Title of Invention

APPARATUS FOR THE LIQUEFACTION OF NATURAL GAS AND METHODS RELATING TO SAME

Abstract This invention relates to an apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapour from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean- up cycle and a carbon dioxide (CO2) clean-up cycle.
Full Text CROSS REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of United States Patent Application Serial No.
10/086,066, filed February 27, 2002 for Apparatus for the Liquefaction of Natural Gas and
Methods Relating to Same.
GOVERNMENT RIGHTS
The United States Government has rights in the following invention pursuant to
Contract No. DE-AC07-99ID13727 between the U.S. Department of Energy and Bechtel
BWXT Idaho, LLC.
BACKGROUND OF THE INVENTION
Field of the Invention: The present invention relates generally to the compression
and liquefaction of gases, and more particularly to the partial liquefaction of a gas, such as
natural gas, on a small scale by utilizing a combined refrigerant and expansion process.
State of the Art: Natural gas is a known alternative to combustion fuels such as
gasoline and diesel. Much effort has gone into the development of natural gas as an
alternative combustion fuel in order to combat various drawbacks of gasoline and diesel
including production costs and the subsequent emissions created by the use thereof. As is
known in the art, natural gas is a cleaner burning fuel than other combustion fuels.
Additionally, natural gas is considered to be safer than gasoline or diesel as natural gas
will rise in the air and dissipate, rather than settling.
To be used as an alternative combustion fuel, natural gas (also termed "feed gas"
herein) is conventionally converted into compressed natural gas (CNG) or liquified (or
liquid) natural gas (LNG) for purposes of storing and transporting the fuel prior to its use.
Conventionally, two of the known basic cycles for the liquefaction of natural gases are
referred to as the "cascade cycle" and the "expansion cycle."
Briefly, the cascade cycle consists of a series of heat exchanges with the feed gas,
each exchange being at successively lower temperatures until the desired liquefaction is

accomplished. The levels of refrigeration are obtained with different refrigerants or with
the same refrigerant at different evaporating pressures. The cascade cycle is considered to
be very efficient at producing LNG as operating costs are relatively low. However, the
efficiency in operation is often seen to be offset by the relatively high investment costs
associated with the expensive heat exchange and the compression equipment associated
with the refrigerant system. Additionally, a liquefaction plant incorporating such a system
may be impractical where physical space is limited, as the physical components used in
cascading systems are relatively large.
In an expansion cycle, gas is conventionally compressed to a selected pressure,
cooled, then allowed to expand through an expansion turbine, thereby producing work as
well as reducing the temperature of the feed gas. The low temperature feed gas is then heat
exchanged to effect liquefaction of the feed gas. Conventionally, such a cycle has been
seen as being impracticable in the liquefaction of natural gas since there is no provision for
handling some of the components present in natural gas which freeze at the temperatures
encountered in the heat exchangers, for example, water and carbon dioxide.
Additionally, to make the operation of conventional systems cost effective, such
systems are conventionally built on a large scale to handle large volumes of natural gas.
As a result, fewer facilities are built making it more difficult to provide the raw gas to the
liquefaction plant or facility as well as making distribution of the liquefied product an
issue. Another major problem with large scale facilities is the capital and operating
expenses associated therewith. For example, a conventional large scale liquefaction plant,
i.e., producing on the order of 70,000 gallons of LNG per day, may cost $2 million to $15
million, or more, in capital expenses. Also, such a plant may require thousands of
horsepower to drive the compressors associated with the refrigerant cycles, making
operation, of the plants expensive.
An additional problem with large facilities is the cost associated with storing large
amounts of fuel in anticipation of future use and/or transportation. Not only is there a cos'-
associated with building large storage facilities, but there is also an efficiency issue related
therewith as stored LNG will tend to warm and vaporize over time creating a loss of the
LNG fuel product. Further, safety may become an issue when larger amounts of LNG fuel
product are stored.

In confronting the foregoing issues, various systems have been devised which
attempt to produce LNG or CNG from feed gas on a smaller scale, in an effort to eliminate
long term storage issues and to reduce the capital and operating expenses associated with
the liquefaction and/or compression of natural gas. However, such systems and techniques
have all suffered from one or more drawbacks.
U.S. Patent 5,505,232 to Barclay, issued April 9, 1996 is directed to a system for
producing LNG and/or CNG. The disclosed system is stated to operate on a small scale
producing approximately 1,000 gallons a day of liquefied or compressed fuel product.
However, the liquefaction portion of the system itself requires the flow of a "clean" or
"purified" gas, meaning that various constituents in the gas such as carbon dioxide, water,
or heavy hydrocarbons must be removed before the actual liquefaction process can begin.
Similarly, U.S. Patents 6,085,546 and 6,085,547 both issued July 11,2000 to
Johnston, describe methods and systems of producing LNG. The Johnston patents are
both directed to small scale production of LNG, but again, both require "prepurification"
of the gas in order to implement the actual liquefaction cycle. The need to provide "clean"
or "prepurified" gas to the liquefaction cycle is based on the fact that certain gas
components might freeze and plug the system during the liquefaction process because of
their relatively higher freezing points as compared to methane which makes up the larger
portion of natural gas.
Since many sources of natural gas, such as residential or industrial service gas, are
considered to be relatively "dirty," the requirement of providing "clean" or "prepurified"
gas is actually a requirement of implementing expensive and often complex filtration and
purification systems prior to the liquefaction process. This requirement simply adds
expense and complexity to the construction and operation of such liquefaction plants or
facilities.
In view of the shortcomings in the art, it would be advantageous to provide a
process, and a plant for carrying out such a process, of efficiently producing liquefied
natural gas on a small scale. More particularly, it would be advantageous to provide a
system for producing liquefied natural gas from a source of relatively "dirty" or .
"unpurified" natural gas without the need for "prepurification." Such a system or process
may include various clean-up cycles which are integrated with the liquefaction cycle for

purposes of efficiency.
It would be additionally advantageous to provide a plant for the liquefaction of
natural gas which is relatively inexpensive to build and operate, and which desirably
requires little or no operator oversight.
It would be additionally advantageous to provide such a plant which is easily
transportable and which may be located and operated at existing sources of natural gas
which are within or near populated communities, thus providing easy access for
consumers of LNG fuel.
BRIEF SUMMARY OF THE INVENTION
In accordance with one aspect of the invention, a method is provided for removing
carbon dioxide from a mass of natural gas. The method includes cooling at least a portion
of the mass of natural gas to form a slurry which comprises at least liquid natural gas and
solid carbon dioxide. The slurry is flowed into a hydrocyclone and a thickened slush is
formed therein. The thickened slush comprises the solid carbon dioxide and a portion of
the liquid natural gas. The thickened slush is discharged through an underflow of the
hydrocyclone while the remaining portion of liquid natural gas is flowed through an
overflow of the hydrocyclone.
Cooling the portion of the mass of natural gas may be accomplished by expanding
the gas, such as through a Joule-Thomson valve. Cooling the portion of the mass of
natural gas may also include flowing the gas through a heat exchanger.
The method may also include passing the liquid natural gas through an additional
carbon dioxide filter after it exits the overflow of the hydrocyclone.
In accordance with another aspect of the invention, a system is provided for
removing carbon dioxide from a mass of natural gas. The system includes a compressor
configured to produce a compressed stream of natural gas from at least a portion of the
mass of natural gas. At least one heat exchanger receives and cools the compressed stream
of natural gas. An expansion valve, or other gas expander, is configured to expand the
cooled, compressed stream and form a slurry therefrom, the slurry comprising liquid
natural gas and solid carbon dioxide. A hydrocyclone is configured to receive the slurry
and separate the slurry into a first portion of liquid natural gas and a thickened slush

comprising the solid carbon dioxide and a second portion of the liquid natural gas.
The system may further include additional heat exchangers and gas expanders.
Additionally, carbon dioxide filters may be configured to receive the first portion of liquid
natural gas for removal of any remaining solid carbon dioxide.
In accordance with another aspect of the invention, a liquefaction plant is provided.
The plant includes plant inlet configured to be coupled with a source of natural gas, which
may be unpurified natural gas. A turbo expander is configured to receive a first stream of
the natural gas drawn through the plant inlet and to produce an expanded cooling stream
therefrom. A compressor is mechanically coupled to the turbo expander and configured to
receive a second stream of the natural gas drawn through the plant inlet and to produce a
compressed process stream therefrom. A first heat exchanger is configured to receive the
compressed process stream and the expanded cooling stream in a countercurrent flow
arrangement to cool to the compressed process stream. A first plant outlet is configured to
be coupled with the source of unpurified gas such that the expanded cooling stream is
discharged through the first plant outlet subsequent to passing through the heat exchanger.
A first expansion valve is configured to receive and expand a first portion of the cooled
compressed process stream and form an additional cooling stream, the additional cooling
stream being combined with the expanded cooling stream prior to the expanded cooling
stream entering the first heat exchanger. A second expansion valve is configured to
receive and expand a second portion of the cooled compressed process stream to form a
gas-solid-liquid mixture therefrom. A first gas-liquid separator is configured to receive
the gas-solid-liquid mixture. A second plant outlet is configured to be coupled with a
storage vessel, the first gas-liquid separator being configured to deliver a liquid contained
therein to the second plant outlet.
In accordance with another aspect of the invention, a method of producing liquid
natural gas is provided. The method includes providing a source of unpurified natural gas.
A portion of the natural gas is flowed from the source and divided into a process stream
and a first cooling stream. The first cooling stream is flowed through a turbo expander
where work is produced to power a compressor. The process stream is flowed through the
compressor and is subsequently cooled by the expanded cooling stream. The cooled,
compressed process stream is divided into a product stream and a second cooling stream.

