| Title of Invention | AZAINDOLE-DERIVATIVES AS FACTOR Xa INHIBITORS |
|---|---|
| Abstract | the substituents are as herein described. These compounds are valuable pharmacologically active compounds. They exhibit a strong antithrombotic effect and are suitable, for example, for the therapy and prophylaxis of cardiovascular disorders like thromboembolic diseases or restenoses. They are reversible inhibitors of the blood clotting enzymes factor Xa (Fxa) and/or factor VIla (FVIIa), and can in general be applied in conditions in which an undesired activity of factor Xa and/or factor VIla is present or for the cure or prevention of which an inhibition of factor Xa and factor, VIla is intended. |
| Full Text | wherein RO ; R"1 ; R-; R^ ; Q; V, G and M have the meanings indicated below. The compounds of the formula I are valuable pharmacologically active compounds. They exhibit a strong antithrombotic effect and are suitable, for example, for the therapy and prophylaxis of 10 cardiovascular disorders like thromboembolic diseases or restenoses. They are reversible inhibitors of the blood clotting enzymes factor Xa (FXa) and/or factor Vila (FVIIa), and can in general be applied in conditions in which an undesired activity of factor Xa and/or factor Vila is present or for the cure or prevention of which an inhibition of factor Xa and/or factor Vila is intended. The invention furthermore relates to processes for the preparation of compounds of 15 the formula I, their use, in particular as active ingredients in pharmaceuticals, and pharmaceutical preparations comprising them. Normal haemeostasis is the result of a complex balance between the processes of clot initiation, formation and clot dissolution. The complex interactions between blood cells, 20 specific plasma proteins and the vascular surface, maintain the fluidity of blood unless injury and blood loss occurs (EP-A-987274). Many significant disease states are related to abnormal haemeostasis. For example, local thrombus formation due to rupture of atheroslerotic plaque is a major cause of acute myocardial infarction and unstable angina. Treatment of an occlusive coronary thrombus by either thrombolytic therapy or percutaneous angioplasty may be 25 accompanied by acute thrombolytic reclosure of the affected vessel. There continues to be a need for safe and effective therapeutic anticoagulants to limit or prevent thrombus formation. It is most desirable to develop agents that inhibit coagulation without directly inhibiting thrombin but by inhibiting other steps in the coagulation cascade like factor Xa and/or factor Vila activity. It is now believed that inhibitors of factor Xa carry a lower bleeding risk than thrombin inhibitors (A. E. P. Adang & j. B. M. Rewinkel, Drugs of the Future 2000, 25, 369-383). Low molecular weight, factor Xa-specific blood clotting inhibitors that are effective but do not cause unwanted side effects have been described, for example, in WO-A-95/29189. However, besides being an effective factor Xa-specific blood clotting inhibitor, it is desirable that such inhibitors also have further advantageous properties, for instance stability in plasma and liver and selectivity versus other serine proteases whose inhibition is not intended, such as thrombin. There is an ongoing need for further low molecular weight factor Xa specific blood clotting inhibitors, which are effective and have the above advantages as well. Specific inhibition of the factor Vila/tissue factor catalytic complex using monoclonal antibodies (WO-A-92/06711) or a protein such as chloromethyl ketone inactivated factor Vila (WO-A-96/12800, WO-A-97/47651) is an extremely effective means of controlling thrombus formation caused by acute arterial injury or the thrombotic complications related to bacterial septicemia. There is also experimental evidence suggesting that inhibition of factor Vila/tissue factor activity inhibits restenosis following balloon angioplasty. Bleeding studies have been conducted in baboons and indicate that inhibition of the factor Vila/tissue factor complex has the widest safety window with respect to therapeutic effectiveness and bleeding risk of any anticoagulant approach tested including thrombin, platelet and factor Xa inhibition. Certain inhibitors of factor Vila have already been described. EP-A-987274, for example discloses compounds containing a tripeptide unit, which inhibit factor Vila. However, the property profile of these compounds is still not ideal, and there is an ongoing need for further low molecular weight factor Vila inhibitory blood clotting inhibitors The present invention satisfies the above needs by providing novel compounds of the formula I, which exhibit better factor Xa and/or factor Vila inhibitory activity and are favorable agents with high bioavailability. 1) Thus, the present invention relates to compounds of the formula I, RO is 1) a monocyclic or bicyclic 6- to 14-membered aryl, wherein aryl is mono-, di- or trisubstituted independently of one another by R8, 2) a monocyclic or bicyclic 4- to 15-membered heterocyclyl out of the group benzimidazolyl, 1,3-benzodioxolyl, benzofuranyl, benzoxazolyl, benzothiazolyl, benzothiophenyl, cinnolinyl, chromanyl, indazolyl, indolyl, isochromanyl, isoindolyl, isoquinolinyl, phenylpyridyl, phthalazinyl, pteridinyl, purinyi, pyridyl, pyridoimidazolyl, pyridopyridinyl, pyridopyrimidinyl, pyrimidinyl, quinazolinyl, quinolyl, quinoxalinyl or 1,4,5,6-tetrahydro-pyridazinyI, wherein said heterocyclyl is unsubstituted or mono-, di-or trisubstituted independently of one another by R8, or 3) a monocyclic or bicyclic 4- to 15-membered heterocyclyl, containing one, two, three or four heteroatoms chosen from nitrogen, sulfur or oxygen, wherein said, heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R8, and which is additionally substituted by a monocyclic or bicyclic 4-to 15-membered heterocyclyl, containing one, two, three or four heteroatoms chosen from nitrogen, sulfur or oxygen, wherein heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R8, R8 is 1) halogen, 2) -N02, 3) -CN, 4) -C(0)-NH2, 5) -OH, 6) -NH2> 7) -0-CF3 8) a monocyclic or bicyclic 6- to 14-membered aryl, wherein aryl is mono-, di- or trisubstituted independently of one another by halogen or-0-(C-|-C8)"a'^y'» -(C3-C5)-cycIoalkylen, w'iere"m cycloalkylen is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, -NH2 or -OH; R1 is a hydrogen atom, -(C-j-C^-alkyl, wherein alkyl is unsubstituted or substituted one to three times by R13; -(CrC3)-alkylene-C(0)-NH"R°, -(CrC3)-aIkylene-C(Q)-0-R10, a monocyclic or bicyclic 6- to 14-membered aryl, wherein aryl is mono-, di- or trisubstituted independently of one another by R8, wherein R8 is as defined above; a monocyclic or bicyclic 4- to 15-membered heterocyclyl, containing one, two, three or four heteroatoms chosen from nitrogen, sulfur or oxygen; -(Gi-C3)-perfluoroalkylene, -(Ci -(CrC3)-alkyIene-S(0)2-N(R4)^ ^^ -(CQ-C3)-aIkylene-(C3-C8)-cydoaIlcyI, or -(C()-C3)-alkylene-het, wherein het is a 3- to 7- membered cyclic residue, containing up to 1,2,3 or 4 heteroatoms chosen from nitrogen, sulfur or oxygen, wherein said cyclic residue is unsubstituted or mono-, di- or " trisubstituted independently of one another by R14, R4 and R^ are independent of one another are identical or different and are hydrogen atom or -(C-i-QJ-alkyl, R^is a direct bond or-(0|-C4)-alkylene, or R1 and R^ together with the atoms to which they are bonded can form a 6-to8-membered cyclic group, containing 1, 2, 3 or 4 heteroatoms chosen from nitrogen, sulfur or oxygen, wherein said cyclic group is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, or R^-N-R—Vcan form a4-to7-membered cyclic group, containing 1,2,3 or 4 heteroatoms chosen from nitrogen, sulfur or oxygen, wherein said cyclic group is unsubstituted or mono-, di* or trisubstituted independently of one another by R14, R14 is halogen, -OH, =0, ^Ci-CsMky!, -(Oj-GO-alkoxy, -NO2, -C(0)-OH, -CN, -NH2, -C(0)-0-(CrQ)-alk7U^^ perfluoroalkyl, -(Co-C8)-aIkyl-S02-N(R18)-R21> -C(0)-NH-(CrC8)-aIkyl, -C(0)-N-[(Ci-C8)-a!kyl]2, -NRl3-C(0>NH-(CrC8)-alkyl, -C(0)-NH2| -S-R18, or -N Rl 8-C(0)-N H-[(CI -C8)-a Iky l]2, a heterocydyl out of the group benzimidazolyl, 1,3-benzodioxoiyI, benzofuranyl, benzoxazolyl, benzothiazolyl, benzothiophenyl, cinnolinyl, chromanyl, indazolyl, indolyl, isochromanyl, isoindolyl, isoquinolinyl, phenylpyridyl, phthaiazinyl, pteridinyl, purinyl, pyridyl, pyridoirnidazolyl, pyridopyridinyl, pyridopyrimidinyl, pyrimidinyl, quinazolinyl, quinolyl, quinoxalinyl or 1,4,5,6-tetrahydro-pyridazinyl, wherein said heterocydyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R8, or 3) a heterocydyl, wherein heterocydyl is selected out of the group acridinyl, azabenzimidazolyl, azaspirodecanyl, azepinyl, azetidinyl, aziridinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, carbazo!yl,4aH-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydrochinolinyl, 4,5-dihydrooxa-zolinyl, dioxazolyl, dioxazinyl, 13-dioxolanyl,.1,3-dioxolenyl, 6H-1,5,2-dithiazinyl, dihydrofuro[2,3-b]-tetrahydrofuranyl, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl, isothiazolyl, isothiazolidinyl, isothiazolinyl, isoxazolyl, isoxazolinyl, isoxazolidinyl, 2-isoxazolinyl, ketopiperazinyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxad.iazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazoiyI, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2-oxa-thiepanyl, 1,2-oxathioianyl, 1,4-oxazepanyl, 1,2-oxazinyl, 1,3-oxazinyI, 1,4-oxazinyl, oxazolidinyl, oxazolinyl, oxazolyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthaiazinyl, piperazinyl, piperidinyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazolyl, pyridoimidazolyl, pyridothiazolyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolidinonyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, 1,4,5,6-tetrahydro-pyridazinyl, tetrahydropyridinyl, tetrahydrothiophenyl,tetrazinyl, tetrazolyl, 6H-1,2,5-thiadiazinyl, 1,2,3-thiadiazoIyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl,thianthrenyl, 1,2-thiazinyl, 1,3-thiazinyl, 1,4-thiazinyl, 1,3-thiazolyl, thiazolyl, thiazolidinyl, thiazolinyl, thienyl, thietanyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thietanyl, thiomorpholinyl, thiophenolyl, thiophenyl, thiopyranyl, 1,2,3-triazinyl, 1,2,4-triazinyl, 1,3,5-triazinyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyI and xanthenyl, wherein said heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R8, and which is additionally substituted by a heterocyclyl selected out of the group acridinyl, azabenzimidazolyl, azaspirodecanyl, azepinyl, azetidinyl, aziridinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, carbazolyl, 4aH-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydrochinolinyl, 4,5-dihydrooxa-zolinyl, dioxazolyl, dioxazinyl, 1,3-dioxoIanyl, 1,3-dioxoIenyl, 6H-1,5,2-dithiazinyl, dihydrofuro[2,3-b]-tetrahydrofuranyl, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, IH-indazolyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl, isothiazolyl, isothiazolidinyl, isothiazolinyl, isoxazolyl, isoxazolinyl, isoxazolidinyl, 2-isoxazolinyl, ketopiperazinyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyI, 1,3,4-oxadiazolyl, 1,2-oxa-thiepanyi, 1,2-oxathiolanyl, 1,4-oxazepanyl, 1,2-oxazinyl, 1,3-oxazinyl, 1,4-oxazinyl, oxazolidinyl, oxazolinyl, oxazolyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazolyl, pyridoimidazolyl, pyridothiazolyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolidinonyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, 1,4,5,6-tetrahydro-pyridazinyI, tetrahydropyridinyl, tetrahydrothiophenyl, tetrazinyl, tetrazolyl, 6H-1,2,5-thiadiazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazoIyl, l,3,4-thiadiazolyl,thianthrenyl, 1,2-thiazinyl, 1,3-thiazinyl, 1,4-thiazinyl, 1,3-thiazolyl, thiazolyl, thiazolidinyl, thiazolinyl, thienyl, thietanyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thietanyl, thiomorpholinyl, thiophenolyl, thiophenyl, thiopyranyl, 1,2,3-triazinyl, 1,2,4-triazinyi, 1,3,5-triazinyl, 1,23-triazolyi, 1,2,4-triazolyl, 1,2,5-triazolyI, 1,3,4-triazolyl and xanthenyl, wherein heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R8, ! is 1) halogen, 2) -N02, 3) -CN, 4) -C(0)-NH2, - 5) -OH, 6) -NH2, 7) -0-CF3 8) a monocyclic or tricyclic 6- to 14-membered aryl, wherein aryl is as defined above and wherein aryl is mono-, di- or trisubstituted independently of one another by halogen or —0-(CT-Cg)-aIkylP 9) -(C-j-CsValkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, NH2, -OH or a methoxy residue, or 10) -0-(G]-C8)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, NH2, -OH or a methoxy residue, 11) -S02-CH3or 12) -S02-CF3) provided that R8 is at least one halogen, -C(0)-NH2 or —0-(CT -Cs)-a I ky I residue, if R° is a monocyclic or bicydic 6- to 14-membered aryl, wherein aryl is as defined above, substructure D is a residue selected out of the group azetidine, azetine, azocane, azocane-2-one, cyclobutyl, cyclooctane, cyclooctene, cyclopentyl, cydohexyl, cycloheptyl, cyclooctyl, 1,4-diazepane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, [1,4]diazocane, [1,2]diazocan-3-one, [1,3]diazocan-2-one, dioxazole, dioxazine, dioxole, 1,3-dioxoIene, 1,3-dioxolane, furan, imidazole, imidazoline, imidazolidine, isothiazole, isothiazolidine, isothiazoline, isoxazole, isoxazoline, isoxazolidine, 2-isoxazoline, ketopiperazine, morpholine, 1,2-oxa-thiepane, 1,2-oxathioIan, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, oxazole, [1,4]oxazocane, [1,3]oxazocan-2-one, oxetan, oxocane, oxocan-2-one, piperazine, piperidine, pyran, pyrazine, pyrazole, pyrazoline, pyrazolidine, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, pyrroline, 5,6,7,8-tetrahydro-1H-azocin-2-one, tetrahydrofuran, tetrahydropyran, tetrahydropyridine, tetrazine, thiadiazine, thiadiazole, 1,2-thiazine, 1,3-thiazine, 1,4-thiazine, 1,3-thiazole, thiazole, thiazolidine, thiazoline, thietan, thiocane, thiocane-1,1-dioxide, thiocane-1-oxide, thiocan-2-one, thiomorpholine, thiophene, thiopyran, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazoIe or 1,2,4-triazoIe and is oxazepane, 1,2-oxa-thie'pane, 1,2-oxathiolane, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, oxazole> oxaziridine, oxirane, piperazine, piperidine, pyran, pyrazine, pyrazole, pyrazoline, pyrazolidine, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, pyrroline, tetrahydropyridine, tetrazine, tetrazole, thiadiazine thiadiazole, 1,2-thiazine, 1,3-thiazine, 1,4-thiazine, 1,3-thiazole, thiazoie, thiazolidine, thiazoline, thienyl, thietan, thiomorpholine, thiopyran, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole or 1,2,4-triazole, wherein het is unsubstituted or mono-, di-or trisubstituted independently of one another by R14, R4' and R^' are independent of one another are identical or different and are hydrogen atom or-(C-i-C4)-aikyl, R2is a direct bond or-(0]-C4)-alkyIene, R1 and R3 together with the atoms to which they are bonded can form a 6- to 8-membered. cyclic residue selected out of the group azocane, azocane-2-one, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, [1,4]diazocane, [1,2]diazocan-3-one, [l,3]diazocan-2-one, dioxazine, [1,4]dioxocane, dioxole, ketopiperazine, morpholine, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, [oxocane, oxocan-2-one, piperazine, piperidine, pyran, pyrazine, pyridazine, pyrimidine or 5,6,7,8-tetrahydro-1H-azocin-2-one, wherein said cyclic group is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, or R1-N-R—v can form a 4-to 7-membered cyclic group selected out of the group azepine, azetidine, dioxazole, dioxazine, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, imidazole, imidazoline, imidazolidine, isothiazole, isothiazolidine, isothiazoline, isoxazole, isoxazoiine, isoxazolidine, 2-isoxazoline, ketopiperazine, morpholine, oxazole, piperazine, piperidine, pyrazine, pyrazole, pyrazoline, pyrazolidine, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, pyrroline, tetrahydropyridine, tetrazine, tetrazole, thiazoie, thiadiazole, thiazolidine, thiazoline, thiomorpholine, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazoIe or 1,2,4-triazole, wherein said cyclic group is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, R14 is fluorine, chlorine, bromine, iodine, -OH, =0, -(Oi-CsValkyl, -(C*|-C4)-aIkoxy, -NO2, -C(0)-OH, -CN, -NH2, -C(0)-0-(CrC4)-alkyl, -(Co-C8)-aIkyl-S024Ci-C4)-a!kyl, -(Co-C8)-alkyl-S02-(CrC3)-perfluoroalkyl,-(Co-C8)-alkyl-S02-^ -C(0)-NH-(CrC8)-a!kyl,^ -C(0)-NH2, -S-R18, or -NRT8-C(0)-NH-[(CrC8)-alk>'l]2t wherein R1S and R21 are independently from each other hydrogen atom, "(crc3)-perfluoroalkyl or-(0]-C6)-alkyl, V is 1) a monocyclic or bicyclic 6-to 14-membered aryl out of the group phenyl, naphthyl, biphenylyl, anthryl or fluorenyl, wherein aryl is mono-, di- ortrisubstituted independently of one another by R14, 2) a heterocydyl out of the group acridinyl, 8-aza-bicycio[3.2.1]oct-3-yl, azaindole ( !H-pyrrolopyridine)i azabenzimidazolyl, azaspirodecanyl, azepinyl, azetidinyl, aziridinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazoiyl, benzisoxazolyl, benzisothiazolyl, carbazoly!, 4aH-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydrochinolinyl, 1,4-diazepane, 4,5-dihydrooxa-zolinyl, dioxazolyl, dioxazinyl, 1,3-dioxoIanyl, 1,3-dioxolenyl, 6H-1,5,2-dithiazinyl, dihydrofuro[2,3-b]- ' tetrahydrofuranyl, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolinyl, indolizinyl, indoiyl, 3H-indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl, isothiazolyl, isothiazolidinyl, isothiazolinyl, isoxazolyl, isoxazolinyl, isoxazolidinyl, 2-isoxazolinyl, ketopiperazinyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1,2,3-oxadiazoIyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyI, 1,2-oxa-thiepanyI, 1,2-oxathiolanyl, 1,4-oxazepanyl, 1,2-oxazinyl, 1,3-oxazinyl, 1,4-oxazinyl, oxazolidinyl, oxazolinyl, oxazolyl, phenanthridinyl, phenanthrolinyl, phenazinyi, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazplyl, pyridazinyl, pyridooxazolyl, pyridoimidazolyl, pyridothiazolyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolidinonyl, pyrrolinyl, 2H-pyrroIyl) pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydroisochinolinyl, tetrahydrochinolinyl, 1,4,5,6-tetrahydro-pyridazinyl, tetrahydropyridinyl, tetrahydrothiophenyl, tetrazinyl, tetrazolyl, 