Title of Invention

METHOD AND INSTALLATION FOR THE PRODUCTION OF STEEL PRODUCTS HAVING AN OPTIMUM SURFACE QUALITY

Abstract The present invention relates to a method and an installation for producing steel products (1) having an optimum surface quality, especially extremely low carbon contents (UCL steel or IF steel), nitrogen contents, total oxygen contents, high- strength or stainless steel qualities. According to the invention, the liquid steel is cast into a thin slab (Sa) from a process route (10, 11, 12 or 13) that is selected according to the desired final structure (9) based on an electric-arc furnace (2b), is de scaled, cut into billets (15) having a partial length, optionally descaled once again, subjected to final descaling downstream from a holding furnace (16), milled in a finishing mill train (6a), rolled up in a rolling station (20) located downstream from the last finishing mill stand (19) or downstream from a cooling section (21), and the final structure (9) is adjusted in the cooling section (21) according to the desired steel quality by cooling on a run-out roller table (22), whereupon the rolling stock (1 a) is completely rolled up in a second rolling station (23).
Full Text

METHOD AND INSTALLATION FOR PRODUCING STEEL PRODUCTS
WITH OPTIMUM SURFACE QUALITY
The invention concerns a method and an installation for producing steel products with optimum surface quality, especially with ultralow carbon contents (ULC or IF steel), nitrogen contents, total oxygen contents, and high-strength or stainless steel grades, in each case by melting, treatment in a ladle metallurgy installation, continuous casting in slab format, rolling, cooling, and usually coiling of the rolled product.
Steel products of this type in various steel grades have previously been produced by melting in a converter, treatment in the ladle metallurgy, installation with vacuum degassing, and casting as thick slabs in a continuous casting machine, and then rolled in roughing mills and finishing mills. Production by means of other process routes, e.g., the electric arc furnace process from scrap, was not considered possible, because then the extremely low contents of such elements as C, N, S, 0, ,

and quality-reducing trace elements, e,g., Cu and Zn, cannot be achieved or can be achieved only under difficult conditions. These process routes do not allow the optimum surface quality that is being strived for to be achieved- There is a lack, for example, of the required geometric, physical, and structural product properties of ULC and IF hot rolled strip that are necessary prerequisites for effective microstructural control and systematic adjustment of product properties.
The obj ective of the invention is to produce the specified steel grades and other steel grades by new process routes in order to achieve the required ultralow contents of C, N, S, 0, / and quality-reducing trace elements, e.g., Cu and Zn, for steel products with optimum surface quality.
In accordance with the invention, this obj ective is achieved by a method that is characterized by the fact that molten steel is produced in a process route which is based on an electric arc furnace and which is selected according to the desired final microstructure; by the fact that the molten steel from the selected process route is then cast into a thin slab in the continuous casting mold; by the fact that the thin slab is descaled, partially deformed, cut to partial lengths, generally descaled, heated to rolling temperature and homogenized in a

soaking furnace, generally descaled again, and rolled in a finishing mill; by the fact that the rolled product is coiled in a first coiling station immediately downstream of the last
finishing stand or, alternatively, downstream of a cooling line; by the fact that the final microstructure is adjusted in a cooling line according to the desired grade of steel by cooling on a runout table; and by the fact that the rolled product is generally finish-coiled in a second coiling station. In this way, the steel products can be produced downstream of the ladle metallurgy installation on the basis of thin slabs and finished as coiled strip, sections of strip, or other flat products and possibly long products with high surface quality and a very exact final microstructure.
In accordance with additional steps, steel products of this type, whose final microstructure can be more exactly controlled, can be produced in different process routes. In accordance with a first alternative, it is proposed that successive treatment steps be carried out as a first process route
• in an electric arc furnace and
• in a ladle metallurgy installation
-- with at least one vacuum degassing system followed by a ladle furnace for decarbonization, reduction, and addition of

