Title of Invention

PHENOXYACETIX ACID DERIVATIVES AND AN ACTIVATOR OF PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR δ CONTAINING THE SAME

Abstract A compound having the following formula (I) or a salt thereof: (wherein R <sup>1</sup>1 is phenyl, naphthyl, pyridyl, thienyl, furyl, quinolyl or benzothienyl, any of which can have substituents selected from the group consisting ofC<sub>1</sub>-<sub>8</sub> alkyl, C<sub>1</sub>-<sub>8</sub> alkyl having halogen, C<sub>1</sub>-<sub>8</sub> a1koxy, C<sub>1</sub>-<sub>8</sub> alkoxy having halogen, C<sub>2</sub>-<sub>8</sub> alkenyl, C<sub>2</sub>-<sub>8</sub> alkynyl, halogen, C<sub>2</sub>-<sub>7</sub> acyl, benzoyl, hydroxyl, nitro, amino, phenyl ,and pyridyl; R<sup>2</sup> is C <sub>1</sub>-<sub>8</sub> alkyl, C <sub>1</sub>-<sub>8</sub> alkyl having halogen, C<sub>2</sub>-<sub>8</sub> alkenyl, C<sub>2</sub>-<sub>8</sub> alkynyl, <sub>3</sub>-<sub>7</sub> membered cycloalkyl, C<sub>1</sub>-<sub>8</sub> alkyl having <sub>3</sub>-<sup>7</sup> membered cycloalkyl, or C<sup>1</sup>-<sup>6</sup> alkyl substituted with phenyl, naphthyl or pyridyl, any of which can have substituents selected from the group consisting of C <sub>1</sub>-<sub>8</sub> alkyl, C<sub>1</sub>-<sub>8</sub> alkyl having halogen, C<sub>1</sub>-<sub>8</sub> .alkoxy, C<sub>1</sub>-<sub>8</sub> alkoxy having halogen, C<sub>2</sub>-<sub>8</sub> alkenyl, C<sup>2</sub>-<sup>8</sub> alkyny1, halogen, C<sub>2</sub>-<sub>7</sub> acyl, benzoyl, hydroxyl, nitro, amino, phenyl and pyridyl; A is oxygen, sulfur or NR<sup>9</sup> in which R<sup>9</sup> is hydrogen or C<sub>1</sub>-<sub>8</sub> alkyl; X is a C<sub>1</sub>-<sub>8</sub> alkylene chain which can have substituents selected from the group consisting of C<sub>1</sub>-<sub>8</sub> alkyl, C<sub>1</sub>-<sub>8</sub> alkoxy and hydroxyl and which can contain a , double bond; Y is C(=O), C(=N-OR<sup>10</sup>), CH(OR<sup>11</sup>), CH=CH, C=C, or C(=CH<sub>2</sub>) in which each of R<sup>10</sup> and R<sup>11</sup> is hydrogen or C<sup>1</sup>-<sup>8</sup> alkyl; each of R<sup>3</sup>, R<sup>4</sup> and R<sup>5</sup> is hydrogen, C<sup>1</sup>-<sup>8</sup> alkyl, C<sup>1</sup>-<sup>8</sup> alkyl having halogen, " C<sup>1</sup>-<sup>8</sup> alkoxy, C<sup>1</sup>-<sup>8</sup> alkoxy having halogen, C<sup>2</sup>-<sup>8</sup> alkenyl, C<sup>2</sup>-<sup>8</sup> alkynyl, halogen, C<sup>2</sup>-<sup>7</sup> acyl, benzoyl, hydroxyl, nitro, amino, phenyl, or pyridyl; Bis CH or nitrogen; Z is oxygen or sulfur; each ofR<sup>6</sup> and R<sup>7</sup> is hydrogen, C<sup>1</sup>-<sup>8</sup> alkyl, C<sup>1</sup>-<sup>8</sup> alkyl having halogen; and R<sup>8</sup> is hydrogen or C<sup>1</sup>-<sup>8</sup> alkyl; provided that at least one ofR<sup>3</sup>, R<sup>4</sup> and R<sup>5</sup> is not hydrogen.
Full Text SPECIFICATION
ACTIVATOR OF PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR 5
[Technical field]
The present invention relates to an activator of peroxisome proliferator activated receptor 8.
[Prior art]
The peroxisome is a small organ present in cells of animals and plants, and its matrix contains various enzymes such as catalases. Various compounds such as f i-brates, herbicides, and phthalic acid plasticizers are known as peroxisome proliferators which induce proliferation of peroxisomes.
Isseman, et al. have identified a nuclear receptor which is activated by peroxisome proliferator and called
it peroxisome proliferator activated receptor (PPAR).
Nature, 347, p64'5-650, 1990.
Three subtypes such as PPARoc, PPARy and PPAR5 have
been identified. Proc. Natl. Acad. Sci. USA, 91,
p7335-7359, 1994.
The above-mentioned fibrates used as the serum triglyceride (TG) lowering drug can modulates PPARS activity. Further, thiazolidine compounds (Troglitazone, Rosiglitazone, Pioglitazone) useful in the treatment of diabetes are also known as ligands of PPARy.
It is reported that several compounds such as GW-2433 (Glaxo Wellcome), L-165041 (Merck), and YM-16638 (Yamanouchi Pharmaceutical) activate PPARS. Each formula is as follows:




WO 92/10468 describes that GW-2433 can be employable for prevention and treatment of atherosclerosis.
WO 97/28115 describes that L-165041 can be employable for treatment of diabetes and suppression of obesity.
WO 99/04815 describes that YM-16638 shows effects for reducing serum cholesterol and reducing LDL cholesterol.
Recently, JBC, 272(6), p3406-3410, 1997 and Cell, 99, p335-345, 1999 describe proposal for application of PPAR 8 ligand as an anti-cancer agent and an anti-inflammatory agent.
European Patent 558 062 describes the following compound A which has a structure similar to that of the general formula (I) [mentioned below] representing a compound of the invention:


All of the "compounds identified by the compound A, compound B and the general formula (I) of the invention may be described as compounds of phenoxyacetic acid type. However, there are clear structural differences between the compounds A, B and the compound of the invention. For example, the phenoxy group of the compounds A, B has the propyl group substituted with the oxazolyl group or the ethoxy group substituted with the oxazolyl group, while the compound of the invention has the propionyl group substituted with the oxazolyl group or the like. Further, the oxazole ring of the compounds A, B has only one of the ethyl group or the phenyl group, while the compound of the invention may have both of the groups.
In addition, while the above-mentioned EP 558 062 teaches that the compound A is of value for treatment of hyperthrombinemia and as blood pressure depressant, no

mention is given with respect to an effect as PPARS li-gand.
Further, while the J. Immunol. Methods teaches the use of the compound B as blood pressure depressant, there is no concrete description to teach that the compound is effective as PPAR5 ligand.
Recently, WO 01/40207 describes a substituted oxa (thia)zole derivative showing an agonist action for PPARct, and WO 01/16120 describes an oxa (thia) zole derivative substituted with a biaryl group which is employable as a PPAR controlling agent.
In comparison with the compounds of the invention, the compound of WO 01/40207 has C(=0)NH as X and an al-kylene chain bond as Y, and the compound of WO 01/16120 has an alkylene chain as X and 0, X or the like as Y. Accordingly, the structural difference is clear.
Proc. Natl. Acad. Sci. U.S.A.2001, Apr.24; 98(9): 5306-11, and WO01/00603 describe that the following compound GW-501516 has a highly selective agonist action for PPARct.

There is a clear structural difference between the GW-501516 and the compound of the invention, that is, GW-501516 has the methyl group as X of the present invention, and S as Y.

Further, each of WO 02/14291 (Nippon Chemiphar Co., Ltd.) and WO 02/50048 (GLAXO) discloses a compound having an agonist action of peroxisome proliferator activated receptor. WO 02/50048 describes synthetic intermediates such as ethyl[2-methyl-4-(3-(4-methyl-2-[4-(trifluoromethyl)phenyl]-1,3-thiazol-5-
yl)propanoyl)phenoxy]acetic acid, ethyl[2-methyl-4- ( (4-me thy1-2-[4-(trifluoromethyl)phenyl]-1,3-thiazol-5-yl)acetyl)phenoxy]acetic acid, ethyl[4-(1-hydroxy-3- (4-methyl-2-[4-(trifluoromethyl)phenyl]-1,3-thiazol-5-yl)propyl)-2-methylphenoxy]acetic acid, ethyl[4-(1-hydroxy-2-(4-methyl-2-[4-(trifluoromethyl)phenyl]-1,3-thiazol-5-yl)ethyl) -2-methylphenoxy]acetic acid.
The present invention provides a compound having the below-mentioned general formula (I) and a salt thereof, which has an agonist action (action as activator of peroxisome proliferator activated receptor 8.
[Disclosure of invention]
The invention resides in a compound having the following general formula (I) or a salt thereof:

(wherein R1 is phenyl, naphthyl, pyridyl, thienyl, furyl, quinolyl or benzothienyl, any of which can have substituents selected from the group consisting of C1_8 alkyl, C1-8 alkyl having halogen, C1-8 alkoxy, C2-8 alkoxy having halogen, C2_g alkenyl, C2-8 alkynyl, halogen, C2_7

acyl, benzoyl, hydroxyl, nitro, amino, phenyl and pyridyl;
R2 is C]__8 alkyl, C1-8 alkyl having halogen, C2_8 al-kenyl, C2_8 alkynyl, 3-7 MEmbered cycloalkyl, C2-8 alkyl having 3-7 membered cycloalkyl, or C\-£ alkyl substituted with phenyl, naphthyl or pyridyl, any of which can have substituents selected from the group consisting of C1_8 alkyl, C1-8 alkyl having halogen, C1-8 alkoxy, C1,8 alkoxy having halogen, C2_8 alkenyl, C2„8 alkynyl, halogen, C2_7 acyl, benzoyl, hydroxyl, nitro, amino, phenyl and pyridyl;
A is oxygen, sulfur or NR9 in which R9 is hydrogen or C2-8 alkyl;
X is a C1-8 alkylene chain which can have substituents selected from the group consisting of C1_Q alkyl, C2-8 alkoxy and hydroxyl and which can contain a double bond;
Y is C(=o), C(=N-OR10), CH(OR1:L), CH=CH, C=C, or C(=CH2) in which each of R10 and R11 is hydrogen or 02.3 alkyl;
each of R3, R4 and R5 is hydrogen, C2-8 alkyl, C1-8 alkyl having halogen, C2-8 alkoxy, 02,3 alkoxy having halogen, C2_g alkenyl, C2_8 alkynyl, halogen, C2_7 acyl, benzoyl, hydroxyl, nitro, amino, phenyl, or pyridyl;
B is CH or nitrogen;
Z is oxygen or sulfur;
each of R6 and R7 is hydrogen, C1-8 alkyl, C2-8 alkyl having halogen; and
R8 is hydrogen or C1-g alkyl;
provided that at least one of R3, R4 and R5 is not hydrogen.
The invention also provides an activator of peroxisome proliferator activated receptor 5, which contains as an effective component a compound of the formula (I) or a salt thereof.

[Detailed description of the invention]
In the formula (I), examples of the alkyl groups having 1-8 carbon atoms include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl and pentyl.
Examples of the alkyl groups having 1-8 carbon atoms and a halogen substituent include methyl, ethyl, propyl, isopropyl, butyl, and t-butyl which are substituted with 1-3 halogens such as fluorine, chlorine, and bromine. Preferred are trifluoromethyl, chloromethyl, 2-chloroethyl, 2-bromoethyl and 2-fluoroethyl.
Examples of the alkoxy groups having 1-8 carbon atoms include methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, t-butoxy and pentyloxy.
Examples of the alkoxy groups having 1-8 carbon atoms and a halogen substituent include methoxy, ethoxy, propoxy, isopropoxy, butoxy and t-butoxy groups substituted with 1-3 halogen atoms such as fluorine atom, chlorine atom or bromine atom. Trifluoromethoxy, chlorometh-oxy, 2-chloroethoxy, 2-bromoethoxy and 2-fluoroethoxy are preferred.
Examples of the alkenyl groups having 2-8 carbon atoms include vinyl and allyl.
Examples of the alkynyl groups having 2-8 carbon atoms include propargyl.
Examples of the 3-7 membered cycloalkyl groups include cyclohexyl and cyclopentyl.
Examples of the alkyl groups having 1-8 carbon atoms and a 3-7 membered cycloalkyl substituent include cyclo-hexylmethyl and cyclopentylmethyl.
(1) A preferred compound of the invention is a compound of the formula (I) or salt thereof, in which R1 is phenyl which can have substituents selected from the group consisting of C1-8 alkyl, C1-8 alkyl having 1-3 nalogen atoms, C1-8 alkoxy, C1-8 alkoxy having 1-3 halogen

atoms, C2-g alkenyl, C2_8 alkynyl, halogen, C2_7 acyl, benzoyl, hydroxyl, nitro, amino, phenyl and pyridyl.
(2) Another preferred compound of the invention is a compound of the formula (I), a salt thereof or (1), in which R2 is C2_8 alkyl.
(3) A further preferred compound of the invention is a compound of the formula (I), a salt thereof, (1) or (2), in which R1 is attached to the 2nd position. In the case that R1 is attached to the 2nd position, R4 is attached to the 4th position and -X-Y- is attached to the 5th position, or R4 is attached to the 5th position and -X-Y- is attached to the 4th position.
(4) A furthermore preferred compound of the invention is a compound of the formula (I), a salt thereof, (1), (2) or (3), in which A is oxygen or sulfur.
(5) A still further preferred compound of the invention is a compound of the formula (I), a salt thereof, (1), (2), (3) or (4), in which X is a C1-8 alkylene chain.
(6) A still further preferred compound of the invention is a compound of the formula (I), a salt thereof,
(1), (2), (3), (4) or (5), in which Y is C(=0).
(7) A still further preferred compound of the in
vention is a compound of the formula (I), a salt thereof,
(1), (2), (3), (4), (5) or (6), in which each of R3, R4 and R5 is hydrogen, C]__g alkyl or C;L_9 alkyl having halogen.
(8) A still further preferred compound of the in
vention is a compound of the formula (I), a salt thereof,
(1), (2), (3), (4), (5), (6) or (7), in which B is CH.
(9) A still further preferred compound of the in
vention is a compound of the formula (I), a salt thereof,
(1), (2), (3), (4), (5), (6), (7) or (8), in which Z is oxygen.
(10) A still further preferred compound of the in
vention is a compound of the formula (I), a salt thereof,

(1), (2), (3), (4), (5), (6), (7), (8) or (9), in which each of R6 and R7 is hydrogen or C1-4 alkyl.
(11) A still further preferred compound of the in
vention is a compound of the formula (I), a salt thereof,
(1), (2), (3), (4), (5), (6), (7), (8) or (9), in which R^ is hydrogen.
(12) A still further preferred compound of the in
vention is a compound of the formula (I) or a salt
thereof, in which R1 is phenyl or naphthyl, each of which
can have substituents selected from the group consisting
of C1-8 alkyl, C1-8 alkyl having halogen, C1-8 alkoxy, C1-8
alkoxy having halogen, C2_8 alkenyl, C2_g alkynyl, halo
gen, C2_7 acyl, benzoyl, hydroxyl, nitro, amino, phenyl
and pyridyl;
R2 is C2-s alkyl;
A is oxygen or sulfur;
X is a C;L_8 alkylene chain which can have a C1-8 alkyl substituent and which can contain a double bond;
Y is C(=0) ,._ CH=CH, or C(=CH2);
each of R3, R4 and R5 is hydrogen, C1-8 alkyl, C1-8 alkyl having halogen, C1-8 alkoxy, C1-8 alkoxy having halogen, C2_8 alkenyl, C2_8 alkynyl, halogen, C2_7 acyl, benzoyl, hydroxyl, nitro, amino, phenyl, or pyridyl;
B is CH;
Z is oxygen or sulfur;
each of R6 and R7 is hydrogen or C1-8 alkyl; and
R8 is hydrogen or C1-8 alkyl.
(13) A still further preferred compound of the invention is a compound of (12), in which X is a C1-8 alkylene chain.
(14) A still further preferred compound of the invention is a compound of (12) or (13), in which R1 is attached to the 2nd position.

(15) A still further preferred compound of the in
vention is a compound of (12), (13) or (14), in which R8
is hydrogen.
(16) A still further preferred compound of the in
vention is a compound of (12), (13), (14) or (15), in
which the substituents of R3, R4 and R5 other than hydro
gens are placed at ortho-positions with respect to -Z-
CR6R7CO2R8.
The compound of the formula (I) can be present in the form of geometrical isomers such as cis and trans and optical isomers. These isomers are included in the compounds of the invention.
Further, the compounds of the invention can be in the form of pharmaceutically acceptable salts such as alkali metal salts, e.g., sodium salt and potassium salt.
The processes for preparing the compound of the formula (I) according to the invention are described below.
[Synthetic process 1]

[in the formulas, Q is a releasing group such as tosyloxy or halogen (e.g., bromine), and R1, R2, R3, R4, R5, R6, R7, R8, A, X, Y, B and Z are those described hereinbefore.
In the above-described process, the compound of the formula (I) according to the invention can be prepared by reacting a phenol or thiophenol compound of the general formula (a) with an acetic acid derivative of the general

formula (b) . The reaction can be carried out in a solvent such as methyl ethyl ketone in the presence of a base such as potassium carbonate.
The starting compound of the formula (a), can be prepared by a process similar to the below-mentioned synthetic scheme.
[Synthesis example 1 for starting compound in which Y is CO, Z is 0]

[in the formulas, n is an integer of 1 to 7, Bn is benzyl, and R1, R2, R3, R4, R5, A and B are those described hereinbefore.]

[Synthesis example 2 for starting compound in which Z is S3

[in the formulas, R1, R2, R3, R4, R5, A, B, X and Y are those described hereinbefore.]

The phenol compound is treated with dimethylthiocar-bamoyl chloride in the presence of a base such as triethylamine to obtain a dimethylthiocarbamoyloxy compound. The dimethylthiocarbamoyloxy compound is heated in n-tetradecane or no solvent to obtain a dimethylcar-bamoylsulfanyl compound as a rearranged compound. The di-methylcarbamoyl group is treated with NaOH or MeONa to be converted to a thiophenol compound.
[Synthesis example 3 for starting compound in which Y is CO, Z is 0]

Tin the formulas, m is an integer of 0 to 6, and R1, R2, R3, R4, R5, A, B and Bn are those described hereinbefore.]

The acetophenone compound and the aldehyde compound synthesized according to a conventional method are condensed with hydration using a base such as NaOH, KOH, Me-ONa, EtONa, piperidine in a solvent such as methanol, ethanol, anhydrous benzene to obtain a a,P~unsaturated ketone compound. The a,p-unsaturated ketone compound is treated, for example subjected to a hydride contact reduction to conduct reduction of the olefin and the deben-zylation to obtain the subject compound.
[Synthesis example 4 for starting compound in which Y is CO, Z is 0]

[in the formulas, R1, R2, R3, R4, R5, A, B, n and Bn are those described hereinbefore.]