6H-1,2,5-thiadiazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyI, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, thianthrenyl, 1,2-thiazinyl, 1,3-thiazinyl, 1,4-thiazinyl, 1,3-thiazolyl, thiazolyl, thiazolidinyl, thiazoiinyl, thienyl, thietanyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thietanyl, thiomorpholinyl, 1?u6-thiomorphoIinyl, thiophenyl, heterocyclyi is unsubstituted or mono-, di- ortrisubstituted independently of one another by R8, or 3) a heterocyclyi out of the group azabenzimidazolyl, benzimidazolyl, 1,3-benzodioxolyl, benzofuranyl, benzothiazolyl, benzothiophenyl, benzoxazolyl, chromanyl, cinnolinyl, 2-furyl, 3-furyl; imidazolyl, indolyl, indazolyl, isochromanyl, isoindolyl, isoquinolinyl, isothiazolyl, isoxazolyl, oxazolyl, phthalazinyl, pteridinyl, purinyl, pyrazinyl, pyrazolyl, pyridazinyl, pyridoimidazolyl, pyridopyridinyl, pyridopyrimidinyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, pyrimidinyl, pyrrolyl; 2-pyrrolyl, 3-pyrrolyl, quinolinyl, quinazolinyl, quinoxalinyl, tetrazolyl, thiazolyl, 2-thienyl or3- thienyl, which is additionally substituted by a heterocyclyi selected out of the group acridinyl, azabenzimidazolyl, azaspirodecanyl, azepinyl, azetidinyl, aziridinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, carbazolyl, 4aH-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydrqchinolinyl, 4,5-dihydrooxa-zolinyl, dioxazolyl, dioxazinyl, 1,3-dioxoIanyl, 1,3-dioxolenyl, 6H-1,5,2-dithiazinyl, dihydrofuro[2,3-b]-tetrahydrofuranyl, furanyl, furazarcyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl (benzimidazolyl), isothiazolyl, isothiazolidinyl, isothiazolinyl, isoxazolyl, isoxazolinyl, isoxazolidinyl, 2-isoxazolinyi, ketopiperazinyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazoIyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazoIyl, 1,2-oxa-thiepanyI, 1,2-oxathioIanyl, 1,4-oxazepanyl, 1,2-oxazinyl, 1,3-oxazinyl, 1,4-oxazinyl, oxazolidinyl, oxazolinyl, oxazolyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazolyl, pyridoimidazolyl, pyridothiazolyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolidinonyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinudidinyl, tetrahydrofuranyl, tetrahydroisochinolinyl, tetrahydrochinolinyl, 1,4,5,6-tetrahydro-pyridazinyl, tetrahydropyridinyl, tetrahydrothiophenyl, tetrazinyl, tetrazolyl, 6H-1,2,5-thiadiazinyl, 1,2,3-thiadiazolyI, 1,2,4-thiadia2olyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, thianthrenyl, 1,2-thiazinyl, 1,3-thiazinyl, 1,4-thiazinyl, 1,3-thiazolyl, thiazolyl, thiazolidinyl, thiazolinyl, thienyl, thietanyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thietanyl, thiomorpholinyl, thiophenyl, thiopyranyl, 1,2,3-triazinyl, 1,2,3-triazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyI, 1,3,4-triazolyl and xanthenyl, wherein heterocycly! is unsubstituted or mono-, di- or trisubstituted independently of one another by R8, R8 is 1. fluorine, chlorine or bromine, 2. -N02, 3. ' -CN, 4. " "-C'(OyNH2, 5. -OH, 6. -NH2, 7. -OCF3 8. a monocyclic or bicyclic 6- to 14-membered aryl, wherein aryl is as defined above and is mono-, di- or trisubstituted independently of one another by halogen or -0-(O|-Cg)-alkylf 9. -(0|-C8)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, Nhb, -OH or a methoxy residue, or 10. -0-(C-|-Cs)-alkylf wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, NH2, -OH or a methoxy residue, 11. -S02CH3or 12. -S02CF3, provided that R8 is at least one halogen, -C(0)-NH2 or-O-^-CgValkyl residue, if R0 is a aryl or a heterocycfyl, which are as defined above, substructure D is a residue selected out of the group pyridyl, pyridyl-N-oxide pyridyl, pyrrolyl, furyl, thienyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, triazolyl, isothiazolyl, thiadiazolyl, pyrimidinyl, pyridazinyl, pyrazinyl and is unsubstituted or substituted 1,2,3 or 4 times by R3, or is substituted 1 or 2 times by =0, thiazoline, thiomorpholine, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazoie or . 1,2,4-triazoie, wherein said cyclic group is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, wherein R18 and R^1 are independently from each other hydrogen atom, Vis 1) a het residue out of the group azaindole(IH-pyrrolopyridine), azepine, azetidine, aziridine, azirine, 1,4-diazepane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, diaziridine, diazirine, dioxazole, dioxazine, dioxole, 1,3-dioxolene, 1,3-dioxolane, furan, imidazole, imidazoline, imidazoline, isothiazole, isothiazolidine, isothiazoline, isoxazole, isoxazoline, isoxazolidine, 2-isoxazoIine, ketopiperazine, morpholine, 1,2-oxa-thiepane, 1,2-oxathioiane, 1,4-oxazepane, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, oxazole, oxaziridine, oxirane, piperazine, piperidine, pyran, pyrazine, pyrazole, pyrazoline, pyrazolidine, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, pyrroline, tetrahydropyridine, tetrazine, tetrazole, thiadiazine, thiadiazole, 1,2-thiazine, 1,3-thiazine, 1,4-thiazine, 1,3-thiazole, thiazole, thiazolidine, thiazoline, thienyl, thietan, thiomorpholine, thiopyran, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole or 1,2,4-triazole, which is as defined above and wherein het is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, or 2) phenyl, wherein phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, M is 1) a hydrogen atom, 2) -(Cq-CsValkyl, wherein alkyl is unsubstituted or mono-, di- ortrisubstituted independently of one another by R14, 3) -C(0)-N(R11)-R12, 4) .-(CH2)m-NRlO, 5) phenyl or naphthyl, wherein phenyl or naphthyl are unsubstituted or mono-, di- or trisubstituted independently of one another by R14, 6) heterocyclyl, wherein heterocyclyl is a residue out of the group which can be derived from azepane, azepine, 1,4-diazepane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, imidazole, isothiazole, isoxazole, isoxazoIidine,2-isoxazoline, ketomorpholine, ketopiperazine, morpholine, oxazole, [1,4]-oxazepane, piperazine, piperazinone, piperidine, piperidinone, pyrazine, pyridazine, pyridazinone, pyridine, pyridone, pyrimidine, pyrrolidine, pyrrolidinone, tetrahydropyran, 1,4,5,6-tetrahydro-pyridazinyI, tetrazine, tetrazole, thiadiazole, thiazoie, thiophene, thiomorpholine, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole or 1,2,4-triazole, wherein said heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, or 7) -(C3-C8)-cycIoaIkyl, wherein said cycloalkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, R3is 1) hydrogen atom, 2) halogen, 3) -{CvO^-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13, 4) -(Ci-C3)-perfIuoroaikyl, 5) phenyl, wherein phenyl is unsubstituted or mono-, di- ortrisubstituted independently of one another by R13, 5) "(Co-C6)'a'M"(C4"Ci5)fcheterocyclyl, wherein alkyl and heterocyclyl is as defined above and independently from one another are unsubstituted or mono-, di- or trisubstituted by R13, or R11 and R12 together with the nitrogen atom to which they are bonded can form a ring selected out of the group azepine, azetidine, 1,4-diazepane, dioxazole, dioxazine, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, imidazole, imidazoline, imidazolidine, isothiazoie, isothiazolidine, isothiazoline, isoxazole, isoxazoline, isoxazolidine, 2-isoxazoline, ketopiperazine, morpholine, [1,4]oxazepane, oxazole, piperazine, piperidine, pyrazine, pyrazole, pyrazoline, pyrazolidine, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, pyrroline, tetrahydropyridine, tetrazine, tetrazole, thiazole, thiadiazole, thiazolidine, thiazoline, thiomorpholine, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole or 1,2,4-triazoIe, which is unsubstituted or mono-, di- or trisubstituted independently of one another by R13, diazepane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, azepine, ketopiperazine, 1,4-oxazepane, oxazole, isoxazole, isoxazolidine, 2-isoxazoiine, morpholine, thiazole, isothiazole, thiadiazole or thiomorphoiine, wherein said cyclic group is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, R14 is fluorine, chlorine, -OH, =0, -(CrC8)-aiky[, -C(0)-OH, -CN, -NH2, -C(0)-0-(0j-C4)-a!kyl, -C(0)-NH-(CrC8)-alkyl, -C(0)-N-[(CrCs)-alkyl]2, -C(0)-NH2 or-N^^I, wherein R18 and R21 are independently from each other hydrogen atom, -(Ci-C3)-perfluoroalkyl or -(G|-C4)-alkyl, V is 1. a cyclic residue out of the group containing compounds, which are derived from azaindole (1H-pyrrolopyridine), aziridine, azirine, azetidine, azetidinone, 1,4-diazepane, pyrrole, pyrrolidine, pyridonyl, imidazole, pyrazole, 1,2,3-triazole, 1,2,4-triazole, tetrazole, pyridine, pyrimidine, pyrazine, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, tetrazine, tetrazole, azepine, diazirine, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, pyridazine, piperidine, piperazine, pyrrolidinone, ketopiperazine, furan, pyran, dioxole, 1,4-oxazepane, oxazole, isoxazole, 2-isoxazoline, isoxazolidine, morpholine, oxirane, oxaziridine, 1,3-dioxoIene, 1,3-dioxolane, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, oxaziridine, thiophene, thiopyran, thietan, thiazole, isothiazole, isothiazoline, isothiazolidine, 1,2-oxathiolan, thiodiazole, thiopyran, 1,2-thiazine, 1,3-thiazole, 1,3-thiazine, 1,4-thiazine, thiadiazine or thiomorphoiine, wherein said cyclic residue is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, or 2. phenyl, wherein phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, or G is a direct bond, -(CH2)m-, or -(CH2)m-NR10-, m is the integers zero, 1,2, 3 or 4, M is 1. a hydrogen atom, 2. heterocyclyl, wherein heterocyclyl is a residue out of the group which can be derived from azepane, azepine, 1,4-diazepane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, imidazole, isothiazole, isoxazole, isoxazolidine, 2-isoxazoline, ketomorpholine, ketopiperazine, morpholine, oxazole, [1,4]-oxazepane, piperazine, piperazinone, piperidine, piperidinone, pyrazine, pyridazine, pyridazinone, pyridine, pyridone, pyrimidine, pyrrolidine, pyrrolidinone, tetrahydropyran, 1,4,5,6-tetrahydro- ROis 1) phenyl, wherein phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R8, 2) a heterocyclyl selected out of the group indolyl, isoindolyl, benzofuranyl, benzothiophenyl, 1,3-benzodioxolyl, indazolyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, quinolinyl, isoquinolinyl, chromanyl, isochromanyl, cinnoiinyl, quinazolinyl, quinoxalinyl, phthalazinyl, pyridoimidazolyl, pyridopyridinyl, pyridopyrimidinyl, pyridyl, purinyl and pteridinyl, wherein said heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R8, 3) a heterocyclyl out of the group pyridyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, pyrrolyl, 2- pyrrolyl, 3-pyrrolyl, furyl, 2-furyl, 3-furyI; thienyl, 2-thienyl, 3-thienyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, thiadiazolyl, isothiazolyl, triazolyl, tetrazolyl, pyridazinyl and pyrazinyl, wherein said heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R8, and in addition is substituted by a residue selected out of the group pyridyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, pyrrolyl, 2-pyrrolyI, 3-pyrrolyl, furyl, 2-furyl, 3-furyI; thienyl, 2-thienyl, 3-thienyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, thiadiazolyl, isothiazolyl, triazolyl, tetrazolyl, pyridazinyl and pyrazinyl, wherein said residue is unsubstituted or mono-, di- or trisubstituted independently of one another by R8 R8is 1. isF, CI, Br, J, 2. -C(0)-NH2, 3. -(CrGi)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, -OH or a methoxy residue, or 4. -0-(0i-C4)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen or a methoxy residue, provided that R8 is at least one halogen, -C(0)-NH2 or-0-(OrCs}-alkyl residue, if RO is a aryl or a heterocyclyl, which are as defined above, substructure D is a residue selected out of the group pyridyl, pyridyl-N-oxide, pyrrolyl, furyl, thienyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, triazolyl, isothiazolyl, thiadiazolyl, pyrimidinyl, pyridazinyl, pyrazinyl and is unsubstituted or substituted 1,2, 3 or 4 times by R3, or is substituted 1 or 2 times by =0, Q is a direct bond, -C(0)-; -SO- or-(Ci-C5)-alkylen, -(Co-C2)-aIkylen-C(0)-NR10-, R1 is hydrogen atom or -(CrC2)-aIkyl, R^ is a direct bond or -(CrC2)-aIkylen, or RT-N-R2-V can form a 4- to 7- membered cyclic group out of the group piperidine, piperazine, pyridine, pyrimidine, pyrrolidine, pyrrolidinone, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole, 1,2,4-triazole, tetrazine, tetrazole, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, azepine, ketopiperazine, oxazole, isoxazole, isoxazolidine, 2-isoxa_zpIine, morpholine, thiazole, isothiazole, thiadiazole or thiomorpholine, wherein said cyclic group, is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, R14 is fluorine, chlorine, =0, -(d-CO-alky! or -NH2, Vis 1. a cyclic residue out of the group containing compounds, which are derived from azaindolyl (IH-pyrrolopyridyl), azetidine, azepine, aziridine, azirine, 1,4-diazepane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, diazirine, 1,3-dioxolane, dioxazoie, furan, imidazole, isoquinoline, isothiazole, isothiazolidine, isothiazoline, isoxazole, 2-isoxazoline, isoxazolidine, ketopiperazine, morpholine, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, oxazole, 1,2-oxathiolan, piperidine, pyran, pyrazine, pyrazole, pyridazine, piperazine, pyridine, pyridone, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, quinazoline, quinoline, tetrazine, tetrazole, thiadiazine, 1,2-thiazine, 1,3-thiazine, 1,4-thiazine, 1,3-thiazole, thietan, thiomorpholine, thiophene, thiopyran, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole or 1,2,4-triazole, wherein said cyclic residue is unsubstituted or mo,no-, di- or trisubstituted independently of one another by R14, or 2. phenyl, wherein phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, G is a direct bond, -(CH,)m-, or -(CH2)m-NR10-, m is the integers zero, 1, 2, 3 or 4, M is 1. a hydrogen atom, 2. heterocyclyl, wherein heterocyclyl is a residue out of the group which can be derived from 1,4-diazepane, ketomorpholine, thiophene, pyridazone, piperidine, substructure D is pyridyl and is unsubstituted or substituted 1,2,3 or 4 times by R3, o fe substituted 1 or 2 times by =0, Q is -CH2-C(0)-NH- or methylene, R1 is hydrogen atom, R^is a direct bond, R14 is fluorine, chlorine, =0, methyl, ethyl or-NFb, V is piperidine, wherein piperidine is unsubstituted or mono- or disubstituted independently of one another by R14, or G is a direct bond, M is a hydrogen atom, (C2-C4)-alkyl, isopropyl, or pyridyl, wherein the residue is unsubstituted or mono- or disubstituted independently of one another by R14 R3 is 1) hydrogen atom, 2) fluorine, chlorine, 3) -(0|-C4)-aIkyI, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13, 4) -(CQ-C2)-alkyIene-0-R19, wherein R19 is a) hydrogen atom or b) -(C-|-C4)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13, 5) -(C0-C4)-alkylene-C(O)-O-R11 or 6) -(Co-C4)-alkyleneC(0)-N{Rl1)-Rl2f R11 and R12 are independently of one another identical or different and are 1) hydrogen atom or 2) -(Ci independently of one another by R13, or R11 and R12 together with the nitrogen atom to which they are bonded can form a ring, which is selected out of the group azetidine, imidazolidine, morpholine, (1,4)-oxazepane piperazine, piperidine, pyrrolidine orthiomorpholine, R13 is fluorine, =0, -OH, -CF3, -C(0)-0-R10, -C(O)-N(R™)-R20, .N(R10).R20f or -(Co-C3)-alMene-0-R10, l-(6-Ch!oro-benzo[b]thiophen^ carboxylic acid (l-isopropyl-piperidin-4-yI)-amide or 1-(6-Chloro-benzo[b]thiophen^^^ c]pyridine-2- carboxylic acid (1-isopropyI-piperidin-4-yI)-amide. As used herein, the term alkyl is to be understood in the broadest sense to mean hydrocarbon residues which can be linear, i. e. straight-chain, or branched and which can be acyclic or cyclic residues or comprise any combination of acyclic and cyclic subunits. Further, the term alkyl as used herein expressly includes saturated groups as well as unsaturated groups which latter groups contain one or more, for example one, two or three, double bonds and/or triple bonds, provided that the double bonds are not located within a cyclic alkyl group in such a .manner that an aromatic system results. All these statements also apply if an alkyl group occurs as a substituent on another residue, for example in an alkyloxy residue, an alkyloxycarbonyl residue or an arylalkyl residue. Examples of ^{Oi-CgMM" or A^V^8)' alkylene" are alkyl residues containing 1,2, 3,4, 5, 6,7 or 8 carbon atoms are methyl, methylene, ethyl, ethylene, propyl, propylene, butyl, butylene, pentyl, pentylene, hexyl, heptyl or octyl, the n-isomers of all these residues, isopropyl, isobutyl, 1-methylbutyl, isopentyl, neopentyl, 2,2-dimethyIbutyI, 2-methylpentyl, 3-methylpentyl, isohexyl, sec-butyl, tBu, tert-pentyl, sec-butyl, tert-butyl or tert-pentyl. The term „-(C0-C5)-alkyl" or „-(Co"C8)"a'Mene" is a hydrocarbon residue containing 1, 2, 3,4, 5, 6,7 or 8 carbon atoms. The term „-C()-alkyr or „-Cg-alkylene" is a covalent bond. Unsaturated alkyl residues are, for example, alkenyl residues such as vinyl, 1-propenyI, 2-propenyl (= allyl), 2-butenyl, 3-butenyl, 2-methyl-2-butenyl, 3-methyl-2-butenyI, 5-hexenyl or 1,3-pentadienyi, or alkynyl residues such as ethynyl, 1-propynyl, 2-propynyl (= propargyl) or 2-butynyI. Alkyl residues can also be unsaturated when they are substituted. Examples of -(C3-Cs)-cycIoa 1 kyl cyclic alkyl residues are cycloalkyl residues containing 3,4, 5, 6, 7 or 8 ring carbon atoms like cyclopropyl, cyclobutyl, cydopentyl, cyclohexyl, cyloheptyl or cyclooctyl, which can also be substituted and/or unsaturated. Unsaturated cyclic alkyl groups i and unsaturated cycloalkyl groups like, for example, cyclopentenyl or cyclohexenyl can be bonded via any carbon atom. The terms "a monocyclic or bicyclic 6- to 14-membered aryP' or "-(Cg-Cq^-aryl" are understood as meaning aromatic hydrocarbon radicals containing from 6 to 14 carbon atoms in the ring. Examples of -(Cs-C-i^-aryl radicals are phenyl, naphthyl, for example 1-naphthyl and 2- naphthyl, biphenylyl, for example 2-biphenylyl, 3-biphenylyl and 4-biphenyIyl, anthryl or fluorenyl. Biphenylyl radicals, naphthyl radicals and, in particular, phenyl radicals are preferred aryl radicals. The terms "mono- or bicyclic 4- to 15-membered heterocyclyl" or "-(O^O^-heterocydyr refer to heterocyclesin which one