Title of Invention

PARTICULATE WOOD PRESERVATIVE AND METHOD FOR PRODUCING SAME

Abstract A wood preservative includes injectable particles comprising one or more sparingly soluble copper salts. The copper- based particles are sufficiently insoluble so as to not be easily removed by leaching but are sufficiently soluble to exhibit toxicity to primary organisms primarily responsible for the decay of the wood. Exemplary particles contain for example copper hydroxide, basic copper carbonate, copper carbonate, basic copper sulfates including particularly tribasic copper sulfate, basic copper nitrates, copper oxychlorides , copper borates, basic copper borates, and mixtures thereof. The particles typically have a size distribution in which at least 50 % of particles have a diameter smaller than 0.25 µm, 0.2 µm, or 0.15 µm. At least about 20 % and even more than 75% of the weight of the particles may be composed of the substantially crystalline copper salt. Wood or a wood product may be impregnated with copper-based particles of the invention.
Full Text PARTICULATE WOOD PRESERVATIVE AND
METHOD FOR PRODUCING SAME
[0001] This application claims priority to the following U.S. Provisional applications:
60/478,822, 60/478,827,60/478,825, and 60/478,820, all of which were filed on June 17,
2003, and also to U.S. Provisional app ication 60/571,535 filed on May 17,2004, each of
which is incorporated herein by reference.
[0002] The present invention relates to wood preservatives, particularly wood preservatives
comprising particles including one or more copper compounds. More particularly, the
invention relates to a wood preservative comprising injectable particles of sparingly soluble
copper salts, as well as methods to prespare the wood preservative, and methods of preserving
wood using the wood preservatives.
[0003] The production of wood which has been treated to inhibit biological decomposition
is well known. Decay is caused by fungi that feed on cellulose or lignin of wood. Such
organisms causing wood decomposition include: basidiomycetes such as Gloeophyllum
trabeum (brown rot), Trametes vers color (white rot), Serpula lacrymans (dry rot) and
Coniophora puteana. Soft rot attacks the surface of almost all hard and softwoods, and it
favors wet conditions. Most of these fungi require food and moisture, e.g., moisture contents
in wood of greater than 20% are conducive to fungal growth. Dry rot is tenacious, as it can
grow in dry wood. Insects are also major causes of wood deterioration. Exemplary
organisms causing wood decomposition include coleopterans such as Anobium punctatum
(furniture beetle), Hylotrupes bajulus (house longhorn) and Xestobium rufovillorum (death
watch beetle); hymenopterans such as termites and carpenter ants; and also by marine borers
and/or wasps. Finally, termites are ubiquitous, and termite damage is estimated in the United
States alone to be about $2 billion per year
[0004] The production of wood based composite products has increased dramatically in
recent years. Oriented strandboard (OSB) production exceeded that of plywood in 2000. The
use of medium density fiberboard and hardboard panel products likewise has increased
dramatically over the last couple of decades. However, these products are typically used in
interior applications where attack from insects or decay fungi is limited, because it has been
found that these products are particularly susceptible to attack by biological agents such as
decay fungi and termites.
[0005] Preservatives are used to treat wood to resist insect attack and decay. The
commercially used preservatives are separated into three basic categories, based primarily on
the mode of application—waterborne, creosote, and oil borne preservatives. Waterborne

preservatives include chromated coppe arsenate (CCA), ammoniacal copper quat (ACQ,
which is believed to be Copper-MEA-Carbonate and a quaternary amine), amrnoniacal
copper zinc arsenate (ACZA), and ammoniacal copper arsenate (ACA). Wood treated with
these chemicals sometimes turns green or grey-green because of a chemical reaction between
copper in the preservative and the sun's ultraviolet rays. The preservatives leach into the soil
over time, especially those made without chromium, when exposed to weather. Creosote
does not easily leach into soil, and it is lot corrosive to metals, but it can not be painted and it
leaves a dark, oily surface that has a strong odor. Oil borne preservatives are made of certain
compounds dissolved in light petroleun oils, including pentachlorophenol (commonly known
as "penta"), copper naphthenate, and copper-8-quinolinolate. These preservatives leave a
surface that often is non-paintable, and he surface: of the wood can be dark and unnaturally
colored.
[0006] Modern organic biocides are considered to be relatively environmentally benign and
not expected to pose the problems associated with CCA-treated lumber. Biocides such as
tebuconazole are quite soluble in common organic solvents, while others such as
chlorothalonil possess only low solubility. The solubility of organic biocides affects the
markets for which the biocide-treated wood products are appropriate. Biocides with good
solubility can be dissolved at high concentrations in a small amount of organic solvents, and
that solution can be dispersed in water vith appropriate emulsifiers to produce an aqueous
emulsion. The emulsion can be used in conventional pressure treatments for lumber and
wood treated in such a manner, and can be used in products such as decking where the treated
wood will come into contact with humans. Biocides which possess low solubility must be
incorporated into wood in a solution of a hydrocarbon oil, such as AWPA P9 Type A, and the
resulting organic solution is used to treat wood directly. Wood treated in this way can be used
only for industrial applications, such as utility poles and railway ties, because the oil is
irritating to human skin.
[0007] The primary preserved wood product has historically been southern pine lumber
treated with chromated copper arsenate decks, fencing and landscape timbers. There has recently been raised concerns about the
safety and health effects of CCA as a wood preservative, primarily relating to the arsenic
content but also to the chromium content. In 2003/2004, due in part to regulatory guidelines
and to concerns about safety, there has been a substantial cessation of use of CCA-treated
products. A new generation of copper containing wood preservatives uses a form of copper
that is soluble. Known preservatives include copper alkanolamine complexes, copper

polyaspartic acid complex, alkaline copper quaternary, copper azole, copper boron azole,
copper bis(dimethyldithiocarbamate), ammoniacal copper citrate, copper citrate, and the
copper ethanolamine carbonate. In practice, the principal criterion for commercial
acceptance, assuming treatment efficacy, is cost. Of the many compositions listed above,
only two soluble copper containing wood preservatives have found commercial acceptance:
1) the copper ethanolamine carbonate manufactured for example according to the process
disclosed in U.S. Patent 6,646,147 and 2) copper boron azole. There are, however, several
problems with these new copper-containing preservatives.
[0008] The soluble copper containing wood preservatives are very leachable, compared to
CCA. One study has shown that as much as 80 percent of the copper from a copper amine
carbonate complex is removed in about 10 years under a given set of field conditions. Under
severe conditions, such as the those used for the American Wood Preserving Association's
standard leaching test, these products are quickly leached from the wood. For example, we
found that 77% by weight of a Cu- monoethanolamine preservative was leached from the
preserved wood in 14 days. This leaching is of concern for at least two reasons: 1) removal
of the copper portion of the pesticide from the wood by leaching will compromise the long
term efficacy of the formulation and 2) the leached copper causes concern that the
environment will be contaminated. While most animals tolerate copper, copper is extremely
toxic to certain fish at sub-part per million levels. Common ranges for EC50 for copper are
between 2 and 12 micrograms per liter. Another study reported following the Synthetic
Precipitation Leaching Procedure. The study results showed that the leachate from CCA-
treated wood contained about 4 mg copper per liter; leachate from copper boron azole-treated
wood contained about 28 mg copper per liter; leachate from copper
bis(dimethyldithiocarbamate) treated wood had 7 to 8 mg copper per liter; leachate from
alkaline copper quaternary treated wood had 29 mg copper per liter; and leachate from copper
citrate treated wood had 62 mg copper per liter. However, copper concentrations depend in
part on copper concentration, and CCA had about 7% of total copper leach, the alkaline
copper quaternary preservative had about 12% of the total copper leach, while the copper
boron azole had about 22% of the total copper leach during the Synthetic Precipitation
Leaching Procedure. Copper leaching is such a problem that some states do not allow use of
wood treated with the soluble copper containing wood preservatives near waterways.
f0O09] Another concern with soluble copper preservative products generally is that most
preservative materials are manufactured at one of several central locations but are used in
disparate areas and must be shipped, sometimes substantial distances. The cost of providing

and transporting the liquid carrier for these soluble products can be considerable, and the
likelihood of an extreme biological impact is very high if transported soluble copper wood
preservative material is spilled or accidentally released near a waterway.
[0010] Further, unlike CCA, all of these soluble copper containing wood preservatives
require a second organic biocide to be effective against some biological species. Therefore,
wood preserved with these soluble copper containing wood preservatives also contains a
second biocide that is efficacious against one or more particularly troublesome species. Oil-
soluble biocides such as a copper(II)-sulfited tannin extract complex (epicatechins) can be
dissolved in light oils, emulsified in water, and injected into the wood, as is disclosed in U.S.
Patent 4,988,545. Alternatively, the second biocide is often slightly water soluble or
emulsified, and may be composed of a tr iazole group or a quaternary amine group or a
nitroso-amine group, and this biocide can be simply added to the fluid used for pressure
treating the wood.
[0011] One attempt to improve soluble copper containing wood preservatives was to
incorporate other salts. PCT patent application WO 92/19429, published Nov. 12, 1992, in
Example 2, describes a method of treatir g an article of prepared wood by immersing it for 20
minutes in a bath of 180° C linseed oil containing a drying agent, or drier, of 0.07% lead,
0.003% manganese and 0.004% calcium naphthenate, 0.3% copper naphthenate, and 0.03
zinc naphthenates as an insecticide and fungicide. Others have tried alternative metal-
compounds, including silver. None of these have found commercial acceptance.
[0012] Fojutowski, A.; Lewandowski, O, Zesz. Probl. Postepow Nauk Roln. No. 209: 197-
204 (1978), describes fungicides comprising fatty acids with copper compounds, applied by
dipping hardboard heated to 120° C into a bath of the fungicide, also maintained at 120° C.
This is not practicable for a variety of reasons. In "A New Approach To Non-Toxic, Wide-
Spectrum, Ground-Contact Wood Preservatives, Part I. Approach And Reaction
Mechanisms," HOLZFORSCHUNG Vol. 47, No. 3,1993, pp. 253-260, it is asserted that
copper soaps, made with the carboxylic acid groups from unsaturated fatty acids of non-toxic
vegetable oils, rosin, and from synthetic unsaturated polyester resins have effectiveness and
long-term durability as ground contact wood preservatives for use against termites and fungal
attack. These are not yet in widespread use, and are expected to have high leach rates and the
bio-available fatty acids are expected to encourage some molds.
[0013] The solubility of copper preservatives can be controlled by using, for example, an oil
barrier. But these oils can unfavorably change the color, appearance, and burning properties

of the wood, and can be strong irritants. Oil-soaked wood containing oil-soluble biocides like
chlorothalonil, e.g., utility poles, are highly resistant to leaching and biological attack, but the
appearance of this wood is not acceptable for moat uses. Japanese Patent Application 08-
183,010 JP, published in 1996, describes a modified wood claimed to have mildew-proofing
and antiseptic properties and ant-proofing properties, made by treating wood with a
processing liquid containing a copper salt and linseed oil or another liquid hardening
composition. U.S. Pat. No. 3,837,875 describes as; a composition for cleaning, sealing,
preserving, protecting and beautifying host materials such as wood a mixture of boiled
linseed oil, turpentine, pine oil, a dryer and 28 parts per million of metallic copper. Feist and
Mraz, Forest Products Lab Madison Wis., Wood Finishing: Water Repellents and Water-
Repellent Preservatives. Revision, Report Number-FSRN-FPL-0124-Rev (NTIS 1978)
discloses preservatives containing a substance that repels water (usually paraffin wax or
related material), a resin or drying oil, and a solvent such as turpentine or mineral spirits.
Addition of a preservative such as copper naphthenate to the water repellent is asserted to
protect wood surfaces against decay and mildew organisms. Soviet Union Patent No. SU
642166 describes a wood surface staining and preservation treatment, carried out by
impregnating wood with an aqueous copper salt solution, followed by thermal treatment in
boiling drying oil containing 8-hydroxyquinoline dye. U.S. published application
20030108759 describes injecting a copper ammonium acetate complex and a drying oil as a
wood preservative. Again, oil is not favored as it can alter burning characteristics of wood,
can be staining and/or discoloring, and can be an irritant. It is also difficult to work with and
to inject into wood. None of the above methods of preserving wood have met commercial
acceptance.
[0014] U.S. Patent 6,521,288 describes adding certain organic biocides to polymeric
nanoparticles (particles), and claims benefits including: 1) protecting the biocides during
processing, 2) having an ability to incorporate water-insoluble biocides, 3) achieving a more
even distribution of the biocide than the pr or art method of incorporating small particles of
the biocide into the wood, since the polymer component acts as a diluent, 4) reducing
leaching with nanoparticles, and 5) protecting the biocide within the polymer from
environmental degradation. The application states that the method is useful for biocides
including chlorinated hydrocarbons, organometallics, halogen-releasing compounds, metallic
salts, organic sulfur compounds, and phenolics, and preferred embodiments include copper
naphthenate, zinc naphthenate, quaternary ammonium salts, pentachlorophenol,
tebuconazole, chlorothalonil, chlorpyrifos, sothiazolones, propiconazole, other triazoles,

pyrethroids, and other insecticides, imidichloprid oxine copper and the like, and also
nanoparticles with variable release rates that incorporate inorganic preservatives as boric
acid, sodium borate salts, zinc borate, copper salts and zinc salts. The only examples used the
organic biocides tebuconazole and chlorothalonil incorporated in polymeric nanoparticles.
There is no enabling disclosure relating to any metal salts. While data was presented showing
efficacy of tebuconazole/polymeric nano particle formulations and chlorothalonil /polymeric
nanoparticle formulations in wood, the efficacy of these treatments was not compared to
those found when using other methods of injecting the same biocide loading into wood.
Efficacy/leach resistance data was presented on wood product material, where it was found
that the nanoparticle/biocide treated wood had the same properties as the wood product
treated with a solution of the biocide, i.e., the polymeric nanoparticles had no effect. Finally,
it is known in the art that transport of preservative material is a large cost item, and diluents
will merely exacerbate this problem.
[0015] We have discussed the problems with current systems, e.g., they add undesired oil;
they increase corrosion; they are dilute; they are expensive, especially when the metal-based
biocides must be combined with large quantities of organic biocides; the high copper leach
rates are both a serious environmental problem in itself and will almost certainly decrease the
longevity of treatment below that obtainec with CCA. However, cost is a primary factor in
the selection of a wood preservative. The market is accustomed to the low cost and
effectiveness of CCA, and the market is not ready to bear the incremental costs of large
amounts of expensive biocides and other materials such as polymeric nanoparticles.
[0016] The principal aspect of the invent ion is the copper-based particulate preservative
treatment for wood and wood products. One embodiment of this invention is an effective,
long-lasting, environmentally responsible, non-staining/coloring, inexpensive, non-corrosion-
inducing, injectable, substantially crystalline (or amorphous sparingly soluble), copper-based
particulate preservative treatment for wood and wood products that is substantially free of
hazardous material. Yet another embodiment of the invention is an effective, long-lasting,
environmentally responsible, non-staining/coloring, inexpensive, non-corrosion-inducing,
injectable, substantially crystalline (or amorphous sparingly soluble), zinc-based particulate
preservative treatment for wood and wood products that is substantially free of hazardous
material This zinc-based particulate composition can be used independently of the copper-
based particulates, but in preferred embodiments is used in combination with one or more
copper-based particulates. In preferred embodiments;, the substantially crystalline (or
amorphous sparingly soluble) copper- and/or zinc-based particulates are injected in a

formulation comprising one or more organic biocides. As used herein, the term "organic
biocide" also includes organometallic biocides.
[0017] One aspect of the present invention relates to a preservative that may be used to
preserve wood and wood products. In one embodiment, a preservative of the invention is a
copper-based preservative. In a preferred embodiment, the copper-based preservative
comprises copper-based particles. Exemplary particles comprise, for example, copper
hydroxide, a copper salt, and a copper oxide.
[0018] In one embodiment, the copper-based particles comprise a substantially crystalline
copper compound. At least about 20%, 30%, 50%, or 75% of the weight of the copper-based
particles may be composed of the substantially crystalline copper compound. In another
embodiment, essentially all of the weight of the copper-based particles is composed of
substantially crystalline copper compound. The substantially crystalline copper compound
may comprise, for example, at least or e of copper hydroxide (such as Cu(OH)2), a copper
salt, and a copper oxide (such as CuO).
[0019] Exemplary copper-based particles of the invention are sufficiently small to be
present within wood without a substan.ial reduction in the original strength of the wood. For
example, substantially all of the copper-based particles may be sized to occupy pores or
vesicles of wood. In one embodiment, wood or a wood product may be impregnated with
copper-based particles of the invention.
[0020] Copper or copper-based particles present within wood or wood products is
preferably less mobile than copper present in a liquid without copper-based particles of the
invention. Preferably, the copper-based particles are sufficiently insoluble so as to not be
easily removed by leaching but are sufficiently soluble to exhibit toxicity to primary
organisms primarily responsible for the decay of the wood. Exemplary copper-based particles
of the invention are sufficiently small to be present within wood without a substantial
reduction in the original strength of the wood. For example, substantially all of the copper-
based particles may be sized to occupy pores or vesicles of wood. In one embodiment,
exemplary wood preservatives comprise copper-based particles having a size distribution in
which at least 50% of particles have a diameter smaller than 0.25 µm, 0.2 µm, or 0.15 µrn. A
preferred particle sizing technique is a sedimentation or centrifugation technique based on
Stoke's Law.