The second cooling stream is expanded and combined with the first expanded cooling
stream. The product stream is expanded to form a mixture comprising liquid, vapor and
solid. The liquid and solid is separated from the vapor, and at least a portion of the liquid
is subsequently separated from the liquid-solid mixture.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
The foregoing and other advantages of the invention will become apparent upon
reading the following detailed description and upon reference to the drawings in which:
FIG. 1 is a schematic overview of a liquefaction plant according to one
embodiment of the present invention;
FIG. 2 is a process flow diagram depicting the basic cycle of a liquefaction plant
according to one embodiment of the present invention;
FIG. 3 is a process flow diagram depicting a water clean-up cycle integrated with
the liquefaction cycle according an embodiment of the present invention;
FIG. 4 is a process flow diagram depicting a carbon dioxide clean-up cycle
integrated with a liquefaction cycle according an embodiment of the present invention;
FIGS. 5 A and 5B show a heat exchanger according to one embodiment of the
present invention;
FIGS. 6A and 6B show plan and elevational views of cooling coils used in the heat
exchanger of FIGS. 5A and 5B;
FIGS. 7 A through 7C show a schematic of different modes operation of the heat
exchanger depicted in FIGS. 5 A and 5B according to various embodiments of the
invention;
FIGS. 8 A and 8B show perspective and elevation view respectively of a plug
which may be used in conjunction with the heat exchanger of FIGS. 5A and 5B;
FIG. 9 is a cross sectional view of an exemplary CO2 filter used in conjunction
with the liquefaction plant and process of FIG. 4;
FIG. 10 is a process flow diagram depicting a liquefaction cycle according to
another embodiment of the present invention,
FIG. 11A is a process schematic showing a differential pressure circuit
incorporated in the plant and process of FIG. 10;

FIG. 11B is a process schematic showing a preferred differential pressure circuit
incorporated in the plant and process of FIG. 10;
FIG. 12 is a process flow diagram depicting a liquefaction cycle according to
another embodiment of the present invention;
FIG. 13 is a perspective view of liquefaction plant according to one embodiment of
the present invention;
FIG. 14 shows the liquefaction plant of FIG. 4 in transportation to a plant site; and
FIG. 15 is a process flow diagram showing state points of the flow mass
throughout the system according to one embodiment of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
Referring to FIG. 1, a schematic overview of a portion of a liquefied natural gas
(LNG) station 100 is shown according to one embodiment of the present invention. It is
noted that, while the present invention is set forth in terms of liquefaction of natural gas,
the present invention may be utilized for the liquefaction of other gases as will be
appreciated and understood by those of ordinary skill in the art.
The liquefaction station 100 includes a "small scale" natural gas liquefaction plant
102 which is coupled to a source of natural gas such as a pipeline 104, although other
sources, such as a well head, are contemplated as being equally suitable. The term "small
scale" is used to differentiate from a larger scale plant having the capacity of producing,
for example 70,000 gallons of LNG or more per day. In comparison, the presently
disclosed liquefaction plant may have capacity of producing, for example, approximately
10,000 gallons of LNG a day but may be scaled for a different output as needed and is not
limited to small scale operations or plants. Additionally, as shall be set forth in more
detail below, the liquefaction plant 102 of the present invention is considerably smaller in
size than a large-scale plant and may be readily transported from one site to another.
One or more pressure regulators 106 are positioned along the pipeline 104 for
controlling the pressure of the gas flowing therethrough. Such a configuration is
representative of a pressure letdown station wherein the pressure of the natural gas is
reduced from the high transmission pressures at an upstream location to a pressure suitable
for distribution to one or more customers at a downstream location. Upstream of the

pressure regulators 106, for example, the pressure in the pipeline may be approximately
300 to 1000 pounds per square inch absolute (psia) while the pressure downstream of the
regulators may be reduced to approximately 65 psia or less. Of course, such pressures are
exemplary and may vary depending on the particular pipeline 104 and the needs of the
downstream customers. It is further noted that the available pressure of the upstream gas
in the pipeline 104 (i.e., at plant entry 112) is not critical as the pressure thereof may be
raised, for example by use of an auxiliary booster pump and heat exchanger, prior to the
gas entering the liquefaction process described herein.
Prior to any reduction in pressure along the pipeline 104, a stream of feed gas 108
is split off from the pipeline 104 and fed through a flow meter 110 which measures and
records the amount of gas flowing therethrough. The stream of feed gas 108 then enters
the small scale liquefaction plant 102 through a plant inlet 112 for processing as will be
detailed below herein. A portion of the feed gas entering the liquefaction plant 102
becomes LNG and exits the plant 102 at a plant outlet. 114 for storage in a suitable tank or
vessel 116. The vessel 116 is preferably configured to hold at least 10,000 gallons of
LNG at a pressure of approximately 30 to 35 psia and at temperatures as low as
approximately -240° F. However, other vessel sizes and configurations may be utilized
depending on specific output requirements of the plant 102.
A vessel outlet 118 is coupled to a flow meter 120 in association with dispensing
the LNG from the vessel 116, such as to a vehicle which is powered by LNG, or into a
transport vehicle as may be required. A vessel inlet 122, coupled with a valve/meter set
124 which could include flow and or process measurement devices, allows for venting
and/or purging of a vehicle's tank during dispensing of LNG from the vessel 116. Piping
126 associated with the vessel 116 and connecting with a second plant inlet 128 provides
flexibility in controlling the flow of LNG from the liquefaction plant 102 and also allows
the flow to be diverted away from the vessel 116, or for drawing vapor from the vessel
116, should conditions ever make such action desirable.
The liquefaction plant 102 is also coupled to a downstream section 130 of the
pipeline 104 at a second plant outlet 132 for discharging the portion of natural gas not
liquefied during the process conducted within liquefaction plant 102 along with other
constituents which may be removed during production of the LNG. Optionally, adjacent

the vessel inlet 122, vent piping 134 may be coupled with piping of liquefaction plant 102
as indicated by interface points 136A and 136B. Such vent piping 134 will similarly carry
gas into the downstream section 130 of the pipeline 104.
As the various gas components leave the liquefaction plant 102 and enter into the
downstream section 130 of the pipeline 104 a valve/meter set 138, which could include
flow and/or process measuring devices, may be used to measure the flow of the gas
therethrough. The valve/meter sets 124 and 138 as well as the flow meters 110 and 120
may be positioned outside of the plant 102 and/or inside the plant as may be desired.
Thus, flow meters 110 and 126, when the outputs thereof are compared, help to determine
the net amount of feed gas removed from the pipeline 104 as the upstream flow meter 110
measures the gross amount of gas removed and the downstream flow meter 130 measures
the amount of gas placed back into the pipeline 104, the difference being the net amount of
feed gas removed from pipeline 104. Similarly, optional flow meters 120 and 124 indicate
the net discharge of LNG from the vessel 116.
Referring now to FIG. 2, a process flow diagram is shown, representative of one
embodiment of the liquefaction plant 102 schematically depicted in FIG. 1. As previously
indicated with respect to FIG. 1, a high pressure stream of feed gas (i.e., 300 to 1000 psia),
for example, at a temperature of approximately 60°F enters the liquefaction plant 102
through the plant inlet 112. Prior to processing the feed gas, a small portion of feed gas
140 may be split off, passed through a drying filter 142 and utilized as instrument control
gas in conjunction with operating and controlling various components in the liquefaction
plant 102. While only a single stream 144 of instrument gas is depicted, it will be
appreciated by those of skill in the art that multiple lines of instrument gas may be formed
in a similar manner.
Alternatively, a separate source of instrument gas, such as, for example, nitrogen,
may be provided for controlling various instruments and components within the
liquefaction plant 102. As will be appreciated by those of ordinary skill in the art,
alternative instrument controls, such as electrical actuation, may likewise be implemented.
Upon entry into the liquefaction plant 102, the feed gas flows through a filter 146
to remove any sizeable objects which might cause damage to, or otherwise obstruct, the
flow of gas through the various components of the liquefaction plant 102. The filter 146

may additionally be utilized to remove certain liquid and solid components. For example,
the filter 146 may be a coalescing type filter. One exemplary filter is available from
Parker Filtration, located in Tewksbury, Massachusetts and is designed to process
approximately 5000 standard cubic feet per minute (SCFM) of natural gas at
approximately 60°F at a pressure of approximately 500 psia.
The filter 146 may be provided with an optional drain 148 which discharges into
piping near the plant exit 132, as is indicated by interface connections 136C and 136A, the
discharge ultimately reentering the downstream section 130 of the pipeline 104 (see FIG.
1). Bypass piping 150 is routed around the filter 146, allowing the filter 146 to be isolated
and serviced as may be required without interrupting the flow of gas through the
liquefaction plant 102.
After the feed gas flows through the filter 146 (or alternatively around the filter by
way of piping 150) the feed gas is split into two streams, a cooling stream 152 and a
process stream 154. The cooling stream 152 passes through a turbo expander 156 and is
expanded to an expanded cooling stream 152' exhibiting a lower pressure, for example
between atmospheric pressure and approximately 100 psia, at a reduced temperature of
approximately 100°F. The turbo expander 156 is a turbine which expands the gas and
extracts power from the expansion process. A rotary compressor 158 is coupled to the
turbo expander 156 by mechanical means, such as with a shaft 160, and utilizes the power
generated by the turbo expander 156 to compress the process stream 154. The proportion
of gas in each of the cooling and process lines 152 and 154 is determined by the power
requirements of the compressor 158 as well as the flow and pressure drop across the turbo
expander 156. Vane control valves within the turbo expander 156 may be used to control
the proportion of gas between the cooling and process lines 152 and 154 as is required
according to the above stated parameters.
An exemplary turbo expander 156 and compressor 158 system includes a frame
size ten (10) system available from GE Roto flow, located in Gardona, California. The
expander 156 compressor 158 system is designed to operate at approximately 440 psia at
5,000 pounds mass per hour at about 60°F. The expander/compressor system may also be
fitted with magnetic bearings to reduce the'footprint of the expander 156 and compressor
158 as well as simplify maintenance thereof.