The benzaldehyde compound is treated with a Grignard reagent obtained according to a conventional method in the presence of a solvent such as a ether or THF under the condition of a low temperature to obtain an alcohol compound. The alcohol compound can be converted into a ketone compound by using a Jones reagent (chromium(VI) oxide-sulfuric acid-acetone) or chromium(VI)-pyridine complex (e.g., pyridinium chlorochromate, pyridinium di-chromate). The alcohol compound can also be converted into the ketone body in the same manner by using DMSO oxidation. Finally, the ketone body is subjected to de-benzylation to be converted into the subject phenol compound.
[Synthesis example 5 for starting compound in which Z is 0]

[in the formulas, Ra is hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and R1, R2, A, X, Y and B are those described hereinbefore.]

The phenol compound is subjected to an allylation according to a conventional method, and heated (at 150°C or higher) with no solvent or in a solvent such as quino- " line to obtain a compound having the rearranged allyl group at the ortho-position.
[Synthesis example 6 for starting compound in which Z is 0]

[in the formulas, Rb is an alkyl group having 1 to 6 carbon atoms, and Rl, R2, A, X, Y and B are those described hereinbefore.]

The phenol compound is subjected to an acylation according to a conventional method, and heated in the presence of a Lewis acid catalyst to obtain a compound having the rearranged acyl group at the ortho-position.
[Synthesis example 7 for starting compound in which Y is CH=CH]

[in the formulas, R1, R2, R3, R4, R5, A, B, n and Bn are those described hereinbefore.]
The phenol compound obtained in the Synthesis example 1 for starting compound is treated with a reducing agent such as lithium aluminum hydride, sodium boron hydride to obtain an alcohol compound. The alcohol compound is subjected to dehydration using a halogenation agent, a sulfonation agent or a dehydration agent to obtain an olefin compound.

[Synthetic process 2 (wherein R8 is H)]

[in the formulas, RG is an alkyl group having 1 to 8 carbon atoms, and R1, R2, R3, R4, R5, R6, R7f A, X, Y, B and Z are those described hereinbefore.]
In the above-illustrated process for preparation, a compound of the formula (I) (R8=H) according to the invention can be obtained by the ester compound of the formula (c) is hydrolyzed in a solvent such as aqueous ethanol in the presence of a base such as sodium hydroxide, potassi-um hydroxide or lithium hydroxide.

[Synthetic process 3 (wherein Y is C(=N-OH)]

[in the formulas, R1, R2, R3, R4, R5, R6, R7, A, X, B and Z are those described hereinbefore].
In the above-illustrated process, a compound of the formula (I) (Y is C(-N-OH)) according to the invention can be obtained by reacting the ketone compound of the formula (d) with hydroxylamine.

[Synthetic process 4 (wherein Y is C(=CH2))

[in the formulas, R1, R2, R3, R4, R5, R6, R7, A, B, Z and n are those described hereinbefore]-
The ketone compound (Y is C(=0)) can be treated with methyl triphenyl phosphonium bromide in the presence of a base such as t-BuOK, n-BuLi, sec-BuLi, EtONa in a solvent such as a dry ether or THF (according to Wittig reaction) to introduce a methylene chain into the compound.

[Synthetic process 5 (wherein Y is C(=CH2))

[in the formulas, R10 is an alkyl group having 1 to 10 carbon atoms, R1, R2, R3, R4, R5, R6, R7, R8, A, B, Z and n are those described hereinbefore].
The ketone compound (Y is C(=0)) can be treated with alkyl halide such as iodomethane in the presence of a base such as t-BuOK, BuLi, EtONa, NaH in a solvent such as a dry ether or THF to introduce an alkyl chain into the compound at the a-position of the carbonyl group.

The representative compounds of the invention are described below. (1) Compounds of the following formula

Compounds of the formula (I) in which R5 is H, B is CH, R8 is H, and R1, R2, R3, R4, R6, R7, A, X, Y and Z are shown in Tables 1 to 4.









(2) Compounds of the following formula

Compounds of the formula (I) in which R4 is H, R5 is H, B is CH, R8 is H, and R1, R2, R3, R6, R7, A, X, Y and Z are shown in Tables 5 and 6.





(3) Compounds of the following formula

• Compounds of the formula (I) in which R5 is H, B is CH, R8 is H, and R1, R2, R3, R4, R6, R7, A, X, Y and Z are shown in Table 7,

The pharmacological effects of the invention are described below.
The PPAR5 activating effect of the compound of the invention was determined by the following method:

A chimeric receptor expression plasmid (GAL4-hPPAR5 LBD) , a reporter plasmid (UASx4-TK-LUC) and p-galactosi-dase (p-GAL) are transfected into CV-1 cells by utilizing a lipofection reagent DMRIE-C (Life Technologies). Subsequently, it is incubated for 40 hours in the presence of a compound of the invention or a compound for comparison (L-165041), and then the luciferase activity and p-GAL activity are measured on the soluble cells.
The luciferase activity is calibrated by the p-GAL activity, and a relative ligand activity is calculated under the condition that the luciferase activity of the cells treated by L-165041 is set to 100%) . In the same manner, relative ligand activities to PPAR8 and y trans-activation activities are calculated (see the below-mentioned Examples 51, 52).
As seen from Tables 8, 9, the compounds of the invention (Examples 1-50) show an excellent PPAR8 activating effect.
As also seen from Example 53 (Table 10), the compounds of the invention (Examples 4 and 10) show an excellent effect of increasing HDL cholesterol.
Apparently, the compounds of the invention having the general formula (I) show excellent PPAR8 activating effect- Accordingly, these compounds are expected to serve as remedy for prevention and treatment of the following diseases: hyperglycemia, hyperlipidemia, obesity, syndrome X, hyperchloresterolemia, hyperlipopreoteinemia, other dysbolismic diseases, hiperlipemia, arterial sclerosis, diseases of cardiovascular systems, hyperphagia, ischemic diseases, malignant tumors such as lung cancer, mammary cancer, colonic cancer, cancer of great intestine, and ovary cancer, Alzheimer's disease, inflammatory disease, osteoporosis (Mano H. et al., (2000) J. Biol. Chem., 175:8126-8132), Basedow's disease, and adrenal cortical dystrophy.

The compound of the invention can be administered to human beings by ordinary administration methods such as oral administration or parenteral administration.
The compound can be granulated in ordinary manners for the preparation of pharmaceuticals. For instance, the compound can be processed to give pellets, granule, powder, capsule, suspension, injection, suppository, and the like.
For the preparation of these pharmaceuticals, ordinary additives such as vehicles, disintegrators, binders, lubricants, dyes, and diluents. As the vehicles, lactose, D-mannitol, crystalline cellulose and glucose can be mentioned. Further, there can be mentioned starch and car-boxymethylcellulose calcium (CMC-Ca) as the disintegrators, magnesium stearate and talc as the lubricants, and hydroxypropylcellulose (HPC), gelatin and polyvinyl-pirrolidone (PVP) as the binders.
The compound of the invention can be administered to an adult generally in an amount of 0.1 mg to 100 mg a day by parenteral administration and 1 mg to 2,000 mg a day by oral administration. The dosage can be adjusted in consideration of age and conditions of the patient.
The invention is further described by the following non-limiting examples.
[Examples] (Example 1)
2- [4- [3- [2- (2,4-Dichlorophenyl)~5-isopropyl-4-oxazolyljpropionyl]-2-methylphenoxy]-2-methylpropionic acid
(1) 3- [2- (2,4-Dichlorophenyl)-5-isopropyl-4-oxazolyl]-1-(3-methyl-4-hydroxyphenyl) propan-1-one

To an ice-cold THF (5 mL) was added 60% sodium hydride (97 mg, 2.42 mmol) . Subsequently, a solution of ethyl 2-[(3-methyl-4-benzyloxy)benzoyl]acetate (757 mg, 2.42 mmol) in THF (4 mL) was dropwise added for 30 minutes. The mixture was allowed to room temperature, and then stirred for 30 minutes. To the mixture was added 4-iodomethyl-5-isopropyl-2-(2,4-dichlorophenyl)oxazole (960 mg, 2.42 mmol). The resulting mixture was refluxed for 20 hours under nitrogen atmosphere, and allowed to room temperature. THF was removed under reduced pressure. To the residue was added acetic acid (6.4 mL)-conc. hydrochloric acid (1.6 mL), and the mixture was refluxed for 10 hours, and allowed to room temperature. The reaction mixture was poured into ice water. Ethyl acetate was added to the mixture. The organic layer was washed with a saturated aqueous sodium hydrogen carbonate solution, water, and a saline, dried over anhydrous sodium sulfate. Ethyl acetate was removed under reduced pressure, and the residue was purified by column chromatography on silica gel with hexane/ethyl acetate (3/1) to give the desired compound
(706 mg) as pale yellowish white crystalline (yield 70%). 1H-NMR (CDC13, 4 00MHz) 5: 1.30(d, 6H, J=7Hz),
2.26(s, 3H) , 2.95(t, 2H, J=7Hz), 3.19(dq, 1H, J=7Hz, J=7Hz), 3.30(t, 2H, J=7Hz), 5.75(s, 1H), 6.75(d, 1H, J=8Hz), 7.30(dd, 1H, J=2, 8Hz), 7.49(d, 1H, J=2Hz), 7.70(dd, 1H, J=2, 8Hz), 7.76(d, 1H, J=2Hz), 7.88(d, 1H, J=8Hz).
(2) Ethyl 2-[4-[3-[2-(2,4-dichlorophenyl)~5-isopropyl-4-oxazolyl]propionyl]-2-methylphenoxy]-2-methylpropionate
In methyl ethyl ketone (10 mL) were suspended the obtained 3-[2-(2,4-dichlorophenyl)-5-isopropyl-4-oxazolyl]-1-(3-methyl-4-hydroxyphenyl)propan-1-one (209 mg, 0.50 mmol), ethyl 2-bromo-2-methylpropionate (489 mg, 2.50 mmol), and potassium carbonate (346 mg, 2.50 mmol).

The suspension was refluxed for 40 hours. The suspension was then allowed to room temperature, filtered to remove, insolubles, and washed with methyl ethyl ketone. The solvent was distilled off. The residue was purified by column chromatography on silica gel with hexane/ethyl acetate (7/1) to give the desired compound (272 mg) as colorless oil (quantitative yield).
iH-NMR (CDC13, 400MHz) 8: 1.26(t, 3H, J=7Hz), 1.29(d, 6H, J=7Hz), 1.64(s, 6H) , 2.25(s, 3H), 2.95(t, 2H, J=7Hz), 3.18(dq/ 1H, J=7Hz, J=7Hz), 3.32 (t, 2H, J=7Hz), 4.21(q/ 2H, J=7Hz), 6.60(d, 1H, J=8Hz), 7.30(dd, 1H, J=2, 8Hz), 7.49(d, 1H, J=2Hz), 7.71(dd, 1H, J=2, 8Hz), 7.80(d, 1H, J=2Hz), 7.89(d, 1H, J=8Hz).
(3) 2- [4-[3-[2-(2,4-Dichlorophenyl)-5-isopropyl-4~ oxazolyljpropionyl]-2-methylphenoxy]-2-methylpropionic acid
In a mixture of ethanol (6mL) and water (3 mL) was dissolved the obtained ester compound (270 mg, 0.51 mmol), and then lithium hydroxide monohydrate (65 mg) was added. The mixture was refluxed for 48 hours, and allowed to room temperature. Ice water was added to the reaction mixture. The mixture was neutralized by addition of 3N hydrochloric acid. Precipitated crystals were filtered, washed with water, dried in air over night, and further dried under reduced pressure (60°C) to give 170 mg of the desired compound (yield 68%).
White powder (mp: 100-105°C)
iH-NMR (CDCI3, 400MHz) 5: 1.30(d, 6H, J=7Hz), 1.66(s, 6H), 2.24(s, 3H) , 2.94(t, 2H, J=7Hz), 3.21(dq, 1H, J=7Hz, J=7Hz), 3.26(t, 2H,' J=7Hz), 6.71(d, 1H, J-8Hz), 7.29(dd, 1H, J=2, 8Hz), 7.49(d, 1H, J=2Hz), 7.56(dd, 1H, J=2, 8Hz), 7.7 9(d, 1H, J=2Hz), 7.84(d, 1H, J-8Hz).

(Example 2)
[4-[3-[2-(2, 4-Dichlorophenyl)-5-isopropyl-4-oxazolyl]propionyl] -2-methylphenoxy]acetic acid
(1) Ethyl [4-[3-[2-(2,4-dichlorophenyl)-5-isopropyl-4-oxazolyl]propionyl] -2-methylphenoxy]acetate
The synthetic intermediate of Example 1, namely 3-[2- (2,4-dichlorophenyl)-5-isopropyl-4-oxazolyl]-1-(3-methyl-4-hydroxyphenyl)propan-l-one (105 mg, 0.25 mmol) and potassium carbonate (103 mg, 0.75 mmol) were suspended in acetone (3 mL). Ethyl bromoacetate (0.08 mL, 0.75 mmol) was added to the suspension while cooling with ice. The suspension was allowed to room temperature, and refluxed while heating for 6 hours. Insolubles were filtered, and washed with acetone. Subsequently, the solvent was distilled off. The residue was purified by column chromatography on silica gel with hexane/ethyl acetate (7/1-4/1) to give the subject compound (117 mg) as colorless oil (yield 92%)
*H-NMR (CDG13/ 400MHz) 8: 1.26(t, 3H, J=7Hz), 1.30(d,
6H, J=7Hz), 2.31(s, 3H) , 2.75(t, 2H, J=7Hz), 3.18(dq, IH, J=7Hz, J=7Hz), 3.33(t, 2H, J=7Hz), 4.26(q, 2H, J=7Hz), 4.69(s, 2H), 6.69(d, IH, J=8Hz), 7.30(dd, IH, J=2, 8Hz) , 7.49(d, IH, J=2Hz), 7.8-7.85(m, 2H), 7.89(d, IH, J=8Hz).
(Example 3)
[4- [3-[2-(4-Trifluoromethyl)phenyl-4-isopropyl-5-thiazolyl]propionyl]-2-methylphenoxy]acetic acid
(1) 3- [2-(4-Trifluoromethyl)phenyl-4-isopropyl-5-thiazolyl]-1-(3-methyl-4-hydroxyphenyl)propan-1-one
To an ice-cold THF (5 mL) was added 60% sodium hydride (27 mg, 0.67 mmol). Subsequently, a solution of ethyl 2-[(3-methyl-4-benzyloxy)benzoyl]acetate (190 mg, 0.61 mmol) in THF (3 mL) was dropwise added for 30 min-

utes. The mixture was allowed to room temperature, and then stirred for 30 minutes- To the mixture was added 5-iodomethyl-4-isopropyl-2- (4-
trifluoromethyl)phenylthiazole (250 mg, 0.61 mmol). The resulting mixture was refluxed for 20 hours under nitrogen atmosphere, and allowed to room temperature. THF was removed under reduced pressure. To the residue was added acetic acid (3.2 mL)-conc. hydrochloric acid (0.8 mL), and the mixture was refluxed for 10 hours under heating, and allowed to room temperature. The reaction mixture was poured into ice water. The mixture was extracted with ethyl acetate. The organic layer was washed with a saturated aqueous sodium hydrogen carbonate solution, water, and a saline, dried over anhydrous sodium sulfate. Ethyl acetate was removed under reduced pressure, and the residue was purified by column chromatography on silica gel with hexane/ethyl acetate (3/1) to give the desired coir pound (195 mg) as pale yellowish white crystal (yield
73%) .
1H-NMR (CDG13, 400MHz) 8:1.33(d, 6H, J=7Hz), 2.29(s,
3H), 3.14(dq, 1H, J=7Hz, J=7Hz), 3.2-3.3(m, 4H), 5:35 (s, 1H), 6.80(d, 1H, J=8Hz), 7.63(d, 2H, J=8Hz), 7.74(dd, 1H, J=2, 8Hz), 7.79(d, 1H, J=2Hz), 7.89(d, 2H, J=8Hz).
(2) Ethyl [4-[3-[2-(4~Trifluoromethyl)phenyl-4-
isopropyl-5-thiazolyl]propionyl]-2-methylphenoxy] acetate
The desired compound was obtained in an analogous
manner as in (1) of Example 2 (yield 80%).
Colorless oil iH-NMR (CDC13, 400MHz) 5: 1.30(t, 3H, J=7Hz), 1.33(d,
6H, J=7Hz), 2.33(s, 3H), 3.15(dq, 1H, J=7Hz, J=7Hz), 3.2-
3.3(m, 4H), 4.27(q, 2H, J=7Hz), 4.71(s, 2H) , 6.71{d, 1H,
J=8Hz), 7.64(d, 2H, J=8Hz), 7.75(dd, 1H, J=2, 8Hz),
7.81(d, 1H, J=2Hz), 8.00(d, 2H, J=8Hz).

(3) [4- [3- [2-(4-Trifluoromethyl)phenyl-4-isopropyl-5-
thiazolyl]propionyl] -2-methylphenoxy]acetic acid
The desired compound was obtained in an analogous
manner as in (2) of Example 2 using the obtained ester
compound (yield 88%).
White powder (mp: 145-155°C) ifi-NMR (CDC13, 400MHz) 5: 1.33(d, 6H, J=7Hz), 2.32(s,
3H), 3.15(dq, 1H, J=7Hz, J=7Hz), 3.2-3.3(m, 4H), 4.76(s, 2H), 6.75(d, 1H, J=8Hz), 7.64(d, 2H, J=8Hz)/ 7.81(dd/ 1H, J=2, 8Hz), 7.82(d, 1H, J=2Hz), 8.00(d, 2H, J=8Hz).

(1) Ethyl 2-[4-[3-[2-(4~Trifluoromethyl)phenyl-4-
isopropyl-5-thiazolyl] propionyl]-2-methylphenoxy]-2-
methylpropionate
The desired compound was obtained in an analogous manner as in (2) of Example 1 using the synthetic Intermediate of Example 3, namely 3- [2- (4-
trifluoromethyl)phenyl-4-isopropyl-5-thiazolyl]-1- (3-methyl-4-hydroxyphenyl)propan-l-one (yield 74%).
Colorless oil iH-NMR (CDCI3, 400MHz) 5: 1.21(t, 3H, J=7Hz), 1.33(d,
6H, J=7Hz), 1.65(s, 6H) , 2.27(s, 3H), 3.15(dq, 1H, J=7Hz, J=7Hz), 3.2-3.3(m, 4H), 4.22(q, 2H, J=7Hz), 6.62(d/ 1H, J=8Hz), 7.64(d, 2H, J=8Hz), 7.70(dd, 1H, J=2, 8Hz) , 7.80(d, 1H, J=2Hz), 8.00(d, 2H, J=8Hz).
(2) 2-[4-[3~[2-(4-Trifluoromethyl)phenyl-4-isopropyl-5-
thiazolyl]propionyl]-2-methylphenoxy]-2-methylpropionic
acid

The desired compound was obtained in an analogous
manner as in (3) of Example 1 using the obtained ester
compound (yield 90%).
Pale yellow amorphous iH-NMR (CDC13, 4 00MHz) 5: 1.33(d, 6H, J=7Hz) , 1.67 (s,
6H), 2.27(s, 3H), 3.14(dq, 1H, J=7Hz, J=7Hz), 3.2-3.3(m, 4H), 6.75(d, 1H, J=8Hz), 7.63(d, 2H, J=8Hz), 7.72(dd, 1H, J=2, 8Hz), 7.80(d, 1H, J=2Hz), 7.99(d, 2H, J=8Hz).