[0020A] In view of what has been explained in the preceding paragraph [0020] the expression
"sparingly soluble", used throughout the description and claims, means "sufficiently insoluble so as
to not be easily removed by leaching, but, sufficiently soluble to exhibit toxicity to primary
organisms responsible for the decay of wood".
[0021] Another embodiment of this invention is an effective, long-lasting, environmentally
responsible, non-staining/coloring, inexpensive, less-corrosion-inducing, injectable, sparingly
soluble copper salt-containing particulate preservative: treatment for wood and wood products

that is substantially free of hazardous material. Generally, crystalline salts are preferred
because they have lower rates of dissolution than do their amorphous analogs. However,
amorphous salts are equally effective, and particulates made from amorphous salts can be
treated with one or more coatings, or can be made of a particular size, such that the
amorphous material may easily have release and leach characteristics like the substantially
crystalline salts. Substantially crystalline salts should be considered a preferred variant of the
invention, as the same disclosure is generally equally applicable to amorphous sparingly
soluble copper salts, or substantially amorphous sparingly soluble copper salts. A "sparingly
soluble salt" has, for example, a Ksp less than about 1 E-8, preferably between about 1 E-10
to about 1 E-21.
[0022] The copper-based particulates can comprise or consist essentially of any sparingly
soluble substantially crystalline (or sparingly soluble amorphous) copper salts. In one
embodiment the substantially crystalline (or amorphous sparingly soluble) copper salts in the
copper-based particulates comprise or consist essentially of one or more copper salts selected
from copper hydroxides; copper carbonates {e.g., "yellow" copper carbonate); basic (or
"alkaline") copper carbonates; basic copper sulfates including particularly tribasic copper
sulfate; basic copper nitrates; copper oxychlorides (basic copper chlorides); copper borates;
basic copper borates; copper ferricyanate; copper fluorosilicate; copper thiocyanate; copper
diphosphate or copper pyrophosphate copper cyanate; and mixtures thereof. In one
embodiment, the copper-based particles comprise a substantially crystalline copper
compound. At least about 20%, 30%. 50%, or 75% of the weight of the copper-based
particles may be composed of the substantially crystalline copper compound(s).
[0023] In a preferred embodiment the substantially crystalline (or amorphous sparingly
soluble) copper salts in the copper-based particulates comprise or consist essentially of one or
more copper salts selected from copper hydroxides; copper carbonates, basic (or "alkaline")
copper carbonates; basic copper sulfa:es including particularly tribasic copper sulfate; basic
copper nitrates; copper oxychlorides (basic copper chlorides); copper borates, basic copper
borates, and mixtures thereof. In one embodiment, the copper-based particles comprise a
substantially crystalline copper compound. At least about 20%, 30%, 50%, or 75% of the
weight of the copper-based particles may be composed of the substantially crystalline copper
compound.
[0024] In another embodiment the substantially crystalline (or amorphous sparingly
soluble) copper salts in the copper-based particulates in a wood preservative formulation can
comprise or consist essentially of a p urality of sparingly soluble substantially crystalline (or

amorphous sparingly soluble copper salts selected from copper oxide, copper hydroxides;
copper carbonates, alkaline (or "basic") copper carbonates; alkaline copper sulfates; alkaline
copper nitrates; copper oxychlorides; copper borates, basic copper borates, and mixtures
thereof, with the proviso that at least one of the substantially crystalline (or amorphous
sparingly soluble) copper salts is not a c opper oxide. Of the copper oxides, CU2O is preferred
over CuO. In a variant of this, the copper-based particulate material can comprise or consist
essentially of one or more sparingly soluble substantially crystalline copper salts selected
from copper hydroxides; copper carbonates, alkaline (or "basic") copper carbonates; alkaline
copper nitrates; alkaline copper sulfates, copper oxychlorides; copper borates, basic copper
borates, and mixtures thereof. In one embodiment, the copper-based particles comprise a
substantially crystalline copper compound. At least about 20%, 30%, 50%, or 75% of the
weight of the copper-based particles may be composed of the substantially crystalline copper
compound(s).
[0025] In any of the above, the substantially crystalline (or amorphous sparingly soluble)
copper composition can have a substantial amount of one or more of magnesium, zinc, or
both, wherein these cations are either dispersed within the substantially crystalline (or
amorphous sparingly soluble) copper composition or a separate phase within a particulate. In
preferred embodiments of the invention at least some particulates comprise copper
hydroxide, basic copper carbonate, or both. In more preferred embodiments, the copper
hydroxide comprises between 6 and 20 parts of magnesium per 100 parts of copper, for
example between 9 and 15 parts of magnesium per 100 parts of copper. Alternatively, in
another more preferred embodiments, the copper hydroxide comprises between 6 and 20
parts total of magnesium and zinc per 100 parts of copper, for example between 9 and 15
parts total of magnesium and zinc per 100 parts of copper. In some embodiments, the basic
copper carbonate comprises between 6 and 20 parts of magnesium per 100 parts of copper,
for example between 9 and 15 parts of magnesium per 100 parts of copper, or alternatively
between 6 and 20 parts total of magnesium and zinc per 100 parts of copper, for example
between 9 and 15 parts total of magnesium and zinc per 100 parts of copper. Alternatively or
additionally, in a preferred embodiment, the copper hydroxide and/or basic copper carbonate
comprises between about 0.01 and abou: 5 parts of phosphate per 100 parts of copper, for
example between 9 and 15 parts of phosphate per 100 parts of copper.
[0026] In another preferred embodimen, the slurry comprises sparingly soluble copper salt
particulates and also comprises zinc borate particulates. Preferably, at least some of the
sparingly soluble copper salt-based particulates comprise copper borate. It is known to use a

two stage process where a zinc or copper salt is injected into the wood followed by a second
step wherein the borax is injected and the insoluble metal borate is formed in situ. Such a
complicated, time-consuming, and therefore expensive process in not sufficiently cost-
effective. As the solubility of copper borate is very pH sensitive, in a preferred embodiment
the sparingly soluble copper salts comprise an alkaline material, e.g., copper hydroxide or
copper carbonate, to reduce the solubility of the copper borate. The zinc borate loading can
range from 0.025% to 0.5%, for example, independent of the copper loading in the wood.
[0027] In any of the above-described embodiments, the substantially crystalline copper
composition in copper-based particulates and/or copper-based particulate material can further
comprise one or more soluble substantially crystalline copper salts, for example copper
sulfate, copper fluoroborate; copper fluoride, or mixtures thereof, where the soluble
substantially crystalline copper salts phf.se is stabilized against dissolution.
[0028] In any of the above-described embodiments, the substantially crystalline copper
composition in copper-based particulates and/or copper-based particulate material can further
comprise the substantially insoluble copper salt copper phosphate, Cu3(PO4)2. In any of the
above-described embodiments, the copper composition in copper-based particulates and/or
copper-based particulate material can further comprise the insoluble copper salt copper 8-
quinolinolate. In any of the above-described embodiments, the composition can further
comprise copper quinaldate, copper oxime, or both in particulate form. If there are copper-
based-particulates substantially comprising Cu3(PO4)2 and/or copper oxide and/or copper 8-
quinolinolate, the particulates should be exceedingly small, e.g., less than about 0.07 microns,
preferably less than about 0.05 microns, to provide maximum surface area to help dissolution
of the particles, and the wood treatment should contain another type of substantially
crystalline (or amorphous sparingly soluble) copper-based particulates, e.g., basic copper
carbonate, basic copper borate, tribasic copper sulfate, copper hydroxides, and the like.
[0029] The zinc analogs of the above are useful for the zinc-based particulates of the
alternate embodiments of the invention. In one embodiment the copper-based particulate
material can further comprise one or more of crystalline zinc salts selected from zinc
hydroxide; zinc oxides; zinc carbonate; zinc oxychloride; zinc fluoroborate; zinc borate, zinc
fluoride, or mixture thereof. The zinc salts may be in a separate salt phase, or may be mixed
Cu/Zn salts, or combinations thereof. In preferred embodiments the particle comprises at
least about 40%, preferably at least about 60%, and more preferably at least about 80% by
weight of one or more substantially crystalline (or amorphous sparingly soluble) copper salts,
crystalline zinc salts, or mixtures or combinations thereof.

[0030] In one embodiment the copper-based particulate preservative treatment for wood can
further comprise zinc-based particulates comprising one or more of crystalline zinc salts
selected from zinc hydroxide; zinc oxides; zinc carbonate; zinc oxychloride; zinc
fluoroborate; zinc borate, zinc fluoride, or mixture thereof. The preferred zinc-based
substantially crystalline material are zinc hydroxide, zinc borate, zinc carbonate, or mixture
thereof, which may be doped with other cations, e.g., from 0.1 to 10% copper, from 0.1 to
10% magnesium, or both, for example, based on the total weight of the cations in the
substantially crystalline (or amorphous sparingly soluble) material. In preferred
embodiments the particle comprises at least about 40%, preferably at least about 60%, and
more preferably at least about 80% by weight of one or more crystalline zinc salts.
[0031] Preferred embodiments of the invention comprise particles comprising one or more
of copper hydroxide, alkaline copper carbonate, alkaline copper oxychloride, tribasic copper
sulfate, copper borate, or mixtures thereof. The most preferred embodiments of the invention
comprise particles comprising copper hydroxide, alkaline copper carbonate, copper borate,
alkaline copper borate, or mixtures thereof.
[0032] Metal salt-based preservatives require added organic biocides to have the efficacy of
the traditional CCA treatments. It is believed that certain organic biocides are very effective
against most (but not all) undesired bio-organisms, and is also long-lasting. A principal
function of the copper in such a system is to inhibit growth of those bio-organisms that
degrade the organic biocides and/or that are resistant to the organic biocides. The most
preferred embodiments of this invention have copper-based particulates and optionally one or
more of zinc-based particulates and tin-based particulates, and further comprise between
about 0.01% to about 20% by weight total of one or more organic biocides. In addition, in
some embodiments, the particulates provide a carrier to carry the organic biocides into the
wood and help ensure the biocide is well distributed throughout the wood. Preferred
embodiments of the invention are an injectable copper-based particulate preservative
treatment for wood that further comprises one or more injectable organic biocides attached to
particulates.
[0033] Other aspects of this invention include methods to prepare the copper-based
particulates, methods of formulating the injectable wood treatment compositions that
comprise the copper-based particulates and optionally one or more organic biocides, methods
of transporting the injectable wood treatments, methods of mixing and injecting the copper-
based particulate wood preservative composition, and also wood and wood products treated
with the copper-based particulate preservative treatment compositions.

[0034] We Believe our combination of manufacture, pretreatment, formulation and injection
into wood of basic ("sparingly soluble") crystalline copper compounds injected as
particulates represent a significant discovery. The slurries of this invention are essentially
unaffected by the use of hard water in the application. The CMC material used in the prior
art precipitates an objectionable residue of calcium and magnesium carbonates onto the
surface of the wood. Injection of the present formulation uses the standard operating
procedure that is commonly practiced in the industry. No changes are needed. The present
formulation eliminates the nitrogen cor tent of the prior art products; and we believe the
nitrogen is associated with the enhanced rate of sapstain growth which presently necessitates
the use of expensive sapstain control agents. Removal of the fraction of particles having a
diameter greater than 1 micron (1000 namometers), accomplished with a component of this
technology, means the slurries are stable - slurry particles settle over the course of days or
even weeks. This is a desirable application feature. The copper should be relatively non-
leachable, being comparable with the rates associated with the CCA products. Due to lower
leach rates, the product should be usable underground, near waterways, and also in marine
applications. The cost per pound of copper is estimated to be between $0.20 to $0.50 less
than present copper-MEA-carbonate products. We believe that corrosivity of the product will
be less than that associated with the copper-MEA-carbonate products. Freight should be only
one third that associated with the copper-MEA-carbonate products.
[0035] Unless otherwise specified, all compositions are given in "percent", where the
percent is the percent by weight based on the total weight of the entire component, e.g., of the
particle, or to the injectable composition. In the event a composition is defined in "parts" of
various components, this is parts by weight, wherein the total number of parts in the
composition is between 90 and 110.
[0036] Effective - By "effective" we mean the preservative treatment is sufficiently
distributable through the wood product, and is sufficiently soluble and available so as to
provide a bio-active concentration of copper ions in the wood matrix. By "bio-active" we
mean the preservative treatment is sufficiently biocidal to one or more of fungus, mold,
insects, and other undesired organisms which are normally the target of copper-containing
wood preservatives such that these organisms avoid and/or can not thrive in the treated wood.
It is known that copper arsenate (Cu3(AsO4)2) injected as a molecular layer is an effective
biocide. Therefore, the particulate preservative treatment should provide a copper
concentration roughly similar (for example, about the same to about two times as high) as
that provided by the chromated copper arsenate (CCA) treatment. Too low a solubility, and

the copper is not bioactive. At the same time, the injectable copper-based wood preservative
treatment of this invention is intended to have one or more organic-based biocides
incorporated therewith in amounts the same as are currently being used with soluble copper
preservatives, and efficacy is based or, the combination of the copper (and/or zinc)
component in combination with the organic biocides.
[0037] Long-lasting - By "long-lasting" we mean the preservative treatment has an
effective life of at least about the same as a traditional CCA-treated product, alternatively, the
treatment lasts at least about 20 years under normal outdoor ground-contact use, for example.
Too high a solubility of the particulate;, and the copper is leached out of the wood at too fast
a rate. Such fast leaching creates environmental problems, i.e., the leached copper
contaminates the environment, and also longevity problems, i.e., so much copper may be
leached from the wood that the remaining treatment can no longer provide a bio-active
concentration of copper ions.
[0038] Leaching is a function of particle size and the solubility of the substantially
crystalline (or amorphous sparingly soluble) copper-containing material. Larger size
particles have lower leach rates, while particles in a size range from 1 to 10 nanometers under
certain circumstances will not have a leach rate much different than that of an injected copper
salt solution. In preferred embodiments of this invention, at least 50% by weight of the
copper-containing particulates have a size greater than 40 nanometers. In more preferred
embodiments, at least 50% by weight of the copper-containing particulates have a size greater
than 80 nanometers. In one preferred embodiment., at least 80% by weight of the copper-
containing particulates have a size between 0.05 microns and 0.4 microns.
[0039] Leaching is not the only mechanism whereby material can be flushed from wood.
Because the material is in particulate form, there is a possibility that particulates will be
flushed from the wood. Evidence suggests that very small substantially spherical
nanoparticles, i.e., spherical particles of size 5 to 20 nanometers, can migrate freely through a
wood matrix. United States Patent Application 20030077219 teaches a variant of the
precipitation method of forming nanopanicles from micro-emulsions, the invention
apparently relating to a block polymer used to stabilize the micro-emulsions. This
publication claims that nanoparticles penetrate more: easily and more deeply into the wood
layers under treatment due to their "quasi atomic size," thus eliminating or reducing the need
for pressure impregnation. Immersion of wood into a copper hydroxide micro-emulsion
showed the copper hydroxide penetrated to a depth of more than 10 to 298 mm. However,
while said particles are easy to inject, they are also clearly easily transported through wood

and would be easily flushed from the wood. These wood preservative treatments would not
be long-lasting. Therefore, in preferred embodiments of the invention the material is
substantially free of substantially spherical particulates, wherein the size of the spherical
participates is less than about 20 nanoneters, particularly less than 15 nanometers.
[0040] Generally, the leaching rate from dispersed particulates is controlled by 1) diffusion
and boundary layer effects around the limited surface area available to water; 2) the
activation energy needed to disrupt the crystal and to thereby cause dissolution, and 3) the
absolute solubility of the material. Solubility is not an easy parameter to control; the
solubility of copper itself in compositions containing hydroxyl groups and carbonates is about
0.01 ppm at pH 10, 2 ppm at pH 7, but is 640 ppm at pH 4. Wood itself has a "pH" between
4 and 5, but there is essentially no buffering capacity. Therefore, copper hydroxides are a
component of the preferred substantially crystalline (or amorphous sparingly soluble) copper
material, as the hydroxides will raise the pH of the water in the wood.
[0041] Leaching will be discussed extensively infra. Advantageously, the particulates of the
present invention provide at 240 hours into an AWPA El 1-97 leach test a total leached
copper value that is within a factor of two above, to within a factor of five below, preferably
within a factor of three below, the total leached copper value obtained by a wood sample
treated with CCA and subjected to the same test.
[0042] Substantially free of hazardous material - By "substantially free of hazardous
material" we mean the preservative treatment is substantially free of materials such as lead,
arsenic, chromium, and the like. By substantially free of lead we mean less than 0.1% by
weight, preferably less than 0.01% by weight, more preferably less than 0.001% by weight,
based on the dry weight of the wood preservative. By substantially free of arsenic we mean
less than 5% by weight, preferably less than 1% by weight, more preferably less than 0.1%
by weight, for example less than 0.01% by weight, based on the dry weight of the wood
preservative. By substantially free of chromium we mean less than 0.5% by weight,
preferably less than 0.1% by weight, more preferably less than 0.01% by weight, based on the
dry weight of the wood preservative.
[0043] Environmentally responsible - By "environmentally responsible" we mean the
wood preservative (including co-biocide) has a bioactive effectiveness that is at least about
one half that of CCA, preferably at least three quarters of that of CCA, for example, about
equal to that of CCA, for specified organism based on the weight percent of the wood
preservative material in the wood. If, for instance, the wood preservative has a bioactive
effectiveness equal to that of CCA, then wood treated with a selected concentration of the

wood preservative will have substantially similar bioactivity as wood treated with the same
concentration of CCA.
[0044] Additionally, the environmentally responsible material is substantially free of small
nanoparticles which can be readily flushed from wood. Therefore, in preferred embodiments
of the invention the environmentally responsible material is substantially free of substantially
spherical particulates, wherein the size of the spherical particulates is less than about 20
nanometers, particularly less than 5 nanometers. More preferably, in preferred embodiments
of the invention the environmentally responsible material is substantially free of particulates
having a size less than about 20 nanometers, particularly less than 5 nanometers.
Nanoparticle-sized metal particulates may be toxic to certain aquatic life, though the data is
very preliminary.
[0045] Additionally, environmentally "esponsible wood preservatives are beneficially
substantially free of organic solvents. By substantially free we mean the treatment comprises
less than 10% organic solvents, preferably less than 5% organic solvents, more preferably
less than 1% organic solvents, for example free of organic solvents, based on the weight of
the copper in the wood preservative.
[0046] Injectable — By "injectable" we mean the wood preservative particulates are able to
be pressure-injected into wood, wood products, and the like to depths normally required in
the industry, using equipment, pressures, exposure times, and procedures that are the same or
that are substantially similar to those currently used in industry. Pressure treatment is a
process performed in a closed cylinder that is pressurized, forcing the chemicals into the
wood. Copper loading, also called copper retention is a measure of the amount of
preservative that remains in the wood after the pressure is released. It is given as "pcf," or
pounds of preservative per cubic foot of wood. Retention levels that must be reached are
dependent on three variables: the type of wood used, the type of preservative used, and the
use of the wood after treatment. The sparingly soluble copper-salt particulates of this
invention are typically expected to be added to wood! in an amount equal to or less than 0.25
pounds as copper per cubic foot. In preferred embodiments of the invention incising is not
expected to be required to inject the slurries of the present invention into lumber having
thicknesses of 6 to 10 inches.
[0047] Injectability requires the particulars be substantially free of the size and
morphology that will tend to accumulate and form a filter cake, generally on or near the
surface of the wood, that results in undesirable accumulations on wood in one or more outer
portions of the wood and a deficiency in an inner portion of the wood. Injectability is

generally a function of the wood itself, as well as the particle size, particle morphology,
particle concentration, and the particle size distribution.
[0048] The requirements of injectability for substantially round, e.g., the diameter is one
direction is within a factor of two of the diameter measured in a different direction, rigid
particles generally are 1) that substantially all the: particles, e.g., greater than 98% by weight,
have a particle size with diameter equal to or less than about 0.5 microns, preferably equal to
or less than about 0.3 microns, for example equal to or less than about 0.2 microns, and 2)
that substantially no particles, e.g., less than 0.5% by weight, have a diameter greater than
about 1.5 microns, or an average diameter greater than about 1 micron, for example. We
believe the first criteria primarily addresses the phenomena of bridging and subsequent
plugging of pore throats, and the second criteria addresses the phenomena of forming a filter
cake. Once a pore throat is partially ph.gged, complete plugging and undesired buildup
generally quickly ensues.
[0049] However, there are minimum preferred particulate diameters for the wood treatment,
which depend somewhat on the copper salt(s) that are in the particulates. If the salts have a
high solubility, very small particulates having a large surface to mass ratio will result in too
high a copper ion concentration, and too fast a copper leaching, compared to preferred
embodiments of this invention. Further, very small particulates, especially for example small
spherical particles of diameter between about 0.003 to about 0.02 microns, are readily flushed
from the wood. Generally, it is preferred that at legist 80% by weight of the particles be above
0.01 microns in diameter, preferably greater than 0.03 microns, for example greater than 0.06
microns in diameter.
[0050] By injectable, unless otherwise specified, we mean injectable into normal southern
pine lumber. This invention also encompasses injecting the particulates into other woods as
well as into for example heartwood. Selected other woods and heartwood may require a
smaller substantially lower criteria on particle dimensions for injectability, and such
formulations can be made as discussed hsrein, but the formulation most of interest is a
commercially operative formulation developed for normal Southern Pine. Such a
formulationn will typically be useful for all other woods, with the possible exception of
selected heartwood. Such problems with heartwood are normally not a substantial concern,
as the injected particulate material may form a partial protective filter cake around heartwood
that protects the heartwood without causing unsightly accumulations of preservative on the
wood, and also heartwood is naturally substantially resistant to attack by many bioorganisms
and therefore may require less copper to constitute sufficient protection.

