Title of Invention

A HETERO-INTERFACE FIELD EFFECT TRANSISTOR AND A METHOD FOR FABRICATING A HETERO-INTERFACE FIELD EFFECT TRANSISTOR

Abstract The present invention is directed to high frequency, high power or low noise devices such as low noise amplifiers, amplifiers operating of at frequencies in the range of 1 GHz up to 400 GHz, radars, portable phones, satellite broadcasting or communication systems, or other devices and systems that use high electron mobility transistors, also called hetero-structure field-effect transistors. A high electron mobility transistor (60 and 80) includes a substrate (61), a quantum well structure (62) and electrodes (72 and 74). The high electron mobility transistor has a polarization- induced charge of high density. Preferably the quantum well structure (62) includes an AIN buffe~ layer (64), an un-doped GaN layer (66), and an un-doped lnAIN layer (68).
Full Text

HIGH ELECTRON MOBILITY DEVICES
1. Field of the Invention
The present invention relates to high electron mobility transistors (HEMTs), also called hetero-structure field-effect transistors (HFETs), having polarization-induced charge of high density.
2. Description of the Related Art
High electron mobility transistors (HEMT) are field effect devices that use high mobility carriers. Most conventional semiconductor devices use semiconductor layers doped with n-type impurities to generate electrons (or p-type impurities to generate holes) as carriers. However, the impurities cause the electrons (or holes) to slow down because they alter periodicity of the lattice structure, i.e., they form defects that cause collisions. On the other hand, HEMTs provide for carriers with higher mean free paths and thus higher frequency of operation.
Fig. 1 shows diagrammatically a GaAs HEMT 2, as known in the prior art. HEMT 2 includes a source electrode 6, a gate electrode 8, and a drain electrode 10. HEMT 2 also includes an un-doped GaAs layer 14 acting as a channel layer on a semi-insulating GaAs substrate 12. On un-doped GaAs layer 14, there is an un-doped AlxGai-xAs layer 16 and a doped AlxGai.x As layer 18, which is an electron-supplying layer.
The hetero-interface of HEMT 2 is made of two materials: a wide band gap barrier layer (i.e., the AIGaAs layer) and a channel layer (i.e., the GaAs layer). Due to conduction band discontinuity AEC and electric field at the interface, there is electron gas 15 formed in the un-doped GaAs layer 14 along the interface to AlxGai_ xAs layer 16.
HEMT 2 includes electron gas layer (or volume) 15 formed in the un-doped GaAs layer 14 along the interface to AIxGai.xAs layer 16. Specifically, electrons generated in n-type AIGaAs layer 18 drop completely into GaAs layer 14. In GaAs layer 14, which has a substantially "perfect" structure without doped impurities, these electrons have a high mobility, and can move undergoing much less collisions. Typically, the maximum available electron density for single modulation-doped quantum wells is about 4 x 1012 cm"2.

The un-doped AlxGai_xAs layer 20 increases the breakdown voltage of HEMT 2. The Al-content x of the layer 16 or 18, represented by the composition Alx Ga-|.x As, is desired to have a relatively large value to increase the sheet density of the two-dimensional electron gas 15 located in GaAs channel layer 14. Layers 16 and 18 are generally in the range of about x = 0.2 to about 0.3.
Fig. 1A shows diagrammatically a band gap diagram of HEMT 2 under thermal equilibrium. At the GaAs/AIGaAs interface, the conduction band Ec is located below the Fermi level EF, enabling formation of a two dimensional electron gas (2DEG). This two-dimensional electron gas has a Gaussian electron density distribution. Under a biased state this electron density distribution spreads out. Under the condition of thermal equilibrium, the electron-supplying layer 18 is entirely depleted. When a positive bias voltage is applied to gate electrode 8, an electrically neutral region appears in layer 18 and grows with an increase of the biased voltage. Thus, the electron density of the n+-type AlxGai_xAs layer 18 increases with the gate voltage. The mobility of the electrons in the electron-supplying layer 18 (n+-type AlxGai_xAs) is lower than that in GaAs channel layer 14 as explained above. On the other hand, negative bias applied to the gate depletes the electron gas 15 until no current will flow.
Fig. 2 shows diagrammatically another type of a HEMT having a doped barrier layer. HEMT 25 was described in IEEE Transaction on Electron Devices, Vol. 48 (2001), pages 581-585. A HEMT 25 includes a quantum well structure made of AIN, GaN and AIGaN epitaxial layers 31, 32, 33, 34 and 35. Deposited on a highly resistive 4H-SiC substrate 30, there are AIN buffer layer 31, a 2 pm GaN layer 32, a 2 nm un-doped AI0.2Ga0.eN spacer 33, a doped Alo.2Gao.8N layer 34 being 15 nm thick and having a doping level 1x1019 cm"3, and a 10 nm un-doped AIGaN cap layer 35. Hall measurements on HEMT 25 revealed the concentration of 1.1 x 1013 cm"2 of the 2D electron gas and an electron mobility of 1100 cm2A/s. HEMT 25 with a 0.12 pm gate-length had a DC characteristics with the maximum drain current of 1.19 A/mm and the transconductance of 217 mS/mm.
Referring to FIG. 3, another type of a gallium nitride HEMT was described in the Proceeding of the Third International EuroConference on Advanced Semiconductor Devices, Smolenice Castle, Slovakia, October 2000, edited by J. Osvald, S. Hascik, J. Kuzmik, J. Breza, IEEE Catalog No. 00EX386, pages 47-54.