(1) 3- [2-(2,4-Dichlorophenyl)-5-isopropyl-4-oxazolyl]-1-(4-hydroxyphenyl)propan-1-one
To an ice-cold THF (15 mL) was added 60% sodium hydride (120 mg, 3.00 mmol). Subsequently, a solution of ethyl 2-[ (4-benzyloxy)benzoyl]acetate (900 mg, 3.02 mmol) in THF (15 mL) was dropwise added for 30 minutes. The mixture was allowed to room temperature, and then stirred for 30 minutes. To the mixture was added 4-iodomethyl-5-isopropyl-2-(2,4-dichlorophenyl)oxazole (1.20 g, 3.00 mmol). The resulting mixture was refluxed for 20 hours under nitrogen atmosphere, and allowed to room temperature, THF was removed under reduced pressure. To the residue was added acetic acid (7.5 mL)-cone, hydrochloric acid (2.0 mL), and the mixture was refluxed for 5 hours, and allowed to room temperature. The reaction mixture was poured into ice water, and extracted with ethyl acetate. The organic layer was washed with a saturated aqueous sodium hydrogen carbonate solution, water, and a saline, dried over anhydrous sodium sulfate. Ethyl acetate was removed under reduced pressure, and the residue was purified by column chromatography on silica gel with hex-

ane/ethyl acetate (3/1) to give the desired compound (650
mg) as pale yellowish white crystal (yield 53%).
iH-NMR (CDC13, 400MHz) 5: 1.32(d, 6H, J=7Hz),
2.96(t.2H, J=7Hz), 3.22(dq, 1H, J=7Hz, J=7Hz), 3.25 (t, 2H, J=7Hz), 6.17(d, 2H, J=8Hz), 7.29 (dd, 1H.J=2, 8Hz), 7.4 9(d, 1H, J=2Hz), 7.60(s, 1H), 7.76(d, 2H, J=8Hz), 7.84(d/ 1H, J^8Hz).
(2) 3- [2-(2,4-Dichlorophenyl)-5-isopropyl-4-oxazolyl]-1-
(4--allyloxyphenyl)propan-l-one
In acetone (5 mL) , 3-[2-(2,4-dichlorophenyl)-5-isopropyl-4-oxazolyl]-1-(4-hydroxyphenyl)propan-1-one (202 mg, 0.50 mmol) and potassium carbonate (103 mg, 0.75 irunol) were suspended. Allyl bromide (91 mg, 0.75 mmol) was, added to the suspension while cooling with ice. The suspension was stirred at room temperature for 20 hours. The reaction mixture was poured into water, and extracted with ethyl acetate. The organic layer was washed with water, and a saline, dried over anhydrous sodium sulfate. Ethyl acetate was removed under reduced pressure to give the subject compound (205 mg) as pale yellow solid- residue (yield 92%).
iH-NMR (CDCI3, 400MHz) 5: 1.30(d, 6H, J=7Hz), 2.96(t,
2H.J=7Hz), 3.18(dq, lH.J=7Hz, J=7Hz), 3.34(t, 2H, J=7Hz), 4.59(dt, 2H, J=2, 5Hz), 5.25-5.35(m, 1H) , 5.40-5.45(m, 1H), 5.95-6.10(m, 1H), 6.93(d, 2H, J=9Hz), 7.29(dd, 1H, J=2, 8Hz), 7.4 9(d, 1H, J=2Hz), 7.89(d, 1H, J=8Hz), 7.96(d, 2H, J=9Hz).
(3) 3- [2-(2,4-Dichlorophenyl)-5-isopropyl-4-oxazolyl]-1-
(3-allyl-4-hydroxyphenyl)propan-1-one
At 180°C, 3-[2-(2,4-dichlorophenyl)-5-isopropyl-4-oxazolyl]-1-(4-allyloxyphenyl)propan-1-one (200 mg, 0.45 mmol) was heated for 5 hours. The compound was allowed to room temperature, the resulting compound was purified by '

column chromatography on silica gel with hexane/ethyl
acetate (3/1) to give the desired compound (36 mg) as
pale yellow oil (yield 18%).
iH-NMR (CDC13, 400MHz) 8: 1.30(d, 6H, J=7Hz), 2.96(t,
2H, J=7Hz), 3.18(dq, IH, J=7Hz, J=7Hz), 3.33 (t, 2H, J=7Hz), 3.43(d, 2H, J=6Hz), 5.1-5.2(m, 2H), 5.51(s, IH) , 5.85-6.l(m, IH), 6.82(d, IH, J=8Hz), 7.29(dd, IH, J=2, 8Hz), 7.49(d, IH, J=2Hz), 7.79(d, IH, d, J=2Hz), 7.80(dd, IH, J=2, 8Hz), 7.88(d, IH, J=8Hz).
(4) [2-Allyl-4-[3-[2-(2,4-dichlorophenyl)-5-isopropyl-4-
oxazolyl]propionyl]phenoxy]ethyl acetate
The desired compound was obtained in an analogous
manner as in (1) of Example 2 (yield 84%).
Colorless oil !H-NMR (CDCI3, 400MHz) 5: 1.29(t, 3H, J=7Hz), 1.30(d,
6H, J=7Hz), 2.96(t, 2H, J=7Hz), 3.18(dq, IH, J=7Hz, J=7Hz), 3.33(t, 2H, J=7Hz), 3.47(d, 2H, J=6Hz), 4.26(q, 2H, J=7Hz), 4.69(s, 2H), 5.05-5.15(m, 2H), 5.95-6.10(m, IH) , 6.73(d, IH", J=8Hz), 7.30(dd, IH, J=2, 8Hz) , 7.49(d, IH, J=2Hz), 7.83(d, IH, J=2Hz), 7.84(dd, IH, J=2, -8Hz), 7.88(d, IH, J=8Hz) .
(5) [2-Allyl-4-[3-[2-(2,4-dichlorophenyl)-5-isopropyl-4-
oxazolyl]propionyl]phenoxy]acetic acid
The desired compound was obtained in an analogous
manner as in (2) of Example 2 (yield 81%).
White powder (mp: 145-150°C) 1H-NMR (CDC13, 400MHz) 5: 1.30(d, 6H, J=7Hz), 2.96(t,
2H, J=7Hz), 3.19(dq, IH, J=7Hz, J=7Hz), 3.32(t, 2H, J=7Hz), 3.46(d, 2H, J=6Hz), 4.71(s, 2H) , 5.05-5.15(m, 2H), 5.95-6.10(m, IH), 6.95(d, IH, J=8Hz), 7.30(dd, IH, J=2, 8Hz), 7.49(d, IH, J=2Hz), 7.81(dd, IH, J=2, 8Hz), 7.83(d, IH, J=2Hz), 7.86(d, IH, J=8Hz).


(1) 3-[2-(2-Methoxy4-chlorophenyl)-5-isopropyl-4-oxazolyl]-1-(3-methyl-4-hydroxyphenyl)propan-1-one
To an ice-cold THF (50 mL) was added 60% sodium hydride (204 mg, 5.10 mmol). Subsequently, a solution of ethyl 2-[(3-methyl-4-benzyloxy)benzoyl]acetate (1.6 g, 5.12 mmol) in THF (25 mL) was dropwise added for 30 minutes. The mixture was allowed to room temperature, and then stirred for 30 minutes. To the mixture was added 4-iodomethyl-5-isopropyl-2-(2-methoxy-4-
chlorophenyl)oxazole (2.00 g, 5.11 mmol). The resulting mixture was refluxed for 20 hours under nitrogen atmosphere, and allowed to room temperature. THF was removed under reduced pressure. To the residue was added acetic acid (16 mL)-conc. hydrochloric acid (4 mL), and the mixture was refluxed for 10 hours under heating. The mixture was allowed to "room temperature, and poured into ice water. Ethyl acetate was added to the mixture. The.organic layer was washed with a saturated aqueous sodium hydrogen carbonate solution, water, and a saline, dried over anhydrous sodium sulfate. Ethyl acetate was removed under reduced pressure, and the obtained residue was filtered, washed with an ether, and hexane to give the desired compound as white powder. Subsequently, the washings was concentrated, and the residue was filtered, washed with an ether, and hexane in the same manner as is mentioned above. The obtained powder was mixed with the previously obtained powder, and the mixed powder was dried under reduced pressure to give the desired compound (1.8 g) as
pale yellowish white crystal (yield 70%).
iH-NMR (CDC13, 4 00MHz) 5: 1.32(d, 6H, J=7Hz), 2.18(s,
3H), 2.91(t, 2H, J=7Hz), 3.06(t, 2H, J=7Hz), 3.18(dq, 1H,'

J=7Hz, J=7Hz), 3.87(s, 3H) , 6.70(d, 1H, J=8Hz), 6.99(d,
1H, J=2Hz), 7.03(dd, 1H, J=2, 8Hz), 7.41(dd, 1H, J=2,
8Hz), 7.4 9(d, 1H, J=2Hz), 7.83(d, 1H, J=8Hz), 8.94 (s, 1H) .
(2) 3-[2-(2-Hydroxy-4-chlorophenyl)-5-isopropyl-4-
oxazolyl]-1- (3-methyl-4-hydroxyphenyl)propan-1-one]
The obtained 3-[2-(2-methoxy4-chlorophenyl)-5-
isopropyl-4-oxazolyl]-1-(3-methyl-4-hydroxyphenyl)propan-
1-one (621 mg, 1.50 mmol) was suspended in methylene
chloride (30 mL) and cooled with ice. To the suspension,
a 1M methylene chloride solution of boron trichloride (BC13) (3.0mL, 3.00 mmol) was dropwise added for 1 minute.
The mixture was allowed to room temperature, stirred for 72 hours, and poured into ice water. Chloroform and saturated sodium hydrogen carbonate were added to the mixture. The organic layer was washed with water, and a saline, dried over anhydrous sodium sulfate. The chloroform was removed under reduced pressure. The residue was purified by column chromatography on silica gel with hexane/ethyl acetate (3/1) to give the desired compound (385 mg) as
colorless oil (yield 64%).
iH-NMR (CDCI3, 400MHz) 5: 1.31(d, 6H, J=7Hz), 2.27 (s,
3H), 2.94 (t, 2H.J=7Hz), 3.19(dq, 1H, J=7Hz, J=7Hz), 3.29(t, 2H, J=7Hz), 5.22(s, 1H), 6.79(d, 1H, J=8Hz), 6.90(dd, 1H, J=2, 8Hz), 7.04(d, 1H, J=2Hz), 7.68(d, 1H, J=8Hz), 7.74(dd, 1H, J=2, 8Hz), 7.78(d, 1H, J=2Hz), 11.50(s, 1H) .
(3) [4-[3-[2- (2-Hydroxy-4-chlorophenyl)-5-isopropyl-4-
oxazolyl]propionyl]-2-methylphenoxy]ethyl acetate
The obtained 3-[2-(2-hydroxy-4-chlorophenyl)-5-isopropyl-4-oxazolyl]-1-(3-methyl-4-hydroxyphenyl)propan-1-one (378 mg, 0.95 mmol) was dissolved in acetone (20 mL) . To the solution, potassium carbonate (158 mg, 0.95 mmol) and ethyl bromoacetate (158 mg, 0.95 mmol) were

added while cooling with ice. The mixture was allowed to room temperature, and stirred for 20 hours. After insoluble was filtered off, the mixture was washed with acetone to remove the solvent. The residue was purified by column chromatography on silica gel with hexane/ethyl acetate (4/1) to give the desired compound (315 mg) as white
solid (yield 69%).
iH-NMR (CDC13/ 400MHz) 8: 1.29 (t, 3H, J=7Hz) , 1.31('d,
6H, J=7Hz), 2.31(s, 3H), 2.94 11.48(3, 1H) .
(4) [4-[3-[2-(2-Hydroxy-4-chlorophenyl)-5-isopropyl-4-
oxazolyl]propionyl]-2-methylphenoxy]acetic acid
The desired compound was obtained in an analogous
manner as in (2) of Example 2 (yield 87%).
White powder (mp: 159-161°C) iH-NMR (CDG13, 400MHz) 5: 1.31(d, 6H, J=7Hz), 2.31(s,
3H), 2.94 (t, 2H, J=7Hz) , 3.19 (dq, 1H, J=7Hz, J=7Hz.) , 3.30(t, 2H, J=7Hz), 4.76(s, 2H), 6.74(d, 1H, J=8Hz), 6.90(dd, 1H, J=2, 8Hz) , 7.04(d, 1H, J=2Hz), 7.68(d, 1H, J=8Hz), 7.80-7.85(m, 2H).

(1) 3-[2-(2,4-Dichlorophenyl)-5-isopropyl-4-oxazolyl]-1-[3-methyl-4-(dimethylthiocarbamoyloxy)phenyl]propan-l-one
In dry dioxane (5 mL), 3-[2-(2,4-dichlorophenyl)-5-isopropyl-4-oxazolyl]-1-(3-methyl-4-hydroxyphenyl)propan-1-one (417 mg, 1.00 mmol) obtained in (1) of Example 1, 4-dimethylaminopyridine(12 mg, 0.10 mmol) and triethyl-

amine(0.28 mL, 2.00 mmol). To the solution, dimethylthiocarbamoyl chloride (148 mg, 1.20 mmol) was added while cooling with ice. The reaction temperature was increased, and ref luxed over night. The mixture was allowed to room temperature. To the mixture, 4-dimethylaminopyridine(12 mg, 0.10 mmol) and dimethylthiocarbamoyl chloride (148 mg, 1.20 mmol) were again added. The mixture was refluxed for 20 hours. The reaction mixture was allowed to room temperature, and poured into ice water. Ethyl acetate was added to the mixture. The organic layer was washed with water, and a saline, dried over anhydrous sodium sulfate. Ethyl acetate was removed under reduced pressure. The residue was purified by column chromatography on silica gel with hexane/ethyl acetate (3/1), and chloro-form/methanol (100/1) to give the desired compound (170 mg) as a mixture with the starting materials.
(2) 3-[2-(2,4-Dichlorophenyl)-5-isopropyl-4-oxazolyl]-1-
[3-methyl-4-(dimethylcarbamoylsulfanyl)phenyl]propan-1-
one
The obtained crude thiocarbamoyl compound (16-0 mg)
was dissolved in n-tetradecane (10 mL). The solution was
refluxed at the internal temperature of 250°C for 8 hours.
The mixture was allowed to room temperature. The reaction
mixture was directly purified by column chromatography on
silica gel with hexane/ethyl acetate (3/1) to give the
desired compound (120 mg) as a pale yellow oil (two steps
yield 24%).
iH-NMR (CDC13, 400MHz) 5: 1.31(d, 6H, J=7Hz), 2.45(s,
3H), 2.97(t, 2H, J=7Hz), 3.0-3.2(br, 6H), 3.19(dq, 1H, J=7Hz, J=7Hz), 3.38(t, 2H, J=7Hz), 7.30(dd, 1H, J=2, 8Hz), 7.48(d, 1H, J=2Hz), 7.57(d, 1H, J=8Hz), 7.78(dd, 1H, J-2, 8Hz), 7.88(d, 1H, J=2Hz), 7.89(d, 1H, J=8Hz).

(3) 3-[2-(2,4-Dichlorophenyl)~5-isopropyl-4-oxazolyl]-1-
(3-methyl-4-mercaptophenyl)propan-1-one
The obtained carbamoyl compound (110 mg, 0.22 mmol) was dissolved in dry methanol (5 mL). To the solution, 0.5N MeONa (0.66 mL, 0.33 mmol) was added. The mixture was refluxed for 20 hours, and allowed to room temperature. The mixture was poured into ice water. The mixture was neutralized with 3N hydrochloric acid. Ethyl acetate was added to the mixture. The organic layer was washed with water, and a saline, dried over anhydrous sodium sulfate. Ethyl acetate was removed under reduced pressure to obtain the desired compound (80 mg) as pale yellow oil
(yield 84%) .
iH-NMR (CDC13, 400MHz) 5: 1.30(d, 6H, J=7Hz), 2.34(s,
3H), 2.96(t, 2H, J=7Hz), 3.18(dq, 1H, J=7Hz, J=7Hz), 3.34(t, 2H, J=7Hz), 3.51(s, 1H), 7.2-7.3(m, 2H), 7.49(d, 1H, J=2Hz), 7.66(dd, 1H, J=2, 8Hz), 7.75(d, 1H, J=2Hz), 7.88 (d, 1H, J=8Hz) .
(4) Ethyl [4-[3-[2-(2,4-dichlorophenyl)-5-isopropyl-4-
oxazolyl]propionyl]-2-methylphenylsulfanyl]acetate-
The desired compound was obtained in an analogous
manner as in (1) of Example 2 (yield 89%).
Colorless oil 1H-NMR (CDCI3, 400MHz) 5: 1.25 (t, 3H, J=7Hz), 1.30(d,
6H, J=7Hz), 2.39(s, 3H), 2.96(t, 2H, J=7Hz), 3.18(dq, 1H, J=7Hz, J=7Hz), 3.35(t, 2H, J=7Hz), 3.73(s, 2H) , 4.20(q, 2H, J=7Hz), 7.2-7.35(m, 2H), 7.49(d, 1H, J=2Hz), 7.7-7.8(m, 2H), 7.88(d, 1H, J=8Hz).
(5) [4-[3-[2-(2,4-dichlorophenyl)-5-isopropyl-4~
oxazolyl]propionyl]-2-methylphenylsulfanyl]acetic acid
The desired compound was obtained in an analogous manner as in (2) of Example 2 using the obtained ester compound (yield 71%).

White powder (mp: 140-145°C) 1H-NMR (CDCI3, 4 00MHz) 8: 1.30(d, 6H, J=7Hz), 2.39 3H) , 2.96(t, 2H.J=7Hz) , 3.19(dq, 1H.J=7Hz, J=7Hz) , 3.32 ft, 2H, J=7Hz), 3.77(s, 2H) , 7.2-7.35(111, 2H) , 7.49(d, 1H, J=2Hz), 7.7-7.8(m, 2H) , 7.87(d, 1H, J=8Hz).

(1) Ethyl 2- [4-[3-[2-(2-hydroxy-4-chlorophenyl)-5-
isopropyl-4-oxazolyl]propionyl]-2-methylphenoxy]-2-
methylpropionate
In methyl ethyl ketone (10 mL), 3-[2-(2-hydroxy-4-chlorophenyl)-5-isopropyl-4-oxazolyl]-1-(3-methyl-4-hydroxyphenyl)propan-l-one (150 mg, 0.38 mmol), ethyl 2-bromo-2-methylpropionate (146 mg, 0.75 mmol) and potassium carbonate (103 mg, 0.75 mmol) were suspended. The suspension was refluxed for 20 hours, and allowed to room temperature. After insoluble was filtered off, the mixture was washed with methyl ethyl ketone to removed the solvent. The residue was purified by column chromatography on silica gel with hexane/ethyl acetate (8/1) to give
the desired compound (83 mg) as colorless oil (yield 43%). 1H-NMR (CDCI3, 4 00MHz) 5: 1.21(t, 3H, J=7Hz), 1.31(d,
6H, J=7Hz) , 1.64(s, 6H) , 2.25(s, 3H) , 2.93 (t, 2H, J=7Hz), 3.19(dq, 1H, J=7Hz, J=7Hz), 3.28(t, 2H, J=7Hz), 4.22(q, 2H, J=7Hz), 6.60(d, 1H, J=9Hz), 6.90(dd, 1H, J=2, 9Hz), 7.04(d, 1H, J=2Hz), 7.68(d, 1H, J=9Hz), 7.70(dd, 1H, J=2, 9Hz), 7.78(d, 1H, J=2Hz), 11.48(s, 1H) .
(2) 2-[4-[3-[2-(2-Hydroxy-4-chlorophenyl)-5-isopropyl-4-
oxazolyl]propionyl]-2-methylphenoxy]-2-methylpropionic
acid

The desired compound was obtained in an analogous
manner as in (3) of Example 2 using the obtained ester
compound (yield 33%).
Pale white amorphous iH-NMR (CDC13, 400MHz) 5: 1.31(d, 6H, J=7Hz), 1.68(s,
6H), 2.21(3, 3H), 2.94(t, 2H, J=7Hz), 3.20(dq/ 1H, J=7Hz, J=7Hz), 3.29(t, 2H, J=7Hz), 6.77(d, 1H, J=9Hz), 6.90(dd, 1H, J=2, 9Hz), 7.04(d, 1H, J=2Hz), 7.68(d, 1H, J=9Hz), 7.74(dd, 1H, J=2, 9Hz), 7.80(d, 1H, J=2Hz).