[0051] We have found three method to improve injectability and/or to maintain
injectability of particulates. These methods improve particle size distribution and/or
morphology by wet milling, and chemically and physically stabilize the participates by
coating the participates with selected materials.
[0052] Non-staining/Non-coloring - By "non-staining/non-coloring" we mean the wood
preservative does not impart undesired color to the wood. Large participates, or large
agglomerations of smaller participates, impose a visible and undesired color to the treated
wood, which is generally bluish or greenish. Surprisingly, coloring is usually indicative of
poor injectability. Individual particles of diameter less than about 1 micron, preferably less
than 0.5 microns, that are widely dispersed in a matrix do not color a wood product to any
substantial degree. Filter cake forms unsightly coloring. An aggregation of particles, similar
to filter-cake, could contribute un-wanted color. Preferably 100% by weight of the particles
have an average diameter of less than 1 micron, where an average diameter is the diameter
measured by Stokes law settling (which may be assisted by centrifugation), or by preferably
by dynamic light (X-ray) scattering or by Doppler light scattering. Even particulates having a
size greater than 0.5 microns can impart very visible color, and agglomerates of similar size
have the same effect as do large particles In a preferred embodiment of the invention, at
least about 95%, e.g., at least about 99% by weight of the particulates/aggregates are smaller
than 0.5 microns in average diameter. More preferably, at least about 95%, e.g., at least
about 99% by weight of the particulates/aggregates are smaller than 0.35 microns in average
diameter. Even more preferably, at least about 95%, e.g., at least about 99% by weight of the
particulates/agreggates are smaller than 0.3 microns in average diameter. Generally, it is
preferred that at least 90% by weight of the particles be above 0.01 microns in diameter,
preferably greater than 0.03 microns, for example greater than 0.06 microns. Certain
compounds, particularly basic copper carbonate, copper hydroxide, and copper oxychloride
are preferred because they impart less color than do other particles of comparable size.
Additionally, the presence of a zinc salt, a magnesium salt, or both either as a separate phase
or as a mixed phase may also reduce color.
[0053] Inexpensive - By "inexpensive" we mean the wood preservative is prepared using
techniques so that the cost of the wood treatment is competitive with, for example, copper-
ethanolamine-complex treatments and other commonly used treatments. As the cost of
copper is substantially constant regardless of the source, inexpensive relates primarily to the
costs of manufacture, separation, sizing, an I preservation of the particulate material. There
are many techniques to create very small nanoparticles, but most of these processes are far

too costly to be useful in the mass procuction of a copper-based wood preservative treatment.
Generally, the term "inexpensive" means at a processed cost less than or equal to the current
costs of the soluble copper-co-biocide treatments, alternately within about 20% of the cost of
prior art CCA treatments.
[0054] The preferred method of production is a precipitation process, in the absence of
organic solvents and the like. Preferably the reactants are of standard industrial quality, as
opposed to higher levels of purity. The particles start with certain characteristics including
size distribution and morphology, e.g., at least 2% by weight of the particles have a diameter
greater than 1 micron, usually greater than 1.5 microns, and generally must undergo
subsequent treatment, e.g., milling, to make sure the particle size and particle size distribution
are favorable for injection. Particles made by other processes, particularly emulsion
precipitation processes and fuming processes, are not sufficiently cost effective to
manufacture commercially acceptable copper particulates for wood preservation.
[0055] It is known that nanoparticles can be formed for example by micro-emulsion (or
micelle) precipitation, and the like. The micelle system, where emulsions of small and
uniformly sized micelles are used as nanoreactors in which the deposition of the metal salt is
carried out, are known in the art. For example, it is; known to make nickel and nickel/copper
(7/3) carbonate particles via water in oil hexane/hexanol) microemulsions. Two separate
microemulsions with the metal salt and ammonium bicarbonate, respectively, were prepared
and mixed rapidly to form metal carbonate nanopaiticles of 6 to 7 nm diameter with a small
diameter distribution. Such processes, while useful in forming very small particulates, are
not useful in forming commercially acceptable wood preservative. The associated costs of
adding and removing the solvents used to form the emulsions makes these processes
economically un-usable for the purpose of forming a copper-containing injectable particulate
wood preservation material.
[0056] It is known that nanoparticles can be formed for example by forming fumed copper
salts via a vapor process or an aerosol oxdiation process. The authors of Copper and Copper
Oxide Nanoparticle Formation by Chemical Vapor Nucleation From Copper (II)
Acetylacetonate by Albert G. Nasibulin, P. Petri Ahonen, Olivier Richard, Esko I describe
methods of forming e.g., 2 nm to 20 nm in diameter nanoparticles. Generally, fuming
processes are limited to producing the oxides of copper, as these authors produced. Again,
the cost of obtaining such small size (and narrow particle distribution) is not justified by any
increase in efficacy of the particles for most copper salts of this invention.

[0057] The cost of polymeric nanoparticles to act as a carrier for the copper salts is similarly
not justifiable.
[0058] Less-Corrosion-Inducing — The commercial soluble copper containing wood
preservatives often result in increased metal corrosion, for example of nails within the wood.
Preserved wood products are often used in load-bearing out-door structures such as decks.
Traditional fastening material, including aluminum and standard galvanized fittings, are not
suitable for use with wood treated with these new preservatives. Many regions are now
specifying that hardware, e.g., fittings, nails, screws, and fasteners, be either galvanized with
1.85 ounces zinc per square foot (a G-185 coating) or require Type 304 stainless steel.
Generally, the presence of any salt will nduce corrosion. By "less-corrosion-inducing" we
mean the wood preservative has a reduced tendency, compared to a similar concentration of
copper obtained from the soluble copper treatments such as the amine-copper-complex
treatments and alkanolamine-copper-complex treatments in use today, to corrode metal that
contacts the wood. The degree of corrosion will depend in large part on the salts selected, as
well as on adjuvants, in particular amines.
[0059] We believe that the amines present in the treatments used in soluble copper
treatments - alkanolamines, ammonia, and the like — are corrosive to metals. We also believe
that another problem with the new soluble complexed copper preservatives is that they are, or
they eventually turn into, biodegradable material that can encourage certain biological
attacks, particularly mildew. The commonly used soluble copper compounds provide
nitrogen-containing nutrients (amines) which are believed to act as food-stuff and causes an
increase in the presence of sapstain molds, therefore requiring additional biocides effective
on sapstain molds to be added to protect the external appearance of the wood. When there is
also bio-available carbon sources, in addition to bio-available nitrogen, the problem is made
worse. Advantageously, the wood preservative is substantially free of any amines other than
certain selected amines that may be used as a supplemental biocide. By substantially free we
mean the treatment comprises less than 10% amines, preferably less than 5% amines, more
preferably less than 1% amines, for example free of amines, based on the weight of the
copper in the wood preservative. Alternatively, the term means there is less than one amine
molecule or moiety per four copper atoms, preferably less than one amine molecule or moiety
per ten copper atoms. Again, amines that ars used as supplemental biocides, if any, are
excluded from this limitation. While basic copper nitrate is a useful sparingly soluble copper
salt for use in this invention, in most embodiments of the invention the wood preservative is
also substantially free of nitrates.

[0060] In other embodiments of the invention an injectable copper-based particulate
preservative treatment for wood that is substantially free of bio-available nitrogen, and even
more preferably substantially free of bio-available nitrogen and bio-available carbon is
provided. By substantially free of bio-available nitrogen we mean the treatment comprises
less than 10% of nitrates and organic nitrogen, preferably less than 5% of nitrates and organic
nitrogen, more preferably less than 1% of nitrates and organic nitrogen, for example less than
0.1% of nitrates and organic nitrogen, tased on the weight of the copper in the wood
preservative. In most of the soluble or complexed copper treatments, there are between 1 and
4 atoms of organic nitrogen that act as a complexer or carrier for one atom of copper. In the
preferred embodiments of this invention, there is less than 0.3 atoms, preferably less than 0.1
atoms, for example less than 0.05 atoms of organic nitrogen per atom of copper in the wood
preservative treatment. Again, organic nitrogen-containing compounds that are used
specifically as supplemental biocides an excluded from this limitation. By substantially free
of bio-available carbon we mean the treatment comprises less than 30% of bio-available
organic material (defined as material tha: is degradable or that will during the lifespan of the
treatment will become degradable), preferably less than 10% of bio-available organic
material, more preferably less than 1% of bio-available organic material, based on the weight
of the copper in the wood preservative. Again, organic compounds that are used as
supplemental biocides, if any, are excluded from this limitation. It is believed that the
presence of bio-available organic carbon may encourage the growth of certain molds.
[0061] In one embodiment, the copper-based particles are substantially free of polymers,
such as organic polymers. For example, copper-based particles of the invention may be
substantially free of one or more of polyvinylpyridine, polymetbacrylate, polystyrene,
polyvinylpyridine/styrene copolymers, polyesters, polyethylene, polypropylene,
polyvinylchloride, blends of the above homopolymers with acrylic acid and the like. By
substantially free, it is meant that the copper-based particles are less than about 50% by
weight polymer. The copper-based particles may be less than about 35% by weight polymer,
for example, less than 25% by weight polymer, such as less than 15% by weight polymer. In
one embodiment, the copper-based particles are essentially free of polymer, by which it is
meant the copper-based particles comprise less than about 5% by weight polymer. In one
embodiment, the copper-based particles comprise less than about 2.5% by weight polymer.
In one embodiment, the copper-based particles are free of polymer.
[0062] In one embodiment of the invention, the copper-based particles may comprise a
polymer. In this embodiment, the ratio of the weight of copper present in the particles to

polymer present in the particles may be at least about 1 to 1, for example at least about 2 to 1,
4 to 1, 5 to 1, 7 to 1, or at least about 0 to 1. For example, if ratio of the weight of copper
present in the particles to the weight of polymer present in the particles is at least about 2 to
1, the particles comprise at least about twice as much copper by weight as polymer.
[0063] Substantially crystalline - By "substantially crystalline" we mean, for example,
greater than about 30%, preferably greater than about 50%, by weight of the material of
interest (copper salt, zinc salt, and the like) is crystalline. A material is substantially
crystalline if the material gives the distinctive X-ray diffraction patterns of the crystalline
entity (relating to d spacing, not present in the amorphous material). A convenient technique
for assessing the crystallinity relative to the crystallinity of known crystalline salts is the
comparison of the relative intensities of the peaks of their respective X-ray powder
diffraction patterns. The degree of crystallinity can be determined by, for example,
determining the sum of the X-ray diffraction peak heights (for the same sample size), in terms
of arbitrary units above background, and comparing the summed peak heights of the
substantially crystalline material in, for example, the copper-based particulates with the
corresponding peak heights of the known crystalline material. This procedure utilizes, for
example, only the strongest 4 peaks. Whan, for example, the numerical sum of the peak
heights of the material in a particulate is 50 percent of the value of the sum of the peak
heights of the same known crystalline copper salt, then the product is 30 percent crystalline
and is substantially crystalline. The preferred method for determining crystallinity is by
calorimetry, by measuring the heat of dissolution of the sample in a solvent and comparing
this heat with the measured heats of amorphous and crystalline standard of the same salt,
provided the dissolution of the crystalline salt is substantially different than the dissolution of
the corresponding amorphous salt.
[0064] As crystallinity is difficult to measure, the following exemplary compounds meet the
requirements for substantially crystalline copper compounds: copper(II) borate; copper
boride (Cu3B2); yellow copper(I) carbonate; basic copper carbonate; copper(II) carbonate
dihydroxide (CuCO3 x Cu(OH)2); copper(II) carbonate dihydroxide (2CuCO3 x Cu(OH)2);
copper (I and II) chloride; copper(II) chloride x 2H2O; copper oxychloride (CuCl2 x Cu(OH)2
); copper(I and II) cyanide; copper(I and II fluoride; copper(H) formate; copper(I and II)
oxide; copper phosphate x 3 water; copper([ and II) sulfate; tribasic copper sulfate; and
copper(I) thiocyanate. The term (I and II) means the copper(I) salt and the copper(II) salt.
These salts are considered substantially crystalline with as much as 20% by weight based on
the weight of the copper being substituted with magnesium, zinc, or both. The following

exemplary compounds meet the requirements for substantially crystalline zinc compounds:
zinc carbonate; zinc chloride; zinc cyanide; zinc diphosphate; zinc fluoride; zinc fluoride x 4
water; zinc hydroxide; zinc oxide; zinc phosphate; and zinc sulfate. These salts are typically
substantially crystalline with as much is 20% by weight based on the weight of the zinc being
substituted with magnesium, copper, 01 both. The following exemplary compounds meet the
requirements for substantially crystalline tin compounds: tin(II) chloride; tin(II) chloride x 2
water; tin(II and IV) oxide; tin(II) diphosphate (pyrophosphate); tin(II) phosphate
(Sn3(PO4)2); and tin(II) sulfate.
[0065] In preferred embodiments, at least about 20%, 30%, 50%, or 75% of the weight of
the copper-based particles may be composed of the substantially crystalline (or amorphous
sparingly soluble) copper compound. The substantially crystalline (or amorphous sparingly
soluble) copper compound may comprise, and in preferred embodiments does comprise, one
or more cations in addition to copper, for example, magnesium and/or zinc. In another
embodiment, essentially all of the weight of the copper-based particles is composed of
substantially crystalline (or amorphous sparingly soluble) copper compound.
[0066] Several of the copper salts described herein are available in crystalline and in
amorphous phases. Generally crystallinity is preferred, as the lattice energy of the crystal is
expected to slow down dissolution. However, amorphous copper salts are useful in the
invention, and for the less soluble salts the amorphous phases may be preferred over
crystalline phases. Phosphate-stabilized copper hydroxide, a preferred sparingly soluble
copper salt used in embodiments of this invention, is: typically substantially amorphous. One
embodiment of this invention is an effective, long-lasting, environmentally responsible, non-
staining/coloring, inexpensive, non-corros on-inducing, injectable, amorphous or
substantially amorphous copper-based, zinc-based, or tin-based particulate preservative
treatment for wood and wood products that is substantially free of hazardous material.
Amorphous sparingly soluble salts are equally effective, and they can be treated with one or
more coatings, or can be made of a particular size, or of more insoluble salts, such that the
amorphous material may easily have release and leach characteristics like the substantially
crystalline salts. Substantially crystalline sparingly soluble salts should be considered a
preferred variant of the invention, as the same disclosure is generally equally applicable to
amorphous material, or substantially amorphous material.
[0067] Copper-Based Particulate -- As used herein, the term "copper-based particulate"
means a particle having a size between about 0.7 microns and about 0.01 microns that
comprises at least one substantially crystalline (or amorphous sparingly soluble) copper salt.