Fig. 3 shows diagrammaticaliy HEMT 40, which includes a substrate, an AIN layer 41, a GaN layer 42, a AIGaN layer 43, and contacts 45 and 47. In HEMT 40, the electron carriers are accumulated in the QW channel due to the polarization fields only, as shown in Fig, 3A. The heterostructure of HEMT 40 was formed by 20 nm nucleation layer 41 followed by a 2-3 ^im thick un-doped GaN layer 42, and about 20 nm un-doped AIGaN layer 43, which included about 15-20 % of AIN. In this quantum well (QW) structure, Hall effect measurements at room temperature typically yielded the 2DEG sheet concentration of 5 x 1012 cm"2 and the Hall mobility of 1200 cm2A/s. HEMT 40 with a 0.7 pm gate-length had the peak current of 210 mA/mm and the maximum transconductance of 110 mS/mm.
Referring to Fig. 3A, HEMT 40 utilizes a piezoelectric effect present in the AIGaN/GaN QW structure. Un-doped AIGaN barrier layer 43 is tensile strained on top of GaN channel layer 42 exhibiting piezoelectric field Ppie2o of identical orientation with differential spontaneous polarization APo. A high density 2DEG accumulates in channel 42 QW due to superposition of the piezoelectric and differential spontaneous polarization fields, shown in FIG. 3A. High power performance requires high 2DEG density in the QW, and high AEc is important to keep the free carriers electron confined. Theoretically, the Alo.2Gao.8N/GaN QW exhibits APo = -1.04 x 10"6 Ccm"2, Ppiezo = -6.9 x 10"7 Ccm"2 giving the total electron charge density "total = 1-08 x 1013cm"2. Corresponding 2DEG density is substantially higher than we can expect for any other lll-V device where polarization phenomena does not dominate. However, surface depletion effect and/or layers imperfections may lead to lower Hall measurement electron charge density data as indicated above for our case. In HEMT 40, no extra doping is necessary to get polarization-induced charge.
There have been suggestions to add small amounts of In to AIGaN for the purpose of eliminating strain with respect to GaN and perhaps improved lattice matching of InAIGaN to the lattice of GaN. This may change the maximal electron charge density to about 1.4 x 1013cm"2, which is not a much of a change when compared to prior art structures described,herein.
There is a need for HEMTs with even higher electron charge density to obtain even better device performance.

Summary of the Invention
The present invention relates to high electron mobility transistors (HEMTs), also called hetero-structure field-effect transistors (HFETs) having polarization-induced charge of high density. The present invention also relates to a method of fabricating such HEMTs (or HFETs), The present invention also relates to high frequency, high power or low noise devices such as low noise amplifiers, amplifiers operating at frequencies in the range of 1 GHz up to 400 GHz, radars, portable phones, satellite broadcasting or communication systems, or other systems using the described HEMTs.
According to one aspect, a HEMT (or HFET) includes a substrate; and a quantum well layered structure including at least a barrier layer and a channel providing the total 2DEG density of above about ntotai= 1.1 x 1013crrf2.
According to another aspect, a HEMT (or HFET) includes a substrate; and a layered quantum well structure, made of Ill-nitrides, including at least a barrier layer and a channel layer wherein barrier layer contains lnxAlvxN, where x is in the range of about 0 According to yet another aspect, a Ill-nitrides HEMT (or HFET) includes a substrate and a cation-polarity layered structure including at least a barrier layer and a channel layer. Due to high polarization fields in the Ill-nitrides QW structure, a high-density electron charge is accumulated at the barrier/channel layer QW hetero-interface. The current transport is facilitated through the QW 2DEG. Preferably, the QW 2DEG density is increased by the use of a barrier layer containing lnxAIi_xN (wherein x is in the range of about Q Preferably, the channel layer includes GaN and the barrier layer includes lattice matched lno.17Alo.83N. Alternatively, the barrier layer includes lnxAli.xN, wherein x is in the range of about 0 According to another embodiment, a Ill-nitrides HEMT (or HFET) includes a barrier layer having lnxAIi-xN, wherein x is in the range of about 0.17
According to yet another embodiment, a Ill-nitrides HEMT (or HFET) includes a barrier layer having lno.17Alo.83N, and a channel layer having lnyGai-yN, wherein y is in the range of about 0 These HEMTs use a InAIN barrier layer (which replaces a AIGaN layer) thus forming a lnAIN/(ln)GaN QW structure (instead of a prior art AIGaN/GaN QW structure) even though this approach is counter-intuitive and at this time InAIN is more difficult to grow on GaN that AIGaN.
According to yet another aspect, a HEMT (or HFETs) includes a substrate; and a quantum well layered structure including at least a barrier layer and a channel providing the total 2DEG density of above about ntotai =1.1 x 1013 cm"2.
According to yet another aspect, a HEMT (or HFETs) includes a substrate; and a quantum well layered structure including at least a barrier layer and a channel providing a 2DEG of high density due the polarization phenomena and impurity doping of a layer included in the quantum well structure.
Preferably, in the above devices, high drain currents, power capabilities or low noise properties result from a high QW polarization-induced 2DEG alone or in combination with a doped layer providing charge carriers.
Brief Description of the Drawings
FIG. 1 illustrates an AIGaAs/GaAs HEMT according to prior art.
FIG. 1Ais a band gap diagram of the HEMT shown in FIG. 1.
FIG. 2 illustrates an AIGaN/GaN HEMT with a doped barrier according to prior art.
FIG. 3 illustrates an AIGaN/GaN HEMT with an un-doped barrier layer according to prior art.
FIG. 3A is a band gap diagram of the HEMT shown in FIG. 3 exhibiting polarization.
FIG. 4 is a cross-sectional view of an lno.17Alo.B3N/GaN HEMT according to a first preferred embodiment.