(1) 4- [3-[2-(2,4-Dichlorophenyl)-5-isopropyloxazol-4-yl]-1-hydroxypropyl]-2-methylphenol
To a solution of lithium aluminum hydride (92 mg, 2.42 mmol) in dry THF(20 mL), 3-[2-(2,4-dichlorophenyl)-5-isopropyloxazol-4-yl]-1-(4-hydroxy-3-
methylphenyljprop.an-1-one (l.Olg, 2.41 mmol) was gradually added while cooling with ice. The mixture was • stirred for 1 hour, and further stirred at room temperature. The reaction mixture was again cooled with ice. To the mixture, a saturated aqueous sodium sulfate solution was dropwise added. After insoluble materials were filtered out, the solvent was removed under reduced pressure. The residue was extracted with ethyl acetate, washed with water (15 mL) containing a small amount of a 1M aqueous solution of hydrochloric acid, and dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure to obtain the desired compound (997 mg) as ocher
yellow crystal (yield 98%).
iH-NMR (CDC13, 400MHz) 5: 1.30(d, 3H, J=7Hz), 1.31(d,
3H, J=7Hz), 2.07(dt, 2H, J=7Hz, 7Hz), 2.24(s, 3H) , 2.67(dt, 2H, J=2Hz, 7Hz), 3.07(m, 1H), 3.65(brs, 1H),

4.72(t, 2H, J=7Hz) , '5.06(s, 1H) , 6.71(d, 1H, J=8Hz) , 7.06(dd, 1H, J=2Hz, 8Hz), 7.15 (d, 1H, J=2Hz), 7.30(dd, 1H, J=2Hz, 8Hz), 7.50(d, 1H, J=2Hz) , 7.91(d, 1H, J=8Hz) .
(2) 4- [3- [2- (2,4-Dichlorophenyl)-5-isopropyloxazol-4-
yl]-1-propenyl]-2-methylphenol
To the obtained phenol compound (840 mg, 2.00 mmol), DMSO (8 mL) was added. The mixture was stirred at 150°C for 2 hours, and allowed to room temperature. Ethyl acetate (20 mL) was added to the mixture. The mixture was washed with water (20 mL), and then a saturated saline (20 mL) • After the mixture was dried over anhydrous sodium sulfate, the solvent was removed under reduced pressure. The residue was recrystallized with ethyl ace-tate/hexane = 1/10 (6.6 mL) to give the desired compound
(58 mg) as pale yellow crystal (total yield 81%).
iH-NMR (CDC13, 400MHz) 5: 1.31(d, 6H, J=7Hz), 2.22 (s,
3H), 3.13(m, 1H), 3.45(dd, 2H, J-lHz, 6Hz), 4.72(brs, 1H) , 6.19(dt, 1H, J=6Hz, 16Hz), 6.37(d, 1H, J=16Hz), 6.69(d, 1H, J=8Hz), 7.0'6(d, 1H, J=8Hz), 7.12(s, 1H) , 7.30(dd, 1H, J=2Hz, 8Hz) , 7.50 (d, 1H, J=2Hz) , 7.93 (d, 1H, J^8Rz) .
(3) Ethyl [4-[3-[2-(2, 4-dichlorophenyl)-5-isopropyl-4-
oxazolyl]-1-propenyl]-2-methylphenoxy] acetate
The desired compound was obtained in an analogous
manner as in (1) of Example 2.
iH-NMR (CDCI3, 400MHz) 5; 1.29(t, 3H, J=7Hz), 1.31(d,
6H, J=7Hz), 2.27(s, 3H), 3.12(m, 1H), 3.46(dd, 2H, J=lHz, 6Hz), 4.25(q, 2H, J=7Hz) , 4.61(s, 2H), 6.22(dt, 1H, J=6Hz, 16Hz), 6.39(d, 1H, J=16Hz), 6.63(d, 1H, J=8Hz), 7.10(dd, 1H, J=2Hz, 8Hz), 7.18(d, 1H, J=2Hz), 7.30(dd, 1H, J=2Hz, 8Hz), 7.50(d, 1H, J=2Hz), 7.94(d, 1H, J=8Hz).
(4) [4- [3-[2-(2,4-Dichlorophenyl)-5-isopropyl-4-
oxazolyl]-1-propenyl]-2-methylphenoxy]acetic acid

The desired compound was obtained in an analogous
manner as in (2) of Example 2.
Pale yellow crystal (mp: 143-144°C)
iH-NMR (DMSO-d6, 400MHz) 8: 1.27(d, 6H, J=7Hz),
2.17(s, 3H), 3.22(m, 1H), 3.43(d, 2H, J=6Hz), 4.66(s, 2H) , 6.21(dt, 1H, J=6Hz, 16Hz), 6.39(d, 1H, J=16Hz), 6.74(d, 1H, J=8Hz), 7.14(dd, 1H, J=2Hz, 8Hz), 7.22(d, 1H, J=2Hz), 7.56(dd, 1H, J=2Hz, 8Hz), 7.78(d, 1H, J=2Hz), 7.98(d, 1H, J=8Hz).
IR (KBr) cm"1: 2968, 2931, 1734, 1564, 1502, 1458, 1387, 1242, 1203, 1138, 1119, 966, 804.

(1) Ethyl [4-[3-[4-isopropyl-2-(4-
trifluoromethyl)phenyl-5-thiazolyl]-1-propenyl]-2-
methylphenoxy]acetate
The desired compound was obtained in an analogous
manner as in Example 9.
!H-NMR (CDC13, 400MHZ) 5: 1.29(t, 3H, J=7Hz), 1.34(d,
6H, J=7Hz), 2.28(s, 3H), 3.12(m, 1H), 3.67(dd, 2H, J=lHz, 6Hz), 4.26(q, 2H, J=7Hz), 4.62(s, 2H), 6.17(dt, 1H, J=6Hz, 16Hz), 6.40(d, 1H, J=16Hz), 6.65(d, 1H, J=8Hz), 7.11(dd, 1H, J=2Hz, 8Hz), 7.19(d, 1H, J=2Hz), 7.64(d, 2H, J=8Hz), 8.01(d, 2H, J=8Hz).
(2) [4-[3-[4-Isopropyl-2-(4-trifluoromethyl)phenyl-5-
thiazolyl]-1-propenyl]-2-methylphenoxy]acetic acid
The desired compound was obtained in an analogous
manner as in (2) of Example 2.
Pale yellow powder (mp: 125-128°C)
XH-NMR (CDCI3, 400MHz) 5: 1.34(d, 6H, J=7Hz), 2.28(s,
3H), 3.13(m, 1H), 3.68(dd, 2H, J=lHz, 6Hz), 4.68(s, 2H),

6.19(dt, 1H, J=6Hz, 16Hz), 6.40(d, 1H, J=16Hz), 6.69(d, 1H, J=8Hz), 7.13(dd, 1H, J=2Hz, 8Hz), 7.20(d, 1H, J=2Hz), 7.64(d, 2H, J=8Hz), 8.01(d, 2H, J=8Hz).
IR (KBr) cm"1: 2974, 1751, 1506, 1325, 1252, 1225, 1169, 1136, 1122, 1119, 1066, 843.

(1) Ethyl [4-[3-[4-hexyl-2-(4-trifluoromethyl)phenyl-5-
thiazolyl]propionyl] -2-methylphenoxy] acetate
The desired compound was obtained in an analogous
manner as in (1) of Example 2.
2H-NMR (CDC13, 400MHz) 6: 0.89(t, 3H, J=7Hz), 1.29(t,
3H, J=7Hz), 1.3-1.5(m, 6H), 1.7-1.8(m, 2H), 2.33(s, 3H), 2.75 (t, 2H, J=8Hz), 3.2-3.3(m, 4H), 4.27(q, 2H, J=7Hz), 4.71(s, 2H), 6.72(d, 1H, J=8Hz), 7.64(d, 2H, J=8Hz), 7.8-7.9(m, 2H), 7.97(dd, 2H, J=lHz, 8Hz).
(2) [4- [3-[4-Hexyl-2-(4-trifluoromethyl)phenyl-5-'
thiazolyl]propionyl]-2-methylphenoxy]acetic acid
The desired compound was obtained in an analogous
manner as in (2) of Example 2.
Yellow amorphous
iH-NMR (CDCI3, 400MHz) 8: 0.88 (t, 3H, J=7Hz), 1.3-
1.5(m, 6H), 1.7-1.8(m, 2H), 2.32(s, 3H), 2.75(t, 2H, J=8Hz), 3.2-3.3(m, 4H), 4.76(s, 2H), 6.75(d, 1H, J=8Hz), 7.64(d, 2H, J=8Hz), 7.7-7.9(m, 2H), 7.97(dd, 2H, J=lHz, 8Hz) .
IR (KBr) cm'1: 2954, 2929, 2858, 1724, 1676, 1603, 1500, 1441, 1327, 1284, 1219, 1169, 1142, 1111, 1068.


(1) Ethyl 2-[4-[3-[4-hexyl-2-(4-trifluoromethyl)phenyl-
5-thiazolyl]propionyl]-2-methylphenoxy]-2-
methylpropionate
The desired compound was obtained in an analogous
manner as in (2) of Example 1.
!H-NMR (CDC13, 400MHz) 5: 0.89(t, 3H, J=7Hz), 1.21(t,
3H, J=7Hz), 1.2-1.5(m, 6H), 1.65(s, 6H), 1.7-1.8(m, 2H), 2.27(s, 3H), 2.74(t, 2H, J=8Hz), 3.2-3.3(m, 4H), 4.22(q, 2H, J=7Hz), 6.62(d, 1H, J=8Hz), 7.64(d, 2H, J=8Hz), 7.70(dd, 1H, J=2Hz, 8Hz), 7.80(d, 1H, J=2Hz), 7.98(d, 2H, J=8Hz).
(2) 2-[4~[3-[4-Hexyl-2-(4-trifluoromethyl)phenyl-5-
thiazolyl]propionyl]-2-methylphenoxy]-2-methylpropionic
acid
The desired compound was obtained in an analogous
manner as in (3) of Example 1.
Yellow oil
iH-NMR (CDCI3, 400MHz) 8: 0.88 (t, 3H, J=7Hz), 1.3-
1.5(m, 6H), 1.6-1.8(111, 2H) , 1.69(s, 6H) , 2.27(s, 3H) , 2.74(t, 2H, J=8Hz), 3.2-3.3(m, 4H), 6.75(d, 1H, J=8Hz), 7.63(d, 2H, J=8Hz), 7.72(dd, 1H, J=2Hz, 8Hz), 7.80(d, 1H, J=2Hz), 7.97(d, 2H, J=8Hz).
IR (KBr) cm"1: 2956, 2927, 2858, 1741, 1678, 1601, 1500, 1325, 1261, 1169, 1124, 1066, 845.


(1) Ethyl 2-[4-[3-[4-Isopropyl~2-(4-
trifluoromethyl)phenyl-5-thiazolyl]-1-propenyl]-2-
methylphenoxy]-2-methylpropionate
The desired compound was obtained in an analogous
manner as in (2) of Example 1.
^■H-NMR (CDC13, 400MHz) 8: 1.25(t, 3H, J=7Hz), 1.34(d,
6H, J=7Hz), 1.55(s, 6H) , 2.21(s, 3H) , 3.12(m, 1H), 3.67(dd, 2H, J=lHz, 6Hz), 4.24(q, 2H, J=7Hz), 6.17(dt, 1H, J=6Hz, 16Hz), 6.38(d, 1H, J=16Hz), 6.60(d, 1H, J=8Hz), 7.03(dd, 1H, J=2Hz, 8Hz) , 7.16(d, 1H, J=2Hz), 7.64(d, 2H, J=8Hz), 8.01(d, 2H, J=8Hz).
(2) 2-[4-[3-[4-Isopropyl-2-(4-trifluoromethyl)phenyl-5-
thiazolyl]-1-propenyl]-2-methylphenoxy]-2-methylpropionic
acid
The desired compound was obtained in an analogous
manner as in (3) of Example 1.
Yellow oil
l-H-NMR (CDG13/ 400MHz) 8: 1.34(d, 6H, J=7Hz), 1.61(s,
6H) , 2.23(s, 3H), 3.13(m, 1H) , 3.68(dd, 2H, J=lHz,■6Hz), 6.20(dt, 1H, J=6Hz, 16Hz), 6.40(d, 1H, J=16Hz), 6.77(d, 1H, J=8Hz), 7.09(dd, 1H, J=2Hz, 8Hz), 7.19(d, 1H, J=2Hz), 7.64(d, 2H, J=8Hz), 8.01(d, 2H, J=8Hz).
IR (KBr) cm"1: 2970, 2929, 2872, 1716, 1616, 1500, 1325, 1167, 1126, 1066, 964, 845.

(1) Ethyl [4-[3-[4-isopropyl-2-(4-
trifluoromethyl)phenyl-5-thiazolyljpropionyl]-3-
methylphenoxy] acetate

The desired compound was obtained in an analogous
manner as in (1) of Example 2.
!H-NMR (CDC13, 400MHZ) 8: 1.30(t, 3H, J=7Hz), 1.33(d,'
6H, J=7Hz), 2.56(s, 3H), 3.15(m, 1H), 3.23(s, 4H) , 4.28(q,
2H, J=7Hz), 4.65(s, 2H) , 6.75(dd, 1H, J=2Hz, 9Hz), 6.78(d,
1H, J=2Hz), 7.64(d, 2H, J=9Hz), 7.70(d, 1H, J=9Hz),
8.00(d, 2H, J=9Hz).
(2) [4-[3-[4-Isopropyl-2-(4-trifluoromethyl)phenyl-5-
thiazolyl]propionyl] -3-methylphenoxy]acetic acid
The desired compound was obtained in an analogous
manner as in (2) of Example 2.
White crystal (mp: 136-142°C)
iH-NMR (CDC13, 400MHz) 5: 1.33(d, 6H, J=7Hz), 2.56(s,
3H) , 3.15(m, 1H) , 3.23(s, 4H) , 4.72(s, 2H) , 6.7-6.8(m, 2H) , 7.64(d, 2H, J=8Hz), 7.71(d, 1H, J=9Hz), 8.00(d, 2H, J=8Hz).
IR (KBr) cm"1: 2962, 1741, 1672, 1603, 1574, 1450, 1325, 1260, ^1236, 1211, 1168, 1126, 1066, 976, 849, 698, 611. : \i,

(1) Ethyl [4-[3-[2-(2,4-dichlorophenyl)-5-isopropyl-4-
oxazolyl]propionyl]-3-methylphenoxy] acetate
The desired compound was obtained in an analogous
manner as in (1) of Example 2.
2H-NMR (CDCI3, 400MHz) 8: 1.30(t, 3H, J=7Hz), 1.30(d,
6H, J=7Hz), 2.53(s, 3H) , 2.94(t, 2H, J=7Hz), 3.19(m, 1H) , 3.29(t, 2H, J=7Hz), 4.27(q, 2H, J=7Hz), 4.64(s, 2H), 6.72(dd, 1H, J=2Hz, 8Hz), 6.76(d, 1H, J=2Hz) , 7.30(dd, 1H, J=2, 9Hz), 7.49(d, 1H, J=2Hz), 7.76(d, 1H, J=9Hz), 7.88(d, 1H, J=8Hz).

(2) [4-[3-[2-(2,4-Dichlorophenyl)-5-isopropyl-4-
oxazolyl]propionyl]-3-methylphenoxy]acetic acid
The desired compound was obtained in an analogous
manner as in (2) of Example 2.
White crystal (mp: 97-102°C)
!H-NMR (CDC13, 400MHz) 8: 1.30(d, 6H, J=7Hz), 2.51 (s,
3H), 2.93(t, 2H, J=7Hz), 3.19(m, 1H) , 3.26(t, 2H, J=7Hz), 4.65(s, 2H) , 6.71(dd, 1H, J=2Hz, 8Hz), 6.75(d, 1H, J=2Hz), 7.29(dd, 1H, J=2Hz, 8Hz), 7.48(d, 1H, J=2Hz), 7.72(d, 1H, J=8Hz), 7.85(d, 1H, J=8Hz) .
IR (KBr) cm"1: 3454, 2976, 1730, 1682, 1637, 1605, 1564, 1460, 1383, 1363, 1317, 1242, 1201, 1178, 1120, 1072, 1051, 978, 868, 818, 741.

(1) Ethyl [4-[3-[4-isopropyl-2-(4-
trifluoromethyl)phenyl-5-thiazolyl]propionyl]-3-
methylphenoxy]-2-methylpropionate
The desired compound was obtained in an analogous
manner as in (2) of Example 1.
XH-NMR (CDCI3, 400MHz) 5: 1.22 (t, 3H, J=7Hz), 1.33(d,
6H, J=7Hz), 1.63(s, 6H), 2.52(s, 3H) , 3.14(m, 1H) , 3.22(s, 4H) , 4.22(q, 2H, J=7Hz), 6.63(dd, 1H, J=2Hz, 9Hz), 6.90(d, 1H, J=2Hz), 7.64(d, 1H, J=9Hz), 7.64(d, 2H, J=9Hz), 8.00(d, 2H, J=9Hz).
(2) [4-[3-[4-Isopropyl-2-(4-trifluoromethyl)phenyl-5-
thiazolyl]propionyl]-3-methylphenoxy]-2-methylpropionic
acid

The desired compound was obtained in an analogous
manner as in (3) of Example 1.
Yellow amorphous
!H-NMR (CDCI3, 400MHz) 5: 1.33(d, 6H, J=7Hz), 1.66(s,
6H), 2.53(s, 3H), 3.14(m, 1H) , 3.23(s, 4H), 6.74(dd, 1H, J=2Hz, 8Hz), 6.78(d, 1H, J=2Hz), 7.64(d, 2H, J=8Hz), 7.66(d, 1H, J=8Hz), 8.00(d, 2H, J=8Hz).
IR (KBr) cm"1: 3456, 2968, 2929, 2873, 1740, 1736, 1678, 1603, 1325, 1248, 1167, 1126, 1066.