The term particle is used interchangably with the term "paniculate," while the term
"nanoparticle" refers to particles having a size less than about 0.01 microns in diameter. The
term "copper" includes, unless specifically stated otherwise, the cuprous ion, the cupric ion,
or mixtures thereof, or combinations thereof. The term "copper-based" means the particle
comprises at least about 20%, 30%, 50%, or 75% by weight of one or more substantially
crystalline (or amorphous sparingly soluble) copper compounds. In another embodiment,
essentially all (e.g., more than 95%) of the weight of the copper-based particles is composed
of substantially crystalline (or amorphous sparingly soluble) copper compound.
[0068] Zinc-Based Particulate - As used herein, the term "zinc-based particulate" means a
particle having a size between about 0.5 microns and about 0.01 microns that comprises at
least one substantially crystalline (or amorphous sparingly soluble) copper salt. The term
"particle" is used interchangably with the term "particulate." The term "zinc-based" means
the particle comprises at least about 20%, 30%, 50%, or 75% by weight of one or more
substantially crystalline (or amorphous sparingly soluble) zinc compounds. In another
embodiment, essentially all (e.g., more than 95%) of the weight of the zinc-based particles is
composed of one or more substantially crystalline (or amorphous sparingly soluble) zinc
compounds. The preferred substantially crystalline zinc-containing materials are zinc
hydroxide, zinc borate (Zn(BO2)2xH2O), and zinc carbonate. As for the copper-based
particles and the tin-based particles, if the borate is used as the anion, preferably the
composition also comprises one or more salts of carbonate or hydroxide (or hydroxide-
containing) salts to maintain a slightly elevated pH within the wood matrix, to slow
dissolution of the borate salts. If zinc-based particulates are used, they are advantageously
used with copper-based particulates.
[0069] Tin-based particulate - As used herein, the term "tin-based particulate" means a
particle having a size between about 0.5 microns and about 0.01 microns that comprises at
least one substantially crystalline (or amorphous sparingly soluble) tin salt. The term
"particle" is used interchangably with the term "particulate." The term "tin-based" means the
particle comprises at least about 20%, 30%, 50%, or 75% by weight of one or more
substantially crystalline (or amorphous sparingly soluble) tin compounds. In another
embodiment, essentially all (e.g., more than 95%) of the weight of the tin-based particles is
composed of one or more substantially crystalline (or amorphous sparingly soluble) tin
compounds. Generally, tin-based particulates are not preferred because tin does not have the
desired bio-activity. Tin oxides are believed to be particularly inert, though Nanophase
Technologies in February 2004 claimed, in "Nanoteehnology in brief available on

www.nanotechweb.org/articles/news/3/2/12/1, making pilot quantities of 30 nm silver-doped
nanocrystalline tin oxide for use in wood preservatives, speciality paints, polymer additives,
conductive coatings, and electronic materials. The: preferred substantially crystalline tin
material are tin hydroxides, Sn(OH)2 and Sn(OH)4. If tin-based particulates are used, they
are advantageously used with copper-ba ;ed particulates.
[0070] It is recognized that some embodiments encompassed by this invention may not
meet all of the objects or characteristics of the preferred embodiments of the invention as
described above. In preferred embodiments of the invention, the injectable material will meet
any and preferably most of the criteria listed above for the effective, long-lasting,
environmentally responsible, non-staining/coloring, inexpensive, non-corrosion-inducing,
injectable, substantially crystalline (or amorphous sparingly soluble), copper-based
particulate preservative treatment for wood and wood products that is substantially free of
hazardous material.
[0071] In preferred embodiments of the invention, the injectable copper-based particulates
will meet any and preferably most of the criteria listed above for the effective, long-lasting,
environmentally responsible, non-staining/coloring, inexpensive, less-corrosion-inducing,
injectable, substantially crystalline (or amorphous sparingly soluble), copper-based
particulate preservative treatment for wood and wood products that is substantially free of
hazardous material.
The substantially crystalline copper composition in the copper-based particulates.
[0072] The copper-based particulates can have a substantially homogenous substantially
crystalline (or amorphous sparingly soluble) copper composition within each particle.
Alternatively, the particles can comprise two or more separate substantially crystalline (or
amorphous sparingly soluble) copper phases. Preferred particles comprise at least 30%,
preferably at least 50%, more preferably at least 70%, for example between about 80% and
about 98% by weight of total of copper hydroxides, copper oxides, basic copper carbonates,
copper carbonates, copper oxychloride, tribasic copper sulfate, alkaline copper nitrate, copper
borate, or mixtures thereof. Most comprise a basic copper salt, with the exception of copper
borate and copper oxides. As a high pH suppresses the solubility of copper borate,
advantageously, treatments that comprise particulates of copper borate also comprise a basic
substantially crystalline (or amorphous sparingly soluble) copper-containing salts. Copper
carbonate is a most preferred compound, is it is less: visible than some other salts, and has
excellent solubility characteristics.

[0073] In another embodiment of the invention, the various particles within a wood
preservative can comprise different substantially crystalline (or amorphous sparingly soluble)
copper compositions. For example, a treatment may contain particles that comprise
crystalline copper borate, other particle:, that comprise alkaline copper carbonate, and even
other particles that comprise copper oxide. The particles having different phases may in
preferred embodiments be of different sizes, porosity, or morphology, depending on the
crystalline copper material present.
[0074] In one embodiment, exemplary wood preservatives comprise copper-based salt
particles having a size distribution in which at least 50% of particles have a diameter smaller
than 0.5 µm, 0.25 µm, 0.2 µm, or 0.15 µm. A preferred particle sizing technique is a
sedimentation or centrifugation technique based on Stoke's Law. An exemplary preservative
of the invention comprises particles comprising a sparingly soluble copper salt, e.g., copper
hydroxide, having an average particle diameter of less than about 500 nanometers, for
example less than about 250 nanometers, or less than about 200 nanometers. In one
embodiment, the average particle diameter is at least 25 nanometers, for example, at least 50
nanometers.
[0075] Method Of Manufacture of Substantially Crystalline Copper-Containing Particles
[0076] Exemplary copper-based particles comprise one or more of copper metal, a copper
oxide, a copper hydroxide, copper carbonate, and a copper salt that is sparingly soluble.
Preferred wood preservatives comprise copper-based particles that comprise at least about
20%, for example, at least about 50%, 60%, 70%, or 75% by weight copper, based on the
weight of the particle. An exemplary copper-based particle comprises about twice as much
copper by weight as oxygen.
[0077] There are a large number of references describing how to make copper-containing
"nanoparticles." These references generally can not be used to manufacture the particulates
at the desired cost. The formation of 7 nanometer particles of any of CuO, Cu2O, or mixed
phase CuO/Cu2O is described for example in "Copper and Copper Oxide Nanoparticle
Formation by Chemical Vapor Nucleation From Copper(II) Acetacetonate" was described in
Journal of Nanoparticle Research, 3(5-6): 383-398, December 2001. Such particles are, or
course, readily injectable into wood, and if injected they may provide a degree of biological
activity. But they can not be used for the process because such particles are too expensive for
use in wood treatment. R.L. Hamilton and O.K. Cosser described using 35 nm CuO or 10 nm
Cu metal particles to enhance thermal conductivity of antifreeze in "Thermal Conductivity of
Heterogenous Two-Component Systems" Ind. & Engr. Chem. Fund., 1, 187-191 (1962).

Such particles would also be expected to be injectable into wood. United States Patent
Application 20030077219 describes a method for producing copper salts from at least one
cupriferous reactant and one additional reactant, where micro-emulsions are prepared from
two reactants while employing at least one block polymer to obtain intermediate products
with a particle size of less than 50 nm, preferably 5 to 20 nm. Material can be adjusted to
specific applications through the appropriate doping of foreign ions. This application teaches
wood treatment applications, stating copper compounds that have been produced pursuant to
the present invention can penetrate more easily and more deeply into the wood layers under
treatment due to their quasi atomic size. These improved properties can eliminate or reduce
the need for pressure impregnation while: ensuring prolonged protection against various
organisms. Agglomerates characterized by a size of about 200 nanometers consist of a
multitude of primary particles characterized by a size range of 5 to 20 nm. Example particle
sizes were between 10 and 50 nm and agglomerate sizes between 100 and 300 nm. During
the immersion of equivalent wood into the copper hydroxide micro-emulsion prepared
pursuant to the invention, the copper hydroxide was not limited to the surface, but instead
penetrated to a depth of more than 10 to 298 mm. The use of solvents makes such processes
generally too expensive for use in wood preservatives, though this process can be useful
provided the solvent serves a subsequent purpose of solvating one or more organic biocides,
to partially bind the organic biocides to the particulate by partially or completely removing
the solvent by evaporation. Modifying the process of this application to make particulates
greater than 50 nanometers in diameter, for example between about 100 and about 200
nanometers in diameter, can be useful provided the solvent serves a subsequent purpose of
solvating one or more organic biocides, to partially bind the organic biocides to the
particulate by partially or completely removing the solvent by evaporation.
[0078] The method of U.S. Patent 6,596,246 which requires rigorous removal of iron to make
a copper hydroxide can be utilized. Such a process increases the cost of the product,
however.
[0079] In one embodiment of the invention, copper-based particles are prepared, such as by
precipitation, from a mixture comprising copper and an amine. The copper and amine may
be present in the form of a copper-amine complex. The mixture may comprise at least one of
copper monoethanolamine, copper diethanolamine, copper-ammonia, and/or copper
ethylenediamine. The copper-amine complex is usually in an aqueous solution. Preferred
precipitates comprise copper hydroxides. The particles may be prepared by modifying a pH
of the mixture comprising copper and the imine. For example, the pH of a mixture

comprising copper and an amine may be reduced to value sufficient to precipitate copper-
based particles. In any event, the mixture comprising copper and the amine may be diluted
with water to have a copper concentration of at least about 0.25, for example, at least about
0.5, such as at least about 1% by weight. The copper concentration may be less than about
2%, for example, less than about 1.5%. The pH of the mixture comprising copper and the
amine, such as the diluted mixture, may be reduced using acid to prepare a precipitate
comprising copper-based particles. The particles may comprise copper hydroxide. A
dispersant may be added to the mixture, such as before obtaining the precipitate, upon
obtaining the precipitate, or thereafter. A stable aqueous copper-amine complex solution
may have a pH of 8 to 13. One method for preparing the precipitate comprises adjusting the
pH of an aqueous mixture of the copper-amine complexes. In one embodiment, the pH is
adjusted so that the pH is at least about 4, for example, at least about 5.5. The pH of the
mixture may be adjusted to less than about 8, for example, to less than about 7.5, such as less
than about 7. The pH may be adjusted to about 7. The pH is adjusted by adding an acid to
the mixture. Alternatively, the pH may be adjusted by adding the mixture to acid. The
solution of copper-amine complex may be prepared in the presence of acid. Suitable acids
for adjusting the pH include, for example sulfuric acid, nitric acid, hydrochloric acid, formic
acid, boric acid, acetic acid, carbonic acid, sulfamic acid, phosphoric acid, phosphorous acid,
and/or propionic acid. The anion of the acid used may be partially incorporated in the
precipitated salt.
[0080] One embodiment of a method for preparing copper-based particles comprises
precipitation of copper-based particles from a solution comprising (a) copper, such as in the
form of a copper salt, and (b) a pH modifying agent, such as a hydroxide. Exemplary
hydroxides may be selected from hydroxides of group 1a and/or group 2a elements, such as
sodium and potassium hydroxide.
[0081] Copper salts useful in preparing copper-based particles of the invention preferably
comprise water soluble salts of copper and another material. An exemplary copper salt may
include at least one of a copper sulfate, a halogen-containing copper salt, such as copper
chloride or copper bromide, a copper nitrate, a copper acetate, a copper formate, and a copper
propionate. The one or more copper salts may be provided in the form of a solution, such as
an aqueous solution, of a liquid and the copper salt.
[0082] U.S. Patent 4,808,406, the disclos are of which is incorporated by reference, describes
a useful method for producing finely divided stable cupric hydroxide compositions of low
bulk density comprising contacting solutions of an alkali metal carbonate or bicarbonate and

a copper salt, precipitating a basic copper carbonate-basic copper sulfate to a minimum pH in
the range of greater than 5 to about 6, contacting the precipitate with an alkali metal
hydroxide and converting basic copper sulfate to cupric hydroxide. Another method of
manufacturing the copper compounds is the method described in U.S. Patent 4,404,169, the
disclosure of which is incorporated by reference. This patent describes a process of
producing cupric hydroxides having stability in storage if phosphate ions are added to a
suspension of copper oxychloride in an aqueous phase. The copper oxychloride is then
reacted with alkali metal hydroxide or alkaline earth metal hydroxide, and the cupric
hydroxide precipitated as a result of the suspension is washed and then re-suspended and
subsequently stabilized by the addition of acid phosphate to adjust a pH value of 7.5 to 9.
The suspended copper oxychloride is preferably reacted in the presence of phosphate ions in
an amount of 1 to 4 grams per liter of the suspension and at a temperature of 20° to 25° C. and
the resulting cupric hydroxide is stabilized with phosphate ions.
[0083] There are numerous methods of preparing very small particles of copper salts, and
the above list is exemplary and not complete. The simplest and by far the least expensive
method of producing small particles is a standard precipitation of admixing two solutions,
one containing soluble copper and one containing the desired anion, and some particles
resulting from slightly modified precipitation processes are of a size that may be injected into
the wood. The most useful modification is simply adding small quantities of anion to a
concentrated solution of the cation, or vice versa, with vigorous stirring. Examples in the
prior art show an average particle size as low as 0.3 microns was obtainable. Such processes
are also desirable because the cost of counter-ions (those ions that form the salts that are
admixed, but that are not incorporated into the substantially crystalline (or amorphous
sparingly soluble) copper material) is negligible. Standard materials such as chlorides,
sulfates, ammonia, and the like are common counterions. Further, the material need not be
ultra-pure. Indeed, it is desirable to have one or more "contaminants" in the precipitating
solutions. Smaller diameters are obtained when the concentration of impurities such as Mg,
Ca, Zn, Na, Al and Fe in the suspension is high. Fe present in the suspension acts especially
strongly to prevent formation of large-diameter cuprous hydroxide particles. Fe
concentration is preferably greater than 70 ppm to obtain smaller particles.
[0084] In one embodiment, copper and a hydroxide are combined to prepare a precipitate
comprising copper. The copper and hydroxide may be combined with the copper in the form
of a copper salt. For example, a solution comprising at least one copper salt and a solution
comprising at least one hydroxide may be combined to precipitate copper-based particles. In

One embodment, the method includes precipitating copper-based particles from a solution
comprising at least one other metal, such as a salt of at least one other metal. For example,
copper-based particles of the invention ;nay be precipitated from a solution comprising at
least one of one or more group 2a metal; such as magnesium or salts thereof. The metal or
salt of the metal may be zinc. In one embodiment, (a) a solution comprising a copper salt and
at least one other metal, which may be in the form of one or more salts, and (b) a solution
comprising a hydroxide are combined in amounts sufficient to precipitate copper-based
particles, such as particles comprising copper hydroxide.
[0085] In one embodiment, particles are prepared by adding a copper salt solution to a
hydroxide solution comprising about 20% hydroxide by weight. The copper salt solution is
added until a desired amount of copper-based particles are obtained. For example, the copper
salt solution may be added until the pH of the hydroxide solution falls to at least about 11.5,
11,10.5, or about 10. The precipitate comprising the precipitated copper-based particles may
be used directly to protect wood or wood products, but are beneficially milled to reduce the
fraction of particulates having a diameter above 1 micron.
[0086] Copper hydroxide is not particularly stable. Hydroxides can be changed to oxides
by for example, a quick and exothermic reaction by exposure of the copper hydroxide
particles to aqueous solution of glucose. Copper hydroxide may react with air, sugars, or
other compounds to partially or completely form copper oxide. While this is generally of less
concern with foliar fungicides, the conditions for conversion are highly favored during kiln-
drying treated wood, which contains gluconuronic acids, which are sugar-like molecules, and
heat and a dehydrating condition, create a high probability of such transformation occurring
within the wood.
[0087] However, as taught by U.S Patent 3,231,464, the disclosure of which is incorporated
herein by reference thereto, the presence of magnesium or magnesium and zinc can help
stabilize cupric hydroxide from converting to copper oxide via the loss of a water molecule.
The preferred copper hydroxide particles used in this; invention are stabilized. U.S. Patent
3,231,464 teaches stabilizing the copper hydroxide with added magnesium zinc, or both, at a
Gr.Mg and/or Cu:Zn weight ratio of 8:1. Copper hydroxide prepared in a manner so as to
contain significant magnesium and/or zinc hydroxides are more stable and resistant to
degradation to copper oxides. The preferred copper hydroxide particles comprise between
50% and 90% copper hydroxide, with the remainder comprising zinc hydroxide, magnesium
hydroxide, or both. The process described in U.S. Patent 3,231,464 is inexpensive, and with

modifications produces particulates with a particle size distribution with a median particle
size of a few tenths of a micron.
[0088] While such methods can provide small particles of selected substantially crystalline
(or amorphous sparingly soluble) salts, these processes usually have a small fraction of
particles that are unacceptably large. Get erally, however, a few particles from a normal
precipitation process are too big to be injectable. A very small fraction of particles having a
particle size above about 1 micron causes, in injection tests on wood specimens, severely
impaired injectability. Large particles, e.g., greater than about 1 micron in diameter, should
be removed. Removal via filtering is not effective, as a large fraction of injectable particles
will be caught on filters designed to remove the bigger particles. We have surprisingly found
that milling, for example wet-milling, can advantageously modify particle size and
morphology. Particles can be smoothed and large particles removed by continuous-process
centrifuging. Alternately, as described above, we have surprisingly found that substantially
crystalline (or amorphous sparingly soluble) copper-based particulates that are manufactured
by a precipitation process, using conditions known in the art to produce small particles, can
be readily milled into an injectable material by wet milling with a milling material such as 0.5
mm diameter zirconium silicate in a matter of minutes.
[0089] In another embodiment, the copper-based particulates can have a substantial amount,
e.g., at least 0.5% by weight, for example at least 2% by weight, but less than 50% by weight
based on the weight of copper of one or more other cations, either dispersed within the
substantially crystalline (or amorphous sparingly soluble) copper composition or substantially
as a separate phase within the particulate In a preferred embodiment, the copper-based
particulates can have a substantial amount of one or more of magnesium, zinc, or both,
wherein these cations are either dispersed within the substantially crystalline (or amorphous
sparingly soluble) copper composition or be a separate phase within a particulate. The
weight ratio of copper to zinc may range between 99.9:0.1 to 1:1, but is preferably between
99.5:0.5 to 90:10, for example between 99:1 and 94:6. The weight ratio of copper to
magnesium may range between 99.9:0.1 to 1:1, but is preferably between 99.5:0.5 to 85:15,
for example between 95:5 and 90:10.
[0090] In one embodiment of the invention, copper-based particles are precipitated from a
mixture of a copper salt solution and a hydroxide (and optionally other anions) in the
presence of at least one group 2a metal or salt thereof, such as magnesium or a magnesium
salt. In one embodiment, the copper-based particles are precipitated from a mixture
comprising at least about 0.05 parts magaesium, for example at least about 0.1 parts

magnesium per 9 parts copper. The mixture may comprise at least about 0.25 parts
magnesium per 9 parts copper. The mixture may comprise less than about 1.5 parts
magnesium, for example, less than about 1.0 parts, or less than about 0.75 parts magnesium
per 9 parts copper.
[0091] Copper-based particles prepared in accordance with the present invention will
comprise a group 2a metal or zinc if such materials; (metal ions) were used in preparation 05
the particles. In another embodiment, the copper-based particles are precipitated from a
mixture comprising at least about 0.2 parts magnesium, for example, at least about 0.25 parts
magnesium per 22.5 parts copper. The mixture may comprise at least about 0.5 parts
magnesium per 22.5 parts copper. The mixture may comprise less than about 3.5 parts
magnesium, for example, less than about 2.5 parts magnesium, or less than about 2 parts
magnesium per 22.5 parts copper. The parts here merely reflect weight ratios of the cation;
in the solution to be precipitated, and the parts do not imply concentration.
[0092] Alternatively, or in combination with the group 2a metal or salt thereof, the copper-
based particles may be precipitated from a solution comprising zinc metal or salt thereof. ]
example, the mixture may comprise at least about 0.1 parts zinc, for example, at least abou
0.25 parts zinc, at least about 1.0 parts zinc, or at least about 2.0 parts zinc per 22.5 parts
copper. The mixture may comprise less than about 3.0 parts zinc, for example, less than
about 2.5 parts zinc, or less than about 1.5 parts zinc; per 22.5 parts copper. Preferably, the
mixture additionally comprises at least about 0.25 parts magnesium, for example, at least
about 0.5 parts magnesium, at least about 1.0 parts magnesium, or at least about 2 parts
magnesium per 22.5 parts copper. The mixture may comprise less than about 5.0 parts
magnesium, for example, less than about 2.5 parts magnesium, or less than about 2 parts
magnesium per 22.5 parts copper. Table 1 sets forth exemplary ratios of zinc, magnesium
and copper in accordance with the present invention,
TABLE I Exemplary Formulations To Precipitate Mg/Zn-Stabilized Copper
Hydroxide

