Title of Invention

APPARATUS FOR POWERING AND READING DATA FROM A PLURALITY OF FIELD EFFECT SENSORS OVER TWO WIRES AND METHOD THEREOF

Abstract The present invention relates to an apparatus and method for powering and reading data from a plurality of field effect sensors over two wires. The apparatus comprises a power supply ; a first field effect sensor (51) having a first power terminal coupled to a first terminal of said power supply and a second power terminal coupled to a second terminal of said power supply ; a first load resistor having a first terminal coupled to an output terminal of said first field effect sensor (51) and a second terminal coupled to said second terminal of said power supply, said first load resistor having a first value of resistance ; a second field effect sensor (52) having a first power terminal coupled to said first terminal of said power supply and a second power terminal coupled to said second terminal of said power supply, a second load resistor having a first terminal coupled to an output terminal of said second field effect sensor (52) and a second terminal coupled to said second terminal of said power supply, said second load resistor having a second value of resistance, said second value of resistance being substantially different from said first value of resistance ; and a detection circuit (18) coupled to said first field effect sensor (51) and said second field effect sensor (52).
Full Text APPARATUS FOR POWERING AND READING DATA FROM A PLURALITY
OF FIELD EFFECT SENSORS OVER TWO WIRES AND METHOD THEREOF
CROSS REFERENCE TO RELATED APPLICATIONS
This application claims priority from United States Provisional Patent Application
60/464,613, filed on April 22,2003, the disclosure of which is incorporated herein by
reference.
BACKGROUND OF THE INVENTION
1. The Technical Field
The present invention relates to methods and apparatus for interconnecting a field effect sensor
with a control system or controlled device using only two wires, and in particular to apparatus for
powering and reading data from a plurality of field effect sensors over two wires and method thereof.
2. The Prior Art
Mechanical switches are sometimes used to detect change in position of a mechanical
part or level of a fluid, among other things. Such uses are particularly prevalent in
automotive applications. For example, mechanical switches have long been used in
automobiles to sense parameters such as throttle position and windshield washer fluid level.
Although mechanical switches have been refined extensively over the years, they
nevertheless are inherently prone to failure because they include moving parts. Further, such
switches are often used in connection with mechanical linkages which also are inherently
prone to failure and which add cost, weight, and complexity.
Field effect sensors have been used as replacements for mechanical switches in many
applications. Indeed, field effect sensors can be used to sense proximity of a mechanical part
or a liquid. Field effect sensors have many advantages over mechanical switches. For
example, they have no moving parts which can wear out or break. Also, they can be

inexpensively mass-produced and customized for use in applications that would not readily
accommodate mechanical switches.
Mechanical switches in their simplest form are two-wire (input and output) devices
that mechanically make or break an electrical circuit They operate using mechanical force
and do not require electrical power for their operation. Conversely, field effect sensors are
solid state-devices which require electrical power for their operation. Accordingly, a field
effect sensor typically requires at least one more wire for its operation than does a mechanical
switch. As such, known field effect sensors typically cannot be used as drop-in replacements
for mechanical switches without some modification to the apparatus into which they would
be installed.
BRIEF DESCRIPTION OF THE ACCOMPANYING DRAWINGS
FIG. 1 illustrates schematically a first embodiment of the present invention;
FIG. 2A illustrates schematically a second embodiment of the present invention;
FIG. 2B illustrates schematically an alternate form of a second embodiment of the
present invention;
FIG. 3 illustrates schematically a third embodiment of the present invention; and
FIG. 4 illustrates schematically a fourth embodiment of the present invention.
DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENT
FIG. 1 illustrates a first preferred embodiment of the present invention wherein first,
second and third field effect sensors S1,S2,S3 are connected to power supply 10 over two
wires 12,14 in a daisy chain configuration. Sensors S1,S2,S3 preferably are embodied as