(1) Ethyl 2-[4-[3-[2-(2,4-dichlorophenyl)-5-isopropyl-4-
oxazolyl]propionyl]-3-methylphenoxy]-2-methylpropionate
The desired compound was obtained in an analogous
manner as in (2) of Example 1.
!H-NMR (CDCI3, 400MHz) 8: 1.22 (t, 3H, J=7Hz), 1.30(d,
6H, J=7Hz),.1.63(s, 6H) , 2.49(s, 3H), 2.93(t, 2H, J=7Hz), 3.18(m, 1H), 3.28(t, 2H, J=7Hz), 4.23(q, 2H, J=7Hz), 6.61(dd, 1H, J=2Hz, 9Hz), 6.67(d, 1H, J=2Hz) , 7.30(dd, 1H, J=2Hz, 9Hz), 7.49(d, 1H, J=2Hz), 7.70(d, 1H, J=9Hz), 7.88(d, 1H, J=9Hz)
(2) 2-[4-[3-[2-(2,4-Dichlorophenyl)-5-isopropyl-4-
oxazolyl]propionyl]-3-methylphenoxy]-2-methylpropionic
acid
The desired compound was obtained in an analogous
manner as in (3) of Example 1.
White crystal (mp: 98-100°C)
!H-NMR (CDCI3, 400MHz) 5: 1.30(d, 6H, J=7Hz), 1.63(s,
6H), 2.47(s, 3H), 2.92(t, 2H, J=7Hz), 3.1-3.3(m, 3H), 6.66(dd, 1H, J=2Hz, 9Hz), 6.73(d, 1H, J=2Hz), 7.27(dd, IB,

J=2Hz, 8Hz), 7.48(d, 1H, J=2Hz), 7.55(d, 1H, J=9Hz), 7.83(d, 1H, J=8Hz) .
IR (KBr) cm"1: 2980, 2940, 1720, 1680, 1600, 1560, 1460, 1250, 1145, 1125.

(1) Ethyl 2-allyl-4-[3-[4-isopropyl-2-(4-
trifluoromethyl)phenyl-5-
thiazolyl]propionyl]phenoxyacetate
The desired compound was obtained in an analogous
manner as in (2), (3) and (4) of Example 5.
iH-NMR (CDC13, 400MHz) 8: 1.29(t, 3H, J=7Hz), 1.33(d,
6H, J=7Hz), 3.15(m, 1H), 3.2-3.3(m, 4H), 3.48(d, 2H,
J=7Hz), 4.26(q, 2H, J=7Hz), 4.71(s, 2H), 5.1-5.2(m, 2H),
5.9-6.l(m, 1H), 6.75(d, 1H, J=9Hz), 7.64(d, 2H, J=8Hz),
7.8-7.9(m, 2H), 8.00(d, 2H, J=8Hz).
(2) Ethyl [4-[3-[4-isopropyl-2-(4-
trifluoromethyl)phenyl-5-thiazolyl]propionyl]-2-
propylphenoxy]acetate
iH-NMR (CDCI3, 400 MHz) 8: 0.95(t, 3H, J=7Hz), 1.28(t,
3H, J=7Hz), 1.33(d, 6H, J=7Hz), 1.6-1.8(m, 2H), 2.68(t,
2H, J=7Hz), 3.15(dq, 1H, J=7Hz, 7Hz), 3.2-3.3(m, 4H),
4.26(q, 2H, J=7Hz), 4.70(s, 2H) , 6.72(d, 1H, J=9Hz),
7.64(d, 2H, J=8Hz), 7.7-7.9(m, 2H), 8.00(d, 2H, J=8Hz).
(3) [4-[3-[4-Isopropyl-2-(4-trifluoromethyl)phenyl-5-
thiazolyl]propionyl] -2-propylphenoxy]acetic acid
The desired compound was obtained in an analogous manner as in (2) of Example 2.
Pale white crystal (mp: 145-150°C)

iH-NMR (CDCI3, 400MHz) 8: 0.96(t, 3H, J=7Hz), 1.33(d,
6H, J=7Hz), 1.6-1.8(111, 2H), 2.68(t/ 2H, J=7Hz), 3.15 (dq,
1H, J=7Hz, 7Hz), 3.2-3.3(10, 4H) , 4.77(s, 2H) , 6.76(d, 1H, '
J=9Hz), 7.64(d, 2H, J=8Hz), 7.7-7.9(m, 2H) , 8.00(d, 2H,
J=8Hz).

The desired compound was obtained in an analogous
manner as in (2) of Example 2.
Pale yellow crystal (mp: 165-175°C)
1H-NMR (CDCI3, 400MHz) 5: 1.33(d, 6H, J=7Hz),
3.15(dq, 1H, J=7Hz, 7Hz), 3.2-3.4(m, 4H), 3.4 8(d, 2H, J=7Hz), 4.76(s, 2H) , 5.0-5.1(m, 2H), 5.9-6.1(m, 1H), 6.79(d, 1H, J=9Hz), 7.64(d, 2H, J=8Hz), 7.8-7.9(m, 2H) , 8.00(d, 2H, J=8Hz).

(1) Ethyl [4- [4- [2-(2,4-dichlorophenyl)-5-isopropyl-4-oxazolyl]-l-buten-2-yl]-2-methylphenoxy] acetate
In a dry ether (2 mL), potassium t-butoxide (120 mg, 1.07 mmol) was suspended. Methyl triphenyl phosphonium bromide (350 mg, 0.98 mmol) was added to the suspension. The mixture was stirred for 2 hours at room temperature. [4-[3-[2-(2,4-dichlorophenyl)-5-isopropyl-4-oxazolyl]propionyl]-2-methylphenoxy]ethyl acetate (450 mg, 0.89 mmol) and a dry ether (1.5 mL) were added to the mixture. The resulting mixture was stirred for 16 hours at room temperature. Methyl triphenyl phosphonium bromide (175 mg, 0.49 mmol), a dry ether (5 mL) and potassium t- '

butoxide (60 mg, 0.53 mmol) were added to the reaction mixture. The resulting mixture was stirred for 30 minutes at room temperature. The mixture was refluxed for 4 hours*, and allowed to room temperature. Ethyl acetate (10 mL) was added to the reaction mixture. The mixture was washed with water (10 mL) , and a saturated saline (10 mL), and dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel with ethyl ace-tate/hexane (1/9) to give the desired compound (131 g) as
colorless oil (yield 29%).
iH-NMR (CDC13, 400MHz) 5: 1.24(d, 6H, J=7Hz), 1.30 (t,
3H, J=7Hz), 2.29(s, 3H), 2.6-2.7(m, 2H), 2.8-3.0(m, 3H), 3.27(q, 2H, J=7Hz) , 4.63 (s, 2H) , 5.00(d, IH, J=lHz), 5.23(d, IH, J=lHz), 7.66(d, IH, J=8Hz), 8.21(dd, IH, J=2Hz, 8Hz), 7.2 6 (d, IH, J=2Hz), 7.31(dd, IH, J=2Hz, 8Hz), 7.50(d, IH, J=2Hz) , 7.92(d, IH, J=8Hz) .
(2) [4-[4-[2-(2,4-Dichlorophenyl)-5-isopropyl-4-
oxazolyl]-l-buten-2-yl]-2-methylphenoxy]acetic acid
The desired compound was obtained in an analogous
manner as in (2) of Example 2.
Pale yellow oil
iH-NMR (CDC13, 400MHz) 8: 1.25(d, 6H, J=7Hz), 2.29(s,
3H), 2.6-2.7(m, 2H) , 2.8-2.9(m, 2H), 2.93(m, IH), 4.65(s, 2H), 5.01(d, IH, J=lHz), 5.23(d, IH, J=lHz), 6.69(d, IH, J=8Hz), 7.22(dd, IH, J-2Hz, 8Hz), 7.2 6 (d, IH, J=2Hz), 7.32(dd, IH, J=2Hz, 8Hz), 7.50(d, IH, J=2Hz), 7.91(d, IH, J=8Hz).
IR (KBr) cm"1: 3088, 2968, 2927, 2872, 1736, 1605, 1564, 1504, 1460, 1225, 1142, 1107.


(1) Ethyl 2-[4-[4-[2-(2,4-dichlorophenyl)-5-isopropyl-4-
oxazolyl]-l-buten-2-yl]-2-methylphenoxy]-2-
methylpropionate
The desired compound was obtained in an analogous
manner as in (2) of Example 1.
!H-NMR (CDC13, 400MHz) 8: 1.23(d, 6H, J=7Hz), 1.26(t,
3H, J=7Hz), 1.59(s, 6H), 2.30(s, 3H), 2.6-2.7(m, 2H), 2.8-3.0(m, 3H) , 3.25(q, 2H, J=7Hz), 4.99(d, 1H, J=lHz), 5.23(d, 1H, J=lHz), 6.62(d, 1H, J=8Hz), 7.13(dd, 2H, J=lHz, 8Hz), 7.24(d, 1H, J=2Hz), 7.31(dd, 1H, J=2Hz, 8Hz), 7.50(d, 1H, J=2Hz), 7.92(d, 1H, J=8Hz).
(2) 2-[4-[4-[2-(2,4-Dichlorophenyl)-5-isopropyl-4-
oxazoiyl]-l-buten-2-yl]-2-methylphenoxy]-2-
methylpropionic "acid
The desired compound was obtained in an analogous
manner as in (3) of Example 1.
Brown oil
iH-NMR (CDCI3, 400MHz) 8:-1.24{d, 6H, J=7Hz), 1.61(s,
6H), 2.24(s, 3H), 2.6-2.7(m, 2H), 2.8-2.9(m, 2H), 2.91(m, 1H), 5.03(d, 1H, J=lHz), 5.25(d, 1H, J=lHz), 6.79(d, 1H, J=8Hz), 7.18(dd, 1H, J=2Hz, 8Hz), 7.26(m, 1H), 7.31(dd, 1H, J=2Hz, 8Hz), 7.50(d, 1H, J=2Hz), 7.91(d, 1H, J=8Hz).
IR (KBr) cm"1: 2972, 2935, 2873, 1716, 1603, 1564, 1500, 1464, 1385, 1250, 1151, 1107.


(1) Ethyl [4-[3-[2-(2,4-dichlorophenyl)-5-isopropyl-4-
oxazolyl]-2-methylpropionyl]-2-methylphenoxy]acetate
Ethyl [4-[3-[2-(2,4-dichlorophenyl)-5-isopropyl-4-oxazolyljpropionyl]-2-methylphenoxy]acetate (4 50 mg, 0.89 mmol) was dissolved in dry THF (4 mL) . Sodium hydride (40 mg, 1.00 mmol) was gradually added to the solution. The mixture was stirred for 30 minutes at room temperature. Methyl iodide (0.07 mL, 1.12 mmol) was dropwise added to the mixture. The resulting mixture was stirred for 27 hours at room temperature. Sodium hydride (10 mg, 0.25 mmol) and methyl iodide (0.02 mL, 0.32 mmol) were further added to the mixture. The resulting mixture was stirred for 19 hours 30 minutes at room temperature. The solvent was removed under reduced pressure. Ethyl acetate (5 mL) was added to the residue. The residue was washed with a saturated saline (2 mL), and dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel with ethyl acetate/hexane (1/9) to give the desired compound (218 mg) as colorless oil (purity 97%,
yield 29%).
iH-NMR (CDC13, 400MHz) 8: 1.18 (d, 3H, J=7Hz), 1.22(d,
3H, J=7Hz), 1.28(d, 3H, J=7Hz), 1.29(t, 3H, J=7Hz), 2.29(s, 3H), 2.63(dd, 1H, J=7Hz, 14Hz), 3.00(dd, 1H, J=7Hz, 14Hz), 3.10(m, 1H), 4.00(m, 1H) , 4.26(q, 2H, J=7Hz), 4.68(s, 2H), 6.67(d, 1H, J=8Hz) , 7.30(dd, 1H, J-2Hz, 8Hz), 7.48(d, 1H, J=2Hz), 7.8-7.9(m, 2H), 7.85(d, 1H, J=8Hz).
(2) [4-[3-[2-(2,4-Dichlorophenyl)-5-isopropyl-4-
oxazolyl]-2-methylpropionyl]-2-methylphenoxy]acetic acid
The desired compound was obtained in an analogous manner as in (2) of Example 2. White amorphous

XH-NMR (CDCI3, 400MHz) 8: 1.18(d, 3H, J=7Hz), 1.22(d,
3H, J=7Hz), 1.28(d, 3H, J=7Hz), 2.28(s, 3H) , 2.64(dd, 1H, J=7, 14Hz), 2.98(dd, 1H, J=7Hz, 14Hz), 3.13(m, 1H), 3.95(m, 1H), 4.64(s, 2H), 6.66(d, 1H, J=8Hz), 7.30(dd, 1H, J=2Hz, 8Hz), 7.48(d, 1H, J=2Hz), 7.76(dd, 1H, J=2Hz, 8Hz), 7.81(m, 1H), 7.82(d, 1H, J=8Hz).
IR (KBr) cm"1: 3427, 2970, 2931, 2873, 1740, 1672, 1599, 1564, 1502, 1456, 1383, 1271, 1230, 1120.

(1) Ethyl 2-[4-[3-[2-(2,4-dichlorophenyl)-5-isopropyl-4-
oxazolyl]-2-methylpropionyl]-2-methylphenoxy]-2-
methylpropionate
The desired compound was obtained in an analogous
manner as in (2) of Example 1.
!H-NMR (CDCI3, 400MHz) 8: 1.20(d, 3H, J=7Hz), 1.22(d,
3H, J=7Hz), 1.27(d, 3H, J=7Hz), 1.63(s, 3H), 1.63(S, 3H), 2.23(s, 3H), 2.62(dd, 1H, J=7Hz, 14Hz), 2.99(dd, 1H, J=7Hz, 14Hz), 3.10(m, 1H), 3.99(m, 1H), 4.20(q, 2H, J=7Hz), 6.58(d, 1H, J=8Hz), 7.30(dd, 1H, J=2Hz, 8Hz), 7.48(d, 1H, J=2Hz), 7.73(dd, 1H, J=2Hz, 8Hz), 7.80(d, 1H, J=2Hz), 7.85(d, 1H, J=8Hz).
(2) 2-[4-[3-[2-(2,4-Dichlorophenyl)-5-isopropyl-4-
oxazolyl]-2-methylpropionyl]-2-methylphenoxy]-2-
methylpropionic acid
The desired compound was obtained in an analogous
manner as in (3) of Example 1.
White amorphous
XH-NMR (CDCI3, 400MHz) 8: 1.16(d, 3H, J=7Hz), 1.21(d,
3H, J=7Hz), 1.27(d, 3H, J=7Hz), 1.65(s, 3H), 1.66(s, 3H), '

2.23(s, 3H), 2.63(dd, 1H, J=7Hz, 14Hz), 2.97(dd, 1H, J=7Hz, 14Hz), 3.13(m, 1H) , 3.94(m, 1H) , 6.71(d, 1H, J=8Hz), 7.26(m, 1H) , 7.46(d, 1H, J=2Hz), 7.61(dd, 1H, J=2Hz, 8Hz), 7.7-7.9(m, 2H).
IR (KBr) cm"1: 3456, 3431, 2972, 2933, 2873, 1740, 1674, 1599, 1564, 1498, 1462, 1385, 1257, 1142, 1119.

(1) 3- [4-Isopropyl-2-(4-trifluoromethylphenyl)thiazol-5-yl]-1- (4-methoxymethoxy-3-methylphenyl)propenone
To a mixture of dry MeOH (3 mL) and dry THF (3 mL), 4-isopropyl~2-(4-trifluoromethylphenyl)thiazol-5-carboxyl aldehyde (803 mg, 2.68 mmol), 1-(4-methoxymethoxy3-methylphenyl)ethanone (521 mg, 2.68 mmol) and sodium . methoxide (9 mg, 0.13 mmol) were added. The resulting mixture was stirred for 14 hours at room temperature. Sodium methoxide (36 mg, 0.53 mmol) and dry MeOH (3 mL) were added again to the mixture. The resulting mixture was stirred for 26 hours at room temperature. The solvent was removed under reduced pressure- Ethyl acetate (30 mL) was added to the residue. The residue was washed with water (40 mL) . The aqueous layer was extracted with ethyl acetate (30 mL, 20 mL). The organic layer was added to the aqueous layer. The mixture was washed with a saturated saline (20 mL), dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel with ethyl acetate/hexane (1/9) to give the desired compound (1.04 g) as a yellow crystal- (yield 81%).
2H-NMR (CDC13, 400MHz) 5: 1.39(d, 6H, J=7Hz), 2.33(s,
3H), 3.43(m, 1H), 3.51(s, 3H), 5.30(s, 2H), 7.14(d, 1H,

J=8Hz), 7.30(d, 1H, J=15Hz), 7.71(d, 2H, J=8Hz) , 7.8-7.9(m, 2H) , 8.04(d, 1H, J=15Hz) , 8.11(d, 2H, J=8Hz) .
(2) 1-(4-Hydroxy-3-methylphenyl)-3-[4-isopropyl-2- (4-
trifluoromethylphenyl)thiazol-5-yl]propenone
In a mixture of isopropanol (4 mL) and THF (16 mL) , 3-[4-isopropyl-2-(4-trifluoromethylphenyl)thiazol-5-yl]-1-(4-methoxymethoxy3-methylphenyl)propenone (1.04g, purity 99.6%, 2.18 mmol) was dissolved. To the mixture, a 1M aqueous solution of hydrochloric acid (2.6 mL) was added. The resulting mixture was stirred for 4 hours at room temperature, and for 19 hours and 30 minutes at 65°C. The solvent was removed under reduced pressure. The residue was suspended in a mixture of ethanol (6 mL) and hex-ane (2 mL) . The crystals were filtered, washed with a mixture of ethanol (2 mL) and hexane (2 mL), and with hexane (2 mL), and dried for 30 minutes at room temperature under reduced pressure to give the desired compound
(908 mg) as a yellow crystal (yield 97%).
iH-NMR (CDC13, 400MHz) 5: 1.39(d, 6H, J=7Hz), 2.32 (s,
3H), 3.44(m, 1H), 6.85(d, 1H, J=8Hz) , 7.31(d, 1H, .J=15Hz) , 7.71(d, 2H, J=8Hz), 7.81(dd, 1H, J=2Hz, 8Hz), 7.81(bs, 1H), 8.03(d, 1H, J=15Hz), 8.11(d, 2H, J=8Hz).
(3) Ethyl [4-[3-[4-isopropyl-2-(4-
trifluoromethyl)phenyl-5-thiazolyl]propenoyl]-2-
methylphenoxy]acetate
The desired compound was obtained in an analogous
manner as in (1) of Example 2.
!H-NMR (CDC13, 400MHz) 5: 1.31(t, 3H, J=7Hz), 1.39(d,
6H, J=7Hz), 2.38 (s, 3H), 3.4 4(m, 1H), 4.29(q, 2H, J=7Hz), 4.74 (s, 2H), 6.77(d, 1H, J=8Hz), 7.2 9(d, 1H, J=15Hz), 7.71(d, 2H, J=8Hz), 7.86(dd, 1H, J=2Hz, 8Hz), 7.88(bs, 1H), 8.03(d, 1H, J=15Hz), 8.11(d, 2H, J=8Hz).