Formulation Parts Zinc Parts Magnesium Parts Copper
1 0.5 0.5 22.5
2 0.75 0.75 22.5
3 1.5 1.5 22.5
4 2.5 1.0 22.5
5 2.5 2.5 22.5

[0093] Such mixtures can be used to precipitate copper hydroxides, basic copper carbonate,
copper oxychloride, copper borate, and any of the substantially crystalline (or amorphous
sparingly soluble) salts described herein.
[0094] In alternative embodiments, the particulates can comprise particles that contain a
substantially crystalline (or amorphous sparingly soluble) copper composition with between
0.001% and 3%, preferably 0.005% to 0 5%, for example 0.01% to 0.1% by weight of silver,
based on the weight of copper, and also optionally the other cations. Silver is expensive but
is efficacious against some bio-oganisms in very small amounts, and therefore silver is a
useful co-cation in a substantially crystalline (or amorphous sparingly soluble) copper-based
particulate. A wood treatment containing 0.25 pounds copper per cubic foot would comprise,
at a 0.04% silver loading relative to copper, less than 0.2 ounces of silver per one hundred
cubic feet of wood. Generally, if silver is incorporated into the substantially crystalline (or
amorphous sparingly soluble) copper phase, the substantially crystalline (or amorphous
sparingly soluble) copper phase is preferably a copper(I) salt and the silver ions are disposed
homogenously through the substantially crystalline (or amorphous sparingly soluble) copper
phase, to prevent the minute quantities oi silver from being prematurely leached from the
wood.
[0095] Yet another embodiment of the invention is an effective, long-lasting,
environmentally responsible, non-staining/coloring. inexpensive, non-corrosion-inducing,
injectable, substantially crystalline (or amorphous sparingly soluble), zinc-based particulate
preservative treatment for wood and wood products that is substantially free of hazardous
material This composition can be used independently of the copper-based particulates, but
in preferred embodiments is used in combination with one or more copper-based particulates.
Modification of the above processes to produce substantially crystalline (or amorphous
sparingly soluble) zinc-containing particulates is within the ability of one of ordinary skill in
the art, and such modifications will not be. described here.
[0096] Similarly, modifications of the above processes to produce substantially crystalline
(or amorphous sparingly soluble) zinc-containing particulates are within the ability of one of
ordinary skill in the art, and such modifications will not be described here.
[0097] Milling - Generally, the simple, inexpensive copper salt precipitation processes
provide particles with a size too great for injection. Even for processes that provide very
small median diameter particles, such as, a few tenths of a micron in diameter, the
precipitation process seems to result in a ;mall fraction of particles that are larger than about
1 micron, and these particles plug up pores and prevent acceptable injectability. The size

distribution of the injectable particles must have the vast majority of particles, for example at
least 95% by weight, preferably at least 99% by weight, more preferably at least 99.5% by
weight, be of an average diameter less than about 1 micron, and advantageously the particles
are not rod-shaped with a single long dimension. Average particle diameter is beneficially
determined by Stokes Law to a size down to about 0.2 microns. Smaller sizes are
beneficially determined by, for example, a dynamic light scattering method or laser scattering
method or electron microscopy. Generally, such a particle size and particle size distribution
can be achieved by mechanical attrition of particles.
[0098] Attrition can be obtained for example 1) by use of a pressure homogenizer such as
that manufactured by SMT Ltd. having 400 kg/cm2 of pressure at a flow rate of 1 1/min.,
though such a system often requires the slurry be processed overnight; by processing in an
ultrasonic homogenizer such as is manufactured by Nissei Ltd., though such a method is
energy intensive; by wet milling in a sand grinder charged with for example partially
stabilized zirconia beads with diameter 0 5 mm; alternately wet milling in a rotary sand
grinder with partially stabilized zirconia beads with diameter 0.5 mm and with stirring at for
example 1000 rpm; or by use of a wet-ball mill, an attritor (e.g., manufactured by Mitsui
Mining Ltd.), a perl mill (e.g., manufactured by Asliizawa Ltd.,), or the like. Attrition can be
achieved to a lesser degree by centrifugatton, but larger particles can be simply removed from
the composition via centrifugation. Removing the larger particulates from a composition can
provide an injectable formulation. Said particulates can be removed by centrifugation, where
settling velocity substantially follows Stores law. While this process provides injectable
slurries, a fraction of the copper-containing particulates that are separated thereby include
both large particles as well as a portion of the injectable particles, and generally this material
would be recycled by being dissolved and precipitated. Such a process adds an additional
cost to forming the injectable copper-containing particulate wood treatment.
[0099] The most effective method of modifying the particle size distribution is wet milling.
Beneficially all injectable formulations for wood treatment should be wet-milled, even when
the "mean particle size" is well within the range considered to be "injectable" into wood.
Traditional precipitation techniques are known to produce particles with a median particle
size between about 0.2 and 6 microns, depending on the salts used as well as on various
reaction conditions. For example, a commercially available copper-based particulate product,
a magnesium stabilized form of copper hydroxide (available from Phibro-Tech., Inc.) has a
mean particle size of about 200 nm. However, when this material was slurried and injected
into wood, there was unacceptable plugging on the face of the wood. Careful examination

found by Phibro-Tech., Inc. resulted in a few weight percent of
particles with a size over 1 micron, and this small amount of material was hypothesized to
form the start of the plug (where smaller, normally injectable particles were subsequently
caught by the plug). Wet milling with 2 mm zirconium silicate media had no effect - wet
milling for days resulted in only a marginal decrease in particle size, and the material was
still not injectable in commercial quantities.
[0100] However, we surprisingly found that a milling process using 0.5 mm high density
zirconium silicate grinding media provides further efficient attrition, especially for the
removal of particles greater than about 1 micron in the commercially available copper-based
particulate product available from Phibro-Tech., Inc. The milling process usually takes on
the order of minutes to achieve almost complete removal of particles greater than 1 micron in
size. This wet milling process is inexpensive, and all of the precipitate can be used in the
injectable copper-containing particulate wood treatment. The selection of the milling agents
is not critical, and can be zirconia, partially stabilized zirconia, zirconium silicate, and
yttrium/zirconium oxide, for example, recognizing that the more dense materials give faster
particle size attrition. The size of the milling material is believed to be important, even
critical, to obtaining a commercially acceptable process. The milling agent material having a
diameter of 2 mm or greater are ineffective, while milling agent material having a diameter of
0.5 mm is effective typically after 15 minutes of milling. We believe the milling agent is
advantageously of a diameter less than 1.5 mm, preferably is less than 1 mm in diameter, for
example between about 0.1 mm and about 1 mm, or alternately between about 0.3 mm and
0.7 mm.
[0101] The original focus on injeciability focused on the magnesium stabilized copper
hydroxide product available from Phibro-Tech., Inc., as this material started (and ended) with
a material that had a median diameter of 0 2 microns.. While we originally believed that the
milling broke aggregates, possibly fused aggregates, of smaller particles that formed the
"greater than about 1 micron fraction" of the above-described product, the milling process
was surprisingly equally effective on larger mean diameter particles.
[0102] We have surprisingly found that topper-based particulates that are manufactured by
a straightforward precipitation process, using conditions known in the art to produce small
particles, e.g., particles having a size less than 10 microns, can be readily milled into an
injectable material. Therefore, milling other precipitate material with 0.5 mm diameter
zirconium silicate (or any comparable product, e.g., a 0.1 mm to 1 mm sized zirconium
silicate or zirconium oxide) can mill in a matter of minutes a substantially crystalline (or

amorphous sparingly soluble) powder material having a larger initial average size into a
product that can be readily injected into wood. Milling with 0,5 mm zirconium silicate media
not only quickly reduced further the magnesium stabilized copper hydroxide product, but this
grinding medium was also found to be effective on other forms of basic copper compounds
such as other stabilized copper hydroxides, copper carbonate, tribasic copper sulfate, copper
oxychloride, and copper oxides. The results of milling of a variety of materials with the 0.5
mm milling material described above for 15 minutes are shown in Table 2. Copper
hydroxide material with an initial median size of 2.5 microns was quickly milled to an
injectable material having a median particle size of 0.3 microns. Additional milling time
would doubtless further reduce the median and average particle size. A copper carbonate
material having a median size of 3.4 microns was milled to a material having a median size of
less than 0.2 microns. Figure 2 of the accompanying drawings shows the face of wood injected with unmilled product and
the face of wood injected with the milled product. In the color photographs the plugging is
especially visible. A tribasic copper sulfate material having a median size of 6.2 microns was
milled to a material having a median size of less than 0.2 microns. A copper oxychloride
material having a median size of 3.3 microns was milled to a material having a median size of
0.4 microns.
[0103] Milling is believed to break up larger particles. It would also break particles having
one large dimension, e.g., rod-like particles, which are know to have injection problems.
Milling can be combined with, for example, centrifugation to create a more uniform product.
Alternatively, milling can be combined with a coating process to form a more stable material.
[0104] Specific substantially crystalline (or amorphous sparingly soluble) copper-
containing materials and other copper-containing materials useful in embodiments of this
invention will be described below. In each instance, the zinc analog is useful for zinc-based
particulates. Generally, the tin analogs ( an also be useful for tin-based particulates.
[0105] Copper Oxides - In one embediment, the substantially crystalline copper
composition in a plurality of copper-based particulates can comprise one or more copper
oxides. Of the copper oxides, Cu2O is preferred over CuO, as the Cu2O is subject to
oxidation by oxygen dissolved in water which appears to increase the kinetics of dissolution.
If the copper-based particulate material consists essentially of one or more copper oxides,
however, the material will not be sufficiently bioactive. In one variant, the copper oxide
material can have a substantial amount of one or more of magnesium, zinc, or both, wherein
these cations are either dispersed within the substantially crystalline (or amorphous sparingly
soluble) copper composition or be a separate phase within a paniculate. Generally,

magnesium and zinc co-cations can help stabilize copper hydroxide and prevent its natural
transition to copper oxide. We believe if substantial amounts of zinc and especially
magnesium are included in the crystalline copper oxide material, it will partially disrupt the
crystal and therefore encourage solubility. Copper oxides are less preferred than other
substantially crystalline (or amorphous sparingly soluble) copper compounds, because the
rate of dissolution is so slow. If the crystalline copper in the particles is more than 60%
copper oxide, then preferably the particles have a maximum size of about 50 nanometers, or
have a BET surface area of at least 300 m2/gm, or both. The particulates may need special
treatments and/or properties to provide a bio-active copper concentration, and are more easily
flushed from the wood.
[0106] In any of the below-described embodiments, the substantially crystalline (or
amorphous sparingly soluble) copper composition in copper-based particulates and/or
copper-based particulate material can furtuer comprise one or more copper oxides. Of the
copper oxides, CuO is preferred over Cu2O.
[0107] Copper hydroxides — In a preferred embodiment the substantially crystalline (or
amorphous sparingly soluble) copper composition in a plurality of copper-based particulates
can comprise or consist essentially of copper hydroxides. In a variant of this, the copper-
based particulate material can comprise or consist essentially of copper hydroxides. Of the
copper hydroxides, copper hydroxide including CuOH (usually not stable) and/or Cu(OH)2
can be used, though Cu(OH)2 is preferred over CuOH. In a preferred embodiment of any of
the above, the substantially crystalline (or amorphous sparingly soluble) copper composition
can have a substantial amount of one or more of magnesium, zinc, or both, wherein these
cations are either dispersed within the substantially crystalline (or amorphous sparingly
soluble) copper composition or be a separate phase within a particulate.
[0108] Basic Copper Carbonate - In another preferred embodiment the substantially
crystalline copper composition in a plurality of copper-based particulates can comprise or
consist essentially of alkaline (or "basic") copper carbonates. While various compositions
comprising copper hydroxide and copper carbonate are envisioned, typically alkaline copper
carbonate is[CuCO3 x Cu(OH)2]. In a variant of this, the copper-based particulate material
can comprise or consist essentially of alkaline copper carbonate. In a preferred embodiment
of any of the above, the substantially crystalline (or amorphous sparingly soluble) copper
composition can have a substantial amount of one or more of magnesium, zinc, or both,
wherein these cations are either dispersed within the substantially crystalline (or amorphous
sparingly soluble) copper composition or be a separate phase within a particulate.

[0109] Copper Carbonate - In another embodiment the substantially crystalline copper
composition in a plurality of copper-based particulates can comprise or consist essentially of
copper carbonate, e.g., CUCO3. In a variant of this;, the copper-based participate material can
comprise or consist essentially of alkaline copper carbonate. In a preferred embodiment of
any of the above, the substantially crystalline (or amorphous sparingly soluble) copper
composition can have a substantial amount of one or more of magnesium, zinc, or both,
wherein these cations are either dispersed within the substantially crystalline (or amorphous
sparingly soluble) copper composition or be a separate phase within a particulate. Copper
carbonate is less preferred than basic copper carbonate, as the OH groups in the latter help
keep the pH elevated, thereby reducing copper mobility.
[0110] Tribasic Copper Sulfates — In another preferred embodiment the substantially
crystalline copper composition in a plurality of copper-based particulates can comprise or
consist essentially of basic copper sulfates. In a variant of this, the copper-based particulate
material can comprise or consist essentially of basic copper sulfates. While various
compositions comprising copper hydroxide and copper sulfate are envisioned, typically
alkaline copper sulfate is [CuSO4 x 3Cu(OH)2]. If tribasic copper sulfate is used, the
substantially crystalline (or amorphous sparingly soluble) copper composition can
additionally advantageously have a substantial amount of one or more of magnesium, zinc, or
both, wherein these cations are either dispersed within the substantially crystalline (or
amorphous sparingly soluble) copper composition or be a separate phase within a particulate.
[0111] Alkaline Copper Nitrates - In another embodiment the substantially crystalline
copper composition in a plurality of copper-based particulates can comprise or consist
essentially of alkaline copper nitrates. In a variant of this, the copper-based particulate
material can comprise or consist essentially of alkaline copper nitrates. While various
compositions comprising copper hydroxide and copper nitrate are envisioned, typically
alkaline copper nitrate is [CU(NO3)2 x 3Cu(OH)2]. If alkaline copper nitrate is used, the
substantially crystalline (or amorphous sparingly soluble) copper composition can
additionally advantageously have a substantial amount of one or more of magnesium, zinc, or
both, wherein these cations are either dispersed within the substantially crystalline (or
amorphous sparingly soluble) copper composition or be a separate phase within a particulate.
In the most preferred embodiments of this invention, the wood preservative is substantially
free of copper nitrates, as the nitrogen, may during the degradation process, eventually act as
foodstuff for one or more bio-organisms.

[0112] Copper Oxychlorides - another preferred embodiment the substantially
crystalline copper composition in a plurality of copper-based particulates can comprise or
consist essentially of copper oxychlorides. In a variant of this, the copper-based particulate
material can comprise or consist essentially of copper oxychlorides. While various
compositions comprising copper hydroxide and copper chloride ate envisioned, typically
copper oxychloride is [CuCl2 x 3Cu(OH)3]. In a preferred embodiment of any of the above,
the substantially crystalline (or amorphous sparingly soluble) copper composition can have a
substantial amount of one or more of magnesium, zinc, or both, wherein these cations are
either dispersed within the substantially crystalline (or amorphous sparingly soluble) copper
composition or be a separate phase within a particulate.
[0113] Copper Borate - In another preferred embodiment the substantially crystalline
copper composition in a plurality of copper-based particulates can comprise or consist
essentially of copper borate. Copper borate includes basic copper borate. In a variant of this,
substantially crystalline (or amorphous sparingly soluble) copper composition can have a
substantial amount of one or more of magnesium, .zinc, or both, wherein these cations are
either dispersed within the substantially crystalline (or amorphous sparingly soluble) copper
composition or be a separate phase within a particulate. Generally, the copper borate is
advantageously included in a composition that also comprises copper hydroxide or one or
more of the basic copper anion salts, to help moderate pH and reduce solubility of the copper
borate.
[01141 Copper ferricyanate - In any of the above-described embodiments, the
substantially crystalline (or amorphous sparingly soluble) copper composition in copper-
based particulates and/or copper-based particulate material can further comprise copper
ferricyanate. This embodiment includes less preferably copper ferricyanide. Alternatively,
the substantially crystalline (or amorphous sparingly soluble) copper composition in the
copper-based particulates can comprise or consist essentially of copper ferricyanate,
Cu2[Fe(CN)6]. In another embodiment, the copper-based particulate material can comprise or
consist essentially of copper ferricyanate.
[0115] Copper Fluorosilicate - The substantially crystalline (or amorphous sparingly
soluble) copper composition in copper-based particulates and/or copper-based particulate
material can comprise copper fluorosilicate. Alternatively, the substantially crystalline (or
amorphous sparingly soluble) copper composition in the copper-based particulates can
comprise or consist essentially of copper fluorosilicate. In another embodiment, the copper-
based particulate material can comprise or consist essentially of copper fluorosilicate.