alloying materials,
— with a ladle furnace for slag formation, for slag work, for temperature control, for final adjustment of the final
analysis, and for purity rinsing to A contents.
The advantage consists in the final microstructure of the
* aforementioned ULC, IF, high-strength and stainless steel
grades, which, after a vacuum treatment, has values of to 30 ppm for C, , 20-30 ppm for
N, and
casting machine has these values.
After being tapped from the electric arc furnace, the steel has the following values before the vacuum treatment is carried out: C = 400-600 ppm, S C advantages are moderate foaming during slag formation (assuming
lOO-o DRI), slag-free tapping, the possible slag additives, and
prereduction by FeMnHC.
After the ladle furnace treatment, these, values can be further altered for the casting operation in the continuous casting machine to C
and During the vacuum treatment of the steel by the partial-quantity method, basically a decarbonization, a deoxidation, and an addition of ferroalloys is undertaken. The necessary refining of the ladle slag, the desulfurization, and the final adjustment of the chemical analysis of the molten steel occur during the ladle furnace treatment, which is concluded by a purity treatment.
During the addition of slag additives, slag work in the steel, a heating operation, the desulfurization, and an adjustment of the final analysis, another purity rinsing is carried out, which considerably increases the preciseness of the final grade. Before the molten steel is cast, the following values can be adjusted: C In accordance with a second alternative, it is proposed that successive treatment steps be carried out as a second process route
• in an electric arc furnace or an electric arc furnace installation and
• in a ladle metallurgy installation

— with a ladle furnace for slag formation, =^ for the heating
=> and for the prereduction (FeMnHC) of the steel
-- with a vacuum degassing system
=> for the decarbonization and. denitrogenation
=> for the reduction of the slag on the steel surface
=> for the desulfurlzation under reduced pressure,
=> for the final adjustment of the final analysis and
=> for the purity rinsing to A under atmospheric pressure.
The advantages are that it is also possible to charge up to 100% DRI or pig iron or hot metal and scrap in any desired proportions. Slag-free deslagging can then be carried out. Additional slag is produced during the ladle furnace treatment; the total ladle slag reaches about 8 kg/t. Heating and adjustment of the reduction slag (with FeMnHC) are then carried out. During the treatment in the vacuum degassing system, a decarbonization, a reduction and slag work, a desulfurizat ion and a denitrogenation under reduced pressure, an adjustment of the final analysis, and stirring for the degree of purity under atmospheric pressure are carried out.

In accordance with a third alternative, it is proposed that successive treatment steps be carried out as a third process route
• in an electric arc furnace or in an electric arc furnace
installation and
• in a ladle metallurgy installation
-- with a ladle furnace
=> for temperature control and
=> for prereduction (FeMnHC) -- with at least one differential-pressure degassing process for the decarbonization, desulfurlzation (under pressure) and denitrogenation, reduction, and addition of alloying material.s from an iron alloy, and with final adjustment
=> of the final analysis and
=> for the .purity rinsing to contents of or of The advantages are that the molten steel attains the following values in the electric arc furnace:
C 500-800 ppm;
0 500-700 ppm;
N 60-100 ppm;

S 160-300 ppm.
The following values are then attained in the vacuum degassing system:
C 0 N S The steel is cast with the following values in the downstream CSP continuous casting machine:
C 0 N S In accordance with a fourth alternative, it is proposed that successive treatment steps be carried out as a fourth process route
• in an electric arc furnace or in an electric arc furnace installation and
• in a ladle metallurgy installation

-- with a ladle furnace for temperature control and a subsequent partial-quantity degassing for decarbonization and denitrogenation, desulfurization, with a ladle degassing for the
final adjustment of the final analysis and for purity rinsing to
A contents.
The advantages are likewise the attainment of very low values of the companion elements for casting in the thin-slab continuous casting machine and the adjustment of the final microstructure.
In one embodiment, a descaling is carried out directly below the continuous casting mold. The purpose of this step is preparation for ensuring optimum surface quality by controlling the scaling processes in the continuous casting machine, wherein special methods of descaling can be used.
Another step in this direction consists in undertaking controlled high-temperature oxidation by a controlled atmosphere in the soaking furnace.
This purpose is assisted by the additional feature of inductive heating of the partial strand lengths downstream of the soaking furnace. In this way, the heating can be transferred to the partial length of strand systematically, uniformly, and very quickly.