(4) [4- [3-[4-Isopropyl-2-(4-trifluoromethyl)phenyl-5-
thiazolyl]propenoyl] -2-methylphenoxy]acetic acid
The desired compound was obtained in an analogous
manner as in (2) of Example 2.
Yellow crystal (mp: 203-205°C (dec.))
^-NMR (CD3OD/CDC13=1/20, 400MHz) 8: 1.39(d, 6H,
J=7Hz), 2.37(s, 3H) , 3.44(m, 1H) , 4.71(s, 2H), 6.82(d, 1H, J=8Hz), 7.30 (d, 1H, J=15Hz), 7.72(d, 2H, J=8Hz), 7.8-7.9(m, 2H), 8.03(d, 1H, J=15Hz), 8.11(d, 2H, J=8Hz).
IR (KBr) cm"1: 2964, 2870, 1761, 1741, 1601, 1581, 1329, 1269, 1230, 1188, 1171, 1132, 1109, 1168, 823.

(1) Ethyl 2-[4-[3-[4-isopropyl-2-(4-
trifluoromethyl)phenyl-5-thiazole]propenoyl]-2-
methylphenoxy] -2-methylpropionate
The desired compound was obtained in an analogous
manner as in (2) of Example 1.
!H-NMR (CDC13, 400MHz) 5: 1.23 (t, 3H, J=7Hz), 1.38(d,
6H, J=7Hz), 1.68(s, 6H), 2.32(s, 3H) , 3.44(m, 1H), 4.24(q,
2H, J=7Hz), 6.68(d, 1H, J=8Hz), 7.29(d, 1H, J=15Hz),
7.71(d, 2H, J=8Hz) , 7.78(dd, 1H, J=2Hz, 8Hz), 7.87(d, 1H,
J=2Hz), 8.02(d, 1H, J=15Hz), 8.11(d, 2H, J=8Hz).
(2) 2-[4-[3-[4-Isopropyl-2-(4-trifluoromethyl)phenyl-5-
thiazole]propenoyl]-2-methylphenoxy]-2-methylpropionic
acid
The desired compound was obtained in an analogous manner as in (3) of Example 1.
Yellow crystal (mp: 187-189°C)

2H-NMR (CDCI3, 400MHz) 8: 1.38(d, 6H, J=7Hz), 1.72 (s,
6H), 2.33(s, 3H), 3.46(m, 1H) , 6.82(d, 1H, J=8Hz), 7.28(d, 1H, J=15Hz), 7.71(d, 2H, J=8Hz), 7.82(dd, 1H, J=2Hz, 8Hz), 7.88(d, 1H, J=2Hz), 8.04(d, 1H, J=15Hz), 8.10(d, 2H, J=8Hz).
IR (KBr) cm"1: 3466, 2972, 1740, 1657, 1655, 1639, 1603, 1500, 1327, 1325, 1273, 1169, 1128, 1068.

(1) Ethyl [4-[3-[4-isopropyl-2-(4-methoxyphenyl)-5-
thiazolyljpropionyl]-2-methylphenoxy]propionate
The desired compound was obtained in an analogous
manner as in (2) of Example 1.
iH-NMR (CDCI3, 400MHz) 8: 1.29 (t, 3H, J=7Hz), 1.32(d,
6H, J=7Hz), 2.32(s, 3H), 3.11(dq, 1H, J=7Hz, 7Hz), 3.1-3.3(m, 4H), 3.84(s, 3H), 4.27(q, 2H, J=7Hz), 4.70(s, 2H), 6.71(d, 1H, J=8Hz), 6.8-7.0(m, 2H), 7.7-7.9(m, 4H).
(2) [4- [3- [4-Isopropyl-2-(4-methoxyphenyl)-5-
thiazolyl]propionyl]-2-methylphenoxy]propionic acid
The desired compound was obtained in an analogous
manner as in (3) of Example 1.
Pale yellow crystal (mp: 170-172°C) !H-NMR (CDCI3, 400MHz) 8: 1.31(d, 6H, J=7Hz), 2.32(3H,
s), 3.11(dq, 1H, J=7Hz, 7Hz), 3.1-3.3(m, 4H), 3.84(s, 3H), 4.76(s, 2H), 6.74(d, 1H, J=8Hz), 6.91(d, 2H, J=9Hz), 7.7-7.9(m, 4H).
IR (KBr) cm"1: 2970, 1726, 1672, 1605, 1517, 1456, 1367, 1304, 1302, 1300, 1282, 1261, 1209, 1176, 1130, 1065, 1034, 1018, 995, 843, 824.


(1) Ethyl [4-[3-[2-(3, 5-difluorophenyl)-4-
isopropylthiazol-5-yl]propionyl]-2-methylphenoxy]acetate
The desired compound was obtained in an analogous
manner as in (1) of Example 2.
!H-NMR (CDC13, 400MHz) 5: 1.28 (t, 3H, J=7Hz), 1.32(d,
6H, J=7Hz), 2.33(s, 3H), 3.14(m, 1H), 3.2-3.3 (m, 4H) , 4.21(q, 2H, J=7Hz), 4.71(s, 2H) , 6.71(d, 1H, J=8Hz), 6.7-6.9(m, 1H), 7.4-7.5(m, 2H), 7.7-7.8(m, 2H).
(2) [4-[3-[2-(3, 5-Difluorophenyl)-4-isopropylthiazol-5-
yl]propionyl]-2-methylphenoxy]acetic acid
The desired compound was obtained in an analogous
manner as in (2) of Example 2.
Pale yellow crystal (mp: 125-128°C)
!H-NMR (CDCI3, 400MHz) 5: 1.31(d, 6H, J=7Hz), 2.32(s,
3H) , 3.13(m, 1H)," 3.2-3.3 (m, 4H) , 4.75(s, 2H) , 6.7-6.8(m, 2H), 7.4-7.5(m, 2H) , 7.7-7.9(m, 2H) .
IR (KBr) cm"1: 3446, 2970, 2929, 2376, 1749, 1743, 1676, 1620, 1599, 1533, 1504, 1502, 1458, 1439, 1363, 1321, 1271, 1230, 1176, 1136, 1134, 1132, 1072, 1053, 987, 879, 847, 808, 677.

(1) Ethyl 2-[4-[3-[2-(3, 5-difluorophenyl)-4-isopropyl-5-thiazolyl]propionyl] -2-methylphenoxy]-2-methylpropionate

The desired compound was obtained in an analogous manner as in (2) of Example 1.
iH-NMR (CDCI3, 400MHz) 5: 1.21 (t, 3H, J=7Hz), 1.31(d, "
6H, J=7Hz), 1.65(s, 6H) , 2.27(3H, s), 3.13(dq, 1H, J=7Hz, 7Hz), 3.2-3.3(m, 4H) , 4.22(q, 2H, J=7Hz), 6.62(d, 1H, J=9Hz), 6.79(dt, 1H, J=2Hz, 9Hz), 7.4-7.5(m, 2H), 7.69(dd, 1H, J=2Hz, 9Hz), 7.79(d, 1H, J=2Hz).
(2) 2-[4-[3-[2-(3, 5-Difluorophenyl)-4-isopropylthiazol-
5-yl]propionyl]-2-methylphenoxy]-2-methylpropionic acid
The desired compound was obtained in an analogous
manner as in (3) of Example 1.
White crystal (mp: 132-133°C)
!H-NMR (CDCI3, 400MHz) 5: 1.31(d, 6H, J=7Hz), 1.69(s,
6H), 2.28(s, 3H), 3.13(dq, 1H, J=7Hz, 7Hz), 3.2-3.3(m, 4H), 6.77(d, 1H, J=9Hz), 6.7-6.8(m, 1H), 7.4-7.5(m, 2H), 7.73(dd, 1H, J=2Hz, 9Hz), 7.81(d, 1H, J=2Hz).
IR (KBr) cm'1: 2974, 2927, 1741, 1652, 1620, 1605, 1535, 1506, 1502, 1458, 1363, 1327, 1321, 1284, 1263, 1147, 1122, 1068," 987, 876, 850, 675.

(1) Ethyl [4-[3-[4-isopropyl-2-(2-naphthyl)-5-
thiazolyl]propionyl]-2-methylphenoxy]acetate
The desired compound was obtained in an analogous
manner as in (1) of Example 2.
!H-NMR (CDCI3, 400MHz) 8: 1.28(3H, t, J=7Hz), 1.37(6H,
d, J=7Hz), 2.33(3H, s), 3.18(1H, m) , 3.2-3.3(4H, m), 4.25(2H, q, J=7Hz), 4.69(2H, s), 6.71(1H, d, J=8Hz), 6.4-6.5(2H, m), 7.7-7.9(5H, m) , 8.04(1H, dd, J=2Hz, 8Hz), 8.34(1H, s)

(2) [4-[3-[4-Isopropyl-2-(2-naphthyl)-5-
thiazolyl]propionyl]-2-methylphenoxy]acetic acid
The desired compound was obtained in an analogous
manner as in (2) of Example 2.
Pale yellow crystal (mp: 97-100°C) iH-NMR (CDC13, 400MHz) 5: 1.37 (6H, d, J=7Hz), 2.32 s), 3.18(1H, m), 3.2-3.3(4H, m) , 4.76(2H, s), 6.74(1H, d, J=8Hz), 7.4-7.5(2H, m), 7.7-7.9(5H, m), 8.03(1H, dd, J=2Hz, 8Hz), 8.33(1H, s).
IR (KBr) cm"1: 3845, 3745, 3429, 2962, 2929, 2368, 2345, 1749, 1676, 1601, 1506, 1502, 1362, 1255, 1228, 1132, 1068, 858, 813, 748, 476, 420

The desired compound was obtained in an analogous
manner as in (3) of Example 1.
White crystal (mp: 164-166°C)
!H-NMR (CDCI3, 400MHz) 8: 1.36(d, 6H, J=7Hz), 1,68(s,
6H), 2.28(s, 3H), 3.16(dq, 1H, J=7Hz, 7Hz), 3.2-3.4(m, 4H), 6.76(d, 1H, J=8Hz), 7.4-7.5(m, 2H), 7.73(dd, 1H, J=2Hz, 8Hz), 7.8-7.9(m, 3H), 7.82(d, 1H, J=2Hz), 8.03(dd, 1H, J=2Hz, 9Hz), 8.34(s, 1H) .
IR (KBr) cm"1: 2966, 1741, 1655, 1620, 1605, 1365, 1284, 1263, 1180, 1147, 1146, 808, 750.

(1) Ethyl [4-[3-[2-(4-butylphenyl)-4-isopropyl-5-thiazolyl]propionyl]-2-methylphenoxy]acetate

The desired compound was obtained in an analogous
manner as in (1) of Example 2.
iH-NMR (CDCI3, 400MHz) 5: 0.92(3H, t, J=7Hz), 1.29(3H, •
t, J=7Hz), 1.32(6H, d, J=7Hz), 1.3-1.4(2H, m) , 1.5-1.6(2H, m), 2.32(3H, s), 2.62(2H, t, J=8Hz), 3.15(1H, m), 3.2-3.3(4H, m) , 4.26(2H, q, J=7Hz), 4.70(2H, s), 6.71(1H, d, J=8Hz), 7.19(2H, d, J=8Hz), 7.7-7.8(4H, m) .
(2) [4- [3- [2- (4-Butylphenyl)-4-isopropyl-5-
thiazolyl]propionyl]-2-methylphenoxy]acetic acid
The desired compound was obtained in an analogous
manner as in (2) of Example 2.
Pale yellow amorphous XH-NMR (CDCI3, 400MHz) 8: 0.92(3H, t, J=7Hz), 1.31(6H,
d, J=7Hz), 1.3-1.4(2H, m) , 1.5-1.7(2H, m) , 2.3K3H, s), 2.62(2H, t, J=8Hz), 3.12(1H, m) , 3.1-3.3(4H, m), 4.74(2H, s), 6.72(1H, d, J=8Hz), 7.19(2H, d, J=8Hz), 7.7-7.8(4H, m) .
IR (KBr) cm"1: 3435, 2960, 2929, 2870, 2860, 2368, 1741, 1676, 1601, 1502, 1456, 1414, 1360, 1319, 1275, 1230, 1176, 1138, 1065, 985, 885, 837, 812, 627.

(1) Ethyl 2-[4-[3-[2-(4-butylphenyl)-4-isopropyl-5-
thiazolyl]propionyl]-2-methylphenoxy]-2-methylpropionate
The desired compound was obtained in an analogous
manner as in (2) of Example 1.
!H-NMR (CDCI3, 400MHz) 5: 0.92(t, 3H, J=7Hz), 1.21 (t,
3H, J=7Hz), 1.32(d, 6H, J=7Hz), 1.3-1.4(m, 2H), 1.5-1.7(m, 2H), 1.65(s, 6H), 2.26(s, 3H), 2.62(t, 2H, J=8Hz), 3.11(dq, 1H, J=7Hz, 7Hz) 3 . 2-3.3(m, 4H), 4.22(q, 2H,

J=7Hz), 6.61(d, 1H, J=9Hz), 7.19(d, 2H, J=8Hz), 7.70(dd, 1H, J=2Hz, 9Hz), 7.79(d, 2H, J=8Hz), 7.79(d, 1H, J=2Hz).
(2) 2-[4-[3-[2-(4-Butylphenyl)-4-isopropyl-5-
thiazolyl]propionyl]-2-methylphenoxy]-2-methylpropionic
acid
The desired compound was obtained in an analogous
manner as in (3) of Example 1.
White crystal (mp: 121-122°C)
!H-NMR (CDC13, 400MHz) d:0.92(t, 3H, J=7Hz), 1.31(d,
6H, J=7Hz), 1.3-1.4(m, 2H), 1.5-1.7(m, 2H) , 1.68(s, 6H), 2.27(s, 3H), 2.62(t, 2H, J=8Hz), 3.11(dq, 1H, J=7Hz, 7Hz), 3.2-3.3(m, 4H), 6.76(ld, 1H, J=9Hz), 7.19(d, 2H, J=8Hz), 7.72(dd, 1H, J=2Hz, 9Hz), 7.78(d, 2H, J=8Hz), 7.80(d, 1H, J=2Hz) .

(1) Ethyl [4-[3-[4-isopropyl-2-(4-
trifluoromethyl)phenyl-5-thiazolyl]propionyl]-2-
chlorophenoxy]acetate
The desired compound was obtained in an analogous
manner as in (1) of Example 2.
XH NMR (CDCI3, 400MHz) 5: 1.29(t, 3H, J=7Hz), 1.34(d,
6H, J=7Hz), 3.15(m, 1H), 3.26(s, 4H), 4.27(q, 2H, J=7Hz), 4.77(s, 2H), 6.85(d, 1H, J=9Hz), 7.64(d, 2H, J=8Hz), 7.84(dd, 1H, J=2Hz, 9Hz), 8.00(d, 2H, J=8Hz), 8.03(d, 1H, J=2Hz).
(2) [4- [3-[4-Isopropyl-2-(4-trifluoromethyl)phenyl-5-
thiazolyl]propionyl]-2-chlorophenoxy]acetic acid
The desired compound was obtained in an analogous manner as in (2) of Example 2.

White crystal (mp: 149-151°C)
iH-NMR (CDCI3, 400MHz) 5: 1.34(d, 6H, J=7Hz), 3.15(m,
1H), 3.26(s, 4H), 4.82(s, 2H) , 6.90(01, 1H, J=8Hz) , 7.64(d/ 2H, J=8Hz), 7.87 (dd, 1H, J=2Hz, 8Hz) , 8.00(d, 2H, J=8Hz), 8.04(d, 1H, J=2Hz).
IR (KBr) cm-1: 1724, 1684, 1616, 1595, 1496, 1406, 1360, 1329, 1281, 1232, 1203, 1157, 1117, 1016, 839, 773.

(1) Ethyl [4-[3-[2-(4-trifluoromethyl)phenyl-4-
isopropyl-5-thiazolyl]propionyl]-2-chlorophenoxy]-2-
methylpropionate
The desired compound was obtained in an analogous
manner as in (2) of Example 1.
iH-NMR (CDCI3, 400MHz) 8: 1.23(t, 3H, J=7Hz), 1.33(d,
6H, J=7Hz), 1.68'(s, 6H) , 3.14(m, 1H) , 3.25(s, 4H) , 4.23(q,
2H, J=7Hz), 6.82(d, 1H, J=8Hz), 7.64(d, 2H, J=8Hz),•
7.75(dd, 1H, J=2Hz, 8Hz), 8.00(d, 2H, J=8Hz), 8.01(d, 1H,
J=2Hz) .
(2) [4-[3-[2-(4-Trifluoromethyl)phenyl-4-isopropyl-5-
thiazolyl]propionyl]-2-chlorophenoxy]-2-methylpropionic
acid
The desired compound was obtained in an analogous
manner as in (3) of Example 1.
Pale yellow amorphous
!H-NMR (CDCI3, 400MHz) 8: 1.33(d, 6H, J=7Hz), 1.71(s,
6H), 3.14(m, 1H), 3.26(s, 4H) , 7.02(d, 1H, J=8Hz), 7.64(d, 2H, J=8Hz), 7.80(dd, 1H, J=2Hz, 8Hz), 8.00(d, 2H, J=8Hz), 8.03(d, 1H, J=2Hz).


(1) Ethyl [4-[3-[2-(2,4-dichlorophenyl)-5-isopropyl-4-
oxazolyl]propionyl]-2-chlorophenoxy]acetate
The desired compound was obtained in an analogous
manner as in (1) of Example 3.
iH-NMR (CDC13, 400MHz) 5: 1.28(t, 3H, J=7Hz), 1.30(d,
6H, J=.7Hz), 2.96(t, 2H, J=7Hz), 3.17(m, 1H) , 3.33(t, 2H, J=7Hz), 4.27(q, 2H, J=7Hz), 4.76(s, 2H), 6.83(d, 1H, J=8Hz), 7.30(dd, 1H, J=2Hz, 8Hz), 7.49(d, 1H, J=2Hz), 7.8-7.9(m, 2H), 8.05(d, 1H, J=8Hz).
(2) [4-[3-[2-(2,4-Dichlorophenyl)-5-isopropyl-4-
oxazolyl]propionyl]-2-chlorophenoxy]acetic acid
The desired compound was obtained in an analogous
manner as in (2) of Example 2.
White crystal (mp: 134-137°C)
1-H-NMR (CDCI3, 400MHz) 5: 1.31(d, 6H, J=7Hz), 2.96(t,
2H, J=7Hz), 3.19(m, 1H), 3.30(t, 2H, J=7Hz), 4.78 (s7 2H), 6.84(d, 1H, J=8Hz), 7.31(dd, 1H, J=2Hz, 8Hz), 7.49(d, 1H, J=2Hz), 7.81(dd, 1H, J=2Hz, 8Hz), 7.84(d, 1H, J=8Hz), 8.03(d, 1H, J=2Hz).
IR (KBr) cm"1: 3437, 1720, 1687, 1593, 1562, 1497, 1458, 1406, 1221, 1203, 1088, 1038, 833, 808, 744, 692.