[0116] Copper Thiocyanate - of the above-described embodiments, the
substantially crystalline copper composition in copper-based participates and/or copper-based
particulate material can further comprise copper thiocyanate, though it is generally difficult to
manufacture crystalline copper thiocyanate. Alternatively, the copper composition in the
copper-based particulates can comprise or consist essentially of CuSCN. In another
embodiment, the copper-based particulate material can comprise or consist essentially of
CuSCN.
[0117] Copper diphosphate or Copper pyrophosphate -- In any of the above-described
embodiments, the substantially crystalline copper composition in copper-based particulates
and/or copper-based particulate material can further comprise copper pyrophosphate,
CU2P2O7. Alternatively, the substantially crystalline; (or amorphous sparingly soluble) copper
composition in the copper-based particulates can comprise or consist essentially of copper
pyrophosphate. In another embodiment, the copper-based particulate material can comprise
or consist essentially of copper pyrophosphate.
[0118] Copper Cyanate and/or Copper C yanate - Copper cyanide, Cu(CN)2, and copper
cyanate, Cu(CNO)2, are each a sparingly soluble copper salt, but they are too dangerous to be
useful for copper-based wood preservative treatments. When even a small quantity of copper
cyanate and/or copper cyanide is used, the formulation must be basic, that is, contained in an
alkaline formulation.
[0119] The copper-based particulates can comprise or consist essentially of any of the
above listed sparingly soluble copper compounds. In another preferred embodiment the
substantially crystalline (or amorphous sparingly soluble) copper composition in the copper-
based particulates in a wood preservative formulation can comprise or consist essentially of a
plurality of sparingly soluble substantially crystalline (or amorphous sparingly soluble)
copper salts selected from copper oxide, copper hydroxides; copper carbonates, alkaline (or
"basic") copper carbonates; alkaline copper sulfates; alkaline copper nitrates; copper
oxychlorides; copper borates, and mixtures thereof, with the proviso that at least one of the
substantially crystalline (or amorphous sparingly soluble) copper salts is not a copper oxide.
In a variant of this, the copper-based particulate material can comprise or consist essentially
of one or more sparingly soluble substantially crystalline copper salts selected from copper
hydroxides; copper carbonates, alkaline (or "basic") copper carbonates; alkaline copper
nitrates; alkaline copper sulfates; copper oxychlorides; copper borates, and mixtures theieof.
In any of the above, the substantially crystalline (or amorphous sparingly soluble) copper
composition can have a substantial amount of one or more of magnesium, zinc, or both,

wherein these cations are either dispersed dispersed within the substantially crystalline (or amorphous
sparingly soluble) copper composition or be a separate phase within a participate.
[0120] In preferred embodiments of the invention, at least some particulates comprise
copper hydroxide, basic copper carbonate, or both. In more preferred embodiments, the
copper hydroxide comprises between 6 and 20 parts of magnesium per 100 parts of copper,
for example between 9 and 15 parts of magnesium per 100 parts of copper. Alternatively, in
another more preferred embodiments, the copper hydroxide comprises between 6 and 20
parts total of magnesium and zinc per 100 parts of copper, for example between 9 and 15
parts total of magnesium and zinc per 100 parts of copper. In some embodiments, the basic
copper carbonate comprises between 6 and 20 parts; of magnesium per 100 parts of copper,
for example between 9 and 15 parts of magnesium per 100 parts of copper, or alternatively
between 6 and 20 parts total of magnesium and zinc per 100 parts of copper, for example
between 9 and 15 parts total of magnesium and zinc per 100 parts of copper. Alternatively or
additionally, in a preferred embodiment, t he copper hydroxide and/or basic copper carbonate
comprises between about 0.01 and about 5 parts of phosphate per 100 parts of copper, for
example between 9 and 15 parts of phosphate per 100 parts of copper.
[0121] In another preferred embodiment, slurry comprises a sparingly soluble copper salt
particuiates and also comprises zinc borate particulates. Preferably at least some of the
sparingly soluble copper salt-based particulates comprise copper borate. It is known to use a
two stage process where a zinc or copper salt is injected into the wood followed by a second
step wherein the borax is injected and the insoluble metal borate is formed in situ. Such a
complicated, time-consuming, and therefore expensive process is not sufficiently cost-
effective. As the solubility of copper borate is very pH sensitive, in a preferred embodiment
the sparingly soluble copper salts comprise an alkaline material, e.g., copper hydroxide or
copper carbonate, to reduce the solubility of the copper borate.
[0122] Soluble Substantially Crystalline Copper Salts -- In any of the above-described
embodiments, the substantially crystalline copper composition in copper-based particulates
and/or copper-based particulars material can further comprise one or more soluble
substantially crystalline copper salts, for example copper sulfate, copper fluoroborate; copper
fluoride, or mixtures thereof, where the soluble substantially crystalline copper salts phase is
stabilized against dissolution. Alternatively, the substantially crystalline copper composition
in the copper-based particulates can comprise or consist essentially of one or more soluble
substantially crystalline copper salts, for example, copper fluoroborate; copper sulfate, copper
fluoride, or mixtures thereof, where the soluble substantially crystalline copper salts phase is

stabilized against dissolution. Such protection may be provided by encasing the soluble
copper salts in a shell or a matrix of sparingly soluble copper salts or in insoluble copper
salts, such as copper phosphate.
[0123] In another embodiment, the copper-based particles may be essentially free of
halogen, which means that the weight percent of halogen in the particles is less than about
2.5%. Preferably, the weight percent of halogen in copper-based particles that are essentially
free of halogen is less than about 1%. The copper-based particles may be free of halogen.
[0124] Copper Phosphate - In any of the above-described embodiments, the substantially
crystalline copper composition in copper -based particulates and/or copper-based participate
material can further comprise the substantially insoluble copper salt copper phosphate,
Cu3(PO4)2. Alternatively, the substantially crystalline (or amorphous sparingly soluble)
copper composition in the copper-based particulates can comprise or consist essentially of
Cu3(PO4)2. Generally, in preferred embodiments, if CU3(PO4)2 is present it is a coating over
other sparingly soluble copper salts, whersin the Cu3(PO4)2 provides a fairly inert coating for
a period of time before it dissolves or partially dissolves. If there are copper-based-
particulates substantially comprising Cu3(PO4)2 and/or copper oxide, the particulates should
be exceedingly small, e.g., less than about 0.05 microns, preferably less than about 0.04
microns, to provide maximum surface area to help dissolution of the particles, and the wood
treatment should contain another type of substantially crystalline (or amorphous sparingly
soluble) copper-based particulates, e.g., basic copper carbonate, copper borate, tribasic
copper sulfate, copper hydroxides, and the like.
[0125] Copper 8-Quinolinolate -- In any of the above-described embodiments, the copper
composition in copper-based particulates a id/or copper-based participate material can further
comprise the insoluble copper salt copper 8-quinolinolate. Alternatively, the copper
composition in the copper-based participates can comprise or consist essentially of copper 8-
quinolinolate. Generally, in preferred embodiments, if copper 8-quinolinolate is present it is
a coating over other sparingly soluble copper salts, wherein the copper 8-quinolinolate
provides a fairly inert coating for a period cf time before it dissolves or partially dissolves. If
there are copper-based-particulates substantially comprising copper 8-quinolinolate, the
particulates should be exceedingly small, e.g., less than about 0.01 microns, preferably less
than about 0.005 microns, to provide maximum surface area to help dissolution of the
particles.
[0126] In any of the above-described embodiments, the composition can further comprise
copper quinaldate, copper oxime, or both in particular form.

[0127] In one embodiment, the copper-based particles comprise a substantially crystalline
copper compound. At least about 20%. 30%, 50%, or 75% of the weight of the copper-based
particles may be composed of the substantially crystalline copper compound. In another
embodiment, essentially ai] (e.g., more than 90%, for example more than 95%) of the weight
of the copper-based particles is composed of substantially crystalline copper compound. In
preferred embodiments the particle comprises at least about 20%, preferably at least about
30%, and more preferably at least about 50%, for example at least about 75% by weight of
one or more sparingly soluble copper salts. In another embodiment, essentially all (e.g., more
than 90%, for example more than 95%) of the weight of the copper-based particles is
composed of substantially crystalline copper compound(s).
[0128] In one embodiment of the invention, the copper-based particles are substantially free
of at least one of the halogens, for example, at least one of fluorine, chlorine, bromine, and
iodine. Preferably, the weight percent of the at least one halogen in particles that are
substantially free of the at least one halogen is less than about 25%, for example, less than
about 20%, 15%, 10%, or 5%.
[01291 In one embodiment, the copper-based panicles are essentially free of at least one of
the halogens, for example at least one of fluorine, chlorine, bromine, and iodine. Particles
that are essentially free of at least one halogen have less than about 2.5% of the at least one
halogen. Preferred particles have less than about 1% of the at least one halogen. In one
embodiment, the copper based particles are free of at least one of the halogens.
[0130] In another embodiment, the copper-based particles may be substantially free of
halogen. Preferably, the weight percent of halogen in copper-based particles that are
substantially free of halogen is less than about 25%, for example, less than about 20%, 15%,
10%, or 5%.
10131] Again, the zinc analogs of the above are useful for the zinc-based particulates of the
alternate embodiments of the invention. In one embodiment the copper-based particulate
material can further comprise one or more of crystalline zinc salts selected from zinc
hydroxide; zinc oxides; zinc carbonate; zinc oxychloride; zinc fluoroborate; zinc borate, zinc
fluoride, or mixtures thereof. The zinc salts may be in a separate salt phase, or may be mixed
Cu/Zn salts, or combinations thereof. In preferred embodiments the particle comprises at
least about 40%, preferably at least abou: 60%, and more preferably at least about 80% by
weight of one or more substantially crystalline (or amorphous sparingly soluble) copper salts,
crystalline zinc salts, or mixtures or combinations thereof.

[0132] In one embodiment the copper-base-d particulate preservative treatment for wood can
farther comprise zinc-based particulaies comprising one or more of crystalline zinc salts
selected from zinc hydroxide; zinc ox des; zinc carbonate; zinc oxychloride; zinc
fluoroborate; zinc borate, zinc fluoride, or mixtures thereof. The preferred zinc-based
substantially crystalline material are zinc hydroxide, zinc borate, zinc carbonate, or mixture
thereof, which may be doped with other cations, e.g., from 0.1 to 10% copper, from 0.1 to
10% magnesium, or both, for example, based on the total weight of the cations in the
substantially crystalline (or amorphous sparingly soluble) material. In preferred
embodiments the particle comprises at least about. 40%, preferably at least about 60%, and
more preferably at least about 80% by weight of one or more crystalline zinc salts.
[0133] Preferred embodiments of the nvention comprise particles comprising one or more
of copper hydroxide, alkaline copper carbonate, alkaline copper oxychloride, tribasic copper
sulfate, copper borate, or mixtures thereof. The most preferred embodiments of the invention
comprise particles comprising copper hydroxide, alkaline copper carbonate, copper borate, or
mixtures thereof.
Coatings For The Copper-Based And Zinc-Based Particulates.
[0134] In any of the above-described embodiments, the substantially crystalline copper
composition in copper-based particulates and/or copper-based particulate material can further
comprise one or more materials disposed on the exterior of the particles to inhibit dissolution
of the underlying substantially crystalline (or amorphous sparingly soluble) copper material
at least for a time necessary to prepare the formulation and inject the prepared wood
treatment composition. Over time, however, there is unfavorable particle growth via
dissolution and precipitation processes ani also particle growth via agglomeration. Also, the
particulates are very susceptible to premature dissolution if the slurry is formed with an acidic
water. In preferred embodiments, either the particulates containing, for example, alkaline
copper carbonate, copper hydroxide, copper borate, alkaline copper nitrate, copper
oxychloride, tribasic copper sulfate. Additionally or alternatively the acid-soluble particles
are coated with a substantially inert coating, for example a trace outer coating of e.g. copper
phosphate or copper sulfide, or a coating of a polymeric material such as dispersants, or with
a thin hydrophobic coating, or any combination thereof. In one embodiment the particles are
treated with a dispersing material which is substantially bound to the particles.
[0135] The milled copper-based, zinc-based, and/or tin-based particles described above are
readily slurried and injected into wood after the milling process. Generally, however, milling
is done well before the particles are slurried and injected. The particles may be shipped in a

dry form or in a wet form. The milled particles may be transported to a site as a dry mix or as
a concentrated slurry, which is then formed into an injectable slurry, and then after some
indeterminate storage time the particles may be injected into wood. Particulates in solution
have a tendency to grow over time by 1) the thermodynamically driven tendency of sub-
micron particles in solution to grow by a dissolution/reprecipitation process, where there is a
greater tendency for small particles to slowly dissolve and for the salts to reprecipitate on the
larger crystals. It is not uncommon, in unstabilized slurries, for the median particle size to
increase by 50% over a period of a day or two. The goal is to simultaneously achieve the
critical particle size, particle size distribution, and particle stability at a cost where the
material can be commercially used and at the point where the material will be commercially
used. Therefore, it is advantageous to have a coa.tmg on the particle to substantially hinder
dissolution of the particle while the particle is shurried. However, the coating should not
overly hinder dissolution of the particle in the wood matrix. Further, no coating to hinder
dissolution is desirable for copper oxides particulates.
[0136] Inorganic Coating — Generally, the discussion focuses on the preferred copper-
based particulates, but the compositions and methods are equally applicable to the zinc-based
and tin-based particulates. The substantially crystalline (or amorphous sparingly soluble)
copper-based material, zinc-based material, and/or tin-based material can be stabilized by a
partial or full coating of an inorganic salt. The manufacturing process is amenable to the
formation of a substantially inert inorgaric coating on the particle that will be of such low
thickness that the coating will not substantially hinder particle dissolution in the wood. The
preferred coatings are very low solubility metal salts of the underlying metal cations, e.g.,
copper, zinc, or tin. Exemplary very low solubility salts include copper sulfide (Ksp = 6 E-
36), copper(II) phosphate (Ksp = 1 E-37), and copper 8-quinolinolate (Ksp = 2 E-30). The
selection between sulfide, 8-quinolinolate, and phosphate generally depends on which coating
shows the greatest protection for the particular substantially crystalline (or amorphous
sparingly soluble) material, at the particular size distribution and particle morphology that
may exist. A coating of a very low solubility salt can substantially arrest the
dissolution/reprecipitation process by severely limiting the amount of copper that can
dissolve. The coating, however, is mechanical protection only. Exposed portions of the
underlying substantially crystalline (or amorphous sparingly soluble) copper-, zinc-, or tin-
based particulates are subject to dissolution. Further, the inorganic coating is generally at
most a few atoms to a few nanometers in depth.

[0137] An inorganic coating can be formed during and immediately after the participate
precipitation process, for example by adding after admixing the dissolved copper solution and
the dissolved anion solution together to form the "precipitation solution", e.g., after
precipitation of the substantially crystalline (or amorphous sparingly soluble) particulates has
begun. In one embodiment, the admixed copper-anion solution has a small excess of anions.
Precipitation of the desired copper salts is generally fast, but adding a phosphate composition
(as acid phosphate, or as a partially neutralized acid phosphate) in an amount to give a
concentration between a few hundred ppm and a few percent by weight will cause a layer of
copper sulfate to form, for example, between crystals or even over the crystals of the
substantially crystalline copper material, Alternately, a source of sulfide or 8-quinolinolate
can be added to the precipitation solution. The advantage is the newly formed substantially
crystalline (or substantially amorphous) material is fresh and therefore more reactive toward
the added phosphate ions than would be an aged precipitate. This is not a preferred
mechanism, however, because during milling some of the coating will be abraded away, and
some previously unexposed substantially crystalline (or amorphous sparingly soluble)
material will now be exposed. Additionally, the amount of material used to get the required
concentration of anions in the precipitati on solution is much more than is needed to form a
coating on particulates.
[0138] The particles may be wet-milled using a very fine milling material and a fluid
containing a source of sulfate ions, phosphate ions, or less preferably (because of odor and
handling problems) sulfide ions. In one preferred embodiment, the wet milling process uses
as the milling fluid a composition comprising between a few hundred ppm of phosphate to
about 6% phosphate, for example between 0.1% phosphate to 3% phosphate. Small amounts
of phosphate will take hours or days to form a completely protective coating, while a more
concentrated solution may form a protective coating in minutes. Advantageously the milling
liquid has a pH between about 6 and about 9.5, for example between about 7 and about 8.5.
This high concentration of phosphate is not wasteful because the milling fluid can be re-used,
and also because the milling fluid is a relatively small volume. Such milling in the
phosphate-containing milling fluid, for example for a time ranging from 5 minutes to 4 hours,
typically from 10 minutes to 30 minutes, will promote the formation of a thin coating of
copper phosphate over the substantially crystalline (or amorphous sparingly soluble) copper
material. As the coating is probably only a few atoms in thickness, the coating will dissolve
in good time within the wood so as not to impair exposure of the underlying substantially
crystalline copper material in the wood. Alternatively, a source of sulfide or 8-quinolinolate