field effect sensors using a TS100 integrated control circuit available from TouchSensor
Technologies, LLC of Wheaton, Illinois. A corresponding load resistor LR1,LR2,LR3 is

connected to the output of each sensor S1,S2,S3, respectively. Each load resistor
LR1,LR2,LR3 has a unique value of resistance. Other embodiments can use more or fewer
man three sensors and corresponding load resistors. Detection circuit 18 detects the current
drawn by sensors S1,S2,S3. In the illustrated embodiment, detection circuit 18 includes sense
resistor 16 between power supply 10 and sensors S1,S2,S3. Detection circuit 18 detects the
voltage drop across sense resistor 16 and provides an output line Vout to a suitable decoding
circuit, for example, an analog to digital converter, as would be known to one skilled in the
art. The design of detection circuit 18 is not critical to the invention. The design shown in
FIG. 1 is for illustration and can be varied or substituted with another design as would be
known to one skilled in the art
When none of sensors S1,S2,S3 is activated, sensors S1,S2,S3 draw a baseline current
from power supply 10. This baseline current can be detected as a voltage drop across sense
resistor 16 or in any other suitable manner, as would be known to one skilled in the art.
Typically, this baseline current will be negligible and, accordingly, will produce a negligible
voltage drop across sense resistor 16.
When any of sensors S1,S2,S3 is activated through touch or proximity of an object or
fluid, additional current is drawn from power supply 10 in response to the sensor activation.
This additional current is a function of the value of the load resistor connected to the activated
sensor's output Because each load resistor has a unique value of resistance, this additional
current varies depending on which of sensors S1,S2,S3 is activated. This additional current
can be detected as an additional voltage drop across sense resistor 16 or in any other suitable
manner, as would be known to one skilled in the art.
By monitoring the baseline current (or corresponding voltage drop across sense
resistor 16) and changes thereto, it can be readily determined which, if any, of sensors

S1,S2,S3 is activated at any particular time. Indeed, load resistances LR1,LR2,LR3 can be
selected such that a unique additional current is drawn for each unique combination of
sensors S1 ,S2,S3 activated simultaneously. Thus, it can be readily determined which
combination, if any, of sensors S1,S2,S3 is activated at any particular time.
For example, FIG. 1 illustrates an embodiment having a nominal 5 volt power supply
10, a 125 ohm sense resistor 16 and 1.25 K-ohm, 2.5 K-ohm, and 5K-ohm load resistances
L1,L2,L3, respectively. These specific values are provided here for illustration and can vary
to meet the demands of any particular application, as would be known to one skilled in the
art. As discussed above, negligible current is required to power sensors S1,S2,S3 when none
of them is actuated. Thus, when none of sensors S1,S2,S3 is activated, the voltage drop
across sense resistor 16 is negligible and the output Vout of detection circuit 18 is 0 volts. If
sensor S3 is activated and sensors SI and S2 are not activated, the current through sense
resistor 16 is substantially equal to the current through load resistor LR3, producing a
corresponding voltage drop across sense resistor 16. Based on this voltage drop, detection
circuit 18 outputs a signal Vout of 0.714 volts. Based on this output voltage, the decoding
circuit (not shown) determines mat sensor S3, but not sensors S1 and S2, must have been
activated. Similarly, if sensors S1 and S2 are activated and sensor S3 is not activated, the
current through sense resistor is substantially equal to the sum of the currents through load
resistors LR1 and LR2, producing a corresponding voltage drop across sense resistor 16.
Based on this voltage drop, detection circuit 18 outputs a signal Vwt of 4.28 volts. Based on
ibis output voltage, the decoding circuit (not shown) determines that sensors SI and S2, but
/ not sensor S3, must have been activated. The table in FIG. 1 illustrates that a unique output
Ym is produced for each unique combination of sensors activated at any given time. Based
on the value of Vout at any particular time, the decoding circuit determines which individual