The most favorable temperature level is then reached by controlled cooling of the partial strand lengths before the first finishing stand of the finishing mill.
In another step, the final microstructure can be systematically adjusted by controlled cooling of continuous product coiled in the second coiling, station.
Another improvement consists in using an electric arc furnace installation with two furnace vessels, which are alternately operated with a swiveled electrode system and an oppositely swiveled top injection lance, are operated with pig iron, direct reduced charge materials, and scrap, and are operated partially with electric power and/or chemical energy (so-called CONARC® processes).
The method can be applied in such a way that steels with multiphase microstructure (dual-phase steel or TRIP steel) are produced.
The installation for producing steel products with optimum surface quality, especially with ultralow carbon contents (ULC or IF steel), nitrogen contents, total oxygen contents, high-strength and/or stainless steel grades, is based on a prior art using at least a melting installation, a ladle metallurgy installation, a continuous casting machine for slab strands, a

rolling mill/ a runout table, and a coiling station.
In accordance with the invention, the stated objective is achieved by using a melting installation, which consists of an
electric arc furnace installation, with a ladle metallurgy installation that is downstream with respect to the material flow, by providing the continuous casting machine with a continuous casting mold in thin-slab format, and by providing in the material flow at least one descaling system, a shear, a soaking furnace, a finishing mill, and at least one rollout table with a cooling line upstream or downstream of a coiling station. In this way, all advantages are achieved for a desired final micro structure of hot strip, long products, and the like, which are necessary for ULC, IF, high-strength, or stainless steels .
A feature that is aimed especially at achieving optimum surface quality of the finished steel product consists in providing a descaling system in the continuous casting machine directly below the continuous casting mold.
The quality of the surface of the steel product can be further ensured by providing a descaling system not only downstream of the continuous casting mold and downstream of the shear but also upstream of the first rolling stand of the

finishing mill.
In another embodiment, a liquid cord reduction line or a
soft reduction line is arranged upstream lof the shear in the

containment roll stand of the continuous casting machine.
In another measure for creating favourable conditions for
I
the final processing of the steel product, the continuous casting mold is designed as a continuous casting mold with a
pouring gate. 1
In accordance with a further improvement/ the rolled product is heated in an advantageous way by providing an inductive heating installation in the material flow between the soaking furnace and the first rolling stand of the finishing
mill or the descaling system,
i
Another embodiment provides that thel cooling line comprises
I
' a laminar cooling line combined with several intensive cooling
boxes.
The drawings show specific embodiments of the installation,
and the method is described in greater detail below with
reference to these drawings .
Figure 1 shows functional block diagrams of process
I
routes, which are alternatively arranged upstream of a continuous casting and roiling installation.

Figure 2A shows process routes 1 and 2 in an enlarged view.
Figure 2B shows process routes 3 and 4 in an enlarged
view.
-- Figure 3 shows the continuous casting and rolling installation 'with final microstructure adjustment downstream of the melting and ladle metallurgy installation.
-- Figure 4 shows a time-temperature-transformation diagram for cooling microstructure (austenitic, soft pearlite, bainite, and martensite) obtained after the last rolling stand of the finishing mill by cooling of the rolled product.
-- Figure 5 shows a strength-strain diagram for multiphase steel grades (dual-phase steels, TRIP-phase steels) .
In accordance with Figures 1 and Figures 2A and 2B, the steel product 1 can be produced as hot strip for further processing (e.g., automobile skin sheet, sheet for welded pipes, and the like.)
The liquid steel lb is produced by melting 2'in a melting installation 2a, which is not a steelworks converter but rather an electric arc furnace 2b. The tapped steel then passes through a ladle metallurgy installation 3 and a continuous casting process 4 with a continuous casting machine 4a.

However, the slab format 5 that is cast there is not a thick slab but rather a thin slab 5a with customary thicknesses of The melting installation 2a consists in each case of the electric arc furnace 2b, which can also be a two-vessel electric arc furnace installation 35 of the CONARC® type. Steel with the desired extremely low carbon contents (ULC steel = ultralow carbon steel), steel with controlled precipitates (IF steel = steel without interstitially dissolved foreign atoms in the solid solution), and high-strength and/or stainless steel is prepared in the following ladle metallurgy installation 3.
The liquid steel lb is cast in thin-slab format in the continuous casting machine 4a by means of a continuous casting mold 14. The material flow 36 includes at least one descaling system 28a for descaling 28, a shear 38 for producing partial