can be added to the milling liquid. Sulfide is again not preferred, for safety reasons. If sulfide
is added the pH should be above 8, preferably above 9. The addition of the 8-quinolinolate is
not an inorganic coating, and the adherence of a coating of an organic nature may be
beneficial.
[0139] In another embodiment, the copper-based particles after milling can be exposed to a
rinse solution that contains between a few hundred ppm of phosphate to about 6% phosphate,
for example between 0.1% phosphate to 3% phosphate. U.S. Pat. No. 4,404,169 describes a
process of producing phosphate-stabilized particulates. Phosphate ions are added to a
suspension of copper oxychloride in an aqueous phase. The copper oxychloride is then
reacted with alkali metal hydroxide or alkaline earth metal hydroxide, and the cupric
hydroxide precipitated as a result of the suspension is washed and then re-suspended and
subsequently stabilized by the addition of acid phosphate to adjust a pH value of 7.5 to 9.
The suspended copper oxychloride is reacted in the presence of phosphate ions in an amount
of 1 to 4 grams per liter of the suspension and at a temperature of 20 °C to 25 °C. and the
resulting cupric hydroxide is stabilized with phosphate ions in an amount of 3 to 6 grams per
liter of the suspension. Advantageously, the rinse liquid has a pH between about 6 and about
9.5, for example between about 7 and about 8.5. After contacting the particles,
advantageously for at least a minute or more, this rinse solution can itself be rinsed away with
fresh water. Alternatively, a source of sulfide or 8-quinolinolate can be added to the rinse
liquid. If sulfide is added, the pH should be above 8, preferably above 9.
[0140] In another embodiment, the copper-based particles after milling can be exposed to a
rinse solution that contains between a few hundred ppm of phosphate to about 1% phosphate,
for example between 0.1% phosphate to 0.5% phosphate ions (by weight of the rinse). After
contacting the particles, advantageously, for at least a minute or more, this rinse solution can
itself be rinsed away with fresh water, and the particles can be rinsed with a solution
comprising a few hundred ppm of soluble copper to about 1% soluble copper, for example
between 0.1% phosphate to 0.5% soluble copper ions. This copper-containing solution can
be rinsed off with a minimum quantity of water, and the rinsed particulates can be re-exposed
to a rinse solution that contains between a few hundred ppm of phosphate to about 1%
phosphate, for example, between 0.1% phosphate to 0.5% phosphate ions. Advantageously
the fluids have a pH between about 6 and about 9.5, for example between about 7 and about
8.5.
[0141] In some embodiments some copper-containing particulates are stabilized with a
coating, and some particulates are not subject to such stabilization. For example,

advantageously only the very small particulates, e.g., smaller than about 0.05 microns in
diameter, are stabilized by a low-solubility covering layer.
[0142] The invention also embraces embodiments where particles are substantially free of
an inorganic coating.
[0143] Organic Coating — Copper-bassd particles (or zinc-based particles, or tin-based
particles, or mixtures thereof) of the invention may be used directly to preserve wood or
wood products. The copper-based, zinc-based, or tin-based particles or mixtures thereof may
additionally comprise an organic coating, e.g., an organic layer that partially or completely
covers the exterior surface area of the particulates. The protective organic layer may
additionally function as one or more other active agents, as discussed infra. This organic
coating can comprise a variety of materials having a variety of functions over and above
being an organic layer acting as a protective layer temporarily isolating the sparingly soluble
salt from the aqueous carrier to slow dissolution of particulates in the slurry, including: 1) an
organic biocide carrier, 2) a dispersing/anti-aggregation/wettability modifying agent, 3) one
or more biocides, or any combinations thereof. The oil coating can comprise for example
light oils, dehydrating oils, polymeric film s, organic biocides, disbursing agents, anti-
coagulating agents, or mixtures thereof.
[0144] In one embodiment, at least some of the paniculates are coated with an organic
protective coating. The particulates may have been previously coated with an inorganic
coating. The organic coating should provide a thin layer of organic material that at least
partially coats the particulate and for a period of time reduces the tendency of the sparingly
soluble copper, zinc, and/or tin salts in the particulates to dissolve in the slurry.
[0145] Generally such coatings are extremely thin, with a particulate comprising, for
example, between about 0.1% to about 50% by weight, more typically from about 0.5% to
about 10%, of the weight of the above-mentioned sparingly soluble salts. The coating may
cover only a portion of the exterior surface area, for example only 50% of the external
surface area of a particulate.
[0146] The hydrocarbon composition can include one or more hydrophobic oils, and/or may
comprise an organic compound having one or more polar functional groups which increase
adherence of, for example, mono- and/or poly-carboxylic acids that may be at least partially
neutralized with a metal such as a fatty acid or a polycarylic polymer, a surfactant and/or a
disbursing agent, amphoteric agents, an organic biocide including an amine, azole, triazole,
or any other organic biocides, a film-forming polymer such as a sulfonated ionomer, or
mixtures thereof. These and other organic and/or organometallic components that form an

organic layer will generally be referred to as a "hydrocarbon layer" or "hydrocarbon
composition."
[0147] An organic coating may be formed by contacting particulates with a hydrocarbon
composition containing the materials to be deposited onto the exterior surface of the particle.
The contacting may occur in a slurry or may be done with a paste of water-wetted particulates
or may be done with dried particulates. The less free water, the easier it is to promote
adherence between the hydrocarbon composition to the particulates.
[0148] Heating a mixture of particulates and the hydrocarbon composition will also help the
hydrocarbon composition wet and adhere to the particulates. Advantageously, in one
embodiment most of the solvent of the hydrocarbon composition is volatile and is removed
prior to injection of the particulates into :he wood, This will leave a thin layer of a more
concentrated biocide in heavier oils and/or binders than was found in the hydrocarbon/biocide
composition. The organic coating generally becomes more adherent if the coated particulates
are allowed to age, and/or are subjected to heat, for example, to 35 °C or above for a period
of an hour, for example.
[0149] Incorporating some solvents, typically polar solvents, e.g., at least 10%, for
example, at least 30% or at least 50% by weight of solvents such as one or more of alcohols,
amides, ketones, esters, ethers, glycols, and such into the particulates may help the
hydrocarbon layer composition wet the particulates. and will allow thinner hydrocarbon
layers to be deposited. Solvents are lower molecular weight and higher volatility than oils,
and solvents may be stripped from the organic coating before slurrying the particles or during
kiln drying of the wood. The hydrocarbon composition may therefore comprise optional
solvents and/or diluents, for example, a mixture of an oily or oil-type organochemical
compound and a solvent of low volatility and/or a polar organochemical solvent or solvent
mixture. Organochemical oils which are preferably employed are oily or oil-type solvents
with an evaporation number of above 35 and a flash point of above 30 °C, preferably above
45 °C. Such water-insoluble, oily and oil-type solvents of low volatility which are used are
suitable mineral oils or their aromatic fractions or rnineral-oil-containing solvent mixtures,
preferably white spirit, petroleum and/or alkyl benzene. Mineral oils include those with a
boiling range of from 170 to 220 °C, spindle oil with a boiling range of from 250 to 350 C,
petroleum and aromatics with a boiling range of from 160 to 280 °C, oil of turpentine and the
like. In one embodiment, liquid aliphatic hydrocarbons with a boiling range of from 180 to
210 °C or high-boiling mixtures of aromatic and aliphatic hydrocarbons with a boiling range
of 180 to 220 °C and/or spindle oil and/or monochloronaphthalene are used, for example, a

monochloronaphthalene. The organic oily or oil-type solvents of low volatility and with an
evaporation number of above 35 and a flash point of above 30 °C, preferably above 45 °C,
can be replaced in part by organochemical solvents of high or medium volatility, with the
proviso that the preferred solvent mixture also has an evaporation number of above 35 and a
flashpoint of above 30 °C, preferably 45 °C, and that the biocides and/or other compounds
are soluble or emulsifiable in this solvent/oil mixture. In one embodiment, aliphatic
organochemical solvents which contain hydroxyl and/or ester and/or ether groups are used,
such as, for example, glycol ethers, esters or the like. Advantageously the hydrocarbon
mixture comprises binders to wet and adhere to the particulate, for example, synthetic resins
binding drying oils including linseed oil, and also binders comprising, an acrylate resin, a
vinyl resin, for example polyvinyl acetate, polyester resin, polycondensation or polyaddition
resin, polyurethane resin, alkyd resin or modified alkyd resin, preferably of medium oil
length, phenol resin, hydrocarbon resin such as indene/coumarone resin, silicone resin, drying
vegetable and/or drying oils and/or physically drying binders based on a natural and/or
synthetic resin. Pertinent agricultural dying oils include linseed, soybean, canola, rapeseed,
sunflower, rung and castor oils.
[0150] This organic coating can comprise a variety of materials having a variety of
functions, including, but not limited to, surface-active agents and organic biocides.
[0151] Surface-Active Agents - Agents improving the suspension of the particulates include
dispersants such as phenyl sulfonates, alkylnaphthalene sulfonates and polymerized
naphthalene sulfonates, polyacrylic acids and their salts, polyacrylamides, polyalkoxydiamine
derivatives, polyethylene oxides, polypropylene oxide, polybutylene oxide, taurine
derivatives and their mixtures, and sulfonated ligmin derivatives. Surfactants include anionic
surfactants, cationic surfactants, nonionis surfactants, or combinations thereof.
Polyethyleneimine can act as a surfactant or a stabilizer and will also chelate copper.
Dispersants can be used at 0.1% to 50%. preferably 0.5% to 20% or 5-10% of the particulate
product.
[0152] Organic Biocides - As previously stated, the particles may be combined with one or
more additional moldicides or more generally biocides, to provide added biocidal activity to
the wood or wood products. Preferred preservative treatments comprise copper-based
particles having one or more additional organic biocide(s) that are bound, such as by
adsorption, to a surface of the particles. Wood and wood products may be impregnated
substantially homogeneously with (a) copper-based particles of the invention and (b) a
material having a preservative function, such as a material bound to the surface of the copper-

based particles, By substantially homogeneously we mean averaged over a volume ot at least
one cubic inch, as on a microscopic scale there will be volumes having particulates disposed
therein and other volumes within the wood that do not have particulates therein. Thus, the
distribution of preservative function within the wood or wood product is preferably not
heterogeneous.
[0153] The absolute quantity of organic biocides is very low. In general, the biocides are
present in a use concentration of from 0.1% to 20%, preferably 1% to 5%, based on the
weight of the copper salts. The sparingly soluble copper-salt particulates of this invention are
typically expected to be added to wood in an amount equal to or less than 0.25 pounds as
copper per cubic foot. The organic biocide(s) at a 4% loading relative to the copper are
present at about 0.16 ounces or about 3 to 4 milliliters of biocide per cubic foot. The organic
biocides are often insoluble in water, which is the preferred fluid carrier for injecting the
wood preservative treatment into wood, so getting adequate distribution of the biocide within
the wood matrix is problematic. In prior art formulations, the wood preservative may be, for
example, admixed in a large excess of oil, and the oil emulsified with water and admixed
with the soluble copper for injection into the wood. Problems arise if the injection is delayed,
or if the slurry has compounds which break the emulsion, and the like.
[0154] The greatest benefit is that a portion or all of the organic biocides incorporated into
the wood preservative treatment can advantageously be coated on to the particulates. By
adhering the biocides on particulates, a more even distribution of biocide in ensured, and the
copper is disposed with the biocide and therefore is best positioned to protect the biocide
from those bio-organisms which may degrade: or consume the biocide. Finally, a formulation
with biocide adhering to particulate s does not face the instability problems that emulsions
face.
[0155] Generally, so little of the organic biocide is needed that it is dissolved in and diluted
with sufficient hydrocarbon material to make the phase of appreciable size. The organic
material/biocide mixture can be contacted with particulates in a slurry, though it may be
difficult to have the hydrocarbon phase adhere to the particulates. Pretreating the particulates
with a coating of for example 8-quinolinolate will greatly increase the likelihood of the
biocide absorbing on the particulate. The particulates may be concentrated, for example, to
an at least 40% by weight particulates in water slurry before admixing in with the
hydrocarbon/biocide composition.
[0156] The biocides can be any of the known organic biocides. Exemplary materials having
a preservative function include materials having at least one of one or more: azoles; triazoles;

imidazoles, pyrimidinyl carbinoles; 2-amino-pyrimidines; morpholines; pyrroles
phenylamides; benzimidazoles; carbamates; dicarboximides; carboxamides;
dithiocarbamates; dialkyldithiocarbamates; N-halomethyltbio-dicarboximides; pyrrole
carboxamides; oxine-copper, guanidines; strobilurines; nitrophenol derivatives; organo
phosphorous derivatives; polyoxins; p) rrolethioamides; phosphonium compounds; polymeric
quaternary ammonium borates; succinaite dehydrogenase inhibitors; formaldehyde-releasing
compounds; naphthalene derivatives; sulfenamides; aldehydes; quaternary ammonium
compounds; amine oxides, nitroso-amines, phenol derivatives; organo-iodine derivatives;
nitrites; quinolines such as 8-hydroxyquinoline including their Cu salts; phosphoric esters;
organosilicon compounds; pyrethroids; nitroimines and nitromethylenes; and mixtures
thereof.
[0157] Exemplary biocides include Azoles such as azaconazole, bitertanol, propiconazole,
difenoconazole, diniconazole, cyproconazole, epoxiconazole, fluquinconazole, flusiazole,
flutriafol, hexaconazole, imazalil, imibenconazole, ipconazole, tebuoonazole, tetraconazole,
fenbuconazole, metconazole, myclobutanil, perfurazoate, penconazole, bromuconazole,
pyrifenox, prochloraz, triadimefon, triacllmenol, triffumizole or triticonazole; pyrimidinyl
carbinoles such as ancymidol, fenarimol or nuarimol; chlorothalonil; chlorpyriphos; N-
cyclohexyldiazeniumdioxy; dichlofluanid; 8-hydroxyquinoline (oxine); isothiazolone;
imidacloprid; 3-iodo-2-propynylbutylcarbamate tebuconazole; 2-(thiocyanomethylthio)
benzothiazole (Busan 30); tributyltin oxide; propiconazole; synthetic pyrethroids; 2-amino-
pyrimidines such as bupirimate, dimethirimol or ethirimol; morpholines such as dodemorph,
fenpropidin, fenpropimorph, spiroxanin or tridemorph; anilinop3Timdines such as cyprodinil,
pyrimethanil or mepanipyrim; pyrroles such as fenpiclonil or fludioxonil; phenylamides such
as benalaxyl, furalaxyl, metalaxyl, R-me alaxyl, ofurace or oxadixyl; benzimidazoles such as
benomyl, carbendazim, debacarb, fuberidazole or thiabendazole; dicarboximides such as
chlozolinate, dichlozoline, iprdine, myclozoline, procymidone or vinclozolin; carboxamides
such as carboxin, fenfuram, flutolanil, mepronil, oxycarboxin or thifluzamide; guanidines
such as guazatne, dodine or iminoctadine; strobilurines such as azoxystrobin, kresoxim-
methyl, metominostrobin, SSF-129, methyl 2-[(2-trifluoromethy1)pyrid-yloxymethyl]-
3methoxycacrylate or 2-[α{[(α-methyl-3-trifluoromethyl-benzyl)imino]oxy}-o-toly]glyoxylic
acid-methylester-o-methyloxime (trifloxystrobin); dithiocarbamates such as ferbam,
mancozeb, maneb, metiram, propineb, thiram, zineb, or ziram; N-halomethylthio-
dicarboximides such as captafol, captan, dichlofluanid, fluorormide, folpet or tolfluanid;
nitrophenol derivatives such as dinocap or nitrothal-isopropyl; organo phosphorous

derivatives such as editenphos, probenphos, isoprotmoiane, phosdiphen, pyrazophos or
toclofos-methyl; and other compounds of diverse structures such as aciberolar-S-methyl,
anilazine, blasticidin-S, chinomethionat chloroneb, chlorothalonil, cymoxanil, dichlone,
dicomezine, dicloran, thethofencarb, dimethomorph, dithianon, etridiazole, famoxadone,
fenamidone, fentin, ferimzone, fluazinari, flusuffamide, fenhexamid, fosetyl-alurinium,
hymexazol, kasugamycin, methasuifocarb, pencycuron, phthalide, polyoxins, probenazole,
propamocarb, pyroquilon, quinoxyfen, qaintozene, sulfur, triazoxide, tricyclazole, triforine,
validamycin, (S)-5-methyl-2-methylthio-5-phenyl-3-phenyl-amino-3,5-dihydroimidazol-4-
one (RPA 407213), 3,5-dichloro-N-(3-cUro-l-ethyl-l-methyl-2-oxopropyl)-4-
methylbenzamide (RH7281), N-alkyl-4,5-dimethyl-2-timethylsilylthiophene-3-carboxamide
(MON 65500), 4-chloro-4-cyano-N,N-di:methyl-5-p-tolylimidazole-l-sulfonaniide (IKF-916),
N-(l-cyano-l,2-dimethyIpropyl)-2-(2,4dichloropbenoxy)-propionamide (AC 382042), or
iprovalicarb (SZX 722). Also included are the biocides including pentachlorophenol,
petroleum oils, phenothrin, phenthoate, phorate, as well as trifluoromethylpyrrole
carboxamides and trifluoromethylpyrrolethioamides described in US Patent No. 6,699,818;
Triazoles such as amitrole, azocylotin, bilertanol, fenbuconazole, fenchlorazole, fenethanil,
fluquinconazole, flusilazole, flutriafol, imibenconazole, isozofos, myclobutanil, metconazole,
epoxyconazole, paclobutrazol, (+)-cis-1-(4-chlorophenyl)-2-( 1H-1,2,4-triazol-1-yl)-
cycloheptanol, tetraconazole, triadimefon triadimenol, triapenthenol, triflumizole,
triticonazole, uniconazole and their metal salts and eicid adducts; Imidazoles such as Imazalil,
pefurazoate, prochloraz, triflumizole, 2-(1-tert-butyl)-1-(2-chlorophenyl)-3-(l,2,4-triazol-1-
yl)-propan-2-ol, thiazolecarboxanilides such as 2', 6'-dibromo-2-methyl-4-trifluoromethoxy-
4'-trifluoromethyl-l,3-thiazole-5-carboxanilide; fungicides such as azaconazole,
bromuconazole, cyproconazole, dichlobutrazol, diniconazole, hexaconazole, metconazole,
penconazole, epoxyconazole, methyl (E)-methoximino[α-(o-tolyloxy)-o-tolyl)]acetate,
methyl(E)-2-{2-[6-(2-cyanophenoxy)-pyiimidin-4-yl-oxy]phenyl}-3-methoxyacrylate,
methfuroxam, carboxin, fenpiclonil, 4(2,2 difluoro-1,3-benzodioxol-4-yl)-lH-pyrrole-3-
carbonitrile, butenafine, and 3-iodo-2-propynyl-n-butylcarbamate (IPBC); triazoles such as
described in U.S. Patents Nos. 5,624,916, 5,527,816. and 5,462,931; the biocides described in
U.S. Patent No. 5,874,025; 5-[(4-chlorophenyl)methyl]-2,2-dimethyl-l-(lH-l,2,4-triazol-l-
yl-methyl)cyclopentanol;Methyl(E)-2-[2-6-(2-cyanophenoxy)pyrimidin-4-yloxy]phenyl]3-
methoxyacrylate;methyl(E)-2-[2-[6-(2-thioamidophenoxy)pyrimidin-4-yloxy]phenyl]-3-
methoxyacrylate;methyl(E)-2-[2-[6-(2-fluorophenoxy)pyrimidin-4-yloxy]phenyl]-3-
methoxyacrylate;methyi(E)-2-[2-[6-(2,6-difluorophenoxy)pyrimidin-4-yloxy]phenyl]-3-