sensor or combination of sensors is activated at that time.
FIGS. 2A and 2B illustrate a second embodiment of the present invention wherein a
capacitor is used as a temporary local power supply for a field effect sensor. Referring to
FIG. 2 A, power input 102 of field effect sensor 100 is coupled through isolation diode 110 to
a pulse generator and detection circuit via line 108. In a preferred embodiment, the pulse
generator and detection circuit is embodied as microcomputer 106 having areconfigurable
port 104 to which line 108 is connected. Output 112 of field effect sensor 100 is coupled to
port 104 through switched resistor 114 and FET 116. Port 104 selectively functions as an
input port and output port, as discussed below. Capacitor 117 is coupled between ground and
the node coupling diode 110 and power input 102 of sensor 100. Pull-down resistor 118 is
coupled between ground and the node coupling sensor 100 output 112 and the gate of FET
116. A first terminal of pull-up resistor 120 is connected to a source of electrical potential, in
this example, a 5 V source. The second terminal of pull-up resistor 120 is connected to line
108. Pull-up resistor 120 is shown as a discrete component separate from microcomputer
106. Alternatively, pull-up resistor 120 could be integral with, or its function otherwise could
be provided by, microcomputer 106, as would be known to one skilled in the art.
With, port 104 configured as an output port, microcomputer 106 outputs a pulse
through port 104 over line 108 and through isolation diode 110. This pulse powers sensor
100 and charges capacitor 117. In the subsequent no-pulse condition, the energy stored in
capacitor 117 continues to power sensor 100 for a short period of time. During this time,
with port 104 reconfigured as an input port, microcomputer 106 can read data from line 108.
When sensor 100 is not activated, output 112 of sensor 100 is low and FET 116 is in
the "off' state. In this state, no current flows through FET 116. Thus, the potential at line
108 is at 5 V. Microcomputer 106 senses this voltage through port 104 (while port 104 is

configured as an input port) and determines, based on the sensed voltage, that sensor 100 is in
the not activated condition.
When sensor 100 is activated, output 112 of sensor 100 is high, switching FET 116 to
the "on" state. In this state, current flows from the 5 V source, through FET 116, to ground.
Pull-up resistor 120 and switched resistor 114 function as a voltage divider, wherein the
voltage at the node between these two resistors is between 0V and 5 V. Microcomputer 106
senses this voltage through port 104 (while port 104 is configured as an input port) and
determines, based on the sensed voltage, that sensor 100 is in the activated condition.
Referring to FIG. 2B, the principles of this embodiment of the present invention can
be applied to operate and read multiple sensors 100 using a single pulse generator and
detection circuit. FIG. 2B differs from FIG. 2A in that FIG. 2B illustrates a second sensor
100' and corresponding circuitry (namely, sensor input 102', sensor output 112", capacitor
117', diode 110', FET 116', switched resistor 114*, and pull-down resistor 118') coupled to
microprocessor 106 through line 108 and port 104. The circuitry corresponding to sensor
100' is generally the same as the circuitry corresponding to sensor 100, except that switched
resistors 114 and 114' have different values of resistance. Thus, when sensor 100 is activated
and sensor 110' is not activated, a first voltage is present at the node between pull-up resistor
120 and switched resistors 114 and 114'. Based on the value of this first voltage,
microprocessor 106 determines that sensor 100 is in the activated condition and sensor 100' is
in the not activated condition. Likewise, when sensor 100' is activated and sensor 110 is not
activated, a second voltage is present at the node between pull-up resistor 120 and switched
resistors 114 and 114'. Based on the value of this second voltage, microprocessor 106
determines that sensor 100' is in the activated condition and sensor 100 is in the not activated
condition. Similarly, when both sensors 100 and 100' are activated, a third voltage is present