FIG. 4A is a band gap diagram of an lno.17Alo.83N/GaN quantum well used in the HEMT shown in FIG. 4.
FIG. 4B is a band gap diagram of an lno.25Alo.75N/GaN quantum well.
FIG. 5 is a cross-sectional view of an lno.17Alo.a3N/lno.10Gao.90N HEMT according to a second embodiment.
FIG. 5A is a band gap diagram of an lno.17Alo.a3N/lno.10Gao.90N quantum well used in the HEMT shown in FIG. 5.
FIG. 5B is a band gap diagram of an ino.15Alo.85N/lno.1Gao.9N quantum well used in an lno.15Alo.s5N/lno.1Gao.9N HEMT.
FIG. 5C is a band gap diagram of the lno.30Alo.70N/lno.1Gao.9N quantum well used in an lno.3Alo.7N/lno.1Gao.9N HEMT.
FIG. 6 is a graph of calculated drain current and transconductance characteristics of the ino.17AIo.83N/GaN and lno.17Alo.s3N/lno.10Gao.90N HEMTs, respectively, in comparison to the AIGaN/GaN HEMT.
FIG. 6A is a graph of calculated drain current and transconductance characteristics of the lno.25Alo.75N/GaN, lno.15Alo.s5N/lno.10Gao.9N, and lno.30Alo.70N/lno.10Gao.9N HEMTs, respectively, in comparison to the AiGaN/GaN HEMT.
FIG. 7 illustrates for Ill-nitrides the dependence of energy gap (AEg) on a lattice constant (a0) for various compounds.
Fig.8 shows calculated lnxAli.xN/GaN QW free electron charge density, HEMT open channel drain current, threshold voltage and the barrier layer strain as a function of the In molar fraction in InAIN.
Fig.9 shows calculated lno.17Alo.s3N/lnyGa1.yN QW free electron charge density, HEMT open channel drain current, threshold voltage and the channel layer strain as a function of the In molar fraction in InGaN.
Description of the Preferred Embodiments
Fig. 4 illustrates a HEMT 60 according to a first preferred embodiment. HEMT 60 includes a substrate 61, a quantum well (QW) structure 62 and electrodes 72 and 74. Preferably, quantum well structure 62 includes an AIN buffer layer 64, an un-doped GaN layer 66, and an un-doped InAIN layer 68. A doped n+-GaN layer 70 is used to form ohmic contacts with source and drain electrodes 72.

HEMT 60 is a Ill-nitride HEMT fabricated on a (0001) 6H-SiC substrate 61 using molecuiar-beam epitaxy (MBE) or metal-organic vapor phase epitaxy (MOVPE). AIN buffer layer 64 has a thickness in the range of 10nm to 40 nm and preferably about 20 nm. GaN layer 66 has a thickness in the range of 1 pm to 3 pm and preferably about 2 pm and the carrier concentration preferably less than about 1x1016 cm'3. An un-doped lno.17Alo.83N barrier layer 68 has a thickness in the range of about 5 nm to 30 nm, and preferably about 15 nm. The highly doped n* GaN cap layer 70 has a thickness in the range of about few nm to tens of nanometers, and preferably about 15 nm and has a carrier concentration of more than 5x1018 cm"3. HEMT 60 has a Pt/Au gate electrode 74 and Ti/AI/Ni/Au source/drain electrodes 72.
MBE or MOVPE can be used to grow QW structure 62 on 6H-S1C substrate 61 (but other substrates such as bulk GaN crystal, 4H-SiC, sapphire, MgAI204, glass and ZnO, quartz glass, GaAs, Si may also be used as long as epitaxial growth can be achieved).
Preferably, MOVPE is used to grow AIN buffer 64 at 530° C on substrate 61 (but other buffer layers such as GaN can be used providing layers cation polarity is maintained). Next, MOVPE is continued to grow GaN layer 66 at 1000° C, while supplying a flow of ammonium gas. Precursors for Al and In are added for subsequent In and/or Al containing ternary compounds, which can be grown at about 720° C. The process provides cation-polarity epitaxial layers.
After depositing QW structure 62, HEMT 60 is fabricated using photolithography for resist patterning and subsequent mesa etching, which is necessary for device isolation. The etching is done by an electron-cyclotron resonance reactive-ion etching (ECR RIE) system using CI^CHVH^Ar gas mixture. Subsequent resist patterns and lift-off are used to form ohmic contacts 72 and later Schottky contact 74. Ohmic contacts 72 (Ti/AI/Ni/Au) are placed on n+ GaN cap layer 70 and alloyed at 850 °C for 2 minutes. Next, n+-GaN cap layer 70 is RIE etched (in CH4/H2 gas mixture) down to lno.17Alo.83N barrier layer 68 through a defined resist opening. To create gate electrode 74, a Pt/Au film is vacuum evaporated. After metal has been lifted off, RIE-induced damage in the surface of lno.17AI0.83N barrier layer 68 is removed applying annealing at 470° C for 40 seconds. Bonding pads made of Ti/Au are formed at the end.