or more of the 4 to 15 ring carbon atoms are replaced by heteroatoms such as nitrogen, oxygen or sulfur. Examples are acridinyl, 8-aza-bicydo[3.2.1]oct-3-yl, azaindole (1H-pyrrolopyridinyl), azabenzimidazolyl, azaspirodecanyl, azepinyl, azetidinyl, aziridinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, carbazolyl, 4aH-carbazo!yl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydrochinolinyl, 4,5-dihydrooxazolinyl, dioxazolyl, dioxazinyl, 1,3-dioxolanyl, 1,3-dioxolenyl, 6H-1,5,2-dithiazinyl, dihydrofuro[2,3-b]-tetrahydrofuranyl, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, IH-indazolyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl (benzimidazolyl), isothiazolyl, isothiazolidinyl, isothiazolinyl, isoxazolyl, isoxazolinyl, isoxazolidinyl, 2-isoxazolinyl, ketopiperazinyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1,2,3-oxadiazolyI, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazoIyI, 1,2-oxa-thiepanyl, 1,2-oxathiolanyl, 1,4-oxazepanyl, 1,2-oxazinyl, 1,3-oxazinyl, 1,4-oxazinyl, oxazolidinyl, oxazolinyl, oxazolyl, oxetanyl, oxocanyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazolyl, pyridoimidazolyl, pyridothiazolyl, pyridyl, pyrirnidinyl, pyrrolidinyi, pyrrolidinonyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, tetrahydrofuranyl, tetrahydropyranyl, tetrahydropyridinyl, tetrahydrothiophenyl, tetrazinyl, tetrazolyl, 6H-1,2,5-thiadiazinyl, 1,2,3-thiadiazolyI, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyi, 1,3,4-thiadiazolyl, thianthrenyl, 1,2-thiazinyl, 1,3-thiazinyl, 1,4-thiazinyl, 1,3-thiazolyl,thiazoIyl,thiazolidinyl, thiazolinyl, thienyl, thietanyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thietanyl, thiomorpholinyl, 1X,6-thiomorpholinyl, thiophenolyl, thiophenyl, thiopyranyl, 1,2,3-triazinyl, 1,2,4-triazinyl, 1,3,5-triazinyI, 1,2,3-triazolyI, 1,2,3-triazolyl, 1,2,4-triazolyI, 1,2,5-triazolyl, 1,3,4-triazolyl and xanthenyl. Preferred are heterocyclyis, such as benzirnidazolyl, 1,3-benzodioxoly!,-benzofuranyl, benzothiazolyl, benzothiophenyl, benzoxazolyl, chromanyl, cinnolinyl, 2-furyl, 3-furyl; imidazolyl, indolyl, indazolyl, isochromanyi, isoindoly!, isoquinolinyl, isothiazolyl, isoxazolyl, oxazolyl, phthalazinyl, pteridinyl, purinyl, pyrazinyl, pyrazolyl, pyridazinyl, pyridoimidazolyl, pyridopyridinyl, pyridopyrimidinyl, 2-pyridyl, 3-pyridyI, 4-pyridyl, pyrimidinyl, pyrrolyl; 2-pyrrolyl, 3-pyrrolyl, quinolinyl, quinazoliny!, quinoxalinyl, tetrazolyl, thiazolyl, 2-thienyl and 3-thienyl. Also preferred are: The terms "het" or "a 3- to 7-membered cyclic residue, containing up to 1, 2,3 or 4 heteroatoms" refer to structures of heterocycles which can be derived from compounds such as azepine, azetidine, aziridine, azirine, 1,4 diazepane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, diaziridine, diazirine, dioxazole, dioxazine, dioxole, 1,3-dioxolene, 1,3-dioxolane, furan, imidazole, imidazoline, imidazolidine, isothiazole, isothiazolidine, isothiazoline, isoxazole, isoxazoiine, isoxazolidine, 2-isoxazoline, ketomorpholine, ketopiperazine, morpholine, 1,2-oxa-thiepane, 1,2-oxathiolane, 1,4-oxazepane, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, oxazole, oxaziridine, oxetan, oxirane, piperazine, piperidine, pyran, pyrazine, pyrazole, pyrazoline, pyrazolidine, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, pyrroline, tetrahydrofuran, tetrahydropyran, tetrahydropyridine, tetrazine, tetrazole, thiadiazine thiadiazole, 1,2-thiazine, 1?3-thiazine, 1,4-thiazine, 1,3-thiazole, thiazole, thiazolidine, thiazoline, thienyl, thietan, thiomorpholine, thiopyran, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazoie or 1,2,4-triazoIe. The term " R^-N-R^-Vcan form a 4- to 7-membered cyclic group " or'R11 and R12 together with the nitrogen atom to which they are bonded can form a 4- to 7-membered monocyclic heterocyclic ring which in addition to the nitrogen atom can contain one or two identical or different ring heteroatoms chosen from oxygen, sulfur and nitrogen" refer to structures of heterocycles which can be derived from compounds such as azepane, azepine, azetidine, dioxazoie, dioxazine, 1,4-diazepane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, imidazole, imidazoline, imidazolidine, isothiazole, isothiazolidine, isothiazoline, isoxazole, isoxazoline, isoxazolidine, 2-isoxazoline, ketopiperazine, morpholine, [1,4]oxazepane, oxazole, piperazine, piperidine, pyrazine, pyrazole, pyrazoline, pyrazolidine, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, pyrroline, tetrahydropyridine, tetrazine, tetrazole, thiazole, thiadiazole, thiazolidine, thiazoline, thiomorpholine, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole or 1,2,4-triazole. The term "R15 and R^ together with the carbon atom to which they are bonded can form a 3-to 6 membered carbocyclic ring" refer to structures, which can be derived from compounds such as cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl. a 4-to 8 membered saturated, partially unsaturated or aromatic cyclic group containing zero, 1,2, 3 or 4 heteroatoms chosen from nitrogen, sulfur or oxygen" refer to structures, which can be derived from compounds such as azepane, azetidine, azetine, azocane, azocane-2-one, cyclobutyl, cyclooctane, cyclooctene, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, 1,2- diazepane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, [1,4]diazocane, [1,2]diazocan-3-one, [1,3]diazocan-2-one, dioxazoie, dioxazine, dioxole, 1,3-dioxolene, 1,3-dioxoIane, furan, imidazole, imidazoline, imidazolidine, isothiazole, isothiazolidine, isothiazoline, isoxazole, isoxazoline, isoxazolidine, 2-isoxazoline, ketopiperazine, morpholine, 1,4-oxaazepane, 1,2-oxa-thiepane, 1,2-oxathiolan, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, oxazole, [1,4]oxazocane, [1,3]oxazdcan-2-one, oxetan, oxocane, oxocan-2-one, piperazine, piperidine, phenyl, pyran, pyrazine, pyrazole, pyrazoiine, pyrazolidine, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, pyrroline, 5,6,7,8-tetrahydro-1H-azocin-2-one, tetrahydrofuran, tetrahydropyran, tetrahydropyridine, tetrazine, thiadiazinethiadiazole, 1,2-thiazine, 1,3-thiazine, 1,4-thiazine, 1,3-thiazole, thiazole, thiazolidine, thiazoline, thietan, thiocane, thiocane-1,1-dioxide, thiocane-1-oxide, thiocan-2-one, thiomorpholine, thiopyran, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole or 1,2,4-triazole. The term "substructure D" is a 5 to 6 membered saturated, partially unsaturated or aromatic cyclic group containing zero, 1,2,3 or 4 heteroatoms chosen from nitrogen, sulfur or oxygen" refer to structures, which can be derived from compounds such as cyclopentyl, cyclohexyl, dioxazole, dioxazine, dioxole, 1,3-dioxolene, 1,3-dioxolane, furan, imidazole, imidazoline, imidazolidine, isothiazole, isothiazolidine, isothiazoline, isoxazole, isoxazoline, isoxazolidine, 2-isoxazoline, ketomorpholine, ketopiperazine, morpholine, 1,2-oxathiolan, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, oxazole, piperazine, piperidine, phenyl, pyran, pyrazine, pyrazole, pyrazoiine, pyrazolidine, pyrazine, pyrazinone, pyridazine, pyridazone, pyridine, pyridone, pyrimidine, pyrimidone, pyrrole, pyrrolidine, pyrrolidinone, pyrroline, tetrahydrofuran, tetrahydropyran, tetrahydropyridine, tetrazine, tetrazole, thiadiazine thiadiazole, 1,2-thiazine, 1,3-thiazine, 1,4-thiazine, 1,3-thiazole, thiazole, thiazolidine, thiazoline, thiomorpholine, thiopyran, tetrazine, tetrazole, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole or 1,2,4-triazole. The term "R*1 and R^ together with the atoms to which they are bonded can form a 6- to 8-membered cyclic group, containing up to 1,2,3 or 4 heteroatoms chosen from nitrogen, sulfur or oxygen" refers to structures of heterocycles which can be derived from compounds such as azocane, azocane-2-one, cyloheptyl cyclohexyl, cyclooctane, cyclooctene, 1,4-diazepane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, [1,4]diazocane, [1,2]diazocan-3-one, [1,3]diazocan-2-one, dioxazine, [1,4]dioxocane, dioxole, ketopiperazine, morpholine, 1,2-oxa-thiepane, 1,4-oxazepane, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, [1,4]oxazocane, [1,3]oxazocan-2-one, oxocane, oxocan-2-one, phenyl, piperazine, piperidine, pyran, pyrazine, pyridazine, pyrimidine, 5,6,7,8-tetrahydro-1H-azocin-2-one or thiomorphoiine. The fact that many of the before-listed names of heterocycles are the chemical names of unsaturated or aromatic ring systems does not imply that the, the 4-15 membered mono- or polycydic group could only be derived from the respective unsaturated ring system. The names here only serve to describe the ring system with respect to ring size and the number of the heteroatoms and their relative positions. As explained above, the 4-15 membered mono- or polycydic group can be saturated or partially unsaturated or aromatic, and can thus be derived not only from the before-listed heterocycles themselves but also from all their partially or completely hydrogenated analogues and also from their more highly unsaturated analogues if applicable. As examples of completely or partially hydrogenated analogues of the before-listed heterocycles from which this group may be derived the following may be mentioned: pyrroline, pyrrolidine, tetrahydrofuran, tetrahydrothiophene, dihydropyridine, tetrahydropyridine, piperidine, 1,3-dioxolane, 2-imidazoIine, imidazolidine, 4,5-dihydro-1,3-oxazol, 1,3-oxazolidine, 4,5-dihydro-1,3-thiazole, 1,3-thiazoIidine, perhydro-1,4-dioxane, piperazine, perhydro-1,4-oxazine (= morpholine), perhydro-1,4-thiazine (= thiomorphoiine), perhydroazepine, indoline, isoindoline, 1,2,3,4-tetrahydroquinoline or 1,2,3,4-tetrahydroisoquinoline. The term "-(Ci-CsJ-perfluoroalkylene" is a partial or totally fluorinated alkylene-residue, which can be derived from residues such as -CF2-,-CHF-, -CHF-CHF2-, -CHF-CHF-, -CH2-CF2-, The term "oxo-residue" or "=Ow refers to residues such as carbonyl (-C(O)-) or nitroso (-N=0). Halogen is fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine, particularly preferably chlorine or bromine. Optically active carbon atoms present in the compounds of the formula I can independently of each other have R configuration or S configuration. The compounds of the formula I can be present in the form of pure enantiomers or pure diastereomers or in the form of mixtures of enantiomers and/or diastereomers, for example in the form of racemates. The present invention relates to pure enantiomers and mixtures of enantiomers as well as to pure diastereomers and mixtures of diastereomers. The invention comprises mixtures of two or of more than two stereoisomers of the formula I, and it comprises all ratios of the stereoisomers in the mixtures. In case the compounds of the formula I can be present as E isomers or Z isomers (or cis isomers or trans isomers) the invention relates both to pure E isomers and pure Z isomers and to E/Z mixtures in all ratios. The invention also comprises all tautomeric forms of the compounds of the formula I. Diastereomers, including E/Z isomers, can be separated into the individual isomers, for example, by chromatography. Racemates can be separated into the two enantiomers by customary methods, for example by chromatography on chiral phases or by resolution, for example by crystallization of diastereomeric salts obtained with optically active acids or bases. Stereochemically uniform compounds of the formula I can also be obtained by employing stereochemical^' uniform starting materials or by using stereoselective reactions. Physiologically tolerable salts of the compounds of formula I are nontoxic salts that are physiologically acceptable, in particular pharmaceutical^ utilizable salts. Such salts of compounds of the formula I containing acidic groups, for example a carboxyl group COOH, are , for example alkali metal salts or alkaline earth metal salts such as sodium salts, potassium salts, magnesium salts and calcium salts, and also salts with physiologically tolerable quaternary ammonium ions such astetramethylammonium or tetraethylammonium, and acid addition salts with ammonia and physiologically tolerable organic amines, such as methylamine, dimethylamine, trimethylamine, ethylamine, triethylamine, ethanolamine or tris-(2-hydroxyethyI)amine. Basic groups contained in the compounds of the formula I, for example amino groups or guanidino groups, form acid addition salts, for example with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid or phosphoric acid, or with organic carboxylic acids and sulfonic acids such as formic acid, acetic acid, oxalic acid, citric acid, lactic acid, malic acid, succinic acid, malonic acid, benzoic acid, maleic acid, fumaric acid, tartaric acid, methanesulfonic acid or p-toluenesulfonic acid. Compounds of the formula I, which simultaneously contain a basic group and an acidic group, for example a guanidino group and a carboxyl group, can also be present as zwitterions (betaines) which are likewise included in the present invention. Salts of compounds of the formula I can be obtained by customary methods known to those skilled in the art, for example by combining a compound of the formula I with an inorganic or organic acid or base in a solvent or dispersant, or from other salts by cation exchange or anion exchange. The present invention also includes all salts of the compounds of the formula 1 which, because of low physiologically tolerability, are not directly suitable for use in pharmaceuticals but are suitable, for example, as intermediates for carrying out further chemical modifications of the compounds of the formula I or as starting materials for the preparation of physiologically tolerable salts. The present invention furthermore includes all solvates of compounds of the formula I, for example hydrates or adducts with alcohols. The invention also includes derivatives and modifications of the compounds of the formula I, for example prodrugs, protected forms and other physiologically tolerable derivatives, as well as active metabolites of the compounds of the formula I. The invention relates in particular to prodrugs and protected forms of the compounds of the formula 1, which can be converted into compounds of the formula 1 under physiological conditions. Suitable prodrugs for the compounds of the formula I, i.e. chemically modified derivatives of the compounds of the formula I having properties which are improved in a desired manner, for example with respect to solubility, bioavailability or duration of action, are known to those skilled in the art. More detailed information relating to prodrugs is found in standard literature like, for example, Design of Prodrugs, H. Bundgaard (ed.), Elsevier, 1985; Fleisher et ak, Advanced Drug Delivery Reviews 19 (1996) 115-130; or H. Bundgaard, Drugs of the Future 16 (1991) 443 which are all incorporated herein by reference. Suitable prodrugs for the compounds of the formula I are especially acyl prodrugs and carbamate prodrugs of acylatable nitrogen-containing groups such as amino groups and the guanidino group and also ester prodrugs and amide prodrugs of carboxylic acid groups which may be present in compounds of the formula I. In the acyl prodrugs and carbamate prodrugs one or more, for example one or two, hydrogen atoms on nitrogen atoms in such groups are replaced with an acyl group or a carbamate, preferably a -(0|-C5)-alkyloxycarbonyl group. Suitable acyl groups and carbamate groups for acyl prodrugs and carbamate prodrugs are, for example, the groups RPn-CO- and RP20-CO-, in which RP1 is hydrogen, (CrGsJ-alkyl, (C3-C8)-cycloalkyl, (C3-Ca)-cycloalkyl-(Ci-Ci)-alkyl-, (C6-Oi4)-aryl, Het-, (Ce-G4)-aryl-(CrC4)-alkyl- or Het-(CrC4)-alkyl- and in which RP2 has the meanings indicated for RP1 with the exception of hydrogen. Especially preferred compounds of the formula I are those wherein two or more residues are defined as indicated before for preferred compounds of the formula I, or residues can have one or some of the specific denotations of the residues given in their general definitions or in the definitions of preferred compounds before. All possible combinations of definitions given for preferred definitions and of specific denotations of residues explicitly are a subject of the present invention. Also with respect to all preferred compounds of the formula I all their stereoisomeric forms and mixtures thereof in any ratio and their physiologically acceptable salts explicitly are a subject of the present invention, as well as are their prodrugs. Similarly, also in all preferred compounds of the formula I, all residues that are present more than onetime in the molecule are independent of each other and can be identical or different. The compounds of the formula I can be prepared by utilising procedures and techniques, which per se are well known and appreciated by one of ordinary skill in the art. Starting materials or building blocks for use in the general synthetic procedures that can be applied in the preparation of the compounds of formula I are readily available to one of ordinary skill in the art. In many.cases they are commercially available or have been described in the literature. Otherwise they can be prepared from readily available precursor compounds analogously to procedures described in the literature, or by procedures or analogously to procedures described in this application. In general, compounds of the formula I can be prepared, for example in the course of a convergent synthesis, by linking two or more fragments which can be derived retrosynthetically from the formula 1. More specifically, suitably substituted starting azaindole derivatives are employed as building blocks in the preparation of the compounds of formula I. Although various synthetic aspects of the azaindole chemistry are considerably different to the indole chemistry many procedures describing the synthesis and functionalisation of indoles can be modified and adopted by those skilled in the art. Therefore literature describing transformations and the synthesis of indoles are highly instructive and applicable to the azaindole chemistry. If not commercially available, such azaindole derivatives can be prepared according to the well-known standard procedures for the formation of the azaindole ring system such as, for example, the Fischer indole synthesis, the Bischler indole synthesis, or the Reissert indole synthesis. By choosing suitable precursor molecules, these azaindole syntheses allow the introduction of a variety of substituents into the various positions of the azaindole system, which can then be chemically modified in order to finally arrive at the molecule of the formula I having the desired substituent pattern. As one of the comprehensive reviews in which numerous details and literature references on the chemistry of indoles and on synthetic procedures for their preparation can be found, W. J. Houlihan (ed.),"!ndoles, Part One", volume 25,1972, out of the series "The Chemistry of Heterocyclic Compounds", A. Weissberger and E. C Taylor (ed.), John Wiley & Sons; R.E. Willette, Advances in Heterocyclic Chemistry 9 (1968)27; J.