at the node between pull-up resistor 120 and switched resistors 114 and 114'. Based on the
value of this third voltage, microprocessor 106 determines that both sensors 100 and 100' are
in the activated condition. Additional sensors and corresponding circuitry can be coupled to
line 108 and operated and read in this manner, as would be known to one skilled in the art.
FIG. 3 illustrates a third embodiment of the present invention wherein power input
202 of sensor 200 is coupled to a pulse generator and detection circuit, for example,
microcomputer 206, via line 208 and output 212 of sensor 200 is coupled to line 208 via FET
216 and load resistor 214. Pull-down resistor 218 is coupled between ground and the node
coupling sensor 200 output 212 and the gate of FET 216. A first terminal of pull-up resistor
220 is connected to a voltage source, for example, a 5 V source, and the second terminal of
pull-up resistor 220 is connected to line 208. Load resistor 214 and pull-up resistor 220 each
preferably have a value of about 100 ohms. As in FIGS. 2A and 2B, pull-up resistor 220 is
shown as a discrete component separate from microcomputer 206. Alternatively, pull-up
resistor 220 could be integral with, or its function otherwise could be. provided by,
microcomputer 206, as would be known to one skilled in the art.
When sensor 200 is not activated, its output 212 is low. Thus, FET 216 is in the "off'
state. In this condition, the full voltage provided from microcomputer 206 is applied to
sensor 200. When sensor 200 is activated, output 212 is high, switching transistor 216 to the
"on" state. In this condition, pull-up resistor 220 and load resistor 214 form a voltage divider,
and the voltage applied to sensor 200 is substantially equal to the voltage drop across load
resistor 214. Microcomputer 206 senses the voltage applied to sensor 200 and thus
determines whether sensor 200 is activated or not.
In alternate embodiments, pull-up resistor 220 can be omitted and/or current sensing
techniques can be used to detect whether sensor 200 is activated or not. As discussed above,

when sensor 200 is not activated, FET 216 is in the "off" state and the only current through
line 208 is the negligible current required to power sensor 200. Microcomputer 206 perceives
this condition as an open circuit, as it would a mechanical switch with open contacts. When
sensor 200 is activated, transistor 216 is in the "on" state, enabling current through load
resistor 214. Microcomputer 206 detects the increased current and determines that sensor 200
is activated. Indeed, if load resistor is selected to have a sufficiently low value of resistance,
for example, 100 ohms, microcomputer 206 perceives the current through load resistor 214 as
a dead short, as it would a mechanical switch with closed contacts.
FIG. 4 illustrates a fourth embodiment of the present invention wherein a battery 320
provides power to sensor 300. Output 312 of sensor 300 is coupled to the gate of FET 316
and to pull-down resistor 318. When sensor 300 is not activated, output 312 is low, and FET
316 is in the "off' state, emulating a mechanical switch with open contacts. When sensor 300
is activated, output 312 is high, switching FET 316 to the "on" state, emulating a mechanical
switch with closed contacts. Sensor 300 with battery 320 can be used as a drop in
replacement for a mechanical switch because it does not require any wiring beyond that
provided for the mechanical switch. The sensor input and output can simply be connected to
the same wires to which the former mechanical switch was connected.
While several embodiments of the present invention have been shown and described
above, it will be obvious to those skilled in the art that numerous modifications can be made
without departing from the spirit of the invention, the scope of which is defined by the claims
below.