lengths 15, a soaking furnace 16 (an additional soaking furnace 16a) , the finishing mill 6a, and at least one runout table 22 with a cooling line 21 upstream or downstream of a first coiling station 20 .
A first descaling system 28a, which is based on water jets, is provided in the continuous casting machine 4a for descaling 28 directly below the continuous casting mold 14.
In addition to this descaling system 2 8a, additional descaling systems 28a are located in the material flow 36 downstream of the continuous casting mold 14, downstream of the shear 38, and upstream of the first rolling stand 17 of the finishing mill 6a, Temperature control with oxidation protection 37 is provided in the soaking furnace 16 (possibly in 16a) .
A liquid core reduction line 40 or a soft reduction line can be used upstream of the shear 38 in a containment roll stand 39 of the continuous casting machine 4a.
The continuous casting mold 14 can be a gate continuous casting mold, as is usually provided in CSP installations.
An inductive heating installation 42 can be arranged in the material flow 3 6 between the soaking furnace 16 and the first finishing stand 17, which is followed by several finishing

stands 18 and a last finishing stand 19, or between the soaking furnace 16 and the descaling system 28a.
In addition, the cooling line 21 can comprise a laminar cooling line 21a combined with several intensive cooling boxes 21b.
The method for producing steel products 1 (Figure 1) is characterized by the fact that the molten steel lb is pretreated by alternative process routes 10, 11, 12, or 13 and cast into a thin slab 5a in the continuous casting mold 14; by the fact that the thin slab is descaled, possibly partially deformed, cut to partial lengths 15, subjected to repeated descaling 28, heated to rolling temperature, and homogenized in at least one soaking furnace 16 (or an additional soaking furnace 16a), generally (apart from a few exceptions) descaled again, and rolled in the finishing mill 6a; by the fact that the rolled product is coiled in a first coiling station 20 immediately downstream of the last finishing stand 19 or, alternatively, downstream of the cooling line 21; by the fact that the final microstructure 9 is adjusted in the cooling line 21 according to the desired grade of steel by cooling on the runout table 22; and by the fact that the rolled product la is generally finish-coiled in a second coiling station 23.

While the first to fourth process routes 10, 11, 12, and 13 in Figure 1 have been explained only as a group, the process
routes in Figures 2A and 2B will be individually explained in detail.
The first process route 10 (Figure 2A) provides for charge materials from DRI/HBI (pellets or briquets of direct reduced iron) or scrap in the electric arc furnace 2b with extremely low input sulfur contents. In the next treatment step 24, reduction of carbon and oxygen to extremely low values occurs in the process of partial-quantity degassing 27a within the vacuum degassing system 27, In the following treatment step 24, the
temperature is increased by AT in the ladle furnace 25, and the degree of purity is adjusted by reduction of the content.
The second process route 11 (Figure 2B) starts with the charging of DRI/HBI, scrap, hot metal, or pig iron, each with a low sulfur content, into an electric arc furnace installation 35. The electric arc furnace installation 3 5 can consist of either an electric arc furnace 2b or an installation for the CONARC® process. The next treatment step 24 takes place in the ladle furnace 25 with a temperature increase. In the following treatment step 24, a decarbonization, a desulfurization, A denitrogenation, and an increase in the degree of purity by

reduction of the content to low values are carried out in the vacuum degassing system 27,
The third process route 12 (Figure 2B) provides for the charging of DRI/HBI, scrap, hot metal, or pig iron, each with low input sulfur contents, into an electric arc furnace installation 35 or into an electric arc furnace 2b. In the
following treatment step 24, a temperature increase AT takes place in the ladle furnace 25. In the next treatment step 24, differential-pressure vacuum degassing 43 is provided, in which carbon C, sulfur S and nitrogen N are reduced to very low values, and the degree of purity is increased by decomposition
of the A1..0 materials (A .J .
The fourth process route 13 (Figure 2B) provides for the charging of DRI/HBI, scrap, hot metal, or pig iron, each with a low sulfur input content, into an electric arc furnace installation 35 or into an individual electric arc furnace 2b. In the next treatment step 24, a temperature increase AT takes place in the ladle furnace 25, which is immediately followed by a partial-quantity degassing 27a in the vacuum degassing system 27, which reduces carbon C and nitrogen N to very low values. In the last treatment step 24, a ladle degassing is carried out in the vacuum degassing system 27 to reduce sulfur S to low

values and to increase the degree of purity by the decomposition
of AI2O3 (A ) .
The most favorable or desired process route 10, 11, 12, or 13 is selected on the basis of economic considerations with respect to the costs of the charge material and the quality of the final product. The casting of thick or thin slabs, the energy sources to be used, and the required capital investments for the plant are also to be considered.
After the entry (Figure 3) of the treated steel lb, descaling 28 is carried out below the continuous casting mold 14.
Controlled high-temperature oxidation 29 by a controlled atmosphere is carried out in the soaking furnace 16.
In -addition, the partial strand lengths 15 can be inductively heated downstream of the soaking furnace 16. Furthermore, an additional soaking heat treatment can be carried out in an additional soaking furnace 16a following the inductive heating installation 42. The partial strand lengths 15 are further inductively heated in the inductive heating installation 42 downstream of the soaking furnace 16. The ladle furnace 25 operates with an electrode system 31 and/or a top injection lance 32.