Fig. 4A illustrates a band gap diagram of the lno.17Alo.a3N/GaN QW structure 62. In QW structure 62, lno.17Alo.83N barrier layer 68 is lattice matched to GaN channel layer 66 and lno.17AIo.83N exhibits no piezoelectric polarization field. QW structure 62 exhibits high differential spontaneous polarization for the lno.17Alo.83N/GaN hetero-interface. Moreover, QW structure 62 does not have the negative effects related to the barrier layer relaxation.
]n general, nitrides-based quantum layers exhibits piezoelectric field (Ppiezo) and spontaneous polarization (P0), Nitrides crystal structure has no inversion symmetry and consequently for strained Ill-nitride epitaxial layers grown in the (0001) orientation, a piezoeletric polarization will be present along the [0001] direction. The piezoelectric polarization field is given by PPf6zo = (631 - e33C3i/C33) £1, where e3i, e33 are piezoeletric constants, C31, C33 are elastic constants, and £1 = E « + Gyy is in-plane strain. If aois the lattice constant of the relaxed epitaxial layer (i.e., under no strain) and a is the lattice constant after strain has been applied (i.e., the lattice constant of the layer to which the strained layer is lattice matched), than the strain £ 1 can be calculated as £i=2(a - ao}/ a0. Moreover, even if the strain is not present nitride ionicity and structure uniaxial nature causes spontaneous polarization field Po- The total polarization field is related to the polarization-induced charge density ptota) according to -ptotai = V '(PPjezo + Po). in other words, the hetero-interface junction exhibits polarization sheet charge density arising from the difference APQ in spontaneous polarization between the two materials and from the change in strain that defines the Ppiezo- The difference in polarization fields produces charge densities that may act as donors or acceptors, respectively. If at the given hetero-interface the ptotai is positive, than free electrons with the density of nto^ = Ptotai/q» where q denotes for the electron charge, are accumulated at the hetero-interface to compensate the polarization induced charge. Similarly, a negative ptotai can cause an accumulation of holes if the valence band edge crosses the Fermi level at the hetero-interface.
Table 1 shows values for relevant physical parameters for AIN, GaN and Inbl.
Spontaneous polarization field (P0) of ternary compounds is calculated by applying Vegard's law: P0(AxBi-xC) = P0(BC) + x(P0(AC)- Po(BC)). Vegard's law can be analogously applied for any other physical parameter listed in Tab.1. Polarization orientation is dependent on the polarity of the crystal, i.e., whether cation (Ga, AI, in)

or the anion (N) bonds face the surface. Cation polarity for all materials is mostly expected for properly grown device-quality layers. The physical properties of the HEMT QW structure are important for determining transistor performance.

TABLE 1 The following description is based on a HEMT analytical model as described in IEEE Transactions on Electron Devices, vol. ED-30, pages 207-212,1983 and is here modified for the polarization-induced charge to calculate the basic HEMT DC parameters. The two-dimensional gas carrier density ns is given by
n3 = e (VG - Vr)/qd (1)
where VQ is a gate voltage, W is a HEMT threshold voltage, e, d are barrier layer permitivity and thickness, respectively, and q is an electron charge. We incorporate the polarization-induced charge into the calculation of V> wherein the barrier layer is considered to be un-doped:


Referring again to Fig. 4A, QW structure 62 exhibits a high electron density of 2DEG due to high differential spontaneous polarization for the lno.17Alo.83N/GaN heteronnterface, as shown in the Table 2 below. Importantly, QW structure 62 does not have the negative effects related to the barrier layer relaxation. This QW structure enables high current and power performance of HEMT 60, as explained in connection with Fig. 6.
FIG. 4B illustrates a band gap diagram of another HEMT, Similarly as HEMT 60T shown in Fig. 4, HEMT 60A includes a substrate, a quantum well (QW) structure 62A and the electrodes. Quantum well structure 62A includes an AIN buffer layer, an un-doped GaN layer 66, and an un-doped In AIN layer 68A. A doped n+-GaN layer is used to form ohmic contacts with the source and drain electrodes. HEMT 60A has the same cross-sectional diagram as HEMT 60, shown in Fig. 4. Furthermore, HEMT 60A is fabricated using the same processing steps as HEMT 60.
In quantum well structure 62A, lno.25Alo.75N barrier layer 68A is compressively strained to channel layer GaN 66. The compressively strained lno.25AI0.75N barrier layer 68A exhibit piezoelectric field acting against the electron accumulation in the QW, as shown in Fig. 4B. Consequently, the electron density ntotai is reduced in comparison to HEMT 60, but still by 29 % higher than for a AIGaN/GaN QW structure, as calculated in Tab 2. The QW structure 62A enables high current and power performance of HEMT 60A, as explained in connection with Fig. 6A.
When designing the lnxAli-xN composition for the barrier layer at about x 0.25 leads to further 2DEG density decrease and thus about x = 0.25 is considered as a maximal reasonable value for HEMT 60.
FIG. 5 illustrates diagrammatically a Ill-nitride HEMT 80 according to another embodiment. HEMT 80 includes a substrate 81, a quantum well (QW) structure 82, and electrodes 94 and 96. Preferably, quantum well structure 82 includes an AIN buffer layer 84, an un-doped GaN layer 86, an un-doped lno.10Gao.90N channel layer 88, and an lno.17Alo.83N barrier layer 90. HEMT 80 also includes a doped n+-GaN layer 92 used to form ohmic contacts with source and drain electrodes 96.

In HEMT 80, reference numeral 81 denotes for a (0001) 6H-SiC substrate. AIN buffer layer 84 has a thickness in the range of about 5 (jm to about 40 pm, and preferably about 20 pm, and un-doped GaN layer 86 has a thickness of about 2 pm and a carrier concentration less than about 1x1016 cm'3. The un-doped lno.ioGa0.goN channel layer 88 has a thickness in the range from few nm up to a critical thickness when relaxation appears, and preferably about 10 nm. The lno.17Alo.a3N barrier layer 90 has a thickness in the range from about 5 nm to about 30 nm, and preferably about 15 nm. Highly doped n* GaN cap layer (having a thickness in the range from about 5 nm to about 30 nm, and preferably about 15 nm and a carrier concentration in the range of 1018 cm'3 to 1019 cm"3, and preferably more than about 5x1018 cm"3) provides ohmic contacts to Ti/AI/Ni/Au source and drain electrodes 96. A gate electrode 94 is made of a Pt/Au film. HEMT 80 is fabricated using a similar process as described in connection with HEMT 60.
FIG. 5A illustrates a band gap diagram of the lno.17Alo.83N/lno.10Gao.90N QW structure 82. ln0.ioGa0.9oN channel layer 88 is compressively strained between GaN layer 86 and lno.17Alo.83N barrier layer 90. Piezoelectric polarization field appears across channel 88. As shown in Table 2, the strain in Ino.10Gao.90N channel layer 88 is beneficial for further increase of the free electron density ntotai. Differential spontaneous polarization at the GaN/lno.i0Gao.90N hetero-interface not mentioned in the Table 2 has the value of 3 x 10"8 Ccm'2 and can be neglected.
Table 2 includes physical parameters for the various heterostructures described herein. Polarization-induced QW 2DEG densities n^tai = Ptotai/q were calculated using the above theory. QW structures shown in Figs. 4, 4A, 4B, 5, 5A, 5B and 5C exhibit high values of ntotaj with highest values for QW structure made of compressively strained lno.10Gao.90N channel layer 88 and tensile strained lno.1sAlo.85N barrier layers 90A (shown and described in connection with Fig. 58).
FIG. 5B illustrates a band gap diagram of another HEMT 80A related to HEMT 80. HEMT 80A includes a substrate, a quantum well (QW) structure 82A, and the source, drain and gate electrodes. Quantum well structure 82A includes an AIN buffer layer, an un-doped GaN layer 86, an un-doped lno.10Gao.90N channel layer 88, and an lno.15Alo.85N barrier layer 90A. HEMT 80A also includes a doped n+-GaN layer used to form ohmic contacts with the source and drain electrodes, similarly as shown in Fig. 5.