-Y. Merour Cun\ Org. Chem. 5 (2001) 471; H. Dopp et al. in Houben-Weyl, "Methoden der Organischen Chernie" (Methods of Organic Chemistry), GeorgThieme Verlag, Stuttgart, Germany 1994, Vol E6a,b part 2a Hetarene I, is referred to. If starting azaindole derivatives are to be synthesized this can be done, for example, according to the well-known azaindole syntheses mentioned above. In the following they are explained briefly, however, they are standard procedures comprehensively discussed in the literature, and are well known to one skilled in the art The Fischer indole synthesis comprises the acid cyclization of heteroarylhydrazones, for* example of the general formula 2, which can be obtained by various methods and in which R30, R31 and R32 can have a wide variety of denotations. Besides hydrogen and alkyl, R31 and R32 can especially denote ester groups or methyl or ethyl groups or 2,2,2- trifluoroethyl groups carrying an ester group as substituent thus allowing the introduction into the azaindole molecule of the (CH2)P-CO moiety occurring in the groups R2 and/or R3 in the compounds of the formula I. As examples of the many literature references describing the synthesis of azaindole derivatives according to the Fischer synthesis, besides the above-mentioned book edited by Houlihan, the following articles are mentioned: F.G. Salituro et al., J. Med. Chem. 33 (1990) 2944; N.M. Gray et al., J. Med. Chem. 34 (1991) 1283; J. Sh. Chikvaidze et al., Khim. Geterotsikl. Soedin. (1991) 1508; S. P. Hiremath et al., Indian J. Chem. 19 (1980) 770; J. Bornstein, J. Amer. Chem. Soc. 79 (1957) 1745; S. Wagaw, B. Yang and S. Buchwald, J. Am. Chem. Soc 121 (1999) 10251 or by Y. Murakami, Y. Yokoyama, T. Miura, H. Hirasawa Y. Kamimura and *M, Izaki, Heterocycles 22 (1984) 1211; D. L Hughes, Org. Prep. Proc. 25 (1993) 607. The Reissert indole synthesis comprises the reductive cyclization of o-nitrophenylpyruvic acids or esters thereof, for example of the general formula 3, in which the groups R30 can have a wide variety of denotations and can be present in all positions of the aromatic ring. The Reissert indole synthesis leads to derivatives of azaindole-2-carboxylic acids. The pyruvic acid derivatives of the formula 3 can be obtained by condensation of oxalic acid esters with substituted o-nitromethylazabenzenes. As literature references, besides the above-mentioned book edited by Houlihan and the literature articles mentioned therein, for example the articles by H. G. Lindwall and G. J. Manteil, J. Org. Chem. 18 (1953) 345 or by H. Burton and J. L Stoves, J. Chem. Soc. (1937) 1726 or by W. Noland, F. Baude, Org. Synth Coll. Vol. V, J. Wiley, New York, (1973) 567 are mentioned. Another method to gain regioselective access to the azaindole structure involves palladium catalysis, for example o-haloanilines (X = CI, Br, I) or o-trifluoromethanesulfonyloxyanilines (X = OTf) of the general formula 4 can be cydized to azaindoles utilizing several alkynes by adopting procedures described by J. Ezquerra, C Pedregal. C Lamas, J. Barluenga, M. Perez, M. Garcia-Martin, J. Gonzalez, J. Org. Chem. 61 (1996) 5805; or F. Ujjainwalla, D. Warner, Tetrahedron Lett. 39 (1998) 5355 and furthermore A. Rodriguez, C. Koradin, W. Dohle, P. Knochel, Angevv. Chem, 112 (2000) 2607; or R. Larock, E. Yum, M. Refvik, J. Org. Chem. 63 (1998) 7653; R. Larock, E. Yum, J. Am. Chem. Soc 113 (1991) 6689; K. Roesch; R. Larock, J. Org. Chem. 66 (2001) 412 Alternatively the azaindole structure can be built up by employment of a variety of ketones under palladium catalysis by adopting and modifying a procedure described by C Chen, D. Liebermann, R. Larsen, T. Verhoeven and P. Reider J. Org. Chem. 62 (1997) 2676 as indicated below were X = CI, Br, I or OTf: According to the Bischler indole synthesis V-aza-anilinoketones, for example of the general formula 10, can be cydized to azaindole derivatives. A further route to specifically substituted azaindole derivatives proceeds via 2,3-dihydroazaindoles (azaindolines) which can be easily obtained by reduction of azaindoles, for example by hydrogenation, or by cyclization of suitable azaphenylethylamine derivatives. Azaindolines can undergo a variety of electrophilic aromatic substitution reaction allowing the introduction of various substituents into the aromatic nucleus which cannot directly be introduced by such reactions into the aromatic nucleus of the azaindole molecule. The azaindolines can then be dehydrogenated to the corresponding azaindoles, for example with reagents like chloranil, or palladium together with a hydrogen acceptor. Again, details on these syntheses can be found in the above-mentioned book edited by Houlihan, Moreover 2-H-azaindoles can be converted into the corresponding carboxylic acids or carboxylic esters by lithiation of the 2-position of the azaindoles of the general formula 13 and subsequent reaction with carbon dioxide or alkylchloroformate according to I. Hasan, E. Marinelli, L Lin, F. Fowler, A. Levy, J. Org. Chem. 46 (1981) 157; T. Kline J. Heterocycl. Chem. 22 ' (1985) 505; J.-R. Dormoy, A. Heymes, Tetrahedron 49, (1993) 2885; E. Desarbre, S. Coudret, C Meheust, J.-Y. Merour, Tetrahedron 53 (1997) 3637 as indicated below: R45 denotes hydrogen or a protecting group like for example benzenesulfonyl or tert- butoxycarbonyl. In the following further procedures of particuluar interest for the embodiment of this invention are listed and referenced briefly, however, they are standard procedures comprehensively discussed in the literature, and are well known to one skilled in the art. 1) T. Sakamoto et al., Chem. Pharm. Bull. 34 (1986) 2362. 2) a) I. Mahadevan et al., J. Heterocycl. Chem. 29 (1992) 359 b) J.-R. Dormoy et al., Tetrahedron 49 (1993) 2885 3) a) L Estel et al., J. Org. Chem. 53 (1988) 2740 b) D. Hands et al., Synthesis (1996) 877 c) T. Kumiko et al., Bioorg. Med. Chem. Lett. 20 (2000) 2347 4) a)S. Clemoetai.,J.Chem.Soc.(1945)603 b) R. Olcuda, J. Org. Chem. 24 (1959) 1008 c) J. Turner, J. Org. Chem. 48 (1983) 3401 i 5) a) M.Davis eta I. .Tetrahedron 48 (1992) 93 9 b) C. Martin et al., Tetrahedron Lett. 30 (1989) 935 c) S. Ball et al., J. Organomet. Chem. 550 (1998) 457 Depending on the substituents in the starting materials, in certain azaindole syntheses mixtures of positional isomers may be obtained which, however, can be separated by modern separation techniques like, for example, preparative HPLC Further, in order to obtain the desired substituents in the nucleus of the azaindole ring system in the formula I, the functional groups introduced into the ring system during the azaindole synthesis can be chemically modified. For example, azaindoles carrying a hydrogen atom in the 2-position or the 3-position can also be obtained by saponification and subsequent decarboxylation of azaindoles carrying an ester group in the respective position. Carboxylic acid groups and acetic acid groups in the 2-position and the 3-position can be converted into their homologues by usual reactions for chain elongation of carboxylic acids. Halogen atoms can be introduced into the 2-position or the 3-position, for example by reacting the respective azaindolinone with a halogenating agent such as phosphorus pentachloride analogously to the method described by J. C Powers, J. Org. Chem. 31 (1966) 2627. The starting azaindoiinones for such a synthesis can be obtained from 2-aminoheteroaryl acetic acids. Starting azaindole derivatives for the preparation of compounds of the formula I carrying a halogen substituent in the 3-position can also be obtained according to procedures described in the literature like . the following. For the fluorination of 1 H-azaindole-2-carboxylic acid ethyl ester derivatives in the 3-position N-fluoro-2,4,6-trimethylpyridinium triflate is the reagent of choice (T. Umemoto, S. Fukami, G. Tomizawa, K. Harasawa, K. Kawada, K. Tomita J. Am. Chem. Soc 112 (1990) 8563). Chlorination of 1 H-azaindole-2-carboxylic acid ethyl ester derivatives in the 3-position by reaction with sulfuryl chloride in benzene yields 3-chloro-1H-azaindole-2-carboxyIic acid ethyl ester (Chem. Abstr. 1962,3441 i - 3442b); the same result can obtained by means of NCS (D. Comins, M. Killpack, Tetrahedron Lett. 33 (1989)4337; M. Brennan, K. Erickson, F. Szmlac, M. Tansey, J. Thornton, Heterocycles 24 (1986) 2879). Bromination of 1H-azaindole-2-carboxyIic acid ethyl ester derivatives in.the 3-position can be achieved by reaction with NBS (M. Tani, H. Hkegami, M. Tashiro, T. Hiura, H. Tsukioka, Heterocycles 34 (1992) 2349). Analogously to the procedures described above NIS can be used efficiently for the iodination in the of 1H-azaindole-2-carboxylic acid ethyl ester derivatives in the 3-position. Furthermore the iodination of 1 H-azaindole-2-carboxyIic acid ethyl ester derivatives in the 3-position the use of iodine is efficient (T. Sakamoto, T. Nagano, Y. Kondo, H. Yamanaka Chem. Pharm. Bull. 36 (1988)2248). Especially the groups present in the azaindole ring system can be modified by a variety of reactions and thus the desired residues R3a and R30can be obtained. For example, nitro groups can be reduced to amino group with various reducing agents, such as sulfides, dithionites, complex hydrides or by catalytic hydrogenation. A reduction of a nitro group may also be carried out at a later stage of the synthesis of a compound of the formula I, and a reduction of a nitro group to an amino group may also occur simultaneously with a reaction performed on another functional group, for example when reacting a group like a cyano group with hydrogen sulfide or when hydrogenating a group. In order to introduce or derive the residues R3a and R30, amino groups can then be modified according to standard procedures for alkylation, for example by reaction with (substituted) alkyl halogenides or by reductive amination of carbonyl compounds, according to standard procedures for acylation, for > example by reaction with activated carboxylic acid derivatives such as acid chlorides, anhydrides, activated esters or others or by reaction with carboxylic acids in the presence of an activating agent, or according to standard procedures for sulfonylation, for example by reaction with sulfonyl chlorides. Carboxylic acids, carboxylic acid chlorides or carboxylic acid esters can be introduced by procedures described by F. Santangelo, C Casagrande, G. Norcini, F. Gerli, Synth. Commun. 23 (1993) 2717; P. Beswick, C Greenwood, T. Mowlem, G. Nechvatal, D. Widdowson, Tetrahedron 44 (1988) 7325; V. Collot, M. Schmitt, P. Marwah, J. Bourguignon, Heterocylces 51 (1999) 2823. Halogens or hydroxy groups - via the triflate or nonaflate - or primary amines - via its diazonium salt - or after interconversion to the corresponding stannane, or boronic acid - present in the azaindole structure can be converted into a variety of other functional groups like for example -CN, -OVethers, acids, esters, amides, amines, alkyl- or aryl groups mediated by means of transition metals, namely palladium or nickel catalysts or copper salts and reagents for example referred to below (F. Diederich, P. Stang, Metal-catalyzed Cross-coupling Reactions, Wiley-VCH, 1998; or M. Seller, C Bolm, Transition Metals for Organic Synthesis, Wiley-VCH, 1998; J. Tsuji, Palladium Reagents and Catalysts, Wiley, 1996; J. Hartwig, Angew. Chem. 110 (1998)2154; B. Yang, S. Buchwald, J. Organomet Chem. 576 (1999) 125; T. Sakamoto, K. Ohsawa, J. Chem. Soc Perkin Trans I, (1999), 2323; D. Nichols, S. Frescas, D. Marona-Lewicka, X. Huang, B. Roth, G. GudelskyJ. Nash, J. Med. Chem, 37 (1994), 4347; P. Lam, C Clark, S. Saubern, J. Adams, M. Winters, D. Chan, A. Combs, Tetrahedron Lett., 39 (1998) 2941; D. Chan, K. Monaco, R. Wang, M. Winters, Tetrahedron Lett. 39 (1998) 2933; V. Farina, V. Krishnamurthy, W. Scott, The Stille Reaction, Wiley, 1994; A. Klaspars, X. Huang, S. Buchwald, J. Am. Chem. Soc. 124 (2002) 7421; F. Kwong, A. Klapars, S. Buchwald, Org. Lett. 4 (2002) 581; M Wolter, G. Nordmann, G. Job, S. Buchwald, 4 (2002) 973) Ester groups present in the azaindole nucleus can be hydrolyzed to the corresponding carboxylic acids, which after activation can then be reacted with amines or alcohols under standard conditions. Furthermore these ester or acid groups can be reduced to the corresponding alcohols by many standard procedures. Ether groups present at the azaindole nucleus, for example benzyloxy groups or other easily cleavable ether groups, can be cleaved to give hydroxy groups which then can be reacted with a variety of agents, for example etherification agents or activating agents allowing replacement of the hydroxy group by other groups. Sulfur-containing groups can be reacted analogously. During the course of the synthesis in order to modify the groups R54 or Reattached to the azaindole ring system by application of parallel synthesis methodology, beside a variety of reactions, the palladium or copper salt catalysis can be extremely useful. Such reactions are described for example in F. Diederich, P. Stang, Metal-catalyzed Cross-coupling Reactions, Wiley-VCH, 1998; or M. Beller, C Bolm, Transition Metals for Organic Synthesis, Wiley-VCH, 1998; J. Tsuji, Palladium Reagents and Catalysts, Wiley, 1996; J. Hartwig, Angew. Chem. 110 (1998), 2154; B. Yang, S. Buchwald, J. Organomet Chem. 576 (1999) 125; P. Lam, C Clark, S. Saubern, J. Adams, M. Winters, D. Chan, A. Combs, Tetrahedron Lett. 39 (1998) 2941; D. Chan, K. Monaco, R. Wang, M. Winters, Tetrahedron Lett. 39 (1998) 2933; J. Wolfe, H. Tomori, J. SadightJ. Yin, S. Buchwald, J. Org. Chem. 65 (2000) 1158; V. Farina, V. Krishnamurthy, W. Scott, The StiHe Reaction, Wiley, 1994; A. Klaspars, X. Huang, S. Buchwald, J. Am. Chem. Soc. 124 (2002) 7421; F. Kwong, A. Klapars, S. Buchwald, Org. Lett. 4 (2002) 581; M Wolter, G. Nordmann, 6. Job, S. Buchwald, 4 (2002) 973). The previously-mentioned reactions for the conversion of functional groups are furthermore, in general, extensively described in textbooks of organic chemistry like M. Smith, J. March, March's Advanced Organic Chemistry, Wiley-VCH, 2001 and in treatises like Houben-Weyl, "Methoden der Organischen Chemie" (Methods of Organic Chemistry), GeorgThieme Verlag, Stuttgart, Germany, or "Organic Reactions", John Wiley & Sons, New York, or R. C Larock," Comprehensive Organic Transformations", Wiley-VCH, 2nd ed (1999), B. Trost, I. Fleming (eds.) Comprehensive Organic Synthesis, Pergamon,1991; A. Katritzky, C. Rees, E. Scriven Comprehensive Heterocyclic Chemistry II, Elsevier Science, 1996) in which details on the reactions and primary source literature can be found. Due to the fact that in the present case the functional groups are attached to an azaindole system it may in certain cases become necessary to specifically adapt reaction conditions or to choose specific reagents from a variety of reagents that can in principle be employed in a conversion reaction, or otherwise to take specific measures for achieving a desired conversion, for example to use protecting group techniques. However, finding out suitable reaction variants and reaction conditions in such cases does not cause any problems for one skilled in the art; The structural elements present in the residues in the 1-position of the azaindole ring in the compounds of the formula I and in the COR8'group present in the 2-position and/or in the 3-position of the azaindole ring can be introduced into the starting azaindole derivative obtainable as outlined above by consecutive reaction steps using synthesis methodologies like those outlined below using procedures which per se are well known to one skilled in the art. The residues R8' that can be introduced in formula 29, for example, by condensing a corresponding carboxylic acid of the formula 29 with a compound of the formula HR8', i. e. with an amine of the formula HN(Rr)R21-V-G-M to give a compound of the formula 30. The compound of the formula 30 thus obtained can already contain the desired final groups, i. e. the groups R8' and R54 can be the groups -N^JR^V-G-M and R°-Q- as defined in the formula I, or optionally in the compound of the formula 30 thus obtained subsequently the residue or the residues R8' and the residue R54 are converted into the residues-NfR^-V-G-M and R°-Q-, respectively, to give the desired compound of the formula I. Thus, the residues R8' and the residues Rr and R2'~V-G-M contained therein can have the denotations of R1 and RMZ-G-M, respectively, given above or in addition in the residues Rr and R2-V-G-M functional groups can also be present in the form of groups that can subsequently be transformed into the final groups R1 and RZ-V-G-M, i. e. functional groups can be present in the form of precursor groups or of derivatives, for example in protected form. In the course of the preparation of the compounds of the formula I it can generally be advantageous or necessary to introduce functional groups which reduce or prevent undesired reactions or side reactions in the respective synthesis step, in the form of precursor groups which are later converted into the desired functional groups, or to temporarily block functional groups by a protective group strategy suited to the synthesis problem. Such strategies are well known to those skilled in the art (see, for example, Greene and Wuts, Protective Groups in Organic Synthesis, Wiley, 1991, or P. Kocienski, Protecting Groups, Thieme 1994). As examples of precursor groups cyano groups and nitro groups may be mentioned. The cyano groups can in a later step be transformed into carboxylic acid derivatives or by reduction into aminomethyl groups, or the nitro groups which may be transformed by reduction like