Bypass piping 162 routes the cooling stream 152 around the turbo expander 156.
Likewise, bypass piping 164 routes the process stream 154 around the compressor 158.
The bypass piping 162 and 164 may be used during startup to bring certain components to
a steady state condition prior to the processing of LNG within the liquefaction plant 102.
For example, the bypass piping 162 and 164 allows the heat exchanger 166, and/or other
components, to be brought to a steady state temperature without inducing thermal shock.
Without bypass piping 162 and 164, thermal shock might result from the immediate flow
of gas from the turbo expander 156 and compressor 154. Depending on the design of
specific components (i.e., the heat exchanger 166) being used in the liquefaction plant 102,
several hours may be required to bring the system to a thermally steady state condition
upon start-up of the liquefaction plant 102.
For example, by routing the process stream 154 around the compressor 158, the
temperature of the process stream 154 is not increased prior to its introduction into the
heat exchanger 166. However, the cooling stream 152, as it bypasses the expander 156,
passes through a Joule-Thomson (JT) valve 163 allowing the cooling stream to expand
thereby reducing its temperature. The JT valve 163 utilizes the Joule-Thomson principle
that expansion of gas will result in an associated cooling of the gas as well, as is
understood by those of ordinary skill in the art. The cooling stream 152 may then be used
to incrementally reduce the temperature of the heat exchanger 166.
In one embodiment, as discussed in more detail below, the heat exchanger 166 is a
high efficiency heat exchanger made from aluminum. In start-up situations it may be
desirable to reduce the temperature of such a heat exchanger 166 by as much as 1.8°F per
minute until a defined temperature limit is achieved. During start-up of the liquefaction
plant, the temperature of the heat exchanger 166 may be monitored as it incrementally
drops. The JT valve 163 and other valving 165 or instruments may be controlled
accordingly in order to effect the rate and pressure of flow in the cooling stream 152' and
process stream 154' which ultimately controls the cooling rate of heat exchanger 166
and/or other components of the liquefaction plant.
Also, during start-up, it may be desirable to have an amount of LNG already
present in the tank 116 (FIG. 1). Some of the cold vapor taken from the LNG present in
the tank, or cold vapor or gas from another source, may be cycled through the system in

order to cool various components is so desired or deemed necessary. Also, as will become
apparent upon reading the additional description below, other cooling devices, including
additional JT valves, located in various "loops" or flow streams may likewise be
controlled during start-up in order to cool down the heat exchanger 166 or other
components of the liquefaction plant 102.
Upon achieving a steady state condition, the process stream 154 is flowed through
the compressor 158 which raises the pressure of the process stream 154. An exemplary
ratio of the outlet to inlet pressures of a rotary compressor is approximately 1.5 to 2.0,
with an average ratio being around 1.7. The compression process is not ideal and,
therefore, adds heat to the process stream 154 as it is compressed. To remove heat from
the compressed process stream 154' it is flowed through the heat exchanger 166 and is
cooled to a very low temperature, for example approximately -200°F. The exemplary
heat exchanger 166 depicted in FIG. 2 is a type utilizing countercurrent flow, as is known
by those of ordinary skill in the art.
After exiting the heat exchanger 166, the cooled compressed process stream 154"
is split into two new streams, a cooling stream 170 and a product stream 172. The cooling
stream 170 and the product stream 172 are each expanded through JT valves 174 and 176
respectively. The expansion of the cooling and process streams 170 and 172 through the
JT valves 174 and 176 result in a reduced pressure, such as, for example, between
atmospheric and approximately 100 psia, and a reduced temperature, for example, of
approximately -240°F. The reduced pressure and temperatures will cause the cooling and
product streams 170 and 172 to form a mixture of liquid and vapor natural gas.
The cooling stream 170 is combined with the expanded cooling stream 152'
exiting the turbo expander 156 to create a combined cooling stream 178. The combined
cooling stream 178 is then used to cool the compressed process stream 154' via die heat
exchanger 166. After cooling the compressed process stream 154' in the heat exchanger
166, the combined cooling stream 178 may be discharged back into the natural gas
pipeline 104 at the downstream section 130 (FIG. 1).
After expansion via the JT valve 176, the product stream 172 enters into a
liquid/vapor separator 180. The vapor component from the separator 180 is collected and
removed therefrom through piping 182 and added to the combined cooling stream 178

upstream of the heat exchanger 166. The liquid component in the separator is the LNG
fuel product and passes through the plant outlet 114 for storage in the vessel 116 (FIG. 1).
By controlling the proportion of gas respectively flowing through the cooling and
product streams 170 and 172, the thermodynamics of the process will produce a product
stream that has a high liquid fraction. If the liquid fraction is high, i.e., greater than 90%,
the methane content in the liquid will be high and the heavy hydrocarbons (ethane,
propane, etc.) will be low thus approaching the same composition as the incoming gas
stream 112. If the liquid fraction is low, the methane content in the liquid will be low, and
the heavy hydrocarbon content in the liquid will be high. The heavy hydrocarbons add
more energy content to the fuel, which causes the fuel to burn hotter in combustion
processes.
The liquefaction process depicted and described with respect to FIG. 2 provides for
low cost, efficient, and effective means of producing LNG when water and/or carbon
dioxide are not present in the source gas that is to be subjected to the liquefaction cycle.
Referring now to FIG. 3, a process flow diagram is shown depicting a liquefaction
process performed in accordance with another embodiment of a liquefaction plant 102'.
As the liquefaction plant 102' and the process carried out thereby share a number of
similarities with the plant 102 and process depicted in FIG. 2, like components are
identified with like reference numerals for sake of clarity.
Liquefaction plant 102' as shown in FIG. 3 essentially modifies the basic cycle
shown in FIG. 2 to allow for removal of water from the natural gas stream during the
production of LNG and for prevention of ice formation throughout the system. As
illustrated in FIG. 3 the water clean-up cycle includes a source of methanol 200, or some
other water absorbing product, which is injected into the gas stream, via a pump 202, at a

location prior to the gas being split into the cooling stream 152 and the process stream
154. The pump 202 desirably includes variable flow capability to inject methanol into the
gas stream preferably via at least one of an atomizing or a vaporizing nozzle.
Alternatively, valving 203 may be used to accommodate multiple types of nozzles such
that an appropriate nozzle may be used depending on the flow characteristics of the feed
gas. Preferably, a single nozzle is used without valying 203 when water content in the
source gas does not significantly flucuate.

A suitable pump 202 for injecting the methanol may include variable flow control
in the range of 0.4 to 2.5 gallons per minute (GPM) at a design pressure of approximately
1000 psia for a water content of approximately 2 to 7 pounds mass per millions of standard
cubic feet (lbm/mmscf). The variable flow control may be accomplished through the use
of a variable frequency drive coupled to a motor of the pump 202. Such an exemplary
pump is available from America LEWA located in Holliston, Massachusetts.
The methanol is mixed with the gas stream to lower the freezing point of any water
which may be contained therein. The methanol mixes with the gas stream and binds with
the water to prevent the formation of ice in the cooling stream 152 during expansion in the
turbo expander 156. Additionally, as noted above, the methanol is present in the process
stream 154 and passes therewith through the compressor 158. About midway through the
heat exchange process (i.e., between approximately -60°F and -90°F) the methanol and
water form a liquid. The compressed process stream 154' is temporarily diverted from the
heat exchanger 166 and passed through a separating tank 204 wherein the methanoI/water
liquid is separated from the compressed process stream 154', the liquid being discharged
through a valve 206 and the gas flowing to a coalescing filter 208 to remove an additional
amount of the methanol/water mixture. The methanol/water mixture may be discharged
from the coalescing filter 208 through a valve 210 with the dried gas reentering the heat
exchanger 166 for further cooling and processing. As is indicated by interface connections
136D and 136A, both valves 206 and 210 discharge the removed methanol/water mixture
into piping near the plant exit 132 for discharge into the downstream section 130 of the
pipeline 104 (see FIG. 1).
An exemplary coalescing filter 208 used for removing the methanol/water mixture
may be designed to process natural gas at approximately -70°F at flows of approximately
2500 SCFM and at a pressure of approximately 800 psia. Such a filter may exhibit an
efficiency of removing the methane/water mixture to less than 75 ppm/w. A suitable filter
is available from Parker Filtration, located in Tewksbury, Massachusetts.
The liquefaction process shown in FIG. 3 thus provides for efficient production of
natural gas by integrating the removal of water during the process without expensive
equipment and preprocessing required prior to the liquefaction cycle, and particularly prior
to the expansion of the gas through the turbine expander 156.