Referring to Fig 5B, in ino.15Alo.85N/lno.10Gao.goN/GaN QW structure 82A lrio.10Gao.90N channel layer 88 is compressively strained to GaN layer 86. There is piezoelectric polarization field across the channel layer 88. The lno.15Alo.85N barrier layer 90A exhibit an additional tensile strain. Orientation of the barrier layer piezoelectric field is opposite to the lno.10Gao.90N channel piezoelectric field, but points to the QW structure and causes further electron accumulation (Table 2). This QW structure enables high current and power performance of HEMT 80A, as explained in connection with Fig. 6A.
FIG. 5C illustrates a band gap diagram of another HEMT 80B related to HEMT 80. HEMT 80B includes a substrate, a quantum well (QW) structure 82B, and the source, drain and gate electrodes. Quantum well structure 82B includes an AIN buffer layer, an un-doped GaN layer 86, an un-doped lno.10Gao.90N channel layer 88, and an lno.3Alo.7N barrier layer 90B. HEMT 80B also includes a doped n+-GaN layer used to form ohmic contacts with the source and drain electrodes, similarly as shown in Fig. 5.

Quantum well structure 82B has In0.ioGa0.9oN channel layer 88 compressive^ strained to GaN layer 86. The piezoelectric polarization field appear across channel layer 88, as shown in Fig 5C. The Ino.30Alo.70N barrier layer 90B also exhibit additional compressive strain. The orientation of the barrier layer piezoelectric field is opposite the orientation in layer 90A (Fig. 5B) and causes a decrease in the electron density of 2DEG (as seen from Table 2). However, the total free electron density (ntotai) is still by about 40 % higher than for AIGaN/GaN QW shown in Fig. 3. The corresponding increase in drain current is calculated in FIG. 6A. Further increase of In molar fraction x beyond 0.30 may cause layer relaxation and thus this value can be considered as a maximal reasonable value for HEMT 80B.
Figs. 6 and 6 A displays calculated transfer and transconductance characteristics of the above-described HEMTs. The drain current (y-axt's) was calculated for lsat using Eq. 3 together with Eqs. 1, 2, 4, 5 and 6 as a function of the HEMT gate voltage VG (x-axis). The values Ob == 1 eV, Rs = 1.5 Qmm, p = 1000 cm2/Vs, vs = 1,2x105 m/s, d=15 nm were used in the calculations. The transconductance plotted on y-axis was calculated as the derivative of the drain current by the gate voltage (dlSat/dVG) and is plotted as a function of gate voltage.
Specifically, Fig. 6 displays calculated transfer and transconductance characteristics for a 200 nm gate-length of HEMTs 60 and 80 compared to prior art AI0.2Ga0.aN/GaN HEMT 40. High transconductance values make the HEMTs suitable for high speed applications and a high drain current density makes them suitable for high power performance.
FIG. 6A displays calculated transfer and transconductance characteristics for 200 nm gate-length of HEMTs 60A, 80A and 80B compared to prior art Alo.2Gao.8N/GaN HEMT 40. The Ino.15Alo.85N/lno.noGao.90N HEMT (HEMT 80A) exhibit a very high drain current density of about 4.2 A/mm, which represents a 255 % increase compared to the AIGaN/GaN HEMT. The characteristics of lno.30Alo.70N/lnQ.10Gao.90N ( HEMT 80B) and lno.25Alo.75N/GaN (HEMT 60A) show some improved performance when compared with the AIGaN/GaN HEMT.
Theoretical characteristics in FIG. 6 show the maximum transconductance over 300 mS/mm and an open channel drain current of about 1.2 A/mm for the conventional Alo.2Gao.8N/GaN HEMT. These results coincide well with already