catalytic hydrogenation into amino groups. Protective groups can also have the meaning of a solid phase, and cleavage from the solid phase stands for the removal of the protective group. The use of such techniques is known to those skilled in the art (Burgess K (Ed.) Solid Phase Organic Synthesis ,New York: Wiley, 2000). For example, a phenolic hydroxy group can be attached to a trityl-polystyrene resin, which serves as a protecting group, and the molecule is cleaved from this resin by treatment with TFA at a later stage of the synthesis. The residue R54 in the compounds of the formulae 29 and 30 can denote the group-Q-R° as defined above which finally is to be present in the desired target molecule of the formula 1, or it can denote a group which can subsequently be transformed into the group -Q-R°, for example a precursor group or a derivative of the group -Q-R° in which functional groups are present in protected form, or R54 can denote a hydrogen atom or a protective group for the nitrogen atom of the azaindole ring. Similarly, the residues R^and R30 in the formulae 29 and 30 have the corresponding definitions of R3 in formula I as defined above, however, for the synthesis of the compounds of the formula I these residues, too, can in principle be present at the stage of the condensation of a compound of the formula 29 with a compound of the formula HR8' giving a compound of the formula 30 in the form of precursor groups or in ' protected form. The residues R53 in the compounds of the formula 29 which can be identical or different, can be, for example, hydroxy or (CrO)-alkoxy, L e., the groups COR53 present in the compounds of the formula 29 can be, for example, the free carboxylic acids or esters thereof like alkyl esters as can be the groups CORB' in the compounds of the formula I. The groups COR53 can also be any other activated derivative of a carboxylic acid which allows amide formation, ester formation or thioester formation with a compound of the formula HR8'. The group COR53 can be, for example, an acid chloride, an activated ester like a substituted phenyl ester, an azolide like an imidazolide, an azide or a mixed anhydride, for example a mixed anhydride with a carbonic acid ester or with a sulfonic acid, which derivatives can all be prepared from the carboxylic acid by standard procedures and can be reacted with an amine, an alcohol or a mercaptan of the formula HR8' under standard conditions. A carboxylic acid group COOH representing COR53 in a compound of the formula 29 can be obtained, for example, from an ester group introduced into the azaindole system during an azaindole synthesis by standard hydrolysis procedures. Compounds of the formula I in which a group COR8 is an ester group can also be prepared from compounds of the formula 29 in which COR53 is a carboxylic acid group by common esterification reactions like, for example, reacting the acid with an alcohol under acid catalysis, or alkylation of a salt of the carboxylic acid with an electrophile like an alkyl halogenide, or by transesterification from another ester. Compounds of the formula I in which a group COR8 is an amide group can be prepared from amines and compounds of the formula 29 in which COR53 -is"a carboxylic acid group or an ester thereof by common amination reactions. Especially for the preparation of amides the compounds of the formula 29 in which COR53 is a carboxylic acid group can be condensed under standard conditions with compounds of the formula HR8f which are amines by means of common coupling reagents used in peptide synthesis. Such coupling reagents are, for example, carbodiimides like dicyclohexylcarbodiimide (DCC) or diisopropylcarbodiimide, carbonyldiazoles like carbonyldiimidazole (CDl) and similar reagents, propylphosphonic anhydride, 0-((cyano-(ethoxycarbonyl)-methylene)amirio)-^^NlN^N,-tetramethyiuronium tetrafluoroborate (TOTU), diethylphosphoryl cyanide (DEPC) or bis-(2-oxo-3-oxazoIidinyI)-phosphoryl chloride (BOP-CI) and many others. » if the residue -Q-R° present in an azaindole of the formula I or the residue R54 present in an azaindole of the formula 29, or a residue in which functional groups within the residue -Q-R° or R54 are present in protected form or in the form of a precursor group, have not already been introduced during a preceding step, for example during a synthesis of the azaindole nucleus, these residues can, for example, be introduced into the 1-position of the azaindole system by conventional literature procedures well known to one skilled in the art for N-alkylation, reductive amination, N-arylation, N-acylation or N-sulfonylation of ring nitrogen atoms of heterocycles. The starting azaindole derivative that is to be employed in such a reaction carries a hydrogen atom in the 1-position. N-Alkylatiori of a ring nitrogen atom can, for example, be performed under standard conditions, preferably in the presence of a base, using an alkylating compound of the formula LG-Q-R0 or of the formula R^-LG, wherein the atom in the group Q or in the group R54 bonded to the group LG in this case is an aliphatic carbon atom of an alkyl moiety and LG is a leaving group, for example halogen like chlorine, bromine or iodine, or a sulfonyloxy group like tosyloxy, mesyloxy or trifluormethylsulfonyloxy. LG may, for example, also be a hydroxy group which, in order to achieve the alkylation reaction, is activated by a conventional activating agent. For the preparation of compounds in which A is a direct linkage and an aromatic group is directly bonded to the 1-position of the azaindole system, conventional arylation procedures can be used. For example aryl fluorides like alkyl fluorobonzoates or 4-fluorophenyI methyl sulfones can be employed as arylating agents. Such processes are described, for example, By S. Stabler, Jahangir, Synth. Comrnun. 24 (1994) 123; I. Khanna, R. Weier, Y. Yu, X. Xu. F. Koszyk, J. Med. Chem. 40 (1997) 1634. Alternatively a wide variety of substituted aryl iodides, aryl bromides or aryl triflates can serve as arylating agents at the 1-position of the azaindole system in a copper salt or palladium mediated reaction accordingto R. Sarges, H. Howard, K. Koe, A. Weissmann, J. Med. Chem, 32 (1989) 437; P. Unangst, D. Connor, R. Stabler, R. Weikert, J. Heterocycl. Chem, 24 (1987) 811; 6. Tokmakov, I. ,. Grandberg, Tetrahedron 51 (1995) 2091; D. Old, M. Harris, S. Buchwald, Org. Lett. 2 (2000) 1403, G. Mann, J. Hartwig, M. Driver, C Fernandez-Rivas, J. Am. Chem. Soc. 120 (1998) 827; J. Hartwig, M. Kawatsura, S. Hauk, K. Shaughnessy, L J. Org. Chem. 64 (1999) 5575. Moreover such arylations can also be accomplished by reaction of a wide range of substituted aryl boronic acids as demonstrated for example by W. Mederski, M. Lefort, M. Germann, D. Kux, Tetrahedron 55 (1999) 12757. In the course of the synthesis the employment of microwave assistance for speeding-up, ► facilitating or enabling reactions may be beneficial or even required in many cases. Some reactions are for example described by J. L. Krstenansky, I. Cotteril, Curr: Opin. Drug. Disc. & Development, 4(2000), 454; P. Lidstrom, J. Tierney, B. Wathey, J. Westman, Tetrahedron, 57(2001), 9225; M. Larhed, A. Hallberg, Drug Discovery Today, 8 (2001) 406; S. Caddick, Tetrahedron, 51 (1995) 10403. Preferred methods include, but are not limited to those described in the,examples. The compounds of the present invention are serine protease inhibitors, which inhibit the activity of the blood coagulation enzyme factors Xa and/or factor Vila. In particular, they are highly active inhibitors of factor Xa. They are specific serine protease inhibitors inasmuch as they do not substantially inhibit the activity of other proteases whose inhibition is not desired. The activity of the compounds of the formula I can be determined, for example, in the assays described below or in other assays known to those skilled in the art With respect to factor Xa inhibition, a preferred embodiment of the invention comprises compounds which have a Ki 1 mM for factor Xa inhibition as determined in the assay described below, with or without concomitant factor Vila inhibition, and which preferably do not substantially inhibit the activity of other proteases involved in coagulation and fibrinolysis whose inhibition is not desired (using the same concentration of the inhibitor). The compounds of the invention inhibit factor Xa catalytic activity either directly, within the prothrombinase complex or as a soluble subunit, or indirectly, by inhibiting the assembly of factor Xa into the prothrombinase complex. As inhibitors of factor Xa and/or factor Vila the compounds of the formula I and their physiologically tolerable salts and their prodrugs are generally suitable for the therapy and prophylaxis of conditions in which the activity of factor Xa and/or factor Vila plays a role or has an undesired extent, or which can favorably be influenced by inhibiting factor Xa and/or factor Vila or decreasing their activities, or for the prevention, alleviation or cure of which an inhibition of factor Xa and/or factor Vila or a decrease in their activity is desired by the physician. As inhibition of factor Xa and/or factor Vila influences blood coagulation and fibrinolysis, the compounds of the formula I and their physiologically tolerable salts and their prodrugs are generally suitable for reducing blood clotting, or for the therapy and prophylaxis of conditions in which the activity of the blood coagulation system plays a role or has an undesired extent, or which.can favorably be influenced by reducing blood dotting, or for the prevention, alleviation or cure of which a decreased activity of the blood coagulation system is desired by the physician. A specific subject of the present invention thus are the reduction or inhibition of unwanted blood clotting, in particular in an individual, by administering an effective amount of a compound I or a physiologically tolerable salt or a prodrug thereof, as well as pharmaceutical preparations therefor. The present invention also relates to the compounds of the formula I and/or their physiologically tolerable salts and/or their prodrugs for use as pharmaceuticals (or medicaments), to the use of the compounds of the formula I and/or their physiologically tolerable salts and/or their prodrugs for the production of pharmaceuticals for inhibition of • factor Xa and/or factor Vila or for influencing blood coagulation, inflammatory response or fibrinolysis or for the therapy or prophylaxis of the diseases mentioned above or below, for example for the production of pharmaceuticals for the therapy and prophylaxis of cardiovascular disorders, thromboembolic diseases or restenoses. The invention also relates to the use of the compounds of the formula I and/or their physiologically tolerable salts and/or their prodrugs for the inhibition of factor Xa and/or factor Vila or for influencing blood coagulation or fibrinolysis or for the therapy or prophylaxis of the diseases mentioned above or below, for example for use in the therapy and prophylaxis of cardiovascular disorders, thromboembolic diseases or restenoses, and to methods of treatment aiming at such purposes including methods for said therapies and prophylaxis. The present invention also relates to pharmaceutical preparations (or pharmaceutical compositions) which contain an effective amount of at least one compound of the formula I and/or its physiologically tolerable salts and/or its prodrugs in addition to a customary pharmaceutical^ acceptable carrier, i. e. one or more pharmaceutical^ acceptable carrier substances or excipients and/or auxiliary substances or additives. The invention also relates to the treatment of disease states such as abnormal thrombus formation, acute myocardial infarction, unstable angina/thromboembolism, acute vessel closure associated with thrombolytic therapy or percutaneous transluminal coronary angioplasty (PTCA), transient ischemic attacks, stroke, intermittent claudication or bypass grafting of the coronary or peripheral arteries, vessel luminal narrowing, restenosis post coronary or venous angioplasty, maintenance of vascular access patency in long-term hemodialysis patients, pathologic thrombus formation occurring in the veins of the lower extremities following abdominal, knee or hip surgery, pathologic thrombus formation V occurring in the veins of the lower extremities following abdominal, knee and hip surgery, a risk of pulmonary thromboembolism, or disseminated systemic intravascular coagulatopathy occurring in vascular systems during septic shock, certain viral infections or cancer. The compounds of the present invention can also be used to reduce an inflammatory response. Examples of specific disorders for the treatment or prophylaxis of which the compounds of the formula I can be used are coronary heart disease, myocardial infarction, angina pectoris, vascular restenosis, for example restenosis following angioplasty like PTCA, adult respiratory distress syndrome, multi-organ failure and disseminated intravascular clotting disorder. Examples of related complications associated with surgery are thromboses like deep vein and proximal vein thrombosis, which can occur following surgery. The compounds of the formula I and their physiologically tolerable salts and their prodrugs can be administered to animals, preferably to mammals, and in particular to humans as pharmaceuticals for therapy or prophylaxis. They can be administered on their own, or in mixtures with one another or in the form of pharmaceutical preparations, which permit enteral or parenteral administration.... The pharmaceuticals can be administered orally, for example in the form of pills, tablets, lacquered tablets, coated tablets, granules, hard and soft gelatin capsules, solutions, syrups, emulsions, suspensions or aerosol mixtures. Administration, however, can also be carried out rectally, for example in the form of suppositories, or parenterally, for example intravenously, intramuscularly or subcutaneously, in the form of injection solutions or infusion solutions, microcapsules, implants or rods, or percutaneously or topically, for example in the form of ointments, solutions or tinctures, or in other ways, for example in the form of aerosols or nasal sprays. The pharmaceutical preparations according to the invention are prepared in a manner known per se and familiar to one skilled in the art, pharmaceutical^ acceptable inert inorganic and/or organic carriers being used in addition to the compound(s) of the formula I and/or its (their) physiologically tolerable salts and/or its (their) prodrugs. For the production of pills, tablets, coated tablets and hard gelatin capsules it is possible to use, for example, lactose, cornstarch or derivatives thereof, talc, stearic acid or its salts, etc. Carriers for soft gelatin capsules and suppositories are, for example, fats, waxes, semisolid and liquid polyols, natural or hardened oils, etc. Suitable carriers for the production of solutions, for example injection solutions, or of emulsions or syrups are, for example, water, saline, alcohols, glycerol, polyols, sucrose, invert sugar, glucose, vegetable oils, etc. Suitable carriers for microcapsules, implants or rods are, for example, copolymers of glycolic acid and lactic acid. The pharmaceutical preparations normally contain about 0.5 % to 90 % by weight of the compounds of the formula I and/or their physiologically tolerable salts and/or their prodrugs. The amount of the active ingredient of the formula I and/or its physiologically tolerable salts and/or its prodrugs in the pharmaceutical preparations normally is from about 0.5 mgto about 1000 mg, preferably from about 1 mg to ..about 500 mg. In addition to the active ingredients of the formula I and/or their physiologically acceptable salts and/or prodrugs and to carrier.substances, the pharmaceutical preparations can contain ) additives such as, for example, fillers, disintegrants, binders, lubricants, wetting agents, stabilizers, emulsifiers, preservatives, sweeteners, colorants, flavorings, aromatizers, thickeners, diluents, buffer substances, solvents, solubilizers, agents for achieving a depot effect, salts for altering the osmotic pressure, coating agents or antioxidants. They can also contain two or more compounds of the formula I, and/or their physiologically tolerable salts and/or their prodrugs. In case a pharmaceutical preparation contains two or more compounds of the formula I, the selection of the individual compounds ran aim at a specific overall pharmacological profile of the pharmaceutical preparation. For example, a highly potent compound with a shorter duration of action may be combined with a long-acting compound of lower potency. The flexibility permitted with respect to the choice of substituents in the compounds of the formula 1 allows a great deal of control over the biological and physico-chemical properties of the compounds and thus allows the selection of such desired compounds. Furthermore, in addition to at least one compound of the formula ! and/or a physiologically tolerable*salt and/or its prodrug, the pharmaceutical preparations can also contain one or more other therapeutically or prophylactically active ingredients. When using the compounds of the formula I the dose can vary within wide limits and, as is customary and is known to the physician, is to be suited to the individual conditions in each individual case. It depends, for example, on the specific compound employed, on the nature and severity of the disease to be treated, on the mode and the schedule of administration, or on whether an acute or chronic condition is treated or whether prophylaxis is carried out. An appropriate dosage can be established using clinical approaches well known in the medical art. In general, the daily dose for achieving the desired results in an adult weighing about 75 kg isjrom 0.01 mg/kgto 100 mg/kg, preferably from 0.1 mg/kg to 50 mg/kg, in particular from 0.1 mg/kg to 10 mg/kg, (in each case in mg per kg of body weight). The daily dose can be divided, in particular in the case of the administration of relatively large amounts, into several, for example 2,3 or 4, part administrations. As usual, depending on individual behavior it may be necessary to deviate upwards or downwards from the daily dose indicated. A compound of the formula I can also advantageously