(1) Ethyl 2-[4-[3-[2-(2,4-dichlorophenyl)-5-isopropyl-4-oxazolyl]propionyl]-2-chlorophenoxy]-2-methylpropionate

The desired compound was obtained in an analogous manner as in (2) of Example 1.
iH-NMR (CDCI3, 400MHz) 5: 1.23(t, 3H, J=7Hz), 1.30(d, •
6H, J=7Hz), 1.67(s, 6H) , 2.95(t, 2H, J=7Hz), 3.17(m, 1H) , 3.31(t, 2H, J=7Hz), 4.23(q, 2H, J=7Hz), 6.80(d, 1H, J=9Hz), 7.30(dd, 1H, J=2Hz, 9Hz), 7.49(d, 1H, J=2Hz), 7.77(dd, 1H, J=2Hz, 9Hz), 7.88(d, 1H, J=9Hz), 8.03(d, 1H, J=2Hz).
(2) 2- [4-[3-[2-(2,4-Dichlorophenyl)-5-isopropyl-4-
oxazolyl]propionyl]-2-chlorophenoxy]-2-methylpropionic
acid
The desired compound was obtained in an analogous
manner as in (2) of Example 1.
White crystal (mp: 76-79°C)
iH-NMR (CDCI3, 400MHz) 5: 1.30(d, 6H, J=7Hz), 1.68(s,
6H), 2.95(t, 2H, J=7Hz) , 319(m, 1H), 3.29(t, 2H, J=7Hz), 6.97(d, 1H, J=9Hz), 7.29(dd, 1H, J=2Hz, 9Hz), 7.48(d, 1H, J=2Hz), 7.72(dd, 1H, J=2Hz, 8Hz), 7.84(d, 1H, J=8Hz), 8.02(d, 1H, J=2Hz).
IR (KBr) cm-l; 2968, 1720, 1686, 1593, 1562, 1493, 1460, 1402, 1385, 1306, 1259, 1200, 1180, 1146, 1059, 968, 902, 879, 822, 777, 739, 700, 571.

(1) [4- [3-[5-Isopropyl-2-(4-trifluoromethyl)phenyl-4-
thiazolyl]propionyl]-2-methylphenoxy]ethyl acetate
The desired compound was obtained in an analogous
manner as in (1) of Example 2.
iH-NMR (CDCI3, 400MHz) 8: 1.29(t, 3H, J=7Hz), 1.33(d,
6H, J=7Hz), 2.31(s, 3H), 3.14(t, 2H, J=7Hz), 3.37(m, 1H), 3.43(t, 2H, J=7Hz), 4.26(q, 2H, J=7Hz), 4.70(s, 2H),

6.70(d, 1H, J=9Hz) , 7.63 (d, 2H, J=8Hz) , 7.8-7. 9(111, 2H) , 7.95(d, 2H, J=8Hz).
(2) [4-[3-[2-(4-Trifluoromethyl)phenyl-5-isopropyl-4-
thiazolyl]propionyl]-2-methylphenoxy]acetic acid
The desired compound was obtained in an analogous
manner as in (1) of Example 2.
White crystal (mp: 125-132°C)
iH-NMR (CDC13, 400MHz) 5: 1.33(d, 6H, J=7Hz), 2.30(s,
3H), 3.14(t, 2H, J=7Hz), 3.37(m, 1H) , 3.42(t, 2H, J=7Hz), 4.74(s, 2H), 6.73(d, 1H, J=9Hz), 7.63(d, 2H, J=8Hz), 7.8-7.9(m, 2H), 7.94(d, 2H, J=8Hz).
IR (KBr) cm"1: 3425, 2964, 1751, 1686, 1603, 1581, 1504, 1433, 1410, 1365, 1329, 1252, 1173, 1132, 1111, 1068, 1018, 989, 841, 815, 675, 611.

(1) Ethyl [4-[3-[5-isopropyl-2-(4-
trifluoromethyl)phenyl-4-thiazolyl]propionyl]-2-
methylphenoxy]-2-methylpropionate
The desired compound was obtained in an analogous
manner as in (2) of Example 1.
iH-NMR (CDC13, 400MHz) 5: 1.21(t, 3H, J=7Hz), 1.33(d,
6H, J=7Hz), 1.64(s, 6H), 2.25(s, 3H), 3.14(t, 2H, J=7Hz), 3.36(m, 1H), 3.41(t, 2H, J=7Hz), 4.21(q, 2H, J=7Hz), 6.61(d, 1H, J=8Hz), 7.63(d, 2H, J=8Hz), 7.74(dd, 1H, J=2, 8Hz), 7.81(bs, 1H), 7.95(d, 2H, J=8Hz).
(2) 2-[4-[3-[5-Isopropyl-2-(4-trifluoromethyl)phenyl-4-
thiazolyl]propionyl]-2-methylphenoxy]-2-methylpropionic
acid

The desired compound was obtained in an analogous
manner as in (3) of Example 1.
White crystal (mp: 89-93°C)
XH-NMR (CDCI3, 400MHz) 8: 1.34(d, 6H, J=7Hz), 1.67(s,
6H), 2.25(s, 3H) , 3.14(t, 2H, J=7Hz), 3.38(m, 1H) , 3.40(t, 2H, J=7Hz), 6.75(d, 1H, J=8Hz), 7.63(d, 2H, J=8Hz), 7.72(dd, 1H, J=2Hz, 8Hz), 7.82(d, 1H, J=2Hz), 7.93(d, 2H, J=8Hz).
IR (KBr) cm"1: 2964, 1720, 1678, 1601, 1498, 1458, 1410, 1365, 1325, 1257, 1169, 1135, 1068, 1016, 972, 847, 771, 606.

(1) [4- [3-[2-(2,4-Dichlorophenyl)-5-isopropyl-4-
thiazolyl]propionyl]-2-methylphenoxy]acetic acid
The desired compound was obtained in an analogous
manner as in (2) of Example 2.
White crystal (mp: 158-161°C)
iH-NMR (CDCI3, 400MHz) 5: 1.34(d, 6H, J=7Hz), 2.29 (s,
3H), 3.15(t, 2H, J=7Hz), 3.37(m, 1H), 3.40(t, 2H, J=7Hz), 4.73(s, 2H), 6.71(d, 1H, J=8Hz), 7.2-7.3(m, 1H), 7.47(d, 1H, J=2Hz), 7.7-7.9(m, 2H), 8.03(d, 1H, J=8Hz).
IR (KBr) cm-1: 2953, 1740, 1664, 1602, 1583, 1551, 1504, 1475, 1429, 1363, 1317, 1277, 1254, 1244, 1176.1132, 1103, 1063, 989, 887, 862, 821, 777, 683.
(Example 40)
2-[4-[3-[2-(2,4-Dichlorophenyl)-5-isopropyl-4-thiazolyl]propionyl]-2-methylphenoxy]-2-methylpropionic acid

(1) Ethyl 2-[4-[3-[2-(2,4-dichlorophenyl)-5-isopropyl-4-
thiazolyl]propionyl]-2-methylphenoxy]-2-methylpropionate
The desired compound was obtained in an analogous
manner as in (2) of Example 1.
iH-NMR (CDC13, 400MHz) 5: 1.21 (t, 3H, J=7Hz), 1.34(d,
6H, J=7Hz), 1.62(s, 6H), 2.25(s, 3H), 3.14{t, 2H, J=7Hz), 3.36(m, 1H), 3.40(t, 2H, J=7Hz), 4.22(q, 2H, J=7Hz), 6.60(d, 1H, J=9Hz), 7.27(dd, 1H, J=2, 9Hz) , 7.47(d, 1H, J=2Hz), 7.73(dd, 1H, J=2Hz, 8Hz), 7.81(bs, 1H) , 8.07(d, 1H, J=8Hz).
(2) 2-[4-[3-[2-(2, 4-Dichlorophenyl)-5-isopropyl-4-
thiazolyl]propionyl]-2-methylphenoxy]-2-methylpropionic
acid
The desired compound was obtained in an analogous
manner as in (2) of Example 1.
White amorphous
iH-NMR (CDCI3, 400MHz) 5: 1.34(d, 6H, J=7Hz), 1.66(s,
6H), 2.25(s, 3H), 3.14(t, 2H, J=7Hz), 3.38(m, 1H), 3.39(t, 2H, J=7Hz), 6.73(d, 1H, J=8Hz), 7.26(dd, 1H, J=2Hz, 9Hz), 7.46(d, 1H, J=2Hz), 7.70(dd, 1H, J=2Hz, 8Hz), 7.81(d, 1H, J=2Hz), 8.02(d, 1H, J=8Hz).

(1) Ethyl [5-[3-[4-isopropyl-2-(4-
trifluoromethyl)phenyl-5-thiazolyl]propionyl]-2-
methylphenoxy]acetate
The desired compound was obtained in an analogous
manner as in (1) of Example 2.
iH-NMR (CDCI3, 400MHz) §: 1.30(t, 3H, J=7Hz), 1.33(d,
6H, J=7Hz), 2.35(s, 3H), 3.14(m, 1H), 3.2-3.3(m, 4H), 4.26(q, 2H, J=7Hz), 4.71(s, 2H), 7.24(d, 1H, J=7Hz),

7.35(d, 1H, J=2Hz), 7.49(dd, 1H, J=2Hz, 7Hz), 7.64(d, 2H, J=8Hz), 8.00(d, 2H, J=8Hz).
(2) [5- [3- [4-Isopropyl-2-(4-trifluoromethyl)phenyl-5-
thiazolyl]propionyl]-2-methylphenoxy]acetic acid
The desired compound was obtained in an analogous
manner as in (2) of Example 2.
Pale yellow crystal (mp: 130-133°C)
iH-NMR (DMSO-d6, 400MHz) 5: 1.28(d, 6H, J=7Hz),
2.26(s, 3H), 3.1-3.3(m, 3H), 3.38(t, 2H, J=7Hz), 4.77(s, 2H), 7.30(d, 1H, J=8Hz), 7.35(s, 1H), 7.55(d, 1H, J=8Hz), 7.81(d, 2H, J=8Hz), 8.05(d, 2H, J=8Hz).
IR (KBr) cm"1: 2968, 2931, 2872, 1767, 1741, 1678, 1618, 1616, 1579, 1533, 1506, 1450, 1412, 1362, 1327, 1294, 1242, 1167, 1126, 1124, 1122, 1068, 1016, 978, 874, 847, 777, 609.

(1) Ethyl 2-[5-[3-[4-isopropyl-2-(4-
trifluoromethylphenyl) -5-thiazolyl]propionyl]-2-
methylphenoxy]-2-methylpropionate
The desired compound was obtained in an analogous
manner as in (2) of Example 1.
iH-NMR (CDC13, 400MHz) 8: 1.26(t, 3H, J=7Hz), 1.33(d,
6H, J=7Hz), 1.63(s, 6H) , 2.29(s, 3H), 3.14(m, 1H), 3.2-
3.4(m, 4H), 4.26(q, 2H, J=7Hz), 7.22(d, 1H, J=8Hz),
7.31(d, 1H, J=2Hz), 7.47(dd, 1H, J=2Hz, 8Hz), 7.64(d, 2H,
J=8Hz), 8.00(d, 2H, J=8Hz)

(2) 2- [5-[3-[4-Isopropyl-2- (4-trifluoromethylphenyl)-5-
thiazolyl]propionyl]-2-methylphenoxy]-2-methylpropionic
acid
The desired compound was obtained in an analogous
manner as in (3) of Example 1.
White crystal (mp: 124-126°C)
iH-NMR (DMSO-d6/ 400MHz) 5: 1.27(d, 6H, J=7Hz),
1.54 (s, 6H), 2.22 (s, 3H) , 3.1-3.4(m, 5H) , 7.30 (s, 1H), 7.31(d, 1H, J=8Hz), 7.56(d/ 1H, J=8Hz), 7.81(d/ 2H, J=8Hz), 8.05(d, 2H, J=8Hz), 13.12(bs, 1H)
IR (KBr) cm"1: 2972, 1736, 1684, 1618, 1616, 1498, 1452, 1412, 1327, 1259, 1167, 1130, 1068, 1016, 972, 845, 777.

(1) Ethyl 2-[4-[3-[4-isopropyl-2-(4-
trifluoromethyl)phenyl-5-thiazolyl]propionyl]-2-
methylphenoxy]propionate
Intermediate of Example 3, namely 3-[2- (4-trifluoromethyl)phenyl-4-isopropyl-5-thiazolyl]-1-(3-methyl-4-hydroxyphenyl)propan-1-one (433 mg, 1.00 mmol) and potassium carbonate (166 mg, 1.20 mmol) was suspended in acetone(10 mL). To the suspension, ethyl 2-bromopropionate (216 mg, 1.20 mmol) was added while cooling with ice. The mixture was stirred for 20 hours at room temperature. The reaction mixture was poured into ice water, and extracted with ethyl acetate. The organic layer was washed with water (20 mL) and a saturated saline (20 mL), dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel with

hexane/ethyl acetate (5/1) to give the desired compound (534 mg) as a colorless oil (quantitative yield).
*H NMR (CDCI3, 400MHz) 8: 1.24 (t, 3H, J=7Hz), 1.33(d,
6H, J=7Hz), 1.66(d, 3H, J=7Hz), 2.31(s, 3H), 3.15(dq, 1H, J=7Hz, 7Hz), 3.2-3.3(m, 4H), 4.20(q, 2H, J=7Hz), 4.82(q, 1H, J=7Hz), 6.68(d, 1H, J=8Hz), 7.64(d, 2H, J=8Hz), 7.76(dd, 1H, J=2Hz, 8Hz), 7.80(d, 1H, J=2Hz), 8.00(d, 2H, J=8Hz).
(2) 2- [4-[3-[4-Isopropyl-2-(4-trifluoromethyl)phenyl-5-
thiazolyl]propionyl]-2-methylphenoxy]propionic acid
The desired compound was obtained in an analogous
manner as in (2) of Example 2.
White crystal (mp: 120-123°C)
XH-NMR (CDCI3, 400MHz) 8: 1.33(d, 6H, J=7Hz), 1.70(d,
3H, J=7Hz), 2.31(s, 3H), 3.15(dq, 1H, J=7Hz, 7Hz), 3.2-3.3(m, 4H) , 4.88(q, 1H, J=7Hz), 6.73(d, 1H, J=9Hz), 7.63(d, 2H, J=8Hz), 7.77(dd, 1H, J=2, 9Hz), 7.80(d, 1H, J=2Hz), 7.99(d, 2H, J=8Hz).
IR (KBr) cm"1: 2950, 1740, 1670, 1600, 1500, 1450, 1320, 1300, 1275, 1250, 1190, 1160, 1130, 1060, 845v

(1) Ethyl [4-[3-[4-methyl-2-(4-trifluoromethyl)phenyl-5-
thiazolyl]propionyl]-2-methylphenoxy]acetate
The desired compound was obtained in an analogous
manner as in (1) of Example 2.
!H-NMR (CDCI3, 400MHz) 8: 1.29(t, 3H, J=7Hz), 2.31(s,
3H), 2.46(s, 3H), 3.2-3.3(m, 4H), 4.26(q, 2H, J=7Hz),
4.70(s, 2H), 6.71(d, 1H, J=8Hz), 7.64(d, 2H, J=8Hz),
7.76(dd, 1H, J=2Hz, 8Hz), 7.80(d, 1H, J=2Hz), 7.97(d, 2H,
J=8Hz).

(2) [4-[3-[4-Methyl-2-(4-trifluoromethyl)phenyl-5-
thiazolyl]propionyl]-2-methylphenoxy]acetic acid
The desired compound was obtained in an analogous
manner as in (1) of Example 2.
White crystal (mp: 194-195°C)
XH-NMR (CDC13, 400MHz) 8: 2.32(s, 3H) , 2.45(s, 3H) ,
3.2-3.3(m, 4H), 4.75(s, 2H) , 6.74(d, 1H, J=8Hz), 7.64(d, 2H, J=8Hz), 7.7-7.9(m, 2H), 7.96(d, 2H, J=8Hz).
IR (KBr) cm'1: 3500, 2900, 1780, 1730, 1680, 1610, 1500, 1410, 1370, 1330, 1240, 1180, 1080, 850.

(1) Ethyl 2-[4-[3-[4-hexyl-2-(4-trifluoromethyl)phenyl-
5-thiazolyl]-1-propenyl]-2-methylphenoxy]-2-
methylpropionate
The desired compound was obtained in an analogous
manner as in (2) of Example 1.
XH-NMR (CDCI3, 400MHz) 8: 0.88 (t, 3H, J=7Hz), 1.25(t,
3H, J=7Hz), 1.3-1.5(m, 6H), 1.58(s, 6H), 1.7-1.8(m, 2H), 2.22(s, 3H) , 2.74(t, 2H, J=7Hz), 3.65(d, 2H, J=6Hz), 4.24(q, 2H, J=7Hz), 6.16(dt, 1H, J=6Hz, 16Hz) , 6.40(d, 1H, J=16Hz), 6.60(d, 1H, J=8Hz), 7.04(dd, 1H, J=2, 8Hz) , 7.16(d, 1H, J=2Hz), 7.64(d, 2H, J=8Hz), 7.99(d, 2H, J=8Hz)
(2) 2-[4-[3-[4-Hexyl-2-(4-trifluoromethyl)phenyl-5-
thiazolyl]-1-propenyl]-2-methylphenoxy]-2-methylpropionic
acid
The desired compound was obtained in an analogous manner as in (3) of Example 1.

Pale brown powder (mp: 152-155°C)
iH-NMR (CDCI3, 400MHz) 5: 0.88 (t, 3H, J=7Hz), 1.2-
1.5(m, 6H) , 1.61(s, 6H), 1.7-1.8(m, 2H), 2.23(s, 3H) , 2.74(t, 2H, J=7Hz), 3.66(d, 2H, J=6Hz), 6.20(dt, 1H, J=6Hz, 16Hz), 6.41(d, 1H, J=16Hz), 6.78(d, 1H, J=8Hz), 7.09(dd, 1H, J=2Hz, 8Hz), 7.19(d, 1H, J=2Hz), 7.64(d, 2H, J=8Hz), 7.99(d, 2H, J=8Hz).
IR (KBr) cm"1: 2920, 1700, 1610, 1500, 1445, 1320, 1250, 1160, 1120, 1060, 900, 840.

(1) Ethyl 2-[5-[3-[4-hexyl-2-(4-trifluoromethyl)phenyl-
5-thiazolyl]propionyl]-2-methylphenoxy]-2-
methylpropionate
The desired compound was obtained in an analogous
manner as in (2) of Example 1.
3-H-NMR (CDCI3, 400MHz) 5: 0.89(t, 3H, J=7Hz), 1.26 (t,
3H, J=7Hz), 1.3-1.4(mf 6H), 1.54(s, 6H), 1.7-1.8(m, 2H), 2.29(s, 3H), 2.74(t, 2H, J=8Hz), 3.2-3.3(m, 4H), 4.26(q, 2H, J=7Hz), 7.22(d, 1H, J=8Hz), 7.31(d, 2H, J=8Hz), 7.47(dd, 1H, J=2Hz, 8Hz), 7.64(d, 1H, J=2Hz), 7.98(d, 2H, J=8Hz).
(2) 2-[5-[3-[4-Hexyl-2-(4-trifluoromethyl)phenyl-5-
thiazolyl]propionyl]-2-methylphenoxy]-2-methylpropionic
acid
The desired compound was obtained in an analogous
manner as in (3) of Example 1.
Yellow oil
!H-NMR (CDCI3, 400MHz) 5: 0.88 (t, 3H, J=7Hz), 1.2-
1.4(m, 6H), 1.64(s, 6H), 1.7-1.8(m, 2H), 2.29(s, 3H) ,

2.73(t, 2H, J=7Hz), 3.2-3.3(m, 4H) , 7.25(d, 1H, J=8Hz), 7.43(s, 1H) , 7.50(d, 1H, J=8Hz), 7.62(d, 2H, J=8Hz), 7.96(d, 2H, J=8Hz).

