comprising 2-(2-hydroxy-3-alpha-cmnyl-5-t-octylphenyl)-5-triflnofomethylbenzotriazolc;and
c) at least one copolymerizable monomer that solubilize the beii2otriaiiole.
2. The article as claimed in claim 1 wherein tile support comprises polyethylene
naphthalate.
3. The article as claimed in claim 1 wherein the support comprises a multilayer optical film.
4. The article as claimed in claim 1 wherein the benzotriazole comprises 2-(2-hydroxy-]l,5-di-tcrt-amyl-phenyl)-2H-ben20triazole, 2-(2-hydroxy-3-alpha-cumyl-5-terL-octylphcnyl)-2H-be^zotria:^oleor 5-triiluoromelhyl-2-(2-hydroxy-3-a]pha-cumyl-5-tert-uctyIphenyl)-2IT-bcnzotriazole.
5. The article as claimed in claim 1 wherein the monomer comprises isooctyl acrylatc, 2-ethylhexyl acrylatc, t-butyl acrylatc, glycidyl methacrylate, benzyl metliacrylate, isobornyl acrylate, isobornyl methacrylate, t-butylcyclohcxyl acrylatc, cyclohcxyl aciylate, n-octyldccyl acrylate, butancdiol diacrylate, 1-adamantyl acrylate, dicyclopentenyl acrylate or n-vinyl caprolactam.
6. The article as claimed in claim 1 wherein the film fonner and monomer are chemically distinct species.

7. The article as claimed in claim 1 wherein tlie film fomier and monomer are the
-same species.
8. The article as claimed in claim 1 wherein tlie mixture comprises 11 to 35 weight percent ben/j)tria7,ole and the coating does not exliibit blooming,
9. The article as claimed in claim 1 wherein the mixture furtlier comprises submicron inorganic particles.
10. The article as claimed in claim I wherein the coating has a Tyjg of at least about 60%.
11. The article as claimed in claim 1 comprising a light tube, lamp reflector, bulb cavity reflector, solai' concentrator, solar collector, mirror, imitation cliromc, vehicular glaring, architectural glazing, a greenhouse panel, sensor, solar cell, sign, grapliic arts film, point of purchase display, decorative film, ccll-phonc body, apparel or home appliance,
12. A process for applying a IJV resi.siant coating to a naphthalate po1ye«ster iq-ticle
comprising:
a) providing a support comprising a naphthalate polyester;
b) coaling at least a portion of the support with a homogenous mixture comprising (i) at least one vinyl-functional crosslinkable film former comprising butanediol diacrylate, hexanediol diacrylate, pentaerytlii'itol triaciylate, pentaerythritol tctraacrylatc or trimethylolpropanc triacrylate; (ii) more than 10 weight percent benzotriazole UV absorber comprising a beuzotriazole otlier tlian 2-(2-hydroxy-3-alpha-cumyl-5-t-octylpheiiyl)-5-trilluoromethylbeniiolriiizole, or more than 5 weight percent benzotriazole UV absorber or absorbers comprising 2-(2-hydroxy-3-alpha-cumyl-5-t-octylphenyl)-5-trilluoromethylbenzotriazole; and (iii) at least one copolymcrizable mononicr ttiat solubilizcs the benzotriazole comprising isooctyl acrylate, 2-etliylhexyl acrylatc, t-butyl acrylate, glycidyl

methacrylate, htmyl mcthaciylate, isobomyl acrylate, isoborny] methac;i7late, t-butylcyclohexyi acrylate, cyclohexyl acrylate, n-octylctecy) acrylate, butanedioJ cliacrylatc, 1-adamanlyl acrylate, di'cyclopentcnyl aci7late or n-vinyl capi-olactam; and c) polymerizing the coating.
13. The process as claimed in claim 22 wherein the support comprises polyethylene naphthalate.
14. The process as claimed in claim 22 wherein the support comprises a multilayer optical film.
15. The process as claimed in claim 22 wherein the benz-otriazole comprises 2-(2-
hydroxy-3,5-di-tert-ainyI-phenyl)-2H-berzolTiazole, 2-(2-hydroxy-3-alpha-cumyl-5'-tcrt-
octylphenyl)-2H-ben7.otriazoleoT5-trifluoromethyl"2-(2-hydroxy-3-alpha>-cuinylo4crt-
c)Ctylphenyl)-2n-bcnzotriazole.
16. The process as claimed in claim 22 wherein tlie monomer comprises isobomyl
aci-ylate or t-butylcyclohcxyl acrylate.
17. The process as claimed in claim 22 wherein the film fonner and monomer are the
same .species.
18. The process as claimed in claim 22 wherein tlie mixture comprises a plicitoiniiiator
and is photopolymcrizablc,
19. The process as claimed in claim 22 wherein the mixture comprises 11 to
35 weight percent benr.ulriazole and the polymerized coating does not exiiibit blooming.
20. The process as claimed in claim 22 whcrcuj the mixture fui-tlier comprises submicron


Documents:

3212-chenp-2005 abstract duplicate.pdf

3212-chenp-2005 abstract.pdf

3212-chenp-2005 assignment.pdf

3212-chenp-2005 claims duplicate.pdf

3212-chenp-2005 claims.pdf

3212-chenp-2005 correspondence others.pdf

3212-chenp-2005 correspondence po.pdf

3212-chenp-2005 description (comlete) duplicate.pdf

3212-chenp-2005 description (comlete).pdf

3212-chenp-2005 drawings duplicate.pdf

3212-chenp-2005 drawings.pdf

3212-chenp-2005 form-1.pdf

3212-chenp-2005 form-18.pdf

3212-chenp-2005 form-26.pdf

3212-chenp-2005 form-3.pdf

3212-chenp-2005 form-5.pdf

3212-chenp-2005 others document.pdf

3212-chenp-2005 others.pdf

3212-chenp-2005 pct.pdf

3212-chenp-2005 petition.pdf


Patent Number 228656
Indian Patent Application Number 3212/CHENP/2005
PG Journal Number 12/2009
Publication Date 20-Mar-2009
Grant Date 05-Feb-2009
Date of Filing 30-Nov-2005
Name of Patentee 3M INNOVATIVE PROPERTIES COMPANY
Applicant Address 3M Center, Post Office Box 33427, Saint Paul, MN 55133-3427,
Inventors:
# Inventor's Name Inventor's Address
1 MCMAN, Steven J Post Office Box 33427, Saint Paul, MN 55133-3427,
2 JOHNSON, Stephen A Post Office Box 33427, Saint Paul, MN 55133-3427,
3 JONES, Clinton L Post Office Box 33427, Saint Paul, MN 55133-3427,
4 NELSON, Eric W Post Office Box 33427, Saint Paul, MN 55133-3427,
5 GOENNER, Emily S Post Office Box 33427, Saint Paul, MN 55133-3427,
PCT International Classification Number C08J7/04
PCT International Application Number PCT/US2004/015720
PCT International Filing date 2004-05-19
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 10/448,894 2003-05-30 U.S.A.