Referring now to FIG. 4, a process flow diagram is shown depicting a liquefaction
process performed in accordance with another embodiment of the liquefaction plant 102".
As the plant 102" and process carried out therein share a number of similarities with plants
102 and 102' and the processes depicted in FIGS. 2 and 3 respectively, like components
are again identified with like reference numerals for sake of clarity. Additionally, for sake
of clarity, the portion of the cycle between the plant inlet 112 and the expander
156/compressor 158 is omitted in FIG. 4, but may be considered an integral part of the
plant 102" and process shown in FIG. 4.
The liquefaction plant 102" shown in FIG. 4 modifies the basic cycle shown in
FIG. 2 to incorporate an additional cycle for removing carbon dioxide (C02) from the
natural gas stream during the production of LNG. While the plant 102" and process of
FIG. 4 are shown to include the water clean-up cycle described in reference to plant 102'
and the process of FIG. 3, the CO2 clean-up cycle is not dependent on the existence of the
water clean-up cycle and may be independently integrated with the inventive liquefaction
process.
The heat exchange process may be divided among three different heat exchangers
166, 220 and 224. The first heat exchanger 220 in the flow path of the compressed process
stream 154' uses ambient conditions, such as, for example, air, water, or ground
temperature or a combination thereof, for cooling the compressed process stream 154'
The ambient condition(s) heat exchanger 220 serves to reduce the temperature of the
compressed process stream 154' to ensure that the heat generated by the compressor 158
does not thermally damage the high efficiency heat exchanger 166 which sequentially
follows the ambient heat exchanger 220.
An exemplary ambient heat exchanger 220 may be designed to process the
compressed process stream 154' at approximately 6700 to 6800 lbs mass per hour (lbm/hr)
at a design pressure of approximately 800 psia. The heat exchanger 220 may further be
configured such that the inlet temperature of the gas is approximately 240°F and the outlet
temperature of the gas is approximately 170°F with an ambient source temperature (i.e.,
air temperature, etc.) being approximately 100°F. If such a heat exchanger is provided
with a fan, such may be driven by a suitable electric motor.
The high efficiency heat exchanger 166, sequentially following the ambient heat

exchanger 220 along the flow path, may be formed as a countercurrent flow, plate and fin
type heat exchanger. Additionally, the plates and fins may be formed of a highly
thermally conductive material such as, for example, aluminum. The high efficiency heat
exchanger 166 is positioned and configured to efficiently transfer as much heat as possible
from the compressed process stream 154' to the combined cooling stream 178'. The high
efficiency heat exchanger 166 may be configured such that the inlet temperature of the gas
will be approximately 170°F and the outlet temperature of the gas will be approximately -
105°F. The liquefaction plant 102' is desirably configured such that temperatures
generated within the high efficiency heat exchanger 166 are never low enough to generate
solid CO2 which might result in blockage in the flow path of the compressed process
stream1154'.
The third heat exchanger 224 sequentially located along the flow path of the
process stream is, in part, associated with the processing of solid CO2 removed from the
process stream at a later point in the cycle. More specifically, heat exchanger 224 allows
the CO2 to be reintroduced into the gas pipeline 104 at the downstream section by
subliming the removed solid CO2 in anticipation of its discharge back into the pipeline
104. The sublimation of solid CO2 in heat exchanger 224 helps to prevent damage to, or
the plugging of, heat exchanger 166. It is noted that heat exchangers 166 and 224 could be
combined if desired. The sublimation of the solid CO2 also serves to further chill the
process gas in anticipation of the liquefaction thereof.
One exemplary heat exchanger 224 used for processing the solid CO2 may include
a tube-in-shell type heat exchanger. Referring to FIG. 5 A, an exemplary tube-in-shell heat
exchanger 224 constructed in accordance with the present invention is shown with a
portion of the tank 230 stripped away to reveal a plurality of, in this instance three, cooling
coils 232A-232C stacked vertically therein. A filter material 234 may also be disposed in
the tank 230 about a portion of the lower coil 232 A to ensure that no solid CO2 exits the
heat exchanger 224. The filter material 234 may include, for example, stainless steel
mesh. One or more structural supports 236 may be placed in the tank to support the coils
232A-232C as may be required depending on the size and construction of the coils 232A-
232C.
Referring briefly to FIGS. 6A and 6B, an exemplary cooling coil, or coiled bundle

232 may include inlet/outlet pipes 238 and 240 with a plurality of individual tubing coils
242 coupled therebetween. The tubing coils 242 are in fluid communication with each of
the inlet/outlet pipes 238 and 240 and are structurally and sealingly coupled therewith.
Thus, in operation, fluid may flow into the first inlet/outlet pipe 240 for distribution
among the plurality of tubing coils 242 and pass from the tubing coils 242 into the second
inlet/outlet pipe 238 to be subsequently discharged therefrom. Of course, if desired, the
flow through the cooling coils 232 could be in the reverse direction as set forth below.
An exemplary coil 232 may include, for example, inlet/outlet pipes 238 and 240
which are formed of 3 inch diameter, schedule 80 304L stainless steel pipe. The tubing
coils 242 may be formed of 304L stainless steel tubing having a wall thickness of 0.049
inches. The cooling coils 232 may further be designed and sized to accommodate flows
having, for example, but not limited to, pressures of approximately 815 psia at a
temperature between approximately
-240°F and -200°F. Such coils 232 are available from the Graham Corporation located at
Batavia, New York.
Referring back to FIG. 5 A, the ends of the inlet/outlet pipes 238 and 240 of each
individual cooling coil, for example coil 232B, are sealingly and structurally coupled to
the corresponding inlet/outlet pipes 238 and 240 of each adjacent coil, i.e., 232A and
232C. Such connection may be made, for example, by welding or by other mechanical
means.
Referring now to FIG. 5B, the tank 230 includes a shell 244 and end caps 246 with
a plurality of inlets and outlets coupled therewith. The shell 244 and end caps 246 may be
formed of, for example, 304 or 304L stainless steel such that the tank 230 has a design
pressure of approximately 95 psia for operating temperatures of approximately -240°F.
Desirably, the tank 230 may be designed with adequate corrosion allowances for a
minimum service life of 20 years.
Fluid may be introduced into the coiling tubes 232A-232C through one of a pair of
coil inlets 248A and 250A which are respectively coupled with the inlet/outlet pipe(s) 238
and 240 of a cooling coil 232A. The coil inlets 248A and 250A may be designed, for
example, to accommodate a flow of high density gas of at least approximately 5000 Ibm/hr
having a pressure of approximately 750 psia at a temperature of approximately -102°F.

A set of coil outlets 248B and 250B are respectively associated with, and sealingly
coupled to, the inlet/outlet pipes 238 and 240 of a coil 232C. Each tube outlet 248B and
250B may be designed, for example, to accommodate a flow of high density fluid of at
least approximately 5000 lbrn/hr having a pressure of approximately 740 psia at a
temperature of approximately -205°F.
A plurality of tank inlets 252A-252I are coupled with the tank 230 allowing the
cooling streams 253 and 255 (FIG. 4), including removed solid CO2, to enter into the tank
230 and flow over one or more coils 232A-232C. For example, tank inlets 252A-252C
allow one or more of the cooling streams 253 and 255 to enter the tank 230 and flow over
coil 232A, while tank inlets 252D-252F allow one or more of the cooling streams 253 and
255 to enter the tank 230 and flow first over coil 232B and then over coil 232A. The tank
inlets 252A-252I may be positioned about the periphery of the shell 244 to provide a
desired distribution of the cooling streams 253 and 255 with respect to the coils 232A-
232C.
Each tank inlet 252A-252I may be designed to accommodate flows having varying
characteristics. For example, tank inlet 252G may be designed to accommodate a slurry of
liquid methane having approximately 10% solid CO2 at a mass flow rate of approximately
531 lbm/hr having a pressure of approximately 70 psia and a temperature of approximately
-238°F. Tank inlet 252H may be designed to accommodate a flow of mixed gas, liquid
and solid CO2 at a flow rate of approximately 1012 lbm/hr exhibiting a pressure of
approximately 70 psia and a temperature of approximately -218°F. Tank inlet 2521 may
be designed to accommodate a flow of mixed gas, liquid and solid CO2 at a flow rate of
approximately 4100 lbm/hr exhibiting a pressure of approximately 70 psia and a
temperature of approximately -218°F.
It is also noted that, as shown in FIG. 6A of the drawings, an outermost interior
shell or splash jacket 292 may be formed about the cooling coils 232A-232C such that an
annulus may be formed between the interior shell and the tank shell 244. The interior
shell may be configured to control the flow of the entering cooling streams through the
various tank inlets 252A-252I such that the cooling streams flow over the cooling coils
232A-232C but do not contact the tank shell 244 of the heat exchanger 224. Additionally,
an innermost interior shell or splash jacket 294 may be formed within the cooling coils

232A-232C such that an annulus may be formed between the interior of the coils and the
inlet/outlet pipe 240. Stainless steel, such as 304L or other corrosive resistant materials
are suitable for use in forming jackets 292 and/or 294.
A tank outlet 254 allows for discharge of the cooling streams 253 and 255 after
they have passed over one or more coils 232A-232C. The tank outlet 254 may be
designed, for example, to accommodate a flow of gas at a mass flow rate of approximately
5637 lbm/hr having a pressure of approximately 69 psia and a temperature of
approximately -158°F.
Referring now to FIGS. 7A through 7C, a schematic is shown of various flow
configurations possible with the heat exchanger 224. The heat exchanger 224 may be
configured such that the process stream 154'" entering through the tube inlet 248 A may
pass through less than the total number of cooling coils 232A-232C. Thus, if it is desired,
the process stream 154'" may flow through all three cooling coils 232A-232C, only two of
the cooling coils 232A and 232B, or through just one of the cooling coils 232A or 250B.
Flow through the first coil 232A, appropriate piping will allow the process stream 154'" to
exit through associated tubing outlet 250A. Similarly, if it is desired that the process
stream 154'" flow through coils 232A and 232B, it may exit through associated tubing
outlet 248B.
For example, referring to FIG. 7A, the process stream 154'" may enter coil inlet
248A to flow, initially, through the inlet/outlet pipe 240. At a location above where the
first coil 232A is coupled with the inlet/outlet pipe 240, a flow diverter 251A blocks the
process stream 154'" forcing it to flow through the first cooling coil 232A. While there
may be some transitory flow into the other coils 232B and 232C, the steady state flow of
the process stream 154"' will be through the inlet/outlet pipe 238 exiting the coil outlet
250B and/or coil outlet 250A.
Referring to FIG. 7B, it can be seen that the use of two flow diverters 251A and
25 IB will cause the process stream 154'" to traverse through the first coil 232A, as was
described with respect to FIG. 7A, and then flow through inlet/outlet pipe 238 until it
encounters the second diverter 25 IB. The second diverter will cause the process stream
154'" to flow through the second coil 232B and then through the inlet/outlet pipe 240
through the coil outlet 248B.