WE CLAIM:
1. An apparatus for powering and reading data from a plurality of field effect sensors over two
wires, comprising:
a power supply;
a first field effect sensor having a first power terminal coupled to a first terminal of said power
supply and a second power terminal coupled to a second terminal of said power supply ;
a first load resistor having a first terminal coupled to an output terminal of said first field effect
sensor and a second terminal coupled to said second terminal of said power supply, said first load
resistor having a first value of resistance ;
a second field effect sensor having a first power terminal coupled to said first terminal of said
power supply and a second power terminal coupled to said second terminal of said power supply,
a second load resistor having a first terminal coupled to an output terminal of said second field
effect sensor and a second terminal coupled to said second terminal of said power supply, said second
load resistor having a second value of resistance, said second value of resistance being substantially
different from said first value of resistance ; and
a detection circuit coupled to said first field effect sensor and said second field effect sensor.
2. The apparatus as claimed in claim 1, having :
a third field effect sensor having a first power terminal coupled to said first terminal of said
power supply and a second power terminal coupled to said second terminal of said power supply ; and
a third load resistor having a first terminal coupled to an output terminal of said third field effect
sensor and a second terminal coupled to said second terminal of said power supply, said third load
resistor having a third value of resistance, said third value of resistance being substantially different
from said first value of resistance and said second value of resistance, said detection circuit coupled to
said third field effect sensor.
3. The apparatus as claimed in claim 2, wherein said first, second, and third values of resistance
are selected such that none of said three values of resistance is substantially equal to the mathematical
sum of said other two values of resistance.

4. The apparatus as claimed in claim 1, having a sense resistor coupled to said first power terminal
of said first field effect sensor and said first power terminal of said second field effect sensor.
5. The apparatus as claimed in claim 4, wherein said sense resistor is coupled between first and
second input terminals of said detection circuit.
6. The apparatus as claimed in claim 1, having a decoding circuit coupled to said detection circuit,
said decoding circuit configured to determine the state of said first field effect sensor and said second
field effect based on the output of said detection circuit.
7. An apparatus for powering and reading data from a field effect sensor over two wires,
comprising :
a pulse generator and detection circuit having an input / output terminal;
a field effect sensor having a first power terminal and an output terminal;
said first power terminal of said field effect sensor coupled to said input / output terminal;
a transistor having a power terminal coupled to said input / output terminal ; a load resistor
coupled between said power terminal of said transistor and said input / output terminal;
a pull-up resistor coupled between a source of power and said input / output terminal; and
said output terminal of said field effect sensor coupled to the control terminal of said transistor.
8. An apparatus for switching a controlled device over two wires, comprising :
a field effect sensor having a first power terminal and an output terminal; a battery coupled to
said first power terminal of said field effect sensor, said battery providing power to said field effect
sensor and said battery not providing power to said controlled device ; and
means, coupled to said two wires and to said output terminal of said field effect sensor, for
switching said controlled device.
9. The apparatus as claimed in claim 8, wherein said means for switching comprises a transistor.

10. An apparatus for powering and reading data from a field effect sensor over two wires,
comprising:
a first field effect sensor having a power terminal and an output terminal;
a first storage capacitor coupled to said power terminal of said first field effect sensor ;
a pulse generator and detection circuit having an input / output terminal, said input / output
terminal coupled to said power terminal of said first field effect sensor and to said output terminal of
said first field effect sensor, said pulse generator and detection circuit adapted to selectively output a
power signal to said power terminal of said first field effect sensor and said first storage capacitor and
to selectively receive a data signal corresponding to the state of said output terminal of said first field
effect sensor;
a first diode coupled between (a) said power terminal of said first field effect sensor and said
first storage capacitor and (b) said input / output terminal; and
a first transistor coupled between said output terminal of said first field effect sensor and said
input / output terminal, said output terminal of said first field effect sensor coupled to the control
terminal of said first transistor.
11. The apparatus as claimed in claim 10, having a first resistor and a second resistor coupled in
series as a voltage divider, said input/output terminal coupled to the junction of said first resistor and
said second resistor.
12. The apparatus as claimed in claim 10 having :
a second field effect sensor having a power terminal and an output terminal;
a second storage capacitor coupled to said power terminal of said second field effect sensor;
a second diode coupled between (a) said power terminal of said second field effect sensor and said first
storage capacitor, and (b) said input / output terminal; and