After the first finishing stand 17 and between the finishing stands 18, 19 of the finishing mill 6a, the partial lengths 15 can be subjected to controlled cooling. To this end, intensive cooling boxes 21b can be arranged between the finishing stands 11, 18, 19. An edger 44 can be positioned in front of tlie first finishing stand 17:
The coiled continuous product Ic is subjected to controlled cooling in the second coiling station 23,
The multiphase microstructure is adjusted in the cooling line 21 or in the coil 23.
Figure 4 shows a schematic temperature curve in a time-temperature- trans formation diagram. The cooling curve of the solid material after the last rolling stand 19 during the coiling of the rolled product la in the second coiling station 23 passes through the transformation point AC3. The resulting final microstructure 9 can be austenite, soft pearlite, bainite, or martensite. The final structure 9 is thus produced during the rolling and cooling.
Figure 5 shows a diagram of strength (N/mm") versus strain (I/I,) for multiphase steel, e.g., dual-phase steel 33 and TRIP steel 34. The bo*ttom curve shows normal behavior of steel at high strength and low strain.

List of Reference Numbers
1 steel product
la rolled product
lb liquid steel
Ic continuous product
2 melting
2a melting installation
2'o electric arc furnace
3 ladle metallurgy installation
4 continuous casting
4a continuous casting machine
5 slab format
5a thin slab
6 rolling
6a finishing mill
7 cooling
8 coiling
9 final microstrueture
10 first process route
11 second process route

12 third process route
13 fourth process route
14 continuous casting mold
15 partial length of strand
16 soaking furnace
16a additional soaking furnace
17 first finishing stand
18 finishing stand
19 last finishing stand
2 0 coiling station (carousel coiler)
21 cooling line
21a laminar cooling line
21b intensive cooling boxes
22 runout table
23 coiling station
2 3a controlled cooling device for coils
24 treatment steps
2 5 ladle furnace
2 6 alloying materials
27 vacuum degassing system
27a partial-quantity degassing
28 descaling

28a descaling system
29 controlled high-temperature oxidation
30 furnace vessel (converter or electric arc furnace)
31 electrode system
32 top injection lance
33 dual-phase steel
34 TRIP steel
35 electric arc furnace installation
3 6 material flow
37 controlled cooling and oxidation protection
38 shear
39 containment roll stand
40 liquid core reduction line
41 soft reduction line
42 inductive heating installation
43 differential-pressure vacuum degassing system
44 edger



CLAIMS
1. Method for producing steel products (1) with optimum surface quality, such as automobile skin sheet or sheet for welded pipes, especially with ultralow carbon contents (ULC or IF steel), nitrogen contents, total oxygen contents, high-. strength and/or stainless steel grades, in each case by melting (2) on the basis of an electric arc furnace (2b) and treatment in a ladle metallurgy installation (3), after which the steel is continuously cast (4) into a thin slab (5a) in the continuous casting mold (14), descaled, partially deformed, cut into partial strand lengths (15), generally descaled (28), heated to rolling temperature and homogenized in a soaking furnace (16), generally descaled again and rolled in a finishing mill (6a), coiled in a first coiling station (20) immediately downstream of the last finishing stand (19) or, alternatively, downstream of a cooling line (21), and the final microstructure (9) is adjusted in a cooling line (21) according to the desired grade of steel by cooling on a runout table (22), and the rolled product (la) is generally finish-coiled in a second coiling station (23), or, alternatively, downstream of a cooling.line (21), and the final microstructure (9) is adjusted in a cooling line (21) according