Referring to FIG. 7C, it is shown that the use of three flow diverters 251A-251C
will cause the process stream 154'" to traverse through the first two coils, as was described
with respect to FIG. 7B, and then through inlet/outlet pipe 240 until it encounters the third
diverter 251C. The third diverter will cause the process stream 154'" to flow through the
third coil 232C and then through the inlet/outlet pipe 238 exiting the coil outlet 250B.
Thus, depending on the placement of the diverters 251A-251C, the capacity of the heat
exchanger is readily adapted to various processing conditions and output requirements.
The flow diverters 251A-251C may comprise plugs, valves or blind flanges as may
be appropriate. While valves or blind flanges may be easily adapted to the process when
located externally to the heat exchanger 224 (e.g., at coil outlet 248B) it is desirable that
plugs be used in the internal locations (e.g., for the diverters 251A and 25IB adjacent the
first and second coils respectively). An exemplary plug 251 is shown in FIGS. 8A and 8B.
The plug 251 may be include a threaded exterior portion 290 for engagement with a
cooperatively threaded structure within the inlet/outlet pipes 238 and 240. A keyed head
292 is configured to cooperatively mate with a tool for rotating the plug 251 in association
with the plugs' installation or removal from the inlet/outset pipes 238 and 240.
Additionally, a set of interior threads 294 may be formed in the keyed head so as to
lockingly engage the installation/removal tool therewith such that the plug may be
disposed in an inlet/outlet pipe 238 and 240 of substantial length. Furthermore, the
configuration, quantity, and placement of the flow diverters and cooling coils as discussed
and illustrated are exemplary. Thus, it will be understood that a wide variety of alternative
flow diverters and cooling coil arrangements can be used in accordance with the present
invention.
In conjunction with controlling the flow of the process stream 154'" through the
cooling coils 232A-232C, the cooling stream(s) entering through the tank inlets 252A-
2521 may be similarly controlled through appropriate valving and piping.
Referring back to FIG. 4, as the process stream 154'" exits the heat exchanger 224
through line 256, it is divided into a cooling stream 170' and a product stream 172'. The
cooling stream 170' passes through a JT valve 174' which expands the cooling stream
170' producing various phases of CO2, including solid CO2, therein, forming a slurry of
natural gas and CO2. This CQ2 rich slurry enters heat exchanger 224 through one or more

of the tank inputs 252A-252I to pass over one or more coils 232A-232C (see FIGS. 5A
and 5B).
The product stream 172' passes through a JT valve 176' and is expanded to a low
pressure, for example approximately 35 psia. The expansion via JT valve 176' also serves
to lower the temperature, for example to approximately -240°F. At this point in the
process, solid CO2 is formed in the product stream 172'. The expanded product stream
172", now containing solid CO2, enters the liquid/vapor separator 180 wherein the vapor is
collected and removed from the separator 180 through piping 182' and added to a
combined cooling stream 257 for use as a refrigerant in heat exchanger 224. The liquid in
the liquid/vapor separator 180 will be a slurry comprising the LNG fuel product and solid
CO2.
The slurry may be removed from the separator 180 to a hydrocyclone 258 via an
appropriately sized and configured pump 260. Pump 260 is primarily used to manage
vapor generation resulting from a pressure drop through the hydrocyclone 258. That is
pump 260 manages vapor by taking the cold slurry and pressurizing it to a subcooled state.
Upon the subcooled slurry passing through hydrocyclone 258, the slurry returns to a state
of equilibrium thus preventing fuel product vapor and/or vaporized CO2 formation as
result of the slurry experiencing a pressure drop while passing through the hydrocyclone.
Pump 260 is schematically shown in FIG. 4 to be external to the liquid/vapor separator
180, the pump may be physically located within the liquid/vapor separator 260 if so
desired. In such a configuration, the pump may be submersed in the lower portion of the
separator 180. A suitable pump may be configured to have an adjustable flow rate of
approximately 2 to 6.2 gallons per minute (gpm) of LNG with a differential pressure of 80
psi while operating at -240°F. The adjustable flow rate may be controlled by means of a
variable frequency drive. Such an exemplary pump is available from Barber-Nichols
located in Arvada, Colorado.
The hydrocyclone 258 acts as a separator to remove the solid CO2 from the slurry
allowing the LNG product fuel to be collected and stored. An exemplary hydrocyclone
258 may be designed, for example, to operate at a pressure of approximately 125 psia at a
temperature of approximately -238°F. The hydrocyclone 258 uses a pressure drop to
create a centrifugal force which separates the solids from the liquid. A thickened slush,

formed of a portion of the liquid natural gas with the solid CO2, exits the hydrocyclone
258 through an underflow 262. The remainder of the liquid natural gas is passed through
an overflow 264 for additional filtering. A slight pressure differential, for example,
approximately 0.5 psi, exists between the underflow 262 and the overflow 264 of the
hydrocyclone. Thus, for example, the thickened slush may exit the underflow 262 at
approximately 40.5 psia with the liquid natural gas exiting the overflow 264 at
approximately 40 psia. However, other pressure differentials may be more suitable
depending of the specific hydrocyclone 258 utilized. A control valve 265 may be
positioned at the overflow 264 of the hydrocyclone 258 to assist in controlling the pressure
differential experienced within the hydrocyclone 258.
A suitable hydrocyclone 258 is available, for example, from Krebs Engineering of
Tucson, Arizona. An exemplary hydrocyclone may be configured to operate at design
pressures of up to approximately 125 psi within a temperature range of approximately
100°F to -300°F. Additionally, an exemplary hydrocyclone desirably includes an interior
which is micro-polished to an 8-12 micro inch finish or better.
The liquid natural gas passes through one of a plurality, in this instance two, CO2
screen filters 266A and 266B placed in parallel. The screen filters 266A and 266B capture
any remaining solid CO2 which may not have been separated out in the hydrocyclone 258.
Referring briefly to FIG. 9, an exemplary screen filter 266 may be formed of 6 inch
schedule 40 stainless steel pipe 268 and include a first filter screen 270 of coarse stainless
steel mesh, a second conical shaped filter screen 272 of stainless steel mesh less coarse
than the first filter screen 270, and a third filter screen 274 formed of fine stainless steel
mesh. For example, in one embodiment, the first filter screen 270 may be formed of 50 to
75 mesh stainless steel, the second filter screen 272 may be formed of 75 to 100 mesh
stainless steel and the third filter screen 274 may be formed of 100 to 150 mesh stainless
steel. In another embodiment, two of the filter screens 270 and 274 may be formed of the
same grade of mesh, for example 40 mesh stainless steel or finer, and packed in a less
dense or more dense manner to get the desired effect. That is, filter screen 270 can be
fabricated from a mesh blanket or screen that is rolled relatively loosely to provide a less
dense, or less surface area, packing and filter screen 274 can be fabricated from the sam?
mesh blanket or screen material but rolled more tightly to produce a more dense, or higher

surface area packing.
The CO2 screen filters 266A and 266B may, from time to time, become clogged or
plugged with solid CO2 captured therein. Thus, as one filter, i.e., 266A, is being used to
capture CO2 from the liquid natural gas stream, the other filter, i.e., 266B, may be purged
of CO2 by passing a relatively high temperature natural gas therethrough in a counter
flowing fashion. For example, gas may be drawn after the water clean-up cycle through a
fourth heat exchanger 275 as indicated at interface points 276C and 276B to flow through
and clean the CO2 screen filter 266B. Gas may be flowed through one or more pressure
regulating valves 277 prior to passing through the heat exchanger 275 and into the CO2
screen filter 266B as may be dictated by pressure and flow conditions within the process.
During cleaning of the filter 266B, the cleaning gas may be discharged back to
coil-type heat exchanger 224 as is indicated by interface connections 301B and 301C.
Appropriate valving and piping allows for the filters 266A and 266B to be switched and
isolated from one another as may be required. Other methods of removing CO2 solids that
have accumulated on the filters are readily known by those of ordinary skill in the art.
The filtered liquid natural gas exits the plant 102" for storage as described above
herein. A fail open-type valve 279 may be placed between the lines coming from the plant
inlet and outlet as a fail safe device in case of upset conditions either within the plant 102"
or from external sources, such as the tank 116 (FIG. 1).
The thickened slush formed in the hydrocyclone 258 exits the underflow 262 and
passes through piping 278 to heat exchanger 224 where it helps to cool the process stream
154' flowing therethrough. Vapor passing through line 182' from the liquid/vapor
separator 180 passes through a back pressure control valve 280A and is combined with a
portion of gas drawn off heat exchanger 224 through line 259 to form a combined cooling
stream 257. The combined cooling stream 257 flowing through line 259 further serves as
"make-up" to keep eductor 282 working correctly if the flow rate through back pressure
control valve 280A is too low. Back pressure control valve 280B is preferably set a
couple to a few psi higher than pressure control valve 280A to keep combined cooling
stream 257 moving in the correct direction. The combined cooling stream 257 then passes
through an eductor 282. A motive stream 284, drawn from the process stream between
the high efficiency heat exchanger 166 and coil-type heat exchanger 224, also flows