published best values for 0,15-0.2 pm gate length Alo.2Gao.3N/GaN HEMTs. For Ino.17Alo.83N/GaN HEMT 60, FIG. 6 shows only slight increase in transconductances (by about 7 %) but an about 125 % increase of accessible drain currents and 2.7 A/mm drain current should be accessible. Furthermore, in comparison to conventional AlGaN/GaN HEMT, lno.17Alo.33N/Ino.10Gao.90N HEMT indicates 210 % current increase and 3.7 A/mm drain current density.
Fig. 7 depicts for various Ill-nitrides the dependence of energy gap (AEg) on lattice constant (a0) at 300 K. This dependence is useful for designing a QW structure of desired properties. For the plotted Ill-nitrides, the lattice constant ao decreases as a function of the Al molar fraction in Al nitride. Thus, to increase the carrier density (ntotai) for a AlGaN/GaN QW structure, it is suitable to increase the strain in the barrier layer by increasing the amount of Al in the AIGaN. However, a possible relaxation of the barrier layer, which diminishes piezoelectric polarization (Ppiezo). may present a problem. Moreover, the crystallographic quality of AIGaN is decreased for higher Al molar fraction, as structural defects may appear during the growth. This can lead to poor Schottky (gate) contacts parameters. On the other hand higher piezoelectric field can be obtained for lnAIN/(ln)GaN QW structures even with smaller strain ei if compared to conventional AIGaN/GaN. This can be seen by comparing (e3i - e33C3iyC33) of lnxAli.xN and AI2Gai_zN for a given £1. The lnxAli.xN barrier layer is superior to AI2Gai.zN basically because of higher Al molar fraction in lnxAli-xN as for AlzGai.2N with the same strain. High Al molar fraction in lnxAli-xN is also responsible for high differential spontaneous polarization field in the lnAIN/(ln)GaN QW structure. Moreover, the lno.17Alo.83N layer can be grown lattice matched to GaN while for the AIGaN similar Al molar fraction may lead to critical lattice strain and layer relaxation can occur.
The above described HEMT 60, 60A, 80, 80A and 80B exhibit increased 2DEG density and HEMT drain current capability with a decrease in In molar fraction (x) in the barrier layer lnxAI-,_xN. Electron density values as high as ntotai= 4.16 x 1013 cm*2, and drain current lsat = 4.2 A/mm were calculated for tensile strained lnxAIi-xN, x=0.15. On the other hand, for the values of x>0.17, the strain in the barrier layer becomes compressive and for about x«0.25-0.30 the superiority of the novel

lnAIN/(ln)GaN type HEMTs, in comparison to prior art AIGaN/GaN HEMT 40 disappears.
Advantageously, the wide band gap of InAIN enables high breakdown voltages. Furthermore, deeper lnAIN/(In)GaN QW structures improves the QW carrier confinement. Finally we conclude that lnxAli_xN containing barrier layer provides Ill-nitrides HEMTs with a new quality exhibiting a record drain current/power capabilities. In HEMTs 60F 60A, 80r 80A and 80B, the high transconductance values confirm that these devices are uniquely suitable for high-frequency applications.
According to a preferred embodiment, HEMT (or HFET) devices are designed to have a maximal accumulated 2DEG in the HEMT channel. This accumulation is affected by spontaneous polarization or piezoelectric polarization or both. Regarding the charge induced by spontaneous polarization, the HEMTs (or HFETs) can be designed to have preferably the maximal difference in polarization fields keeping in mind the polarity of the layers. Based on Table 1, according to one preferred embodiment, the maximal value of APo can be obtained for AIN/GaN or AIN/lnN-based junctions. Therefore, for cation-polarity layers, the HEMTs can include a InAIN or AIGaN barrier layer on top of the (In)GaN channel, while keeping the highest possible Al molar fraction in the barrier. While a lno.17Alo.83N layer can be grown lattice matched to a GaN layer, a AtGaN layer with a similar Al molar fraction may lead to critical lattice strain and layer relaxation. Therefore, the preferred embodiments includes a lnAIN/(ln)GaN QW structure.
Regarding the charge induced by the piezoelectric polarization, the HEMTs (or HFETs) can be designed keeping in mind the layers cation-polarity. To get the highest 2DEG in the QW structure, there are the following factors regarding the barrier layer on top of the channel. The QW structure should include either a compressively strained channel layer or a tensile strained barrier layer or both. Preferably, a wide bandgap barrier layer includes InxAl^xN (x
e33C31/C33). for lnxAli.xN and AlzGa^N, for given d the lnxAli-xN barrier layer is again preferred over AI2Gai*N basically because of higher Al molar fraction in In^Ah. XN as for AlzGai-2N with the same strain. These rules can be applied to other types of materials when designing a QW structure.
In Figs. 8 and 9 we show calculated QW free electron density nf0fa/, HEMT open channel drain current and threshold voltage as well as strain as a function of In molar fraction in lnxAlv*N/GaN or lno.17Alo.83N/lnyGa-i-yN QW structures, respectively. As indicated by the right y-axes scales, critical (maximal) acceptable strain for 15 nm thick InAIN (Fig.8) and 5-10 nm thick InGaN (Fig.9) was estimated to be 0.0125 and 0.02 respectively.
According to another embodiment, the above described HEMT 60, 60A, 80, 80A and 80B may also be created by engineering the bandgap profile of the barrier layer, i.e., step-wise changing or continuously decreasing the Al molar fraction in the InAIN barrier layer. These types of HEMTs exhibit a significantly decreased source resistance. U.S. Patent 6,064,082 to Kawai, et al. (incorporated by reference) discloses a variation in the bandgap profile by changing the barrier layer. Kawai continuously decreased the Al molar fraction in the AIGaN barrier layer in direction to the contact layer. The transistor of Kawai however does not involve the polarization phenomena used in the above-described HEMTs, nor suggests using of InAIN based barrier layer..
According to yet another embodiment, the above-described HEMTs 60, 60A, 80, 80A and 80B may also be created by forming a multi-layered channel structure. A multi-layered channel structure was used in a nitride-type ill-V group HEMT described in U.S. Patent No.6,177,685. This HEMT uses a channel layer with a multi-layered structure containing InN, which according to the 6,177,685 patent, provides an increased 2DEG mobility in the HEMT channel. The above-described HEMTs 60, 60A, 80, 80A and 80B may also use a InN/GaN multi-layered structure in the channel in addition to the InAIN in place of the barrier layer. However, U.S. Patent No. 6,177,685 does not disclose or even suggest using InAIN in place of the barrier layer or specifically envisions the use of the polarization phenomena.
According to yet another embodiment, the above-described HEMTs 60, 60A, 80, 80A and 80B may also be fabricated by using a doped layer in the QW structure.