be used as an anticoagulant outside an individual. For example, an effective amount of a compound of the invention can be contacted with a freshly drawn blood sample to prevent coagulation of the blood sample. Further, a compound of the formula I or its salts can be used for diagnostic purposes, for example in in vitro diagnoses, and as an auxiliary in biochemical investigations. For example, a compound of the formula I can be used in an assay to identify the presence of factor Xa and/or factor Vila or to isolate factor Xa and/or factor Vila in a substantially purified form. A compound of the invention can be labeled with, for example, a radioisotope, and the labeled compound bound to factor Xa and/or factor Vila is then detected using a routine method useful for detecting the particular label. Thus, a compound of the formula I or a salt thereof can be used as a probe to detect the location or amount of factor Xa and/or factor Vila activity in vivo, in vitro or ex vivo. Furthermore, the compounds of the formula I can be used as synthesis intermediates for the i preparation of other compounds, in particular of other pharmaceutical active ingredients, which are obtainable from the compounds of the formula I, for example by introduction of substituents or modification of functional groups. The general synthetic sequences for preparing the compounds useful in the present invention our outlined in the examples given below. Both an explanation of, and the actual procedure for, the various aspects-of-the present invention are described where appropriate. The following examples are intended to be merely illustrative of the present invention, and not limiting thereof in either scope or spirit. Those with skill in the art will readily understand that known variations of the conditions and processes described in the examples can be used to synthesize the compounds of the present invention. It is understood that changes that do not substantially affect the activity of the various embodiments of this invention are included within the invention disclosed herein. Thus, the following examples are intended to illustrate but not limit the present invention. Examples When in the final step of the synthesis of a compound an acid such as trifluoroacetic acid or acetic acid was used, for example when trifluoroacetic acid was employed to remove a tBu group or when a compound was purified by chromatography using an eluent which contained such an acid, in some cases, depending on the work-up procedure, for example the details of a freeze-drying process, the compound was obtained partially or completely in the form of a salt of the acid used, for example in the form of the acetic acid salt or trifluoroacetic acid salt or hydrochloric acid salt. Abbreviations used: tert-Butyl tBu 2,2'-bis(diphenyIphoshino-l,V-binaphthyl Binap Bis-(oxo-3-oxazolidinyl)-phosphoryI chloride BOP-CI dibenzylidenacetone dba Dichioromethane DCM Dicyclohexyl-carbodiimide DCC Diethylphosphoryl cyanide DEPC 4-Dimethyaminopyridine DMAP N,N-Dimethylformamide DMF Dimethylsulfoxide DMSO 1J'-Bis(diphenylphosphino)ferrocene DPPF, 0-(7-Azaben20triazoM-y!)-N,N,N,,N,> tetramethyluronium-hexafluorophosphate HATU N-Bromosuccinimide NBS N-Chlorosuccinimide NCS N-lodosuccinimide NIS N-Ethylmorpholine NEM Methanol MeOH Room temperature 20 °C to 25 °C RT Saturated sat. Tetrahydrofuran THF Trifluoroacetic acid TFA 0-((Ethoxycarbonyl)cyanomethyleneamino)- N,N,N\N^etramethyIuroniumtetraf!uoroborate TOTU Example 1: 1-[5-(5-Chioro-thiophen-2-yl^ carboxylic acid (1-isopropyl-piperidin-4-yI)-amide (i) 1H-Pyrrolo[23-b]pyridine-2-carboxylicacid methyl ester 0.495 g (1.64 mmol) of 1-benzenesulfonyl-1H»pyrroIo[2,3-b]pyridine-2-carboxylic acid was dissolved in 5 ml of methanol and 3 ml of 2N aqueous sodium hydroxide. The reaction was stirred at 40°C for 8 h. The solvent was removed under reduced pressure. Residual volatiles were removed by twice codistiiling with toluene. The residue was suspended in methanolic hydrochloric acid and stirred for 16b at RT. The solvent was removed under reduced pressure. The residue was dissolved in ethyl acetate and washed with saturated aqueous sodium ) bicarbonate solution, and saturated aqueous sodium chloride solution. The organic phase was dried with sodium sulfate, filtered and the solvent was removed under reduced pressure. Yield 0.201 g. MS (Cl+): m/e = 177 (M+H+). (ii)l-[5-(5-Chloro-thiophen-2-y!)-isoxazol-3-ylmethyl]-1H-pyrrolo[23-b]pyridine-2- carboxylic acid 0.195 g (1.1 mmo!) of 1H-pyrrolo[2,3-b]pyridine-2-carboxylic acid methyl ester was dissolved in A ml of DMF and 48.7mg (1.2 mmol) of sodium hydride (60% in mineral oil) was added. The reaction was stirred at RT for 20 min, cooled to -78°C then 324 mg (1.2 mmol) of 3- ! bro"momethyl-5-(5-chloro-thiophen-2-yI)-isoxaiole [prepared by adopting a procedure described by Ewing, William R.; Becker, Michael R.; Choi-Sledeski, Yong Mi; Pauls, Heinz W.; He, Wei; Condon, Stephen M.; Davis, Roderick S.; Hanney, Barbara A.; Spada, Alfred P.; Bums, Christopher J.; Jiang, John Z.; Li, Aiwen; Myers, Michael R.; Lau, Wan F.; Poli, Gregory B; PCT Int. Appl. (2001) 460 pp. WO 0107436 A2] was added. The reaction was allowed to warm to RT '. overnight. 0.3 ml of 2N aqueous sodium hydroxide was added and the reaction was stirred at RT for 24 h. The product was purified by preparative RP-HPLC eluting with a gradient of 0-100% acetonitrile in water (+0.01% trifluoroacetic acid). After lyophilization the product was obtained as a solid. Yield 230 mg. MS (TOF MS ES+): m/e = 359 (M+). (iii) (1-Isopropyl-piperidin-4-yl)-carbamic acid tert-butyl ester To a solution of 5.0 g Piperidin-4-yl-carbamic acid tert-butyl ester in 15 ml methanol, 734 ml acetone, 3,14 g Na(CN)BH3 and 0.3 ml acetic acid were added. After stirring for 16 h at RTthe solvent was removed under reduced pressure and the residue was partitioned between 30 ml of water and 30 ml of ethyl acetate. The organic layer was washed with saturated Na2C03 solution, water and then dried over NazSCU. Following filtration, the solvent was removed under reduced pressure to yields a white solid. Yield: 4.8g MS (ES+): m/e= 243. (iv) 1-lsopropyl-piperidin-4-ylamine To 4.8 g (1-lsopropyl-piperidin-4-yl)-carbamic acid tert-butyl ester in 15 ml methanol, 20 ml methanolic hydrochloric acid (8M) were added and the mixture was stirred for 16 h. Removal of the solvent under reduced pressure yielded a white solid, which was coevaporated twice with 20 ml toluene. The product was obtained as its hydrochloride. Yield: 5.42 gMS (ES+): m/e= 143. (v)1-[5-(5-ChIoro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-pyrrolo[2,3-b]pyridine-2-carbox7lic acid (1-isopropyI-piperidin-4-yl)-amide 0.135 g (0.4 mmol) of 1-[5-(5-Chloro-thiophen-2-y!)-isoxazol-3-ylmethyl]-1H-pyrrolo[2,3-b]pyridine-2- carboxylic acid, 0.432 g (3.8 mmol) of NEM and 135 mg (0.4 mmol) of TOTU were dissolved in 3 ml of DMF and stirred at RTfor 20 min. 89 mg (0.4 mmol) of 1-lsopropyl-piperidin-4-ylamine dihydrochloride salt was added to the reaction solution and stirred at RT for 4 h. The product was purified by preparative RP-HPLC eluting with a gradient of 0-100% acetonitrile in water (+0.01% trifluoroacetic acid). After lyophilization the product was obtained as a solid. Yield: 156 mg Example 2:1-[5-(5-Chioro-thiophen-2-yI)-isoxazol-3-ylmethyI]-2-(1-isopropyi-piperidin-4- ylcarbamoyI)-1H-pyrrolo[23-b]pyridine-5-carboxyIic acid methyl ester (i) 6-Amino-nicotinic acid methyl ester To a solution of 10 g 6-Amino-niqotinic acid, in 100 ml MeOH, 0.8 ml concentrated H2SO4 were added and the mixture was heated to-60 °C for 12 h. Then the reaction mixture was concentrated under reduced pressure. After addition of 50 ml ice water the mixture was brought to pH 8 by addition of K2CO3. The aqueous phase was extracted with ethyl acetate (3x100 ml) and the combined organic layers were dried over MgSO-j. Removal of the solvent yielded 5.5 g of the desired product which was subjected to the following reaction without further purification. Yield: 5.5 g. (ii) 6-Amino-5-iodo-nicotinic acid methyl ester To 5 g 6-Amino-nicotinic acid methyl ester and 16.2 g Bis(pyridine)iodonium(i) tetrafluoroborate in 250 ml DCM, 7.6 ml Trifluoromethanesulfonic acid were added dropwise at 0°C The mixture was stirred for 24 h at RT. Then additional 3.2 g Bis(pyridine)iodonium(i) tetrafluoroborate and 1.5 ml Trifluoromethanesulfonic acid were added. After stirring for 2 h at RT the reaction mixture was concentrated under reduced pressure and then taken-up with concentrated aqueous Na2SC>3 solution and brought to pH 8 with concentrated aqueous ammonia. The mixture was extracted with ethyl acetate (2x150 ml). The combined organic layers were washed with brine and then dried over MgS04. After filtration the solvent was removed under reduced pressure and the residue was codestilled with 100 ml toluene. Yield; 9.6 g. (Hi) 1H-Pyrrolo[23"b]pyridine-2f5-dicarboxylic acid 5-methyl ester A solution of 5.6 g 6-Amino-5-iodo-nicotinic acid methyl ester, 5.3 g2-Oxo-propionic acid, 11.1 g NEfe, 4.2 gTriphenylphosphine and 1.1 g Pd(OAc)2 in 100 ml DMF was heated under argon to 100°C After 10 h the reaction mixture was concentrated under reduced pressure and the residue was strirred with 250 ml water for 1 h. The precipitated product was collected by which was partitioned between 5 ml aqueous 0.1 N sodium hydroxide solution and 5 ml ethyl acetate. The organic layer was washed with additional water and then dried over sodium sulphate. After filtration and removal of the solvent under reduced pressure, a white solid was obtained. Yield: 10 mg MS(ES+): m/e = 484, chloro pattern. 1H-NMR (500 MHz, DMSO/TMS): 5 = 8.53 (d, 1H); 8.46 (d, 1H); 8.03 (d, 1H); 7.57 (d, 1H); 732 (s, 1H); 7.28 (dd, 1H); 7.26 (d, 1H); 6.65 (s, 1H); 5.93 (s, 2H); 3.75 (m, 1H); 2.80 (m, 2H); 2.70 (m, 1H); Z17 (m, 2H); 1.80 (m, 2H); 1.53 (m, 2H); 0.96 (d. 6H) Example 6: l"[5"(5-Chloro-thiophen-2»yIHsoxazol-3-ylmethyI)-2-(Visopropyl-piperidin-4-ylcarbamoyl}-! H-pyrrolo[3,2-b]pyridine-5-carboxylic acid (i) 5-Arnino-6-bromo-pyridine-2-carboxyIic acid methyl ester To a solution of 5.00 g 5-amino-pyridine-2-carboxylic acid methyl ester in 75 ml of a 48% aqueous solution of hydrobromic acid, 3.39 ml of a 32% aqeous solution of hydrogen peroxide were added. The mixture was stirred at room temperature for 2 hours, then additional 0.80 ml hydrogen peroxide solution were added. After stirring for 1 hour the reaction mixture was cooled down and brought to pH 8 by addition of concentrated aqueous ammonia. The mixture was extracted with 300 ml ethyl acetate. The aqueous layer was washed with additional ethyl acetate and then the combined organic phases were dried over sodium sulfate. After filtration the solvent was removed under reduced pressure and the residue was purified by chromatography on silica gel eluting with a n-heptane/ ethyl acetate gradient. Meld: 2.83 g MS(ES+):m/e=231. 1H-NMR (400 MHz, DMSO/TMS): 5 = 7.80 (d, 1H); 7.10 (d, 1H); 6.37 (s, 2H); 3.80 (s, 3H) (ii) !H-Pyrrolo[3,2-b]pyridine-2,5-dicarboxyIic acid 5-methyl ester The following compound was prepared in analogy to example 5 by using 5-amino-5-bromo-pyridine-2-carboxyIic acid methyl ester instead of 2-bromo-pyridin-3-ylamine. MS(ES+):m/e=221. 1H-NMR (400 MHz, DMSO/TMS): 5 = 11.80 (s, 1H); 7.89 (d, 1H); 7.84 (d, 1H); 6.93 (s, 1H); 3.88 (s, 3H). (iii) 2-(1-lsopropyl-piperidin-4-yicarbamoyl)-l H-pyrroIo[3,2-b]pyridine-5-carboxyIic acid methyl ester To a solution of 140 mg lH-pyrrolo[3,2-b]pyridine-2,5-dicarboxylic acid 5-methyl ester in 1.4 ml N,N-dimethylformamide and 0.35 mi triethylamine, 164 mg l-isopropyI-piperidin-4- ylamine hydrochloride and 161 mg bis(2HDxo-3-oxazoiidinyI)phophinic chloride were added at room temperature and the mixture was stirred for 1 hour. After removing of the solvent under reduced pressure the resklue"was purified by preparative HPLC (C18 reverse phase column, elution with a water/ acetonitrile gradient with 0.1%trifluoroacetic acid). The fractions containing the product were evaporated and lyophilized to yield a white solid. The product was obtained as its trifluoroacetate salt. Yield: 112 mg MS(ES+): m/e = 345. 1H-NMR (400 MHz, DMSO/TMS): 6 = 12.20 (s, 1H); 9.10 (s, 1H); 8.79 (d, 1H); 7.93 (m, 2H); 7.42 (s, 1H); 4.14 (m, 1H); 3.90 (s, 3H); 3.47 (m, 3H); 3,15 (m, 2H)r2.15~(m, 2H); 1.88 {m, 2H); 1.28 (d. 6H). (iv)1-[5-(5-Chloro-thiophen-2-yI)-^ 1H-pyrrolo[3T2-b]pyridine-5»carboxyIicacid methyl ester To a solution of 60 mg2-(1-isopropyl-piperidin-4-ylcarbamoyI)-1H-pyrrolo[3,2-b]pyridine-5-carboxylic acid methyl ester in 2 ml N,N-dimethylformamide, 4 mg sodium hydride (95%) were added at 0°C After stirring at 0°Cfor 10 minutes 53 mg 3-bromomethyl-5-(5-chloro-thiophen-2-yI)-isoxazole were added and the mixture was stirred for 2 hours at room temperature. After removing the solvent under reduced pressure the residue was purified by preparative HPLC (C18 reverse phase column, elution with a water/acetonitrile gradient with 0.1%trifluoroacetic acid). The fractions containing the product were evaporated and lyophilized to yield a white solid. The product was obtained as its trifluoroacetate salt. Meld: 50 mg MS(ES+): m/e= 542, chloro pattern. 1H-NMR (400 MHz, DMSO/TMS): 5 = 8.93 (m, 2H); 8.25 (d, 1H); 8.04 (d, 1H); 7.55 (d, 1H); 7.42 (s, 1H); 7.28 (d, 1H); 6.69 (s, 1H); 5.97 (s, 2H); 4.07 (m, 1H); 3.91 (s, 3H); 3.45 (m, 2H); 3.10 (m, 2H); 2.10 (m, 3H); 1.83 (m, 2H); 1.25 (d. 6H). (v) 1-[5-(5-Chloro by preparative HPLC (C18 reverse phase column, elution with a water/ acetonitrile gradient with 0.1% trifiuoroacetic acid). The fractions containing the product were evaporated and lyophilized to yield a white solid. The product was obtained as its trifluoroacetate salt. Yield: 25 mg MS(ES+): m/e= 528, chloro pattern. 1H-NMR (500 MHZ, DMSO/TMS): 5 = 13.00 (s, 1H); 8.90 (m, 2H); 8.23 (d, 1H); 8.03 (d, 1H); 7.56 (d, 1H); 7.42 (s, 1H); 7.28 (d, 1H); 6.69 (s, 1H); 5.98 (s, 2H); 4.07 (m, 1H); 3.45 (m, 2H); 3.10 (m, 2H); 2.10 (m, 3H); 1.83 (mf 2H); 1.25 (d. 6H). Example 7:1-[5"(5-Chloro-thiophen-2-yI)-isoxa2ol-3-ylmethyI]-5-oxo-4,5-dihydro-lH-pyrrolo[3^- b]pyridine-2-carboxy!icacid (l-isopropyl-piperidin-4-y!}-arnide— (i) l-fS^S-Chloro-thiophen^ylj-isoxazol-S-ylmethylj^-oxy-IH-pyrrolop^-bJpyridine^- carboxylic acid methyl ester ■ To a solution of 80 mg l-[5-(5"ChlorO"thiophen-2-yI)-isoxazol-3-ylmethyI]-1H-pyrrolo[3,2- b]pyridine-2- carboxylic acid methyl ester in 1 ml dichloromethane a solution of 52.8 mg 3- chloroperoxybenzoic acid (70%, wet with water) in 1 ml dichloromethane were added at 0°C After stirring at.0°C for 1 hour the reaction mixture was allowed to warm up to room temperature and stirred for 16 hours. The solution was washed with an aqueous 0.1 N solution of sodium hydroxide. The organic layer was washed with additional water and then dried over anhydrous sodium sulfate. After concentration under reduced pressure the residue was directly subjected to the subsequent reaction without further purification. Yield: 100 mg MS(ES+): m/e=390, chloro pattern (ii) H5-(5-Chloro-thiophen-2-yIV b]pyridine-2-carboxylic acid methyl ester A solution of 100 mg !-[5-(5-Chloro-thiophen-2-yl}-isoxazol-3-yImethyl]-4-oxy-lH-pyrrolo[3,2- b]pyridine-2-carboxylic acid methyl ester in 5 ml acetic anhydride was heated for 4 hours at 100°C. After cooling to room temperature the solvent of the mixture was removed under reduced pressure. After coevaporating twice with 5 ml toluene the residue was dissolved in 5 ml methanol and 17.6 mg potassium carbonate were added. The suspension was stirred for 16 hours at room temperature. After concentration under reduced pressure the residue was purified by preparative HPLC (C18 reverse phase column, elution with a water/ acetonitrile gradient with 0.1% trifiuoroacetic acid). The product was obtained as its trifluoroacetate salt. Yield: 20 mg M5(ES+): m/e=390, chloro pattern. 1H-NMR (400 MHZ, DMSO/TMS): 6 = 11.65 (s, 1H), 7.90 (d, 1H); 7.60 (d, 1H); 7.28 (d, 1H); 6.71 (s, 1H); 6.67 (s, 1H); 6.35.(d, 1H); 5.87 (s, 2H); 3.81 (s, 3H). (iii) 1-[5H5-Chloro4hiophen-2-yIH^ b]pyridine-2-carboxyiic acid A solution of 20 mg) 1»[5-(5-ChIoro^hiophen-2-y!Hsoxa2ol-3-ylmethyl]-5-oxo-4,5-dihydro-1 H-pyrroIo[3,2-b]pyridine-2-carboxyIic acid methyl ester and 1.9 mg lithium hydroxide in a mixture of 2ml tetrahydrofuran and 1 ml water was stirred for 2 hours at room temperature. The solvent was removed under reduced pressure and the residue was coevaporated twice with > toluene. The residue was directly subjected to the subsequent reaction without further purification. Yield; 20 mg MS(ES+): m/e=376, chioro pattern. (iv) 1-[5-(5-Chloro-thiophen-2-yI)-isoxazol"3-ylmethyl]-5-oxo-4,5-dihydro-1H-pyrrolo[3,2-b]pyridine-2-carboxylic acid (1-isopropyl-piperidin-4-yI)-amide To a suspension of 19.9 mg 1-[5-(5 oxazolidinyl)phosphinic chloride in 1 ml dichioromethane 7.4 pi triethyiamine.were added at room temperature and the mixture was stirred for 2 hours. The reaction mixture was treated with 5 ml of a aqueous 0.1 N sodium hydroxide solution and washed with acetyl acetate. The organic layer was dried over anhydrous sodium sulfate. After filtration and removal of the solvent under reduced pressure the residue was dissolved in a mixture of 2 ml acetonrtrile and 1 ml water. Lyophilization of the solution yielded a white solid. Yield: 8 mg MS(ES-f): m/e=500, chioro pattern. 1H-NMR (500 MHz, DMSO/TMS): 6 = 11.70 (s, 1H); 8.36 (d, 1H); 7,83 (d, 1H); 7.59 (d, 1H); 7.28 (d, 1H); 6.76 (s, 1H); 6.63 (s, 1H); 6.22 (d, 1H); 5.85 (s, 2H); 3.68 (s, 1H); 2.78 (m, 2H); 2.68 (m, 1H); 2.14 (m, 2H); 1.75 (m, 2H); 1.51 (m, 2H); 0.98 (d, 6H). Example 8:1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(3,4,5,6-tetrahydro-2H-[1,4!]bipyridyI-4-ylcarbamoyl)-1H-pyrrolo[3,2-b]pyridine-5-carboxylic acid methyl ester (i)2-(3,4,5(6-Tetrahydro-2H-[1,4']bipyridyM-ylcarbamoyl)-1H-pyrroIo[3,2-b]pyridine"5-carboxylic acid methyl ester . To a solution of 450 mg 1 H-pyrrolo[3,2-b]pyridine-2,5-dicarboxyiic acid 5-methy! ester in 9 ml dichloromethane and 1.13 ml triethylamine, 614 mg 3,4,5,6-tetrahydro-2H-[1,4']bipyridyl-4- ylamine dihydrochloride and 520 mg bis(2-ox6-3-oxazolidinyI)phophinic chloride were added at room temperature and the mixture was stirred for 2 hours. After treatment of the reaction mixture with 5 ml saturated aqueous solution of potassium carbonate the precipitate was collected by filtration and coevaporated twice with toluene. The residue was directly subjected to the subsequent reaction without further purification. Yield: 300 mg MS(ES+): m/e= 380. 