through the eductor and serves to draw the combined cooling stream 257 into one or more
of the tank inlets 252A-252I (FIG. 5B). An exemplary eductor 282 may be configured to
operate at a pressure of approximately 764 psia and a temperature of approximately -105T
for the motive stream, and pressure of approximately 35 psia and temperature of
approximately -240°F for the suction stream with a discharge pressure of approximately
69 psia. Such an eductor is available from Fox Valve Development Corp. of Dover, New
Jersey.
The CO2 slurries introduced into heat exchanger 224, either via cooling stream
170', combined cooling stream 257 or underflow stream 278, flow downwardly through
the heat exchanger 224 over one or more or cooling coils 232A-232C causing the solid
CO2 to sublime. This produces a cooling stream 286 that has a temperature high enough to
eliminate solid CO2 therein. The cooling stream 286 exiting heat exchanger 224 is
combined with the expanded cooling stream 152' from the turbo 156 expander to form
combined cooling stream 178' which is used to cool compressed process stream 154' in
the high efficiency heat exchanger 166. Upon exiting the heat exchanger 166, the
combined cooling stream 178' is further combined with various other gas components
flowing through interface connection 136A, as described throughout herein, for discharge
into the downstream section 130 of the pipeline 104 (FIG. 1).
Referring now to FIG. 10, a liquefaction plant 102'" according to another
embodiment of the invention is shown. The liquefaction plant 102'" operates essentially in
the same manner as the liquefaction plant 102' of FIG. 4 with some minor modifications.
A fourth heat exchanger 222 is located along the flow path of the process stream
sequentially between high efficiency heat exchanger 166' and heat exchanger 224. Heat
exchanger 222 is associated with the removal of CO2 and serves primarily to heat solid
CO2 which is removed from the process stream at a later point in the cycle, as shall be
discussed in greater detail below. The fourth heat exchanger 222 also assists in cooling
the gas in preparation for liquefaction and CO2 removal.
The thickened slush formed in the hydrocyclone 258 exits the underflow 262 and
passes through piping 278' to heat exchanger 222, wherein the density of the thickened
sludge is reduced. As the CO2 slurry exits heat exchanger 222 it combines with any vapor
entering through plant inlet 128 (from tank 116 shown in FIG. 1) as well as vapor passing

through line 182' from the liquid/vapor separator 180 forming combined cooling stream
257'. The combined cooling stream 257' passes through a back pressure control valve
280A and then through an eductor 282. A motive stream 284', drawn from the process
stream between heat exchanger 222 and heat exchanger 224, also flows through the
eductor and serves to draw the combined cooling stream 158 into one or more of the tank
inlets 252A-252I (FIG. 5B).
As with the embodiment described in reference to FIG. 4, the CO2 slurries
introduced into heat exchanger 224, either via cooling stream 170' or combined cooling
stream 257, flow downwardly through the heat exchanger 224 over one or more cooling
coils 232A-232C causing the solid CO2 to sublime. This produces a cooling stream 286
that has a temperature high enough to eliminate solid CO2 therein. The cooling stream
exiting heat exchanger 224 is combined with the expanded cooling stream 152' from the
turbo 156 expander to form combined cooling stream 178' which is used to cool
compressed process stream 154' in the high efficiency heat exchanger 166. Upon exiting
the heat exchanger 166, the combined cooling stream 178' is further combined with
various other gas components flowing through interface connection 136A, as described
throughout herein, for discharge into the downstream section 130 of the pipeline 104 (FIG.
1).
As with embodiments discussed above, the CO2 screen filters 266 A and 266B may
require cleaning or purging from time to time. However, in the embodiment shown in
FIG. 10, gas may be drawn after the water clean-up cycle at interface point 276C and enter
into interface point 276A or 276B to flow through and clean CO2 screen filters 266A or
266B. During cleaning of the filter 266B, the cleaning gas may be discharged back to the
pipeline 104 (FIG. 1) as is indicated by interface connections 136E or 136F and 136A.
Appropriate valving and piping allows for the filters 266A and 266B to be switched and
isolated from one another as may be required. Other methods of removing CO2 solids that
have accumulated on the filters are readily known by those of ordinary skill in the art. The
filtered liquid natural gas exits the plant 102" for storage as described above herein.
Referring now to FIGS. 11A and 12, a differential pressure circuit 300 of plant
102'" is shown. The differential pressure circuit 300 is designed to balance the flow
entering the JT valve 176' just prior to the liquid/vapor separator 180 based on the

pressure difference between the compressed process stream 154' and the product stream
172'. The JT valve 174' located along cooling stream 170' acts as the primary control
valve passing a majority of the mass flow exiting from heat exchanger 224 in order to
maintain the correct temperature in the product stream 172'. During normal operating
conditions, it is assumed that gas will always be flowing through JT valve 174'. Opening
up JT valve 174' increases the flow back into heat exchanger 224 and consequently
decreases the temperature in product stream 172'. Conversely, restricting the flow through*
JT valve 174' will result in an increased temperature in product stream 172'.
JT valve 176' located in the product stream 172' serves to balance any excess flow
in the product stream 172' due to variations, for example, in controlling the temperature of
the product stream 172' or from surges experienced due to operation of the compressor
158.
A pressure differential control (PDC) valve 302 is disposed between, and coupled
to the compressed process stream 154' and the product stream 172' (as is also indicated by
interface connections 301A and 301B in FIG. 4). A pilot line 304 is coupled between the
low pressure side 306 of the PDC valve 302 and the pilot 308 of JT valve 176'. Both the
PDC valve 302 and the pilot 308 of JT valve 176' are biased (i.e., with springs) for
pressure offsets to compensate for pressure losses experienced by the flow of the process
stream 154' through the circuit containing heat exchangers 166, 222 (if used) and 224.
The following are examples of how the differential pressure circuit 300 may
behave in certain exemplary situations.
In one situation, the pressure and flow increase in the compressed process stream
154' due to fluctuations in the compressor 158. As pressure increases in the compressed
process stream 154', the high side 310 of the PDC valve 302 causes the PDC valve 302 to
open, thereby increasing the pressure within the pilot line 304 and the pilot 308 of JT
valve 176'. After flowing through the various heat exchangers, a new pressure will result
in the product stream 172'. With flow being maintained by JT valve 174', excessive
process fluid built up in the product stream 172' will result in less pressure loss across the
heat exchangers, bringing the pressure in the product stream 172' closer to the pressure
exhibited by the compressed process stream 154'. The increased pressure in the product
stream 172' will be sensed by the PDC valve 302 and cause it to close thereby overcoming

the pressure in the pilot line 304 and the biasing element of the pilot 308. As a result, JT
valve 176' will open and increase the flow therethrough. As flow increases through JT
valve 176' the pressure in the product stream 172' will be reduced.
In a second scenario, the pressure and flow are in a steady state condition in the
compressed process stream 154'. In this case the compressor will provide more flow than
will be removed by JT valve 174', resulting in an increase in pressure in the product
stream 172'. As the pressure builds in the product stream, the PDC 302 valve and JT
valve 176' will react as described above with respect to the first scenario to reduce the
pressure in the product stream 172'.
In a third scenario, JT valve 174' suddenly opens, magnifying the pressure loss
across the heat exchangers 224 and 166 and thereby reducing the pressure in the product
stream 172'. The loss of pressure in the product stream 172' will be sensed by the PDC
valve $02, thereby actuating the pilot 308 such that JT valve 176' closes until the flow
comes back into equilibrium.
In a fourth scenario, JT valve 174' suddenly closes, causing a pressure spike in the
product stream 172'. In this case, the pressure increase will be sensed by the PDC valve
302, thereby actuating the pilot 308 and causing JT valve 176' to open and release the
excess pressure/flow until the pressure and flow are back in equilibrium.
In a fifth scenario, the pressure decreases in the compressed process stream 154'
due to fluctuations in the compressor. This will cause the circuit 300 to respond such that
JT valve 176' momentarily closes until the pressure and flow balance out in the product
stream 172'.
The JT valve 174' is a significant component.of the differential pressure circuit 300
as it serves to maintain the split between cooling stream 170' and product stream 172'
subsequent the flow of compressed process stream 154' through heat exchanger 224. JT
valve 174' accomplishes this by maintaining the temperature of the stream in line 256
exiting heat exchanger 224. As the temperature in line 256 (and thus in cooling stream
170' and process stream 172') drops below a desired temperature, the flow through JT
valve 174' may be adjusted to provide less cooling to heat exchanger 224. Conversely as
the temperature in line 256 raises above a desired temperature, the flow through JT valve
174' may be adjusted to provide additional cooling to heat exchanger 224.

Referring now to FIG. 11B, a preferred circuit 300' is shown. The operation of
circuit 300' is generally the same as circuit 300 described above, however instead of using
mechanical control, circuit 300' is electrical-pneumatically controlled. The primary
differences between circuit 300 and 300' include replacing pressure sense lines 370 and
372 with pressure sensors 374 and 376 and electrical leads 370' and 372'. Furthermore,
the differential pressure regulator 302 and control line 304 are replaced by an electrical
controller 302' and an electro-pneumatic sense line 304' and pilot 308 is replaced with a
current-to-pneumatic (I/P) pilot control 308'. It should be noted that when using circuit
300 or circuit 300' will work with any number of heat exchangers that would provide a
pressure drop from 154' to 172'.
Referring now to FIG. 12, a liquefaction plant 102"" and process is shown
according to another embodiment of the invention. The liquefaction plant 102"" operates
essentially in the same manner as the liquefaction plant 102'" of FIG. 10 with some minor
modifications. Rather than passing the thickened CO2 slush from the hydrocyclone 258
through a heat exchanger 222 (FIG. 10), a pump 320 accommodates the flow of the
thickened CO2 slush back to heat exchanger 224. The configuration of plant 102""
eliminates the need for an additional heat exchanger (i.e., 222 of FIG. 10). However, flow
of the thickened CO2 slush may be limited by the capacity of the pump and the density of
the thickened slush in the configuration shown in FIG. 10.
Referring now to FIG. 13, an exemplary physical configuration of plant 102"
described in reference to FIG. 4 is according to one embodiment thereof. Plant 102" is
shown without siding or a roof for viewability. Substantially an entire plant 102" may be
mounted on a supporting structure such as a skid 330 such that the plant 102" may be
moved and transported as needed. Pointing out some of the major components of the plant
102", the turbo expander 156/compressor 158 is shown on the right hand portion of the
skid 330. A human operator 332 is shown next to the turbo expander 156/compressor 158
to provide a general frame of reference regarding the size of the plant 102". Generally, the
overall plant may be configured, for example, to be approximately 30 feet long, 17 feet
high and 8 lA feet wide. However, the overall plant may be sized smaller or larger as
desired.
The high efficiency heat exchanger 166 and the heat exchanger 224 used for