a second transistor coupled between said output terminal of said second field effect sensor and
said input / output terminal, said output terminal of said second field effect sensor coupled to the
control terminal of said second transistor.
13. A method for powering and reading data from a field effect sensor having a power terminal
coupled to an input / output terminal of a pulse generator and detection circuit and an output terminal
coupled to the control terminal of a transistor, said transistor further coupled to said input / output
terminal of said pulse generator and detection circuit, comprising the steps of:
outputting a power signal from said input / output terminal of said pulse generator and detection
circuit;
providing said power signal to a storage capacitor coupled to said power terminal of said field
effect sensor;
powering said field effect sensor by discharging said capacitor through said power terminal of
said field effect sensor ;
detecting through said input/output terminal the voltage present at said input / output terminal;
determining the state of said field effect sensor based on said voltage at said input / output
terminal.
14. A method for powering and reading data from a field effect sensor having a power terminal
coupled to an input / output terminal of a pulse generator and detection circuit and an output terminal
coupled to the control terminal of a transistor, said transistor further coupled to said input / output
terminal of said pulse generator and detection circuit, comprising the steps of:
outputting a power signal from said input / output terminal of said pulse generator and detection
circuit;
providing said power signal to said power terminal of said field effect sensor ;
detecting through said input / output terminal the voltage present at said input / output terminal ;
and
determining the state of said field effect sensor based on said voltage at said input / output
terminal.

The present invention relates to an apparatus and method for powering and
reading data from a plurality of field effect sensors over two wires. The apparatus
comprises a power supply ; a first field effect sensor (51) having a first power terminal
coupled to a first terminal of said power supply and a second power terminal coupled to
a second terminal of said power supply ; a first load resistor having a first terminal
coupled to an output terminal of said first field effect sensor (51) and a second terminal
coupled to said second terminal of said power supply, said first load resistor having a
first value of resistance ; a second field effect sensor (52) having a first power terminal
coupled to said first terminal of said power supply and a second power terminal coupled
to said second terminal of said power supply, a second load resistor having a first
terminal coupled to an output terminal of said second field effect sensor (52) and a
second terminal coupled to said second terminal of said power supply, said second load
resistor having a second value of resistance, said second value of resistance being
substantially different from said first value of resistance ; and a detection circuit (18)
coupled to said first field effect sensor (51) and said second field effect sensor (52).

Documents:

2014-KOLNP-2005-CORRESPONDENCE.pdf

2014-KOLNP-2005-FORM 27.pdf

2014-kolnp-2005-granted-abstract.pdf

2014-kolnp-2005-granted-assignment.pdf

2014-kolnp-2005-granted-claims.pdf

2014-kolnp-2005-granted-correspondence.pdf

2014-kolnp-2005-granted-description (complete).pdf

2014-kolnp-2005-granted-drawings.pdf

2014-kolnp-2005-granted-examination report.pdf

2014-kolnp-2005-granted-form 1.pdf

2014-kolnp-2005-granted-form 13.pdf

2014-kolnp-2005-granted-form 18.pdf

2014-kolnp-2005-granted-form 3.pdf

2014-kolnp-2005-granted-form 5.pdf

2014-kolnp-2005-granted-gpa.pdf

2014-kolnp-2005-granted-reply to examination report.pdf

2014-kolnp-2005-granted-specification.pdf


Patent Number 228742
Indian Patent Application Number 2014/KOLNP/2005
PG Journal Number 07/2009
Publication Date 13-Feb-2009
Grant Date 10-Feb-2009
Date of Filing 14-Oct-2005
Name of Patentee TOUCHSENSOR TECHNOLOGIES, LLC
Applicant Address 203 N, GABLES BOULEVARD, WHEATON, IL
Inventors:
# Inventor's Name Inventor's Address
1 STEENWYK, TIMOTHY, EDWARD 3178 BALDWIN STREET, HUDSONVILLE, MICHIGAN 49426
PCT International Classification Number G08C
PCT International Application Number PCT/US2004/012426
PCT International Filing date 2004-04-21
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 10/828,004 2004-04-20 U.S.A.
2 60/464,613 2003-04-22 U.S.A.