(1) Ethyl [4-[3-[4-ethyl-2-(4-trifluoromethyl)phenyl-5-
thiazolyl]propionyl]-2-methylphenoxy]acetate
The desired compound was obtained in an analogous
manner as in (1) of Example 2.
XH-NMR (CDC13, 400MHz) 8: 1.30 (t, 3H, J=7Hz), 1.32 (t,
3H, J=7Hz), 2.33(s, 3H), 2.79(q, 2H, J=7Hz), 3.2-3.3(m, 4H), 4.27(q, 2H, J=7Hz), 4.71(s, 2H) , 6.71(d, 1H, J=8Hz), 7.64(d, 2H, J=8Hz), 7.8-7.9(m, 2H) , 7.99(d, 2H, J=8Hz).
(2) [4-[3-[4-Ethyl-2-(4-trifluoromethyl)phenyl-5-
thiazolyl]propionyl]-2-methylphenoxy]acetic acid
The desired compound was obtained in an analogous
manner as in (2) of Example 2.
White crystal (mp: 165-167°C)
iH-NMR (CDCI3, 400MHz) 5: 1.31(t, 3H, J=7Hz), 2.32(s,
3H), 2.79(q, 2H, J=7Hz), 3.2-3.3(m# 4H), 4.76(s, 2H), 6.74(d, 1H, J=8Hz), 7.64(d, 2H, J=8Hz), 7.80(dd, 1H, J=2, 8Hz), 7.81(d, 1H, J=2Hz), 7.97(d, 2H, J=8Hz).
IR (KBr) cm"1: 2975, 1760, 1740, 1670, 1610, 1600, 1580, 1500, 1440, 1360, 1320, 1260, 1220, 1160, 1130, 1110, 1960, 840, 820.


(1) Ethyl 2-[4-[3-[4-ethyl-2-(4-trifluoromethyl)phenyl-
5-thiazolyl]propionyl]-2-methylphenoxy]-2-
methylpropionate
The desired compound was obtained in an analogous
manner as in (2) of Example 1.
iH-NMR (CDC13, 400MHz) 5: 1.21(t, 3H, J=7Hz), 1.32(t,
3H, J=7Hz), 1.55(s, 6H) , 2.27(s, 3H), 2.79(q, 2H, J=7Hz), 3.2-3.3(m, 4H) , 4.22(q, 2H, J=7Hz), 6.62(d, 1H, J=8Hz), 7.64(d, 2H, J=8Hz), 7.69(dd, 1H, J=2, 8Hz), 7.79(d, 1H, J=2Hz), 7.99(d, 2H, J=8Hz).
(2) 2-[4-[3-[4-Ethyl-2-(4-trifluoromethyl)phenyl-5-
thiazolyl]propionyl] -2-methylphenoxy]-2-methylpropionic
acid
The desired compound was obtained in an analogous
manner as in (3) of Example 1.
White crystal (mp: 168-170°C)
iH-NMR (CDCI3, 400MHz) 5: 1.31(t, 3H, J=7Hz), 1.69(s,
6H), 2.27(s, 3H), 2.78(q, 2H, J=7Hz), 3.2-3.3(m, 4H), 6.75(d, 1H, J=8Hz), 7.63(d, 2H, J=8Hz), 7.72(dd, 1H, J=2, 8Hz), 7.80 (d, 1H, J=2Hz), 7.97(d, 2H, J=8Hz) .
IR (KBr) cm"1: 2950, 1720, 1680, 1660, 1580, 1540, 1440, 1400, 1360, 1320, 1260, 1160, 1120, 1060, 960, 840, 820.

(1) Ethyl [4-[3-[4-isopropyl-2- (4-methylphenyl)-5-
thiazolyl]propionyl]-2-methylphenoxy]acetate
The desired compound was obtained in an analogous
manner as in (1) of Example 2.
iH-NMR (CDCI3, 400MHz) 5: 1.29(t, 3H, J=7Hz), 1.31(d,
6H, J=7Hz), 2.32(s, 3H), 2.37(s, 3H), 3.12(dq, 1H, J=7Hz, •

7Hz), 3.2-3.3(m, 4H) , 4.27(q, 2H, J=7Hz), 4.70(s, 2H), 6.71(d, 1H, J=8Hz), 7.19(d, 2H, J=8Hz), 7.7-7.8(m, 4H).
(2) [4-[3-[4-Isopropyl-2-(4-methylphenyl)-5-
thiazolyl]propionyl]-2-methylphenoxy]acetic acid
The desired compound was obtained in an analogous
manner as in (2) of Example 2.
White crystal (mp: 188-190°C)
iH-NMR (CDC13, 400MHz) 5: 1.32(d, 6H, J=7Hz), 2.32 (s,
3H), 2.37(s, 3H), 3.12(dq, 1H, J=7Hz, 7Hz), 3.2-3.3(m, 4H) , 4.75(s, 2H), 6.73(d, 1H, J=8Hz), 7.18(d, 2H, J=8Hz), 7.7-7.8(m,' 4H).
IR (KBr) cm"1: 2950, 1720, 1670, 1600, 1580, 1500, 1440, 1360, 1310, 1280, 1210, 1180, 1120, 1060, 820.

(1) Ethyl 2-[4-[3-[4-isopropyl-2-(4-methylphenyl)-5-
thiazolyl]propionyl]-2-methylphenoxy]-2-methylpropionate
The desired compound was obtained in an analogous
manner as in (2) of Example 1.
iH-NMR (CDCI3, 400MHz) 5: 1.21(t, 3H, J=7Hz), 1.32(d,
6H, J=7Hz), 1.65(s, 6H), 2.26(s, 3H), 2.37(s, 3H) , 3.11(dq, 1H, J=7Hz, 7Hz), 3.2-3.3(m, 4H), 4.22(q, 2H, J=7Hz), 6.61(d, 1H, J=8Hz), 7.19(d, 2H, J=8Hz), 7.69(dd, 1H, J-2, 8Hz), 7.7-7.8(m, 3H) .
(2) 2-[4-[3-[4-Isopropyl-2-(4-methylphenyl)-5-
thiazolyljpropionyl]-2-methylphenoxy]-2-methylpropionic
acid
The desired compound was obtained in an analogous manner as in (3) of Example 1.

Yellow amorphous
iH-NMR (CDCI3, 400MHz) 5: 1.31(d, 6H, J=7Hz), 1.67(s,-
6H), 2.27(3, 3H), 2.36(s, 3H) , 3.11(dq, 1H, J=7Hz, 7Hz), 3.2-3.3(m, 4H), 6.72(d, 1H, J=8Hz), 7.18(d, 2H, J=8Hz), 7.70(d, 1H, J=8Hz), 7.72(d, 2H, J=8Hz), 7.79(s, 1H) .
(Example 51)
(Pharmacological experimetnt 1) I. Method
(1) Measurement of PPARa, y, 8 transactivation activity
PPARa, y, 8 transactivation activity of each compound
[Examples 1-8 and known PPAR8 agonist (L-16504: Berger, J., et al. (1999), J. Biol. Chem., 274:6718-6725)] was measured in the manner described below.
1) Material
CV-1 cells were obtained from Tohoku University Aging Medical Laboratory, Medical Cell Collection Center. All test compounds were dissolved in dimethylsulfoxide (DMSO). Final concentration of DMSO was 0.1%.
2) Plasmid
Receptor expression plasmid (GAL4-hPPARa, LBD GAL4-hPPARy LBD, GAL4-hPPAR8 LBD), Reporter plasmid (UASx4-TK-LUC), and p-galactosidase expression plasmid (PGAL) similar to Kliewer, S.A., et al., ((1992) Nature, 358:771-774) were used.
3) Transfeetion
CV-1 cells were seeded in 24 well culture plates at 2xl05 cells per well, and cultured for 24 hours OPTI-MEM I Reduced Serum Medium (Life Technologies, 500 pL/well) containing 4%-fetal bovine serum (FBS). After washing with OPTI-MEM, transfection mixture (250 pL/well) con-

taining 0.03 pg of GAL4-hPPAR§ LBD, 0.25 pg of UASx4-TK-LUC, 0.35 pg of PGAL, and 2 pL of lipofection reagent, DMRIE-C (Life Technologies) were added. The cells were incubated for 5 hours at 37°C.
4) Cell treatment by addition of test compound
The cells were washed and incubated for 40 hours in the presence of the test compound (final concentration was 10~7M or 10"6M).
5) Measurement of the level of reporter gene expression
The culture medium was removed and the cells were
washed with PBS twice. A solubilizing buffer (100 pL/well) containing 25 mM Tris-P04 (pH 7.8), 15%v/v glycerol, 2% CHAPS, 1% Lecithin, 1% BSA, 4 mM EGTA (pH 8.0), 8 mM MgCl2, 1 mM DTT was added. After the incubation for
10 minutes at room temperature, a portion (20 pL) of the solution was transferred into a 96-well plate. Subsequently, 100 pL of luciferase substrate solution (Pic-cagene: available from Nippon Gene Co., Ltd.) was added, and a luminous intensity per one second (luciferase* activity) was measured using a microluminoreader (Type MLR-100, Corona Electrics Co., Ltd.). Each luciferase ac-tivety was corrected by the transfection efficiency which was calculated from p-galactosidase activity. The assay method of p-galactosidase activity was as follows: A portion (50 pL) of the solubilized sample was transferred into another 96-well plate; 100 pL of ONPG (2-nitrophenyl-p-galactopyranoside) solution was added and incubated for 5 minutes at room temperature. 50 pL of a reaction stopping solution (IM sodium carbonate solution) was added. Then the absorbance at 414 nm was measured.
A relative PPAR activity was calculated as follows: D% (luciferase activity of cells treated with DMSO (0.1%) alone), 100% (luciferase activity of cells treated with a

control (PPARct: 1CT4 M WY-165041, PPARy: 10"5 M Rosiglita-zone, PPAR8: 10"4 M L-165041)).
II. Results
The results are shown in Table 8.

Relative activities for PPAR transactivation were shown.
Each value represents as % of control. Cells were cultured in the presence of compounds at 10"7 M except Example 1 (1CT6 M) . Positive control:
a: 10~4 M WY-14643
y: 10"5 M Rosiglitazone
5: 10"4 M L-165041

It is clear that the compounds of Examples have PPA transactivation activity similar to or more potent than L-165041.
(Example 52) (Pharmacological tests 2)
PPAR transactivation activities of the compounds of Examples 9-50 were assayed in the same manner as described in Example 51. The results are shown in Table 9.




Relative activities for PPAR transactivation were 5 shown.
Each value represents as % of control. Cells were cultured in the presence of compounds at 1CT7 M except the compounds that the values are given in parentheses (for example, Example 44 etc.). Those compounds were assayed 10 at 1CT6 M.

NT or (NT) means "not tested". Positive control:
a: 10~4 M WY-14643
y: 10~5 M Rosiglitazone
5: 10~4 M L-165041
It is clear from Table 9 that the compounds of Examples 9-50 have potent PPAR5 transactivation activities. It is also clear from Tables 8 & 9 that the compound of the formula (I) wherein R2 is methyl (Example 44) is inferior in the PPARS transactivation activity to the other compounds of the formula (I) wherein R2 is ethyl (Example 47 etc.), isopropyl (Example 3 etc.), or hexyl (Example 11 etc.). Therefore, the alkyl group of R2 preferably has two or more carbon atoms.
(Example 53)
(Pharmacological experiment 2) HDL cholesterol elevating effect I. Method
HDL cholesterol elevating effect was measured by using db/db mice, which are hereditary obesity mice. The db/db mice (10 weeks old) were divided into groups based on serum HDL cholesterol levels. Each of the compounds of the present invention (compounds synthesized in Examples 4 and 10) and GW-501516 was orally administered for one week twice daily. Mice of the control group (to which no agent was administered) were orally given 1% methyl cellulose solution. After 16 hours from the final administration, blood sample was collected, and serum HDL cholesterol level was measured. HDL cholesterol was separated by electrophoresis on agarose gels (Choi/Trig Combo, Helena Laboratories). Serum total cholesterol levels were measured enzymaticallly using a kit (Pure Auto, Daiichi '

Chemicals) by an automatic analyzer (7060E type, Hitachi Ltd.). HDL cholesterol levels were calculated from total cholesterol levels and HDL cholesterol/total cholesterol ratios.
II. Results
Serum HDL cholesterol levels of experiments groups are shown in Table 10. Each value represents as % of the control group.

As shown in Table 10, compounds of the present invention raised serum HDL cholesterol significantly. It is clear that they have potent HDL cholesterol elevating effect .
Therefore, the compounds of the invention are useful for the treatment of dyslipidemia.


CLAIMS
1. A compound having the following formula (I) or a salt thereof:

(wherein R1 is phenyl, naphthyl, pyridyl, thienyl, furyl, quinolyl or benzothienyl, any of which can have

A is oxygen, sulfur or NR9 in which R9 is hydrogen or C1-8 alkyl;
X is a C1-8 alkylene chain which can have substitu-ents selected from the group consisting of C1-8 alkyl, C1-8 alkoxy and hydroxyl and which can contain a double bond;

Y is C(=o), C(=N-OR10), CH(OR11), CH=CH, C=C, or C(=CH2) in which each of R10 and R11 is hydrogen or C1-8 alkyl;
each of R3, R4 and R5 is hydrogen, C1_s alkyl, C1-8 alkyl having halogen, C1-8 alkoxy, C1-8 alkoxy having halogen, C2_8 alkenyl, C2-g alkynyl, halogen, C2--7 acyl, benzoyl, hydroxyl, nitro, amino, phenyl, or pyridyl;
B is CH or nitrogen;
Z is oxygen or sulfur;
each of R6 and R7 is hydrogen, C1_8 alkyl, C1_8 alkyl having halogen; and
R8 is hydrogen or C1-8 alkyl;
provided that at least one of R3, R4 and R5 is not hydrogen.
2. A compound or a salt of thereof defined in claim 1, wherein R1 is phenyl which can have substituents selected from the group consisting of C1__8 alkyl, C1_8 alkyl having 1-3 halogen atoms, C1-8 alkoxy, C1-8 alkoxy having 1-3 halogen atoms, C2_8 alkenyl, C2-8 alkynyl, halogen, C2_7 acyl, benzoyl, hydroxyl, nitro, amino, phenyl and pyridyl.
3. A compound or a salt thereof defined in claim 1 or 2, wherein R2 is C2-8 alkyl.
4. A compound or a salt thereof defined in any one of claims 1 to 3, wherein R1 is attached to the 2nd position.
5. A compound or a salt thereof defined in any one of claims 1 to 4, wherein A is oxygen or sulfur.
6. A compound or a salt thereof defined in any one of claims 1 to 5, wherein X is a C1_8 alkylene chain.

7. A compound or a salt thereof defined in any one of claims 1 to 6, wherein Y is C(=0).
8. A compound or a salt thereof defined in any one of claims 1 to 7, wherein each of R3, R4 and R5 is hydrogen, C1-8 alkyl or C1-8 alkyl having halogen.
9. A compound or a salt thereof defined in any one of claims 1 to 8, wherein B is CH.
10. A compound or a salt thereof defined in any one of claims 1 to 9, wherein Z is oxygen.
11. A compound or a salt thereof defined in any one of claims 1 to 10, wherein each of R6 and R7 is hydrogen or C2-4 alkyl.
12. A compound or a salt thereof defined in any one of claims 1 to 11, wherein R8 is hydrogen.
13. A compound or a salt thereof defined in claim 1, wherein
R1 is phenyl or naphthyl, each of which can have sub-stituents selected from the group consisting of C1_8 alkyl, C1-8 alkyl having halogen, C1-8 alkoxy, C1-8 alkoxy having halogen, C2_8 alkenyl, C2_8 alkynyl, halogen, C2_7 acyl, benzoyl, hydroxyl, nitro, amino, phenyl and pyridyl;
R2 is C2-8 alkyl;
A is oxygen or sulfur;
X is a C1-8 alkylene chain which can have a C1_8 alkyl substituent and which can contain a double bond;
Y is C(=o), CH=CH, or C(=CH2);

each of R3, R4 and R5 is hydrogen, C1-8 alkyl, C1-8 alkyl having halogen, C1-8 alkoxy, C1-8 alkoxy having halogen, C2_8 alkenyl, C2_8 alkynyl, halogen, C2_7 acyl, benzoyl, hydroxyl, nitro, amino, phenyl, or pyridyl;
B is CH;
Z is oxygen or sulfur;
each of R6 and R7 is hydrogen or C1-8 alkyl; and
R8 is hydrogen or C1-8 alkyl.
14. A compound or a salt thereof defined in claim 13, wherein X is a C1-8 alkylene chain.
15. A compound or a salt thereof defined in claim 13 or 14, wherein R1 is attached to the 2nd position.
16. A compound or a salt thereof defined in any one of claims 13 to 15, wherein R8 is hydrogen.
17. A compound or a salt thereof defined in any one of claims 13 to 16, wherein the substituents of R3, R4 and R5 other than hydrogens are placed at ortho-positions with respect to -Z-CR6R7Co2R8.
18. An activator of peroxisome proliferator activated receptor 8 which contains as an effective component a compound or a salt thereof defined in any one of claims 1 to 17.



Documents:

0496-chenp-2004 abstract-duplicate.pdf

0496-chenp-2004 claims-duplicate.pdf

0496-chenp-2004 descripition(completed)-duplicate.pdf

496-2004.rtf

496-chenp-2004-abstract.pdf

496-chenp-2004-claims.pdf

496-chenp-2004-correspondnece-others.pdf

496-chenp-2004-correspondnece-po.pdf

496-chenp-2004-description(complete).pdf

496-chenp-2004-form 1.pdf

496-chenp-2004-form 3.pdf

496-chenp-2004-form 5.pdf

496-chenp-2004-form18.pdf

496-chenp-2004-pct.pdf

abs-496-chenp-2004.jpg

abs-496.jpg


Patent Number 229184
Indian Patent Application Number 496/CHENP/2004
PG Journal Number 12/2009
Publication Date 20-Mar-2009
Grant Date 13-Feb-2009
Date of Filing 08-Mar-2004
Name of Patentee NIPPON CHEMIPHAR CO., LTD
Applicant Address 2-3 IWAMOTO-CHO, 2-CHOME, CHIYODA-KU, TOKYO 101-8678,
Inventors:
# Inventor's Name Inventor's Address
1 YAMAKAWA TOMIO 2-23-2 MIDORIDAI, KASHIWA-SHI, CHIBA 277-0884,
2 KANDA TAKASHI 3-18-6-3302 HIGASHISUGANO, ICHIKAWA-SHI, CHIBA 272-0823,
3 MASUI, SEIICHIRO 4-6-21 NAKAZUMA, AGEO-SHI, SAITAMA 362-0072,
4 SAKUMA SHOGO 1-28-1-205 YOSHIKAWA, YOSHIKAWA-SHI, SAITAMA 342-0055,
PCT International Classification Number C07D263/32
PCT International Application Number PCT/JP02/07897
PCT International Filing date 2002-08-02
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 2001-243734 2001-08-10 Japan