sublimation of solid CO2 are found on the left hand side of the skid 330. The parallel CO2
filters 266A and 226B can be seen adjacent heat exchanger 224. Wiring 334 may extend
from the skid 330 to a remote location, such as a separate pad 335 or control room, for
controlling various components, such as, for example, the turbo expander 156/compressor
158, as will be appreciated and understood by those of skill in the art. Additionally,
pneumatic and/or hydraulic lines might extend from the skid 330 for control or external
power input as may be desired. It is noted that by remotely locating the controls, or at
least some of the controls, costs may be reduced as such remotely located controls and
instruments need not have, for example, explosion proof enclosures or other safety
features as would be required if located on the skid 330.
It is also noted that a framework 340 may be mounted on the skid 330 and
configured to substantially encompass the plant 102". A first section 342, exhibiting a
first height, is shown to substantially encompass the volume around the turbo expander
156 and compressor 158. A second section 344 substantially encompasses the volume
around the heat exchangers 166, 224, filters 266A and 266B and other components which
operate at reduced temperatures. The second section 344 includes two subsections 344A
and 344B with subsection 344A being substantially equivalent in height to section 342.
Subsection 344B extends above the height of section 342 and may be removable for
purposes of transportation as discussed below. The piping associated with the plant 102"
may be insulated for purposes minimizing unwanted heat transfer. Alternatively, or in
combination with insulated pipes and selected components, an insulated wall 346 may
separate section 342 from section 344 and from the external environs of the plant 102".
Additionally, insulated walls may be placed on the framework 340 about the exterior of
the plant 102" to insulate at least a portion of the plant 102" from ambient temperature
conditions which might reduce the efficiency of the plant 102". Furthermore, various
components may be individually insulated in addition to interconnecting piping, including
but not limited to, separation tank 180, filter modules 266A.B, and heat exchangers 166
and 224.
Referring now to FIG. 14, the plant 102", or a substantial portion thereof, may, for
example, be loaded onto a trailer 350 to be transported by truck 352 to a plant site.
Alternatively, the supporting structure may serve as the trailer with the skid 330

configured with wheels, suspension and a hitch to mount to the truck tractor 352 at one
end, and a second set of wheels 354 at the opposing end. Other means of transport will be
readily apparent to those having ordinary skill in the art.
It is noted that upper subsection 344B has been removed, and, while not explicitly
shown in the drawing, some larger components such as the high efficiency heat exchanger
166 and the solid CO2 processing heat exchanger 224 have been removed. This potentially
allows the plant to be transported without any special permits (i.e., wide load, oversized
load, etc.) while keeping the plant substantially intact.
It is further noted that the plant may include controls such that minimal operator
input is required. Indeed, it may be desirable that any plant 102-102"" function without an
on-site operator. Thus, with proper programing and control design, the plant may be
accessed through remote telemetry for monitoring and/or adjusting the operations of the
plant. Similarly, various alarms may be built into such controls so as to alert a remote
operator or to shut down the plant in an upset condition. One suitable controller, for
example, may be a DL405 series programable logic controller (PLC) commercially
available from Automation Direct of Cumming, Georgia.
While the invention has been disclosed primarily in terms of liquefaction of natural
gas, it is noted that the present invention may be utilized simply for removal of gas
components, such as, for example, CO2 from a stream of relatively "dirty" gas.
Additionally, other gases may be processed and other gas components, such as, for
example, nitrogen, may be removed. Thus, the present invention is not limited to the
liquefaction of natural gas and the removal of CO2 therefrom.
EXAMPLE
Referring now to FIGS. 4 and 15, an example of the process carried out in the
liquefaction plant 102" is set forth. It is noted that FIG. 14 is the same process flow
diagram as FIG. 4 (combined with the additional components of FIG. 3 - e.g. the
compressor 154 and expander 156 etc.) but with component reference numerals omitted
for clarity. As the general process has been described above with reference to FIG. 4, the
following example will set forth exemplary conditions of the gas/liquid/slurry at various
locations throughout the plant, referred to herein as state points, according to the

calculated operational design of the plant 102".
At state point 400, as the gas leaves distribution pipeline and enters the
liquefaction plant the gas will be approximately 60°F at a pressure of approximately 440
psia with a flow of approximately 10,00 lbm/hr.
At state points 402 and 404, the flow will be split such that approximately 5,065
lbm/hr flows through state point 402 and approximately 4,945 lbm/hr flows through state
point 404 with temperatures and pressures of each state point being similar to that of state
point 400.
At state point 406, as the stream exits the turboexpander 156, the gas will be
approximately -104°F at a pressure of approximately 65 psia. At state point 408, as the
gas exits the compressor 158, the gas will be approximately 187°F at a pressure of
approximately 770 psia.
At state point 410, after the first heat exchanger 220 and prior to the high
efficiency heat exchanger 166, the gas will be approximately 175°F at a pressure of
approximately 770 psia. At state point 412, after water clean-up and about midway
through the high efficiency heat exchanger 166, the gas will be approximately -70°F at a
pressure of approximately 766 psia and exhibit a flow rate of approximately 4,939 lbm/hr.
The gas exiting the high efficiency heat exchanger 166, as shown at state point
414, will be approximately -105°F at a pressure of approximately 763 psia.
The flow through the product stream 172' at state point 418 will be approximately
-205°F at pressure of approximately 761 psia with a flow rate of approximately 3,735
lbm/hr. At state point 420, after passing through the Joule-Thomson valve, and prior to
entering the separator 180, the stream will become a mixture of gas, liquid natural gas, and
solid CO2 and will be approximately -240°F at a pressure of approximately 35 psia. The
slurry of solid CO2 and liquid natural gas will have similar temperatures and pressures as
it leaves the separator 180, however, it will have a flow rate of approximately 1,324
lbm/hr.
At state point 422, the pressure of the slurry will be raised, via the pump 260, to a
pressure of approximately 114 psia and a temperature of approximately -236°F. At state
point 424, after being separated via the hydrocyclone 258, the liquid natural gas will be
approximately -240°F at a pressure of approximately 35 psia with a flow rate of

approximately 1,059 lbm/hr. The state of the liquid natural gas will remain substantially
the same as it exits the plant 102" into a storage vessel.
At state point 426 the thickened slush (including solid CO2) exiting the
hydrocyclone 258 will be approximately -235°F at a pressure of approximately -68.5 psia
and will flow at a rate of approximately 265 lbm/hr.
At state point 430, the gas exiting the separator 180 will be approximately
240°F at a pressure of approximately 35 psia with a flow rate of approximately 263
lbm/hr.
At state point 434, the gas in the motive stream entering into the eductor will be
approximately -105°F at approximately 764 psia. The flow rate at state point 434 will be
approximately 1,205 lbm/hr. At state point 436, subsequent the eductor, the mixed stream
will be approximately -217°F at approximately 70 psia with a combined flow rate of
approximately 698 lbm/hr.
At state point 438, prior to JT valve 174', the gas will be approximately -205°F at a
pressure of approximately 761 psia with a flow rate of approximately 2,147 lbm/hr. At
state point 440, after passing through JT valve 174' whereby solid CO2 is formed, the
slurry will be approximately -221°F with a pressure of approximately 68.5 psia.
At state point 442, upon exiting heat exchanger 224, the temperature of the gas will
be approximately -195°F and the pressure will be approximately 65 psia. The flow rate at
state point 442 will be approximately 3,897 lbm/hr. At state point 444, after combining
two streams, the gas will have a temperature of approximately -151°F and a pressure of
approximately 65 psia.
At state point 446, upon exit from the high efficiency heat exchanger 166, and
prior to discharge into the pipeline 104, the gas will have a temperature of approximately
99°F and a pressure of approximately 65 psia. The flow rate at state point 446 will be
approximately 8,962 lbm/hr.
In light of the above disclosure it will be appreciated that the liquefaction process
depicted and described herein provides for low cost, efficient and effective means of
producing LNG without the requisite "purification" of the gas before subjecting the gas to
the liquefaction cycle. Such allows the use of relatively "dirty" gas typically found in
residential and industrial service lines, and eliminates the requirement for expensive

pretreatment equipment and provides a significant reduction in operating costs for
processing such relatively "dirty" gas.
While the invention may be susceptible to various modifications and alternative
forms, specific embodiments which have been shown by way of example in the drawings
and have been described in detail herein, it should be understood that the invention is not
intended to be limited to the particular forms disclosed. Rather, the invention includes all
modifications, equivalents, and alternatives falling within the spirit and scope of the
invention as defined by the following appended claims.

We Claim
1. A method of removing carbon dioxide from a mass of natural gas
having at least one additional constituent, the method comprising:
drawing a mass of natural gas from a source of natural gas;
cooling at least a portion of the mass of natural gas to form a slurry
comprising at least liquid natural gas and solid carbon dioxide;
flowing the slurry into a hydrocyclone;
forming a thickened slush having the solid carbon dioxide and a
portion of the liquid natural gas;
flowing the thickened slush through an underflow of the hydrocyclone;
flowing a remaining portion of liquid natural gas through an overflow
of the hydrocyclone; and
returning the carbon dioxide to the source of natural gas.
2. The method as claimed in claim 1, comprising compressing the mass
of natural gas prior to the cooling.