1H-NMR (400 MHz, DMSO/TMS): 5 = 8.30 (m, 1H); 8.15 (d, 2H); 7.68 (m, 2H); 7.04 (s, 1H); 6.85 (d, 2H); 4.10 (m, 1H); 3.95 (m, 2H); 3.84 (s, 3H); 3.00 (m, 2H); 1.91 (m72H); 1.53 (m, 2H). (ii) 1-[5-(5-Chloro-thiophen^ ylcarbamoyl)-1H-pyrrolo[3,2-b]pyridine-5 bjpyridine- 5-carboxylic acid methyl ester 2 ml N,N-dimethylformamide, 9.5 mg sodium hydride (96%) were added at 0°C After stirring at 0°C for 10 minutes 121 mg 3-bromomethyI-5- (5-chloro-thiophen-2-yl)-isoxazole were added and the mixture was stirred for 50 hours at room temperature. 2 ml water were added to the reaction mature and the resulting precipitate was collected by filtration. The residue was dissolved in 2 ml N,N- dimethylformamide and purified by preparative HPLC (C18 reverse phase column, elution with a water/ acetonitrile gradient with 0.1% trifluoroacetic acid). The fractions containing the product were evaporated and lyophilized to yield a white solid. The product was obtained as its trifluoroacetate salt. Yield: 27 mg MS(ES+): m/e= 577, chloro pattern. Example 9:1-[5-(5-Chloro-th«ophen^ [1,4']bipyridyl-4-ylcarbamoyI)-1 H-pyrrolo[3,2-b]pyridine-5-carboxylic acid To a solution of 35 mg l-[^(5^hloro4hiophen-2-yI)-isoxa2ol-3-ylmethyl]-2-(1-isopropyl- piperidin-4- ylcarbamoyI)-1H-pyrrolo[3,2-b]pyridine-5-carbox7lic acid methyl ester in 0.5 ml tetrahydrofuran and 0.25 ml water 2.4 mg lithium hydroxide were added and the mixture was stirred at room temperature for 16 hours. After removing of the solvent under reduced pressure the resulting residue was purified by preparative HPLC (C18 reverse phase column, elution with a water/ acetonitrile gradient with 0.1% trifluoroacetic acid). The fractions containing the product were evaporated and lyophilized to yield a white solid. The product was obtained as itstrifluoroacetate salt. Yield: 143 mg MS(ES+): m/e= 563, chloro pattern. 1H-NMR (500 MHz, DMSO/TMS): 5 = 13.25 (s, 1H); 13.00 (s, 1H); 8.73 (d, 1H); 8.24 (m, 3H); 8.03 (d, 1H); 7.57 (d, 1H);.7.39 (sf 1H); 7.26 (m,~3H); 6.69 (s, 1H); 5.98 (s, 2H); 4.25 (m, 3H); 2.00 (m, 2H);1.59(m,2H). Example 10:1-[5-(5«Chloro-thiophen-2-yI)-isoxazol-3-ylmethyl]-5-(2-metho>^'-ethox7)-1 H-pyrrolo[2,3-c]pyridine-2-carboxylicacid (1-isopropyl-piperidin-4-yI}-amide (i)2-(2-Methoxy-ethoxy)-4-methyl-5-nitro-pyridine To 20 ml of 2-Methoxy-ethanol 243 mg of NaH (6.09 mmol, 60% suspension in oil) were added and the mixture was stirred for 15 min. in an argon atmosphere. 1g (5.8 mmol) 2-Chloro-4-methyl-5-nitro-pyridine were added and the reaction mixture was stirred for 3h at room temperature. After addition of 40 ml water and methyl-tertbutyl ether, the phases were separated and the organic phase was washed with saturated NaHC03 solution and water and was dried over Na2SCU. After filtration, the solvent was removed in vacuo and the residue was purified by flash chromatography on silica gel using heptane/ethyl acetate = 8/2. 2-(2-Methoxy-ethoxy)-4-methyl-5-nitrchpyridine was isolated as colourless oil. Yield: 0.73 g. (ii) 3-[2-(2-Methoxy»ethoxy)-5-nitro-pyridin-4-yl]-2-oxO"propionic acid ethylester potassium salt To 265 mg (6.78 mmol) potassium in 20 ml absolute diethylether, 2.5 ml ethanol were slowly added . The mixture is cooled to 0 °C and a solution of 720 mg (3.39 mmol) 2-(2-Methoxy-ethoxy)-4-methyl-5-nitro-pyridine in 2.5 ml of absolute diethylether and 0.5 ml ethanol were added. 3.966 g (27.14 mmol) oxalic acid diethylester in 15 ml toluene were added tropwise over 45 min.. The reaction mixture was stirred at room temperature for 4h. The precipitate was filtered, washed with diethyl ether/n-heptane 1/1 and dried in vacuo. 1.4 gof 3-[2-(2-Methoxy-ethoxy)-5-nitro-pyridin^-yI]-2-oxo-propionic acid ethylester potassium salt were isolated as a red solid and used in the next step without further purification. (iii) 5-(2-Methoxy-ethoxy)-1H-pyrrolo[2t3"C]pyridine-2-carboxylic acid ethyl ester 0.8 ml of acidic acid was added to a solution of dried 3-[2-(2-Methoxy-ethoxy)-5-nitro-pyridin-4-yl]-2-oxo-propionic acid ethylester potassium salt in 20 ml methanol and the solution was hydrogenated using 199 mg of Pd(OH)2(20 % on charcoal). After 3h the mixture was concentrated and the residue distributed between saturated NaHCCh solution and ethyl acetate. The phases were separated and the organic phase was dried over MgS04. After filtration, the solvent was removed in vacuo the desired product as a pale yellow solid. Yield: 660 mg. (iv) 1^5-(5-ChlorcKhiophen-2-ylKisoxazo^ c5pyridine-2-carboxylic acid ethyl ester 105 mg (4.16 mmol) NaH (96 %) were added to a solution of 5-{2-Methoxy-ethoxy)-lH- pyrrolo[23-c]pyridine-2-carboxylic acid ethyl ester in 50 ml absolute DMF and the mixture was stirred for 30 min. at room temperature. 1.05 g (3.78 mmol) 3-Bromomethyl-5-(5-chlon> thiophen-2-yl)-isoxazole were added and the the mixture and stirring was continued for 3h. After addition of 21 mg (0.832 mmol) NaH (96 %) and 210 mg (0.756 mmoI)-3-Bromomethyl-5- (5-chloro-thiophen-2-yl)-isoxazoIe and standing overnight the mixture was concentrated in vacuo. The residue was dissolved in CH2CI2 and the solution washed with saturated NaHC03 solution. The solvent was removed in vacuo and the residue purified by flash chromatography over silica gel using n-heptane/ethyl acetate = 3/2 as solvent. The fractions containing the product were concentrated. Yield 1.3 g. (v)1-[5-(5-Chloro-thiophen-2-yI)-isoxazoI-3-ylm^ c]pyridine-2-carboxylic acid To a solution of 1.3 g (2.814 mmol) 1-[5-(5-Chloro-thiophen-2-yI)-isoxazol-3-y!methyI]-5-(2- methoxy-ethoxy)-1H-pyrrolo[2,3- c]pyridine-2-carboxy!ic acid ethyl ester in 30 ml THF and 15 ml MeOH 11.26 ml 1M LiOH solution were added and the mixture was stirred at 50 °C for 3h. The organic solvents were removed in vacuo, 50 ml of water were added and the pH was adjusted to pH 2 with IN HCI solution. The desired product precipitated and was filtered, washed with water and dried over P2O5. Yield 1.11 g. (vi) V[5-(5-Chloro-thiophen-2-yI)-isoxazo!-3-ylmethyI]-5-(2-methoxy-ethoxy)-1 H-pyrrolo[2,3- cJpyridine-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide hydrochloride To a solution of 1.11g (2.55 mmol) 1-[5-(5-Chloro-thiophen-2-yI)HSOxazol-3-ylmethyl]-5-(2- methoxy-ethoxy)-1H-pyrro!o[2,3- c]pyridine-2-carboxylic acid and 0,55g (2.55 mmol) 1- isopropyl-piperidin-4-yIamine dihydrochloride in 20 ml absolute DMF 837 mg (2.55 mmol) TOTU and 1.34 ml (7.67 mmol) DIPEA were added and the mixture was stirred at room temperature for 4h. The solvent was removed in vacuo, the residue dissolved in CH2CI2 and the CH2CI2 phase washed with a saturated NaHC03 solution. The organic phase was concentrated and the residue purified by chromatography over silica gel using CH2Cl2/MeOH/HOAc/H20 = in the assay for determining the inhibition of factor Xa activity TBS-PEG buffer (50 mM Tris-HCI, pH 7.8,200 mM Nad, 0.05 % (w/v) PEG-8000, 0.02 % (w/v) NaN3) was used. The IC50 was determined by combining in appropriate wells of a Costar half-area microtiter plate 25 p! human factor Xa (Enzyme Research Laboratories, Inc.; South Bend, Indiana) in TBS-PEG; 40 yl 10 % (v/v) DMSO in TBS-PEG (uninhibited control) or various concentrations of the compound to be tested diluted in 10 % (v/v) DMSO in TBS-PEG; and substrate S-2765 (N(a)-benzyIoxycarbonyl-D-Arg-Gly-L-Arg-p-nitroanilide; Kabi Pharmacia, Inc.; Franklin, Ohio) in TBS-PEG. The assay was performed by pre-incubating the compound of formula I plus enzyme for 10 min. Then the assay was initiated by adding substrate to obtain a final volume of 100 pi. The > initial velocity of chromogenic substrate hydrolysis was measured by the change in absorbance" at 405 nm using a Bio-tek Instruments kinetic plate reader (Ceres UV900HDi) at 25 °C during the linear portion of the time course (usually 1.5 min after addition of substrate). The enzyme concentration was 0.5 nM and substrate concentration was 140 pM. ; b) Factor VI la Assay The inhibitory activity towards factor Vila/tissue factor activity was determined using a chromogenic assay essentially as described previously (J. A. Ostrem et al., Biochemistry 37 (1998) 1053-1059 which was incorporated herein by reference). Kinetic assays were conducted at 25 °C in half-area microtiter plates (Costar Corp., Cambridge, Massachusetts) using a kinetic plate reader (Molecular Devices Spectramax 250). A typical assay consisted of 25 pi human factor Vila and TF (5 nM and 10 nM, respective final concentration) combined with 40 pi of inhibitor dilutions in 10% DMSO/TBS-PEG buffer (50 mM Tris, 15 mM NaCl, 5 mM CaCl2, 0.05 % PEG 8000, pH 8.15). Following a 15 minutes preincubation period, the assay was initiated by the addition of 35 pi of the chromogenic substrate S-2288 (D-lle-Pro-Arg-p-nitroanilide, Pharmacia Hepar Inc., 500 pM final concentration). The results (inhibition constants Ki (FXa) for inhibition of factor Xa) are shown in Table 1. indazoiyi, indolyl, isochromanyl, isoindolyl, isoquinoiinyl, phenylpyridyl, phthalazinyl, pteridinyl, purinyl, pyridyl, pyridoimidazolyl, pyridopyridinyl, pyridopyrimidinyl, pyrimidinyl, quinazolinyl, quinolyl, quinoxalinyl or 1,4,5,6-tetrahydro-pyridazinyJ, wherein said heterocydyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R8, or 3) a heterocydyl, wherein heterocydyl is selected out of the group acridinyl, azabenzimidazolyl, azaspirodecanyl, azepinyl, azetidinyl, aziridinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, carbazolylf 4aH-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydrochinolinyl, 4,5-dihydrooxa-zoIinyl, dioxazolyl, dioxazinyl, 13-dioxoIanyl, 1,3-dioxolenyl, 6H-1,5,2-dithiazinyI, dihydrofuro[2,3-b]-tetrahydrofuranyl, furanyl.furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl, isothiazolyl, isothiazolidinyl, isothiazolinyl, isoxazolyl, isoxazolinyl, isoxazolidinyl, 2-isoxazoIinyl, ketopiperazinyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2-oxa-thiepanyf, 1,2-oxathiolanyl, 1,4-oxazepanyl, 1,2-oxazinyl, 1,3-oxazinyl, 1,4-oxazinyl, oxazolidinyl, oxazolinyl, oxazolyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazolyl, pyridoimidazolyl, pyridothiazolyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolidinonyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinoIizinyl, quinoxalinyl, quinudidinyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, 1,4,5,6-tetrahydro-pyridazinyl, tetrahydropyridinyl, tetrahydrothiophenyl, tetrazinyl, tetrazolyl, 6H-1,2,5-thiadiazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazoIyl, 1,3,4-thiadiazolyl, thianthrenyl, 1,2-thiazinyl, 1,3-thiazinyl, 1,4-thiazinyl, 1,3-thiazolyl, thiazolyl, thiazolidinyl, thiazolinyl, thienyl, thietanyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thietanyl, thiomorpholinyl, thiophenolyl, thiophenyl, thiopyranyl, 1,2,3-triazinyl, 1,2,4-triazinyl, 1,3,5-triazinyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazoly! and xanthenyl, wherein said heterocydyl is unsubstituted or mono*, di- or trisubstituted independently of one another by R8, and which is additionally substituted by a heterocydyl selected out of the group acridinyl, azabenzimidazolyl, azaspirodecanyl, azepinyl, azetidinyl, aziridinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazofyl, carbazolyl, 4aH-carbazolyl, carbolinyi, chromanyl, chromenyl, cinnolinyl, decahydrochinolinyl, 4,5-dihydrooxa-zoIinyl, dioxazolyl, dioxazinyl, 1,3-dioxolanyl, 1,3-dioxoIenyl, 6H-1,5,2-dithiazinyI, dihydrofuro[2,3- bj-tetrahydrofuranyl, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H- indazolyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl, isothiazoiyl, isothiazolidinyl, isothiazolinyl, isoxazolyl, isoxazolinyl, isoxazolidinyl, 2-isoxazolinyl, ketopiperazinyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1,2r3-oxadiazolyl, 1^,4- oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2-oxa-thiepanyl, 1,2-oxathioIanyl, 1,4- oxazepanyl, 1,2-oxazinyl, 1,3-oxazinyl, 1,4-oxazinyI, oxazoiidinyl, oxazolinyl, oxazolyl, phenanthridinyl, phehanthrolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazojyl, pyridazinyl, pyridooxazolyl, pyridoimidazolyl, pyridothiazolyl, pyridyl, pyrimidinyl., pyrrolidinyl, pyrrolidinonyl, pyrrolinyl,2H-pyrrolyl, pyrrolyl, quinazolinyl, quinolinyi,4H-quinolizinyl, quinoxalinyl, quinudidinyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, 1,4,5,6-tetrahydro- pyridazinyl, tetrahydropyridinyl, tetrahydrothiophenyl, tetrazinyl, tetrazolyl, 6H-1,2,5- thiadiazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyI, 1,2,5-thiadiazolyl, 1,3,4-thiadiazoiyl, thianthrenyl , 1,2-thiazinyl, 1,3-thiazinyl, 1,4-thiazinyI, 1,3-thiazoIyl, thiazolyl, thiazolidinyl, thiazolinyl, thienyl, thietanyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thietanyl, thiomorpholinyl, thiophenolyl, thiophenyl, thiopyranyl, 1,2,34riazinyl,1,2,44riazinyl, 1,3,5-triazinyl, 1,2,3-triazolyl, 1,2,4-triazojyl, 1,2,5-triazolyI, 1,3,4-triazolyl and xanthenyl, wherein heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R8, R8 is 1) halogen, • 2) -N02, 3) -CN, 4) -C(0)-NH2, 5) -OH, 6) -NH2, 7) -0-CF3 8) a monocyclic or tricyclic 5- to 14-membered aryl, wherein aryl is as defined above and wherein aryl is mono-, di- or trisubstituted independently of one another by halogen or -0-(0|-Cg)-a!kyi, 9) -(CvCg)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, NH2» -OH or a methoxy residue, 10) -0-(C-|-Cg)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, NH2, -OH or a methoxy residue, 11) -S02-CH3or 12) -SO2-CF3, provided that R8 is at least one halogen, -C(0)-NH2 or-0-(G|-Chalky! residue, if R° is a monocyclic or bicydic 6- to 14-membered aryl, wherein aryl is as defined above, substructure D is a residue selected out of the group azetidine, azetine, azocane, azocane-2-one, cydobutyl, cydooctane, cyclooctene, cydopentyl, cyclohexyl> cydoheptyl, cydooctyl, 1,4-diazepane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, [1,4]diazocane, [1,2]diazocan-3-one, [1,3]diazocan-2-one, dioxazole, dioxazine, dioxole, 1,3-dioxolene, 1,3-dioxolane, furan, imidazole, imidazoline, imidazolidine, isothiazole, isothiazolidine, isothiazoline, isoxazole, isoxazoline, isoxazolidine, 2-isoxazoline, ketopiperazine, morpholine, 1,2-oxa-thiepane, 1,2-oxathiolan, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, oxazole, [1,4]oxazocanef [1,3]oxazocan-2-one, oxetan, oxocane, oxocan-2-one,; piperazine, piperidine, pyran, pyrazine, pyrazole, pyrazoline, pyrazolidine, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, pyrroline, 5,6,7,8-tetrahydro-1H-azocin-2-one, tetrahydrofuran, tetrahydropyran, tetrahydropyridine, tetrazine, thiadiazine, thiadiazole, 1,2-thiazine, 13-thiazine, 1,4-thiazine, 1,3-thiazole, thiazole, thiazolidine, thiazoline, thietan, thiocane, thiocane-1,1-dioxide, thiocane-1-oxide, thiocan-2-one, thiomorpholine, thiophene, thiopyran, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole or 1,2,4-triazole and is unsubstituted or substituted 1,2,3,4,5 or 6 times by R23, or is substituted 1 or 2 times by =0, wherein R10 is as defined below, and wherein n and m are independently of one another identical or different and are the integers zero, 1,2,3,4,5 or 6, wherein the alkylene * residues which are formed by -(CH^m-or *(CH2)n'are unsubstituted or mono-, di* or trisubstituted independently of one another by halogen, -NH2 or -OH; or -{C3-C5)- cycloalkylen, wherein cycloalkylen is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, -NH2 or -OH; R1 is a hydrogen atom, -(G|-C4)-allcyl, wherein alkyl is unsubstituted or substituted one to three times by R13; -(C-j^-alkylene-C^-NH-R0, -(CrC3)-alkylene-C(0)-0-R15, an aryl out of the group phenyl, naphthyl, biphenylyl, anthryl or fluorenyl, wherein aryl is mono-, di- or trisubstituted independently of one another by R8, wherein R8 is as defined above; -(Co-Cj^alkylene-het, wherein het is a residue selected out of the group azepine, azetidine, aziridine, azirine, 1,4-diazapane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, diaziridine, diazirine, dioxazole, dioxazine, dioxole, 1,3-dioxolene, 1,3-dioxolane, furan, imidazole, imidazoline, imidazolidine, isothiazole, isothiazolidine, isothiazoline, isoxazole, isoxazoline, isoxazolidine, 2-isoxazoline, ketopiperazine, morpholine, 1,4-oxazepane, 1,2-oxa-thiepane,1,2-oxathiolane, 1,2-oxazine,1,3-oxazine, 1,4-oxazine, oxazole, oxaziridine, oxirane, piperazine, piperidine, pyran, pyrazine, pyrazole, pyrazoline, pyrazolidine, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, pyrroline, tetrahydropyridine, tetrazine, tetrazole, thiadiazine thiadiazole, 1,2-thiazine, 1,3-thiazine, 1,4-thiazine, 1,3-thiazole, thiazole, thiazolidine, thiazoline, thienyl, thietan, thiomorpholine, thiopyran, 1^,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole or * Z4-triazole, wherein het is unsubstituted or mono-, di- or trisubstituted independently of or>e another by R14f K4* and R5' are independent of one another are identical or different and are hydrogen atom or -(C^-C^-aikyl, R2is a direct bond or-(0|-C4)-alkylene, R1 and R3 together with the atoms to which they are bonded can form a 6- to 8r membered cyclic residue selected out of the group azocane, azocane-2-one, 1,2-diazepine, 13*diazepine, 1,4-diazepine, [1,4]diazocane, [1,2]diazocan-3-one, [1,3]diazocan-2-one, dioxazine, [l,4]dioxocane, dioxole, ketopiperazine, morpholine, 1,2-oxazme, 1,3-oxazine, 1,4-oxazine, [oxocane, oxocan-2-one, piperazine, piperidine, pyran, pyrazine, pyridazine, pyrimidine or 5,6,7,8-tetrahydro-1 H-azocin-2-one, wherein said cyclic group is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, or R1-N-RZ.V can form a 4- to 7-membered cyclic group selected out of the group azepine, azetidine, dioxazole, dioxazine, 1,2-diazepine, 13-diazepine, 1,4-diazepine, imidazole, imidazoline, imidazolidine, isothiazole, isothiazolidine, tsothiazoline, isoxazole, isoxazoline, isoxazolidine, 2-isoxazoline, ketopiperazine, morpholine, oxazole, piperazine, piperidine, pyrazine, pyrazole, pyrazoline, pyrazolidine, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, pyrroline, tetrahydropyridine, tetrazine,tetrazole, thiazole, thiadiazole, thiazolidine, thiazoline, thiomorpholine, 1,2,3-triazine, 1,2,4-triazine, 13,5-triazine, 1,2,3-triazole or 1,2,4-triazoIe, wherein said cyclic group