to the desired grade of steel by "cooling on a runout table (22), and the rolled product (la) is generally finish-coiled in a second coiling station (23), characterized by the fact that the molten steel (lb) is produced in a process route (10, 100; 12; 13) that is selected according to the desired final microstructure (9),
(a) by producing molten steel (lb) in a melting installation (2a), which is not a steelworks converter, by a vacuum degassing system (27), and in a ladle furnace (25), or
(b) by melting in an electric arc furnace (2b) or in a CONARC double furnace, in a ladle furnace (25) with an electrode system (31), and in a vacuum degassing system, or
(c) by melting in an electric arc furnace installation (35) or a CONARC double furnace (30) or an individual furnace vessel (30), in a ladle furnace (25), and in a differential-pressure
vacuum degassing system (43), or
(d) by melting in an electric arc furnace (2b) with
additions of alloying materials (26), a partial-quantity
degassing in the ladle furnace (25) , or a vacuum degassing
system (27) and a ladle degassing (27).
2. Method in accordance with Claim 1, characterized by the fact that successive treatment steps (24) are carried out as a first process route (10)
• in an electric arc furnace (2b) and

• in a ladle metallurgy installation (3)
-- with at least one vacuum degassing system (27) followed
by a ladle furnace (25) for decarbonization, reduction, and addition of alloying materials (26), and
-- with a ladle furnace (25) for slag formation, for slag work, for temperature control, for final adjustment of the final
analysis, and for purity rinsing to A contents.
3. Method in accordance with Claim 1, characterized by the fact that successive treatment steps (24) are carried out as the second process route (11)
• in an electric arc furnace (2b) or an electric arc- furnace installation (35) and
• in a ladle metallurgy installation (3)
-- with a ladle furnace (25) for slag formation
=> for the heating
=> and for the prereduction (FeMnHC) of the steel -- with a vacuum degassing system (27)
=> for the decarbonization and denitrogenation
= for the reduction of the slag on the steel surface
=> for the desulfurization under reduced pressure,
=> for the final adjustment of the final analysis and
=:> for the purity rinsing to A under atmospheric
pressure.

4. Method in accordance with Claim 1, characterized by the
[■
fact that successive treatment steps (24) are carried out as the third process route (12)
• in an electric arc furnace (2b) or in an electric arc
furnace installation (35) and
• in a ladle metallurgy installation (3)
-- with a ladle furnace (25)
=> for temperature control and
=> for prereduction (FeMnHC) -- with at least one differential-pressure degassing process (43) for the decarbonization, desulfurlzation and denitrogen-ation, reduction, and addition of alloying materials from an iron alloy, and with final adjustment of the final analysis and
=> for the purity rinsing to contents 5. Method in accordance with Claim 1, characterized by the
fact that successive treatment steps (24) are carried out as the
fourth process route (13)
• in an electric arc furnace (2b) or in an electric arc furnace installation (35) and
• in a ladle metallurgy installation (3) with a ladle furnace (25) for temperature control and a subsequent partial-

quantity degassing (27a) for decarbonization and denitrogenation, desulfurization, with a ladle degassing (27)' for the final adjustment of the final analysis and for purity
rinsing to A contents -
6. Method in accordance with Claim 1, characterized by the fact that a descaling (28) is carried out directly below the continuous casting mold (14) .
7. Method in accordance with Claim 1, characterized by the fact that a controlled high-temperature oxidation (29) by a controlled atmosphere is carried out in the soaking furnace (16).
8. Method in accordance with Claim 1 or Claim 1, characterized by the fact that the partial strand lengths (15) are inductively heated downstream of the soaking furnace (16) .
9. Method in accordance with Claim 1,, characterized by the fact that the partial strand lengths (15) are subjected to controlled cooling upstream of the first finishing stand (17) of the finishing mill (6a).

10. Method in accordance with Claim 1, characterized by the fact that continuous product (Ic) coiled in the second coiling station (23) is subjected to controlled cooling.
11. Method in accordance with any of Claims 1 to 5, characterized by the fact that the electric arc furnace installation (35) comprises two furnace vessels (30), which are