3. The method as claimed in claim 2, wherein cooling the at least a
portion of the mass of natural gas comprises flowing the at least a
portion through at least one heat exchanger.
4. The method as claimed in claim 3, comprising expanding at least
another portion of the mass of natural gas to form a cooling stream
and flowing the cooling stream through the at least one heat
exchanger to cool the at least a portion of the mass of natural gas.
5. The method as claimed in claim 4, wherein cooling the at least a
portion of the mass of natural gas comprises expanding the at least a
portion of natural gas.
6. The method as claimed in claim 1, comprising flowing the remaining
portion of liquid natural gas through at least one screen filter.
7. The method as claimed in claim 6, wherein flowing the remaining
portion of liquid natural gas through at least one screen filter
comprises flowing the remaining portion of liquid natural gas through a
plurality of screen filters.
8. The method as claimed in claim 1, wherein cooling the at least a
portion of a mass of natural gas comprises using the thickened slusn
as a refrigerant.

9. The method as claimed in claim 7, wherein flowing the remaining
portion of liquid natural gas through a plurality of screen filters
comprises flowing the remaining portion of liquid natural gas through
a plurality sequentially disposed screen filters and reducing a mesh
size of each screen filter of the plurality of screen filters relative to a
sequentially adjacent screen filter upstream therefrom within a flow
path of the remaining portion of liquid natural gas.
10. The method as claimed in claim 1, comprising vaporizing the carbon
dioxide prior to returning the carbon dioxide back to the source cf
natural gas.
11. A system for removing carbon dioxide from a mass of natural gas
having at least one additional constituent, comprising:
a first flow path located and configured to draw a mass of natural gas
from a source of natural gas;
a compressor (158) configured to produce a compressed stream of
natural gas from at least a portion of the mass of natural gas;
at least one heat exchanger (166, 220, 224) positioned and configured
for receiving and cooling the compressed stream;

means positioned and configured for receiving and expanding
(176,176') the cooled compressed stream and forming a slurry which
comprises liquid natural gas and solid carbon dioxide;
a hydrocyclone (258) positioned and configured to receive the slurry
and separate the slurry into a first portion of liquid natural gas and a
thickened slush comprising the solid carbon dioxide and a second
portion of the liquid natural gas and;
a second flow path positioned and configured to return the carbon
dioxide from the hydrocyclone (258) back to the source of natural gas.
12. The system as claimed in claim 11, comprising a turbo expander (156)
positioned and configured to receive at least another portion of the
mass of natural gas and produce an expanded cooling stream of
natural gas therefrom, the turbo expander (156) being mechanically
coupled to the compressor (158) to power same.
13. The system as claimed in claim 12, wherein the at least one heat
exchanger (166) is positioned to receive the expanded cooling stream
for flow therethrough in a countercurrent manner with respect to the
compressed stream.

14. The system as claimed in claim 13, comprising a filter (208) positioned
and configured to remove water from the compressed stream as it
flows through the at least one heat exchanger and at least one other
flow path located and configured to return the removed water back to
the source of natural gas.
15. The system as claimed in claim 14, comprising at least one screen filter
(226A, 266B) positioned and configured to receive the first portion of
liquid natural gas therethrough.
16. The system as claimed in claim 15, wherein the at least one screen
filter 266A, 266B) comprises a plurality of screen filters formed of
stainless steel mesh sequentially disposed in a flow path of the first
portion of liquid natural gas, each successive filter along the flow path
having a reduced mesh size relative to an adjacent screen filter
upstream along the flow path.
17. The system as claimed in claim 11, wherein the at least one heat
exchanger (166,220, 224) comprises a plurality of heat exchangers
comprising at least one high efficiency heat exchanger (166).
18. The system as claimed in claim 17, wherein the at least one high
efficiency heat exchanger comprises a plurality of aluminum plates.

19. The system as claimed in claim 18, wherein the plurality of heat
exchangers (166, 220,224) comprises a tube-in-shell heat exchanger
(224).
20. The system as claimed in claim 19, wherein the tube-in-shell heat
exchanger (224) comprises a plurality of stainless steel coils (232)
stacked vertically within a stainless steel tank (230).
21. The system as claimed in claim 11, comprising a liquid-gas separator
(180) positioned and configured to receive the slurry and separate the
slurry from a natural gas vapor prior to the slurry being received by
the hydrocyclone.
22. A method of removing carbon dioxide from a mass of natural gas, the
method comprising:
cooling at least a portion of a mass of natural gas to form a slurry
comprising a liquid natural gas and solid carbon dioxide;
flowing the slurry through a hydrocyclone;
removing the solid carbon dioxide and a portion of the liquid natural
gas through an underflow of the hydrocyclone; and

flowing at least another portion of the natural gas through an
expander and generating work from expansion thereof, compressing
the at least a portion of natural gas using the work generated from the
expander, and partially cooling the compressed at least a portion of
natural gas using the expanded at least another portion of the natural
gas.
23. The method as claimed in claim 22, wherein the cooling at least a
portion of the natural gas to form a slurry comprises expanding the at
least a portion of the natural gas.
24. The method as claimed in claim 22, wherein the cooling at least a
portion of the natural gas to form a slurry comprises flowing the at
least a portion of the natural gas through at least one heat exchanger.
25. The method as claimed in claim 22, wherein the cooling at least a
portion of the natural gas to form a slurry comprises flowing the at
least a portion of the natural gas through at least one Joule-Thomson
valve.
26. The method as claimed in claim 22, comprising flowing a portion of the
liquid natural gas through the overflow of the hydrocyclone and
through a filter.

27. The method as claimed in claim 22, comprising removing water from
the at least a portion of the natural gas prior to flowing the at least a
portion of the natural gas through the hydrocyclone.
28. The method as claimed in claim 22, comprising removing water from
the at least a portion of the mass of natural gas and returning the
water to the source of natural gas.
29. A system for removing carbon dioxide from a mass of natural gas
having at least one additional constituent, comprising:
a compressor (158) configured to produce a compressed stream of
natural gas from at least a portion of a mass of natural gas;
at least one heat exchanger (166,224) positioned and configured for
receiving and cooling the compressed stream;
means (176, 176') positioned and configured for receiving and
expanding the cooled compressed stream and forming a slurry which
comprises liquid natural gas and solid carbon dioxide;
a hydrocyclone (258) positioned and configured to receive the slurry
and separate the slurry into a first portion of liquid natural gas and a
thickened slush comprising the solid carbon dioxide and a second
portion of the liquid natural gas; and

a plurality of screen filters (266A, 266B) formed of stainless steel
mesh sequentially disposed in a flow path of the first portion of
liquid natural gas, each successive filter along the flow path having
a reduced mesh size relative to an adjacent screen filter upstream
along the flow path.

This invention relates to an apparatus and method for producing liquefied natural
gas. A liquefaction plant may be coupled to a source of unpurified natural gas,
such as a natural gas pipeline at a pressure letdown station. A portion of the gas
is drawn off and split into a process stream and a cooling stream. The cooling
stream passes through a turbo expander creating work output. A compressor is
driven by the work output and compresses the process stream. The compressed
process stream is cooled, such as by the expanded cooling stream. The cooled,
compressed process stream is divided into first and second portions with the first
portion being expanded to liquefy the natural gas. A gas-liquid separator
separates the vapour from the liquid natural gas. The second portion of the
cooled, compressed process stream is also expanded and used to cool the
compressed process stream. Additional features and techniques may be
integrated with the liquefaction process including a water clean- up cycle and a
carbon dioxide (CO2) clean-up cycle.

Documents:

1065-KOLNP-2004-(07-12-2011)-FORM-27.pdf

1065-KOLNP-2004-(12-09-2012)-FORM-27.pdf

1065-kolnp-2004-granted-abstract.pdf

1065-kolnp-2004-granted-assignment.pdf

1065-kolnp-2004-granted-claims.pdf

1065-kolnp-2004-granted-correspondence.pdf

1065-kolnp-2004-granted-description (complete).pdf

1065-kolnp-2004-granted-drawings.pdf

1065-kolnp-2004-granted-examination report.pdf

1065-kolnp-2004-granted-form 1.pdf

1065-kolnp-2004-granted-form 18.pdf

1065-kolnp-2004-granted-form 2.pdf

1065-kolnp-2004-granted-form 26.pdf

1065-kolnp-2004-granted-form 3.pdf

1065-kolnp-2004-granted-form 5.pdf

1065-kolnp-2004-granted-reply to examination report.pdf

1065-kolnp-2004-granted-specification.pdf


Patent Number 228739
Indian Patent Application Number 1065/KOLNP/2004
PG Journal Number 07/2009
Publication Date 13-Feb-2009
Grant Date 10-Feb-2009
Date of Filing 27-Jul-2004
Name of Patentee BECHTEL BWXT IDAHO, LLC
Applicant Address P.O. BOX 1625 IDAHO FALLS, ID
Inventors:
# Inventor's Name Inventor's Address
1 WILDING, BRUCE M. 2818 HONEYSUCKLE IDAHO FALLS, IDAHO 83402
2 BINGHAM, DENNIS N. 2728 WEST 17TH STREET IDAHO FALLS, IDAHO 83402
3 MCKELLAR, MICHAEL G. 2000 PEGGY'S LANE IDAHO FALLS, IDAHO 83402
4 TURNER, TERRY D. 490 TIEBREAKER AMMON, IDAHO 83406
5 RATERMAN, KEVIN T. 181 EAST WOODHAEN LANE IDAHO FALLS, IDAHO 83404
6 PALMER, GARY L. 1152 EAST 100 NORTH SHELLEY, IDAHO 83274
7 KLINGER, KERRY M. 2385 BRAMBLE COURT IDAHO FALLS, IDAHO 83402
8 VRANICAR, JOHN J. 1512 FARM BUREAU ROAD CONCORD, CALIFORNIA 94519
PCT International Classification Number F17C 5/00
PCT International Application Number PCT/US2002/20924
PCT International Filing date 2002-07-01
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 10/086,066 2002-02-27 U.S.A.