In this case, both the polarization phenomena and impurity doping affects the 2DEG layer formed in the HEMT channel.
In general, possible applications include transmissions from Direct Broadcast Satellites (DBS) operating at about 12 GHz (but generally any communication system operating at frequencies in the range of 1 GHz to 400 GHz). A DBS outdoor receiver unit includes RF amplifier and filter, mixer, intermediate frequency amplifier and local oscillator. Other applications include cellular radio and radar applications such as radars for vehicle collision avoidance. Monolithic microwave or millimeter wave integrated circuits (MMICs) may also find application in instrumentation, for example, in frequency synthesizers, network analyzers, spectrum analyzers and sampling oscilloscopes.
Furthermore, the above described HEMTs may also be used in radars with electronically-steerable beams, known as phase-arrays, MMIC amplifiers, mixers, MMIC RF drivers, and MMIC phase shifters, or any other devices that require a high-frequency operation (1 GHz to 400 GHz)( high power, low noise, or any combination thereof.
In short, the above-described HEMTs 60, 60A, 80, 80A and 80B are suitable for high frequency and high*power applications such as needed for portable phones, satellite broadcasting, satellite communication systems, land-based communication systems (see IEEE Spectrum, Vol. 39 (2002), No.5, pp.28-33) and other systems that use high-frequency waves such as microwaves or millimeter waves. In these systems, high-power amplifiers (preferably having low noise) are used for • amplification or signal transmission.
Specifically, the above-described HEMTs 60, 60A, 80, 80A and 80B are suitable for use in portable telephones such as the portable telephones disclosed in U.S Patent 6,172,567, which is incorporated by reference. The above-described HEMTs 60, 60A, 80, 80A and 80B are also suitable for use in communication systems, such as the communication systems disclosed in U.S Patent 6,263,193 or U.S. Patent 6,259,337, both of which are incorporated by reference. The above-described HEMTs 60, 60A, 80, 80Aand 80B are suitable for use in direct broadcast satellite systems such as the direct broadcast satellite system s disclosed in U.S

Patent 5,649,312 or U.S. Patent 5,940,750, both of which are incorporated by reference.
The above-described HEMTs 60, 60A, 80, 80Aand 80B are suitable for construction of low noise amplifiers (LNAs). These amplifiers are optimized for minimum noise and are used in receiver front ends, for example, in wireless telecommunications, radar sensors, and in IF amplifiers for radioastronomy receivers. HEMTs 60, 60A, 80, 80A and 80B may be used for construction of low noise amplifiers such as the noise amplifiers disclosed in U.S Patent 5,933,057 or U.S. Patent 5,815,113, both of which are incorporated by reference. Furthermore, HEMTs 60, 60A, 80, 80A and 80B may be used for construction of intermediate frequency amplifiers such as the intermediate frequency amplifiers disclosed in U.S Patent 5,528,769 or U.S. Patent 5,794,133, both of which are incorporated by reference. Furthermore, HEMTs 60, 60A, 80, 80A and 80B are suitable for construction of power amplifiers such as the power amplifiers disclosed in U.S Patent 6,259,337 or U.S. Patent 6,259,335, both of which are incorporated by reference.
Furthermore, the above-described HEMTs 60, 60A, 80, 80A and 80B are suitable for use in radar systems such as the radar systems disclosed in U.S Patent 6,137,434 or in U.S. Patent 6,094,158, both of which are incorporated by reference. Other likely applications of the above-described HEMTs 60, 60A, 80, 80A and 80B include high performance radar units and LMDS (Local Multipoint Distribution Service) "wireless fiber" broadband links being developed for operation at 28GHz and 31 GHz, which is incorporated by reference for all purposes.
Furthermore, the above-described HEMTs 60, 60A, 80, 80A and 80B are suitable for construction of sensor systems such as the sensor systems disclosed in U.S Patent 6,104,075 or U.S. Patent 5,905,380, both of which are incorporated by reference.
The above-described HEMTs 60, 60A, 80, 80Aand 80B can be fabricated on and incorporated in monolithic microwave or millimeter wave integrated circuits (MMICs). These circuits include voltage controlled oscillators at selected discrete frequencies up to 350 GHz, low-noise amplifiers at selected frequencies in the range of 1 GHz and 350 GHz or frequency ranges (generally selected frequencies from 1

GHz up to 400 GHz), phase shifters, and resistive and active mixers at frequencies in the range of 1 GHz up to 250 GHz (and even 350 GHz or 400 GHz). The above-described HEMTs 60, 60A, 80, 80A and 80B can be fabricated on and incorporated in GaN-based MMIC attenuators (see E.AIekseev, Broadband AIGaN/GaN HEMT MMIC Attenuators with High Dynamic Range, 30th European Microwave Conference, Paris, October 2000) using HEMTs broadband and high-dynamic range characteristics and very high power handling, which is incorporated by reference for all purposes.
The above-described HEMTs 60, 60A, 80, 80A and 80B may be used in various hybrid circuits and systems. For example, instead of building a complete transceiver MMIC system from the monolithic components described above, the HEMTs are used in hybrid systems (MMIC systems would require circuits that are too large and expensive to be created on a single substrate). One negative side effect of using transmission line matching networks is that they use a lot of chip area for purely passive elements. Microstrip circuits for mm-wave applications using discrete HEMTs or individual monolithic circuits can reduce the system cost massively. These may be mounted next to other discrete devices upside-down onto a dielectric microstrip circuit using various packaging techniques such as flip-chip bonding using gold-bumps.
The present invention was described with reference to the above aspects and * embodiments, but the invention is by no means limited to the particular embodiments described herein and/or shown in the drawings, alone or in combination with the above-cited publications (all of which are incorporated by reference). The present invention also comprises any modifications or equivalents within the scope of the following claims.