is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, wherein R^ and R21 are independently from each other hydrogen atom, -(C-j-C^-perfluoroalkyl or -(C-i-CgJ-alkyl, V is 1) a monocyclic or bicyclic 6- to 14-membered aryl out of the group phenyl, naphthyl, biphenyl'yl, anthryl or fluorenyl, wherein aryl is mono-, di- or trisubstituted independently of one another by R14, 2) a heterocyclyl out of the group acridinyl, 8-aza-bicyclo[3.2.l]oct-3-yl, azaindole (IH-pyrrolopyridine), azabenzimidazolyl, azaspirodecanyl, azepinyl, azetidinyl, aziridinyl, benzimidazolyi, benzofuranyl, benzothiofuranylf benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, carbazolylt 4aH-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydrochinolinyl, 1,4-diazepane, 4,5-dihydrooxa-zolinyI, dioxazo'lyl, dioxazinyl, 13-dioxolanyl, 13-dioxolenyl, 6H-1,5,2-dithtazinyl, dihydrofuro[23-b]-tetrahydrofuranyl, furanyl, furazanyl, tmidazoiidinyl, imidazolinyl, imidazolyl, IH-indazolyl, indolihyl, indolizinyl, indolyl, 3H-indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl, bothiazolyl, isothiazolidinyl, isothiazolinyl, isoxazolyl, tsoxazolinyl, isoxazoiidinyl, 2-isoxazolinyl, ketopiperazinyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1,23-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyI, 1,2-oxa-thiepanyl, 1',2-oxathiolanyl, 1,4-oxazepanyl, 1,2-oxazinyl, 13-cxazinyl, 1,4-oxazinyl, oxazolidinyl, oxazolinyl, oxazolyl, phenanthridinyl, phenanthfolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthaiazinyl, piperazinyl, piperidinyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazolyl, pyridoimidazolyl, pyridothiazolyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolidinonyl, pyrrolinyl, 2H-pyrroIyI, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinudidinyl, tetrahydrofuranyl, tetrahydroisochinolinyl, tetrahydrochinolinyl, 1,4,5,6-tetrahydro-pyridazinyl, tetrahydropyridinyl, tetrahydrothiophenyl, tetrazinyl, tetrazolyl, 6HO^,5-thiadiazinyl, 1,23-thiadiazolyI, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 13,4-thiadiazoIyl, thianthrenyl, 1,2-thiazinyI, 13-thiazinyl, 1,4-thiazinyl, 1,3-thiazolyl, thiazolyl, thiazolidinyl, thiazolinyl, thienyl, thietanyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thietanyl, thiomorpholinyl, thiophenyl, thiopyranyl, 1,23-triazinyl, 1,23-triazolyl, 1,23-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyl and xanthenyl, wherein said heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, R1C and R20 are independently of one another hydrogen, -(Oj-CeMkyl, -{C^Cv^Ikyl-OH, -(Co-C4)-alkyl-0-(Crq)-akyl or -(CrC3)-perfluoroa!kyl, R15 and R16 are independently of one another hydrogen, -(Cq-C^-alkyl, cyclopropyl, cydobutyl, cydopentyl or cyclohexyl, vyherein each ring Is unsubstituted or substituted one to three times by R™, and R17 h -(Oj-C^alkyl, -(CrC5}-alkyl-OH, -(C Cgr«lkyl-{C3*C8)-cycIoalkyI, -(C0-C5)-alkyl-(C3-C8) R° is 1) a monocyclic or bicyclic 6- to 14-membered aryl out of the group phenyl, naphthyl, biphenyl, anthryl or fluorenyl, wherein aryl is mono-, di- or trisubstituted independently of one another by R8, 2) a heterocyclyl out of the group benzimidazolyl, 13-benzodioxolyl, benzofuranyl, benzoxazolyl, benzothiazolyl, benzothiophenyl, cinnolinyl, chromanyl, indazofyl, indolyl, isochromanyl, isoindolyl, isoquinolinyl, phenylpyridyl, phthalazinyl, pteridinyl, purinyl, pyridyl, pyridoimidazolyl, pyridopyridinyl, pyridopyrimidmyl, pyrimidinyl, quinazolinyl, quinolyl, quinoxalinyl or 1,4,5,6-tetrahydro-pyridazinyl, wherein said heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R8, or 3) a heterocyclyl out of the group azabenzimidazolyl, benzimidazolyl, 1,3-benzodioxolyl, benzofuranyl, benzothiazolyl, benzothiophenyl, benzoxazolyl, chromanyl, cinnolinyl, 2-furyl, 3-furyl; imidazolyl, indolyl, indazolyl, isochromanyl, isoindolyl, isoquinolinyl, isothiazolyl, isoxazolyl, oxazolyl, phthalazinyl, pteridinyl, purinyl, pyrazinyl, pyrazolyl, pyridazinyl, pyridoimidazolyl, pyridopyridinyl, pyridopyrimidinyl, 2-pyridyI, 3-pyridyl, 4-pyridyl, pyrimidinyl, pyrrolyl; 2-pyrrolyl, 3-pyrrolyl, quinolinyl, quinazolinyl, quinoxalinyl, tetrazolyl, thiazolyl, 2-thienyl or3-thienyl, which is additionally substituted by a heterocyclyl selected out of the group acridinyl, azabenzimidazolyl, azaspirodecanyl, azepinyl, azetidinyl, aziridinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, carbazolyl, 4aH-carbazoIyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydrochinolinyl,4,5-dihydrooxa-zolinyl, &0302DM, dioxazinyl, 1,3-dioxqlanyl, 1,3-dioxolenyI, 6H-1,5,2-dithiazinyl, dihydrofuro[2,3-b}4etrahydrofuranyl, furanyl, furazanyl, imidazolidinyl, imidazoline, imidazolyl, 1H-imfazotyt, indolinyl, indolizinyl, indolyl, 3H-indolyl, isobenzofuranyl, isochromanyl, isotndazolyl, isoindolinyU isoindolyl, isoquinolinyl (benzimidazolyl), isothiazolyl, isothiazolidinyl, isothiazolinyl, isoxazolyl, isoxazolinyl, isoxazolidinyl, 2-isoxazolinyl, ketopiperazinyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadlazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyM,3f4-oxadiazolyI, 1^-oxa-thiepanyI, 1,2-oxathiolanyl, 1,4-oxazepanyl, 1,2-oxazinyl, 1,3-oxazinyl, 1,4-oxazinyl, oxazolidinyl, oxazolinylfoxazolyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazolyl, pyridoimidazolyl, pyridothiazolyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolidinonyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, quinazolinyl, quinoiinyl, 4H-quinolizinyl, quinoxalinyl, quinudidinyl, tetrahydrofuranyl, tetrahydroisodiinolinyl, tetrahydrochinolinyl, 1,4,5,6-tetrahydro-pyridazinyl, tetrahydropyridinyl, tetrahydrothiophenyl, tetrazinyl, tetrazolyl, 6H-1,2,5-thiadiazinyl, 1 ,2,3-thiadiazolyI, 1,2,4-thiadiazoSyl, 1 ,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, thianthrenyl, 1,2-thiazinyI, 1,3-thiaziny!, 1f4-thiazinyl, 1,3-thiazolyl, thiazoiyl, thiazoiidinyl, thiazolinyl, thienyl, thietanyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thietanyl, thiomorpholinyl, thiophenyl, thiopyranyl, 1,2,3-triazinyl, 1,2,3-triazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyI, 1,3,4-triazolyl and xanthenyl, wherein heterocydyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R8, R8 is 1. fluorine, chlorine or bromine, 2. -N02, 3. -CN, 4. -C(0)-NH2> 5. -OH, 6. -NH2, 7. -OCF3 8. a monocydic or bicydic 6- to 14-membered aryl, wherein aryl is as defined above and is mono-, di- or trisubstituted independently of one another by halogen or-O^C-j-CgJ-alkyl, 9. -(C-|-C8)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, NH2» -OH or a methoxy residue, or 10. -0-(O|-C8)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, NH2, -OH or a methoxy residue, 11. -S02CH3or 12. -SO2CF3, provided that R8 is at least one halogen, -C(0)-NH2 or-0-(C or a heterocydyl, which are as defined above, substructure D ' is a residue selected out of the group pyridyl, pyridyJ-N-oxide, pyrrolyl, furyl, thienyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, triazolyl, isothiazolyl, thiadiazolyl, pyrimidinyl, pyridazinyl, pyrazinyl and is unsubstituted or substituted 1,2,3 or 4 times by R23, or is substituted 1 or 2 times by =0, Q is a direct bond, -(C0 -C^'Mene-C^-NR10-, -NR10-C(O)-NR10-, -NR10-C(0)-, -S02- or -{C-|-Cg)-alkylene, R1 is a hydrogen atom, -(C three times by R13; -(C-i-C^-alkykne-C^-NH^R0, :(CrC3)-alkylene-C(0)-0-R15, -(CrC3)-per- fh*orMlkylene^CrCjH C3}-alkylene-S(0)2-N(R4VR5\-{Ci cydoalkyl, or -(CQ-C3)-alkylene-het, wherein het is a residue selected out of the group azeptne, azetidine, aziridine, azirine, 1,4-diazepane, 1,2-diazepine, 1,3-d'razepine, 1,4-diazepine, diaziridine, diazifine, dioxazole, dioxazine, dioxole, 1,3-dioxolene, 1,3-dioxolane, furan, imidazole, imidazoline, imidazolidine, isothiazole, isothiazolidine, isothiazoline, isoxazole, isoxazoline, isoxazolidine, 2-isoxazoline, ketopiperazine, morpholine, 1^*oxa-thiepane, 1^-oxathiolane, 1,4-oxazepane, 1^-oxazine, 1,3-oxazine, 1,4-oxazine, oxazole, oxaziridine, oxirane, piperazine, piperidine, pyran, pyrazine, pyrazole, pyrazolone, pyrazolidine, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, pyrroline, tetrahydropyridine, tetrazine, tetrazole, thiadiazine thiadiazole, 1,2-thiazine, 1,3-thiazine, 1,4-thiazine, 1,3-thiazole, thiazole, thiazolidine, thiazoline, thienyl, thietan, thiomorpholine, thiopyran, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1.23-tnazole or 1,2,4-triazole, wherein het is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, R*'and R^'are independent of one another are identical or different and are hydrogen atom or -(C-i^-alkyl, R2h a direct bond or -(C-j^-alkylene, or R1-N-R2-V form a 4- to 7-membered cyclic group selected out of the group azepine, azetidine, 1,4~diazepane, dioxazole, dioxazine, 1,2-diazepine, 1,3-diazepine, 1 ,4-diazepine, imidazole, imidazoline, imidazolidine, isothiazole, isothiazolidine, isothiazoline, isoxazole, isoxazoline, isoxazolidine, 2-isoxazoline, ketopiperazine, morpholine, 1,4-oxazepane, oxazole, piperazine, piperidine, pyrazine, pyrazole, pyrazoline, pyrazolidine, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, pyrroline, tetrahydropyridine, tetrazine, tetrazole, thiazole, thiadiazole, thiazolidine, thiazoline, thiomorpholine, 1,2,3-triazine, 1 ,2,4-triazine, 1,3,5-triazine, 1,2,3-trrazole or 1,2,4-triazole, wherein said cyclic group is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, R14 is fluorine, chlorine, bromine, iodine, -OH, =0, -(Gj-Cg)-alkyl, -(C-j-C^-alkoxy, -NO2, -q0H)H, -CN, -NH2, -C(0)-0-(CrC4)-alkyl, -(Co-C8)-alkyl-S02-(CrC4}-alkyl» -(Co-CgJ-alkyl-SC^- (C^^perfluoroalkyl, -(Co-C8)-alkyl-S02-N(R1B)-R21, -C(0)-NH-(CvCs)-alkyl, allcyf^, -NR18-C(0)-NH-(CrC8)-alkyl, -C(0)-NH2> -S-R18 or-NR18-C(0)-NH-[(C1-C8)-alkyl]2> wherein R18 and R21 are independently from each other hydrogen atom, -(C-i-C^-perfluordalkyl or -(OpC^-alky!, V is 1) a het residue out of the group azaindole (1H-pyrrolopyridine), azepine, azetidine, aziridine, azirine, 1,4-diazepane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, diaziridine, diazirine, dioxazole, dioxazine, dioxole, 1,3-dioxolene, 1,3-dioxolane, furan, imidazole, imidazoline, imidazolidine, isothiazole, isothiazolidine, isothiazoline, isoxazole, isoxazoline, isoxazolidine, 2-isoxazoIine, ketopiperazine, morpholine, 1,2,-oxa-thiepane, 1 ,2-oxathiolane, 1,4-oxazepane, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, oxazole, oxaziridine, oxirane, piperazine, piperidine, pyran, pyrazine, pyrazole, pyrazoline, pyrazolidine, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, pyrroline, tetrahydropyridine, tetrazine, tetrazole, thiadiazine, thiadiazole, 1,2-thiazine, 13-thiazine, 1,4-thiazine, 1,3-thiazoIe, thiazole, thiazolidine, thiazoline, thienyl, thietan, thiomorpholine, thiopyran, 1^,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole or oxazepam oxazole, isoxazole, isoxazolidine, 2-isoxazoline, morpholine, thiazole, isothluok, thiadiazole or thiomorpholine, wherein said cyclic group is unsubstituted or mono-, ci- or trisubstituted independently of one another by R14, R14 isfluorine, chlorine, -OH, =0, -(CrC8)-alkyl, -C(0)-OH, -Cw, -NHZ, -C(0)-0-(CrC4).alkyl, ^(OJ-NH-^-Cgi-alkyl, -C(0)-N-[(CrC8)-alkyl^, -C(0)-NH2 or-N(R18)-R21, wherein R1* and R^l are independently from each other Hydrogen atom, -(0|-C3}-perfluoroalkyI or-(Ci-Cj.)alkyl» V is 1. a cyclic residue out of the group containing compounds which are derive from azaindole (IH-ryn-ciopyridine), aziridine, azirine, azetidine, azetidinone, 1 ,4-diazepane, pyrruie, pyrrolidine, pyridonyl, imidazole, pyrazole,1,2,3-triazole, l,2;4-triazole, tetrazole, pyridine, pyrimidine, pyrazine, 1 ,2,3-triazine, 1,2,4-triazine, 1,3,5-triarine, tetrazinef tetrazole, azepine, diazirine, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, pyridazine, piperidine, piperazine, pyrrolidinone, ketopiperazine, furan, pyran, dioxole, 1,4-oxazepane, oxazole, isoxazole, 2-isoxazoline, isoxazolidine, morpholine, oxirane, oxaziridine, 1,3-dioxolene, 1,3-dioxolane, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, oxaziridine, thiophene, thiopyran, thietan, thiazole, isothiazole, isothiazoline, isothiazolidine, 1,2-oxathiolan, thiodiazole, thiopyran, 1,2-thiazine, 1,3-thiazole, 1,3-thiazine, 1,4-thiazine, thiadiazine or thiomorpholine, wherein said cyclic residue is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, or 2. phenyl, wherein phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, or G is a direct bond, -(CH2W, or -(CH2)m-NR10-, m is the integers zero, 1,2,3 or 4, M is 1. a hydrogen atom, 2. heterocyclyl, wherein heterocydyl is a residue out of the group which can . be derived from azepane, azepine, 1,4-diazepane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, imidazole, isothiazole, isoxazole, isoxazolidine, 2-isoxazoline, ketomorpholine, ketopiperazine, morpholine, oxazole, [1,4]-oxazepane, piperazine, piperazinone, piperidine, piperidinone, pyrazine, pyridazine, pyridazinone, pyridine, pyridone, pyrimidine, pyrrolidine, pyrrolidinone, tetrahydropyran, 1,4,5,6-tetrahydro-pyridazinyl, tetrazine, tetrazole, thiadiazole, thiazole, thiomorpholine, thiophene, 1,2,3-triazine, 1,2,4- and iB addition is substituted by a residue selected out of the group pyridyl, 2- pyridyl, 3-pyridyi, 4-pyridyl, pyrrolyl, 2-pyrroIyI, 3-pyrrolyl, furyl, 2-furyl, 3-furyl; thienyl, 2- thienyl, 3-thierryl. imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, thiadiazolyl, isothiazofyl, triazolyl, tetrazolyl, pyridazinyl and pyrazinyl, wherein said residue is unsubstituted or mono-, di- or trisubstituted independently of one another by R8 R8 is 1. is Ft Clf Br J, Z -C(0)-NH2, 3. -(d-C^-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, -OH or a methoxy residue, or 4. " -0-(CrC4)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen or a methoxy residue, provided that R8 is at least one halogen, -C(0)-NH2 or -0-(Ci-C8)-alkyl residue, if RO is a aryl or a heterocydyl, which are as defined above, substructure D is a residue selected out of the group pyridyl, pyridyl-N-oxide, pyrrolyl, furyl, thienyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, triazolyl, isothiazolyl, ~ thiadiazotyt, pyrimidinyl, pyridazinyl, pyrazinyl and is unsubstituted or substituted 1,2,3 or 4 times by R33, or is substituted 1 or 2 times by =0, 0 is a direct bond, -C(0)-; -S02-( -(CrOO-alkylen or -(Co -C2)-alkylen-C(0)-NRlO-, R1 is hydrogen atom or -(GrC2)-aIkyl, R^ is a direct bond or -(d-C2)-alkylen, or RT-N-R^-Y can form a 4- to 7- membered cyclic group out of the group piperidine, piperazine, pyridine, pyrimidine, pyrrolidine, pyrrolidinone, 1,2,3-triazine, 1,2,4-triazine, 13,5-triazine,1,2,3-triazole, 1,2,4-triazoIe, tetrazine, tetrazole, 1,2-diazepine, 13-diazepine, 1,4-diazepine, azepine, ketopiperazine, oxazole, isoxazole, isoxazolidine, 2-isoxazoline, morpholine, thiazole, isothiazole, thiadiazole or thiomorpholine, wherein said cyclic group is unsubstituted or mono-, di- or trisubstituted independently of one another byR14, R14 is fluorine, chlorine, =0, -(Ot-Q-alkyl or-Nhh, V is 1. a cyclic residue out of the group containing compounds, which are derived from azaindolyl (1H-pyrrolopyridyl), azetidine, azepine, aziridine, azirine, 1,4-diazepane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, diazirine, 1,3-dioxolane, dioxazole, furan, imidazole, isoquinoline, isothiazole, isothiazolidine, isothiazoline, isoxazole, 2-isoxazoline, isoxazolidine, ketopiperazine, morpholine, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, oxazole, 10. A pharmaceutical preparation, comprising at least one compound of the formula 1 as daimed in one or more of claims 1 to 8 in ail its stereoisomeric forms and mixtures thereof in any ratio and/or its physiologically tolerable salts and a pharmaceutical^ acceptable carrier. 11. The use of a compound of the formula I as claimed in one or more of claims 1 to 8 in all its stereoisomeric forms and mixtures thereof in any ratio and/or their physiologically tolerable salts for the production of pharmaceuticals for the treatment of abnormal thrombus formation, acute myocardial infarction, cardiovascular disorders, unstable angina, thromboembolism, acute vessel closure associated with thrombolytic therapy or percutaneous transluminal coronary angioplasty (PTCA), transient ischemic attacks, stroke, intermittent claudication, bypass grafting of the coronary or peripheral arteries, vessel luminal narrowing, restenosis post coronary or venous angioplasty, maintenance of vascular access patency in long-term hemodialysis patients, pathologic thrombus formation occurring in the veins of the lower extremities following abdominal, knee or hip surgery, pathologic thrombus formation occurring in the veins of the lower extremities following abdominal, knee and hip surgery, a risk of pulmonary thromboembolism, or disseminated systemic intravascular coagulatopathy occurring in vascular systems during septic shock, viral infections or cancer, or reducing an inflammatory response, fibrinolysis, or treatment of coronary heart disease, myocardial infarction, angina pectoris, vascular restenosis, for example restenosis following angioplasty like PTCA, adult respiratory distress syndrome, multi-organ failure and disseminated intravascular dotting disorder, deep vein or proximal vein thrombosis, which can occur following surgery. |
|---|
3047-CHENP-2005 CORRESPONDENCE OTHERS.pdf
3047-CHENP-2005 CORRESPONDENCE PO.pdf
3047-CHENP-2005 POWER OF ATTORNEY.pdf
3047-chenp-2005-correspondnece-others.pdf
3047-chenp-2005-description(complete).pdf
| Patent Number | 229118 | |||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Indian Patent Application Number | 3047/CHENP/2005 | |||||||||||||||||||||
| PG Journal Number | 12/2009 | |||||||||||||||||||||
| Publication Date | 20-Mar-2009 | |||||||||||||||||||||
| Grant Date | 13-Feb-2009 | |||||||||||||||||||||
| Date of Filing | 18-Nov-2005 | |||||||||||||||||||||
| Name of Patentee | SANOFI-AVENTIS DEUTSCHLAND GmbH | |||||||||||||||||||||
| Applicant Address | BRUNINGSTRASSE 50, D-65929 FRANKFURT AM MAIN, | |||||||||||||||||||||
Inventors:
|
||||||||||||||||||||||
| PCT International Classification Number | C07D471/04 | |||||||||||||||||||||
| PCT International Application Number | PCT/EP04/04754 | |||||||||||||||||||||
| PCT International Filing date | 2004-05-05 | |||||||||||||||||||||
PCT Conventions:
|
||||||||||||||||||||||