methoxyacrylate; methyl(E)-2-[2-[3-(pyrimidin-2-yloxy)phenoxy]phenyl]-3-
methoxyacrylate;methyl(E)-2-[2-[3-(5-methylpyrimidin-2-yloxy)-phenoxy]phenyl]-3-
methoxyacrylate;methyl(E)-2-[2-[3-(phenylsulphonyloxy)phenoxy]phenyl]-3-
methoxyacrylate, methyl(E)-2-[2-[3-(4-nitrophenoxy)phenoxy]phenyl]-3-methoxyacrylate;
methyl(E)-2-[2-phenoxyphenyl]-3-methoxyacrylate;methyl(E)-2-[2-(3,5-
dimethylbenzoyl)pyrrol-1 -yl]-3-methoxyacrylate; methyl(E)-2-[2-(3-
methoxyphenoxy)phenyl]-3-methoxyacrylate;methyl(E)-2-[2-(2-phenylethen-1-yl)-phenyl]-
3-methoxyacrylate;methyl(E)-2-[2-(3,5-dichlorophenoxy)pyridin-3-yl]-3-methoxyacrylate;
methyl(E)-2-(2-(3-( 1,1,2,2-tetrafluoroethoxy)phenoxy)phenyl)-3-methoxyacrylate;
methyl(E)-2-(2-[3-(alphahydroxybenzyl)phenoxy]phenyl)-3-methoxyacrylate;methyl(E)-2-
(2-(4-phenoxypyridin-2-yloxy)phenyl)-3-methoxyacrylate;methyl(E)-2-[2-(3-n-
propyloxyphenoxy)phenyl]-3-methoxyacrylate; methyl(E)-2-[2-(3-
isopropyloxyphenoxy)phenyl]-3-memoxyacrylate;memyl(E)-2-[2-[3-(2-
fluorophenoxy)phenoxy]phenyl]-3-methoxyacrylate;methyl(E)-2-[2-(3-
ethoxyphenoxy)phenyl]-3-methoxyacryla:e;methyl(E)-2-[2-(4-tert-butylpyridin-2-
yloxy)phenyl]-3-methoxyacrylate; methyl(E)-2-[2-[3-(3-cyanophenoxy)phenoxy]phenyl]-3-
methoxyacrylate; methyl(E)-2-[2-[(3-methylpyridin-2-yloxymethyl)phenyl]-3-
methoxyacrylate; methyl(E)-2-[2-[6-(2-methylphenoxy)pyrimidin-4-yloxy]phenyl]-3-
methoxyacrylate;methyl(E)-2-[2-(5-bromopyridin-2-yloxymethyl)phenyl]-3-
methoxyacrylate; methyl(E)-2-[2-(3-(3-iodopyridin-2-yloxy)phenoxy)phenyl]-3-
methoxyacrylate;methyl(E)-2-[2-[6-(2-chloropyridin-3-yloxy)pyrimidin-4-yloxy]phenyl]-3-
methoxyacrylate; (E),(E)-methyl-2-[2-(5,6-dimethylpyrazin-2-
ylmethoximinomethyl)phenyl]-3-methoxyacrylate;(E)-methyl-2-{2-[6-(6-methylpyridin-2-
yloxy)pyrimidin-4-yloxy]phenyl}-3-methoxyacrylate;(E),(E)-methyl-2-{2-[(3-
methoxyphenyl)methyloximinomethyl]phenyl}-3-methoxyacrylate; (E)-methyl-2- {2-[(6-(2-
azidophenoxy)-pyrimidin-4-yloxy]phenyl} -3-methoxyacrylate; (E),(E)-methyl-2- {2-[(6-
phenylpyrimidin-4-yl)-methyloximinomethyl]phenyl}-3- methoxyacrylate; (E),(E)-methyl-2-
{2-[(4-chlorophenyl)-methyloximinomethyl]phenyl}-3-methoxyacrylate; (E)-methyl-2-{2-[6-
(2-n-propylphenoxy)-l,3,5-triazin-4-yloxy]phenyl}-3-methoxyacrylate;(E),(E)-methyl-2-{2-
[(3-nitrophenyl)methyloximinomethyl]phenyl}-3-methoxyacrylate; Succinate dehydrogenase
inhibitors such as Fenfuram, furcarbanil, cyclafluramid, furmecyclox, seedvax, metsulfovax,
pyrocarbolid, oxycarboxin, shirlan, mebenil (mepronil), benodanil, and flutolanil;
Benzimidazoles, such as carbendazim, bencmyl, furathiocarb, fuberidazole,
thiophonatmethyl, thiabendazole or their salts; Morpholine derivatives, such as tridemorph,

fenpropimorph, falimorph, dimethomorpa, dodemorph; aldimorph, fenproprdine and their
arylsulphonates, such as, for example, p- oluenesulphonic acid and p-
dodecylphenylsulphonic acid; Benzothiazoles, such as 2-mercaptobenzothiazole;
Benzamides, such as 2,6-dichloro-N-(4-trifluoromethylbenzyl)-benzarnide; Formaldehyde
and formaldehyde-releasing compounds, such as benzyl alcohol mono(poly)-hemiformal,
oxazolidine, hexa-hydro-S-triazines, N-methylolchloroacetamide, paraformadehyde,
nitropyrin, oxolinic acid, tecloftalam; Tris-N-(cyclohexyldiazeneiumdioxy)-aluminium; N-
(cyclohexyldiazeneiumdioxy)-tributyltin;N-octyl-isothiazolin-3-one;4,5-trimethylene-
isothiazolinone; 4,5-benzoisothiazolinone; N-methylolchloroacetamide; Pyrethroids, such as
allethrin, alphamethrin, bioresmethrin, by fenthrin, cycloprothrin, cyfiuthrin, decamethrin,
cyhalothrin, cypermethrin, deltamethrin, alpha-cyano-3-phenyl-2-methylbenzyl 2,2-dimethyl-
3-(2-chloro-2-trifluoro-methylvinyl)cyclopropane-carboxylate, fenpropathrin, fenfluthrin,
fenvalerate, flucythrinate, flumethrin, fluvalinate, permethrin, resmethrin and tralomethrin;
Nitroimines and nitromethylenes, such as l-[(6-chloro-3-pyridinyl)-methyl]-4,5-dihydro-N-
nitro-1H-imidazol-2-amine (imidacloprid), and N-[(6-chloro-3-pyridyl)methyl]-N2-cyano-N1-
methylacetamide (NI-25); Quaternary ammonium compounds, such as
didecyldimethylammonium salts, benzyldimethyltetradecylammonium chloride,
benzyldimethyldodecylammonium chloride, and didecyldimethaylammonium chloride;
Phenol derivatives, such as tribromophenol, tetrachlorophenol, 3-methyl-4-chlorophenol, 3,5-
dimethyl-4-chlorophenol, phenoxyethanol dichlorophene, o-phenylphenol, m-phenylphenol,
p-phenylphenol, 2-benzyl-4-chlorophenol ,and their alkali metal and alkaline earth metal salts;
iodine derivatives, such as diiodomethyl p tolyl sulphone, 3-iodo-2-propynyl alcohol, 4-
chloro-phenyl-3-iodopropargyl formal, 3-t romo-2,3-diiodo-2-propenyl ethylcarbamate,
2,3,3-triiodoallyl alcohol, 3-bromo-2,3-diiodo-2-propenyl alcohol, 3-iodo-2-propynyl n-
butylcarbamate, 3-iodo-2-propynyl n-hexylcarbamate, 3-iodo-2-propynyl cyclohexyl-
carbamate, 3-iodo-2-propynyl phenylcarbamate; Microbicides having an activated halogen
group, such as chloroacetamide, bronopol, bronidox, tectamer, such as 2-bromo-2-nitro-l,3-
propanediol, 2-bromo-4'-hydroxy-acetophenone, 2,2-dibromo-3-nitrile-propionamide, 1,2-
dibromo-2,4-dicyanobutane, p-bromo-P-nitrostyrene; and combinations thereof. These are
merely exemplary of a few classes of the known and useful biocides, and the list could easily
extend for pages.
[0158] The preferred biocides are oil-soluble, and include quaternary ammonium
compounds including, for example, didecyldimethylammonium salts; azoles/triazoles
including, for example, N-alkylated tolytriazoles, metconazole, imidacloprid, hexaconazole,

azabonazole, propiconazole, tebuconazole, cyproconazole, bromoconazole, and tridemorph
tebuconazole; moldicides; HDO available commercially by BASF, or mixtures thereof.
Biocides such as tebuconazole are quite soluble in common organic solvents, while others
such as chlorothalonil possess only low solubility.
[0159] To apply the biocide to particulates, the biocide/hydrocarbon composition is
admixed, taking care that the biocide is dispersed and preferably solubilized in the
hydrocarbon composition. The biocide/hydrocarbon composition can be prepared in a
manner known per se, for example, by mixing the active compounds with the solvent or
diluent, emulsifier, dispersant and/or binder or fixative, water repellant, and, if appropriate,
dyes and pigments and other processing auxiliaries. Then, the biocide/hydrocarbon
composition is admixed with particulates where the particulates can be suspended in a slurry,
be wet, or be dry. The composition is mixed to aid the wetting of and distribution of the
biocide/hydrocarbon composition to particulates. The composition may be heated, for
example to about 40 °C, and is also beneficially allowed to sit for a period ranging from
minutes to hours. The mixture can then be incorporated into a slurry or be dried or
formulated into a stable concentrated slurry for shipping.
[0160] In an alternative embodiment, the biocide/hydrocarbon composition is applied as a
spray or aerosol onto individual particles, such as particles suspended in a gas stream. These
coated particulates are then treated to prevent coalescence by, for example, drying the oil to
remove tackiness, or coating the particle with other adjuvants such as anticoagulants,
wettability agents, dispersibility agents, an i the like. Such a product can be- stored, shipped,
and sold as a dry pre-mix.
[0161] In another embodiment, the particles are wetted with a light hydrocarbon material,
which may or may not contain biocide, and the hydrocarbon material is then substantially
removed by washing or drying, leaving a very thin layer of hydrocarbon residue that may
range, for example, from 1 to 30 nanometers thick. Such a very thin layer will have
negligible tackiness and negligible weight, but will protect the particulate from dissolution
and will discourage coagulation in the slurry.
[0162] Alternate Organic Biocide Carrier -- In another embodiment, only a fraction of the
particulates, be they copper-based, zinc-based, or tin-based, may be coated with the
hydrocarbon/biocide combination. Some precipitation techniques are known to produce salts
having high porosity, and these high porosity salts can absorb a substantial quantity of the
biocide therein without forming a tacky coaling.

[0163] In another embodiment, the organic biocide/hydrocarbon composition is contacted
with a porous inert participate carrier, for example 0,1 micron in diameter high porosity
alumina, silica, zeolites, diatomaceous earth, attapulgite clay, or the like. Such material is
readily available. For example, U.S. Patent 5,527,423 disclosed alumina with a maximum
particle size below 0.3 microns, having high porosity as evidenced by a BET surface area of
several hundred square meters per gram, and shows this material can be made info a stable
stony. Preferred zeolites include Ag, Zn or Cu-containing zeolites, which themselves have a
biocidal activity. These carrier materials are inexpensive, they do not contribute bio-
nourishment as does the polymeric nanoparticles, and the rigid
alumina/silica/zeolite/diatom/clay particilates will hold the biocides within the pores thereof
during preparation of the slurry and injection of the slurry, or for example during admixing
with glue and/or resins to make wood composites. Therefore, such inert carrier/organic
biocide particulates and, additionally or alternatively, biocidal zeolite/organic biocide
particulates would be useful even with the soluble copper wood preservative treatments in
commercial use today. Such particulates advantageously have a solid, typically insoluble,
crystalline structure that is advantageously between about 0.01 to about 0.3 microns in
average diameter, for example, between about 0.05 to about 0.2 microns in average diameter.
A method of manufacturing said particulates is to pull a vacuum on a quantity of dry carrier
material, and then introduce thereto a composition comprising a major portion (eg., 50% to
90%) of solvents), advantageously a minor portion (e.g., 5% to 48%) of oil(s), and including
between 1% and 40% of organic biocides. The composition is mixed with the inert carrier
and pressure may be exerted to fill the pores of the inert carrier material with the
composition. Then, the solvents and optionally some of the oils may be removed by drying,
heat, or by vacuum. Assuming 30% effective porosity in an alumina carrier is filled to one
third with a hydrocarbon/biocide composition having 20% by weight of biocide, the total
amount of biocide carrier material needed to treat 100 cubic feet of wood would be about 1 to
2 cups of alumina. Beneficially, organic biocide is slowly leached from the particulates. The
biocide formulation in an inert particulate carrier advantageously comprises oils to help
transport biocide from the center of the particulate to the exterior of the particulate, and/or
may include binders to increase the tenacity of the biocide to the particulates. These
particulates will protect the biocide dispersed within the pores thereof, and will reduce the
leach rate of the biocide. These particulates are an improvement over emulsions in that they
ensure a stable formulation and uniform dispersion of the organic biocides in wood. The
carrier material, for example alumina, can be milled with the same equipment used to mill the

copper salt containing particulates. These biocide-containing polymers can then be slurried
with the copper-based particulates of the current invention and both solids can be injected.
The advantage of this process is that the carrier, for example, alumina, can be separately
prepared and treated so that the alumina will not be tacky, by, for example, driving off the
lighter oils and leaving only a very thin layer of biocide within the pores of the carrier. A
second advantage is that the alumina/biocide can be used as a filler in a premix, thereby
encouraging mixing properties.
[0164] An exemplary preservative of the invention comprises a flowable material
comprising copper-based particles of the invention. Exemplary flowable materials include
liquids, emulsions, slurries, and suspens ons.
[0165] In one embodiment, a preservative of the invention comprises one or more materials
additional to the copper-based particles, the additional materials preferably also providing a
preservative function. For example, an exemplary preservative comprises an emulsion
comprising the copper-based particles, where at least one phase of the emulsion may
comprise one or more materials having a preservative function. Exemplar)' materials having
a preservative function include materials having at least one of one or more triazole groups,
one or more quaternary amine groups, and one or more nitroso-amine group. Mixtures of
these materials may be used. Preferred preservative materials inhibit organisms that may be
resistant to copper-based preservatives, Biocides useful in wood or wood product
preservation are preferred materials. Preferred preservatives comprise copper-based particles
comprising one or more materials having a preservative function that are bound, such as by
adsorption, to a surface of the particles. Wood and wood products may be impregnated
substantially homogeneously with (a) copper-based particles of the invention and (b) a
material having a preservative function, such as a material bound to the surface of the copper-
based particles. Thus, the distribution of preservative function within the wood or wood
product is made more heterogeneous by being absorbed onto the particulates.
[0166] Finally, in one embodiment the wood preservative treatment may comprise a portion
of the organic biocide coated on the copper-based particulates and another portion of the
organic biocide with a particulate inert carrier. The carrier particulates containing organic
biocides and/or the copper-based particulates may be treated to reduce tackiness.
Injectable Slurry
[0167] In a variation of the invention, the slurry comprises: a liquid carrier; injectable solid
particulates comprising one or more organic biocides; and one or more soluble copper salts or
complexes including the soluble copper treatments described in the prior art. The injectable

particulates can be copper-based particulates, zinc-based participates, tin-based particulates,
inert carrier-based particulates, bioactive zeolite-based particulates, or mixtures thereof. The
particulates in this variant of the invention are primarily earners for the organic biocides. An
exemplary particle comprises copper hydroxide having an average particle diameter of less
than about 500 nanometers, for example less than about 250 nanometers, or less than about
200 nanometers, as measured by Stokes Law. Preferably, the average particle diameter is at
least 25 nanometers, for example, at leas: 50 nanometers. In one embodiment of the
invention, the particles have a surface area of at least about 10 m2/gram of particles, for
example, at least about 40 nr/gram of particles, for example, at least about 75 m2/ gram of
particles, for example about 80 m2/gram of particles. The particle size distribution of the
particulates in one embodiment is such that at least about 30% by weight of the particulates
have an average diameter between about 0.07 microns and about 0.5 microns, or preferably at
least about 50% by weight of the particulates have an average diameter between about 0.1
microns and about 0.4 microns.
[0168] In another variation of the invention the slurry comprises: a liquid carrier; injectable
solid particulates comprising a slightly soluble copper salt; and particulates comprising
metallic copper and/or zinc. An exemplary particle having an average particle diameter of
less than about 500 nanometers, for example, less than about 250 nanometers, or less than
about 200 nanometers, as measured by Stokes Law, and the average particle diameter is at
least 25 nanometers, for example, at least 50 nanometers. The particle size distribution of the
particulates in one embodiment is such that at least about 30% by weight of the particulates
have an average diameter between about 0.02 microns and about 0.4 microns, or preferably at
least about 50% by weight of the particulars have an average diameter between about 0.05
microns and about 0.3 microns. The metallic copper and/or metallic zinc particulates have
both a minor biocidal effect and also an anti-corrosion effect. The amount of metal, either
copper, zinc, or both, in the anti-corrosion metallic particulates can range from about 1 part to
about 25 parts per 100 parts of particulates comprising slightly soluble copper salts. The
metal-containing particulates in this variant of the invention are primarily anti-corrosion
additives, though they will have some biocidal effect. Further, organic biocides can be
readily coated onto these metal-containing particulates. In one embodiment of this variant,
the slurry comprises: A) a liquid carrier; B) injectable solid particulates comprising metallic
copper and/or metallic zinc and also one or more organic biocides, and either C-1) one or
more soluble copper salts or complexes including the soluble copper treatments described in

the prior art, C-2) one or more injectable particulates comprising slightly soluble salts of
copper and/or zinc, or C-3) both.
[0169] The copper-based particulates can comprise or consist essentially of any sparingly
soluble substantially crystalline (or sparingly soluble amorphous) copper salts. In one
embodiment the substantially crystalline (or amorphous sparingly soluble) copper salts in the
copper-based particulates comprise or consist essentially of one or more copper salts selected
from copper hydroxides; copper carbonates (e.g