' alternately operated with a swiveled electrode system (31) and an oppositely swiveled top injection lance (32), are operated with pig iron, direct reduced charge materials, and scrap, and are operated partially with electric power and/or chemical energy,,
12. Method in accordance with any of Claims 1 to 11, characterized by the fact that steels with multiphase microstructure (dual-phase steel 33 or TRIP steel 34) are produced,
13. Installation for producing steel products (1) with optimum surface quality, such as automobile skin sheet or sheet for welded pipes, especially with ultralow carbon contents (ULC or IF steel), nitrogen contents, total oxygen contents, high-strength and/or stainless steel grades, using a melting installation (2a), a ladle metallurgy installation (3), a continuous casting machine (4a) for slabs (5) or thin slabs (5a), a shear (38), a descaling system (28a), a soaking furnace (16), a finishing mill (6a), a runout table (22), and a. first coiling station (20) and second coiling station (23), characterized by the-fact that the melting installation (2a) consists of an electric arc furnace installation (35) with a ladle metallurgy installation (3) that is downstream with respect to the material flow (36); by the fact that the continuous casting machine (4a) is provided with a continuous

casting mold (14) in thin-slab format (5a); with a vacuum degassing system (27), a ladle furnace (25),'a CONARC double furnace, with a ladle furnace (25), which has an electrode system (31), and a vacuum degassing system (27), a differential-pressure vacuum degassing system (43), and a system for partial-quantity degassing in the ladle furnace (25).
14. Installation in accordance with Claim 13, characterized by the fact that a descaling system(28a) is provided in the continuous casting machine (4a) directly below the continuous casting mold (14).
15. Installation in accordance with Claim 13, characterized by the fact that in addition to a descaling system (28a) downstream of the continuous casting mold (14) and a
descaling system (28a) downstream of the shear (38), an additional descaling system (28a) is provided upstream of the first rolling stand (17) of the finishing mill (6a) .
16. Installation in accordance with Claim 13,
characterized by the fact that a liquid core reduction line (40)
or a soft reduction-line (41) is arranged upstream of the shear
(38) in the containment roll -stand (39) of the continuous
casting machine (4a).
17. Installation in accordance with Claim 13,
characterized by the fact that the continuous casting mold (14)
is designed as a continuous casting mold with a pouring gate.

18, Installation in accordance with Claim 13,
characterized by the fact that an inductive heating installation
(42) is provided in the material flow (36) between the soaking furnace (16) and the first rolling stand (17) of the finishing mill (6a) or the descaling system (28a).
19. Installation in accordance with any of Claims 13 to
15, characterized by the fact that the cooling line (21)
comprises a laminar cooling line (21a) combined with several
intensive cooling boxes (21b).


Documents:

0064-chenp-2006 abstract-duplicate.pdf

0064-chenp-2006 claims-duplicate.pdf

0064-chenp-2006 descripition(completed)-duplicate.pdf

0064-chenp-2006 drawings-duplicate.pdf

064-chenp-2006-abstract.pdf

064-chenp-2006-claims.pdf

064-chenp-2006-correspondnece-others.pdf

064-chenp-2006-correspondnece-po.pdf

064-chenp-2006-description(complete).pdf

064-chenp-2006-drawings.pdf

064-chenp-2006-form 1.pdf

064-chenp-2006-form 18.pdf

064-chenp-2006-form 3.pdf

064-chenp-2006-form 5.pdf

064-chenp-2006-pct.pdf

64-CHENP-2006 ABSTRACT.pdf

64-CHENP-2006 CLAIMS.pdf

64-CHENP-2006 CORRESPONDENCE OTHERS.pdf

64-CHENP-2006 CORRESPONDENCE PO.pdf

64-CHENP-2006 FORM-1.pdf

64-CHENP-2006 POWER OF ATTORNEY.pdf


Patent Number 229374
Indian Patent Application Number 64/CHENP/2006
PG Journal Number 12/2009
Publication Date 20-Mar-2009
Grant Date 17-Feb-2009
Date of Filing 05-Jan-2006
Name of Patentee SMS DEMAG AG
Applicant Address Eduard-Schloemann-Strasse 4, 40237 Dusseldorf,
Inventors:
# Inventor's Name Inventor's Address
1 PLESCHIUTSCHNIGG, FRITZ-PETER Reiserweg 69, 47269 Duisburg,
2 HENSGER, Karl-Ernst PAUL-WAGE-STRASSE 22, 04435 SCHKEUDITZ,
3 ROSENTHAL, Dieter Bergstrasse 22a, 57572 Niederfischbach,
4 TEWORTE, Rainer Auf dem Tummelplatz 22, 58239 Schwerte,
5 TEMBERGEN, Dieter Halenerstrasse 54a, 47198 Duisburg,
PCT International Classification Number C21C 7/10
PCT International Application Number PCT/EP2004/005580
PCT International Filing date 2004-05-25
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 103 25 955.4 2003-06-07 Germany