Claims
1. A hetero-interface field effect transistor comprising:
a substrate; and
a cation-polarity layered structure including at least a barrier layer and a channel layer wherein said barrier layer includes lnxAli-xN, x being in the range of about 0 2. The hetero-interface field-effect transistor according to claim 1 wherein said barrier layer includes Ino.17Alo.83N
3. The hetero-interface field-effect transistor according to claim 2 wherein said channel layer includes GaN
4. The hetero-interface field-effect transistor according to claim 2 wherein said channel layer includes lnyGai-yN, y being in the range of about 0 5. The hetero-interface field-effect transistor according to claim 1 wherein said barrier layer includes lnxAli-xN, x being in the range of about 0 6. The hetero-interface field-effect transistor according to claim 5 wherein said channel layer includes GaN
7. The hetero-interface field-effect transistor according to claim 5' wherein said channel layer includes lnyGa*i-yN (0 8. The hetero-interface field-effect transistor according to claim 1 wherein said barrier layer includes lnxAli_xN, x being in the range of about 0.17 9. The hetero-interface field-effect transistor according to claim 8 wherein said channel layer includes GaN.
10. The hetero-interface field-effect transistor according to claim 8 wherein said channel layer includes lnyGa-i-yN, y being in the range of about 0
11. The hetero-interface field-effect transistor according to claim 1 wherein said barrier layer includes lnxAli-xN, x being in the range of about 0.25 12. The hetero-interface field-effect transistor according to claim 11 wherein said channel layer includes (nyGai-yN, x being in the range of about 0 13. A hetero-interface field effect transistor comprising:
a substrate; and
a layered QW structure including at least a barrier layer and a channel layer providing the total two dimensional electron gas density of above nt0tai= 1.1 x 1013 cm"2.
14. A portable telephone phone comprising the hetero-interface field effect transistor of claim 1 or 13.
15. A communication system comprising the hetero-interface field effect transistor of claim 1 or 13.
16. A low noise amplifier comprising the hetero-interface field effect transistor of claim 1 or 13.
17. A radar system comprising the hetero-interface field effect transistor of claim 1 or 13.
18. A sensor comprising the hetero-interface field effect transistor of claim 1 or 13.
19. An intermediate frequency amplifier comprising the hetero-interface field effect transistor of claim 1 or 13.
20. A direct broadcast satellite system comprising the hetero-interface field effect transistor of claim 1 or 13.

21. A satelite communication system comprising the hetero-interface field effect transistor of claim 1 or 13.
22. A method for fabricating a hetero-interface field effect transistor comprising:
providing a substrate; and
fabricating a layered QW structure including at least a barrier layer and a channel layer providing the total two dimensional electron gas density of above ntotai = 1.1x1013cnf2.
23. A method for fabricating a hetero-interface field effect transistor
comprising:
providing a substrate; and
fabricating a layered QW structure including at least a barrier layer and a channel layer wherein barrier layer includes lnxAli-xN where 0 24. A method using a hetero-interface field effect transistor in a
communications system comprising:
(a) fabricating the hetero-interface field effect transistor using the steps of:
providing a substrate; and
fabricating a layered QW structure including at least a barrier layer and a channel layer wherein barrier layer includes lnxAI-i_xN where 0 (b) using the fabricated hetero-interface field effect transistor in the
communications system.
25. A method using a hetero-interface field effect transistor in an electronic
device comprising an electronic circuit including a hetero-interface field effect
transistor using having a substrate; and a layered quantum well structure including at
least a barrier layer and a channel layer providing a polarization-induced charge.

26. An electronic device utilizing a hetero-interface field effect transistor comprising a substrate, and a layered quantum well structure including at least a barrier layer and a channel layer providing a polarization-induced charge.

27. A hetero-interface field effect transistor substantially as *
hereinabove described with reference to the accompanying
drawings.
28. A method for fabricating a hetero-interface field effect transistor
substantially as hereinabove described with reference to the
accompanying drawings.
Dated this 8 day of March 2004


Documents:

0502-chenp-2004 claims-duplicate.pdf

0502-chenp-2004 description (complete)-duplicate.pdf

0502-chenp-2004 drawings-duplicate.pdf

502-chenp-2004 abstract.pdf

502-chenp-2004 claims granted.pdf

502-chenp-2004 correspondence others.pdf

502-chenp-2004 correspondence po.pdf

502-chenp-2004 form-18.pdf

502-chenp-2004-claims.pdf

502-chenp-2004-correspondnece-others.pdf

502-chenp-2004-correspondnece-po.pdf

502-chenp-2004-description(complete).pdf

502-chenp-2004-drawings.pdf

502-chenp-2004-form 1.pdf

502-chenp-2004-form 18.pdf

502-chenp-2004-form 3.pdf

502-chenp-2004-form 5.pdf

502-chenp-2004-pct.pdf


Patent Number 230203
Indian Patent Application Number 502/CHENP/2004
PG Journal Number 13/2009
Publication Date 27-Mar-2009
Grant Date 25-Feb-2009
Date of Filing 08-Mar-2004
Name of Patentee KUZMIK, JAN
Applicant Address BELOPOTOCKEHO 2, 811 05 BRATISLAVA, SLOVAKIA,
Inventors:
# Inventor's Name Inventor's Address
1 KUZMIK, JAN BELOPOTOCKEHO 2, 811 05 BRATISLAVA, SLOVAKIA,
PCT International Classification Number H01L 29/00
PCT International Application Number PCT/SK02/00018/1489
PCT International Filing date 2002-07-15
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 60/310,546 2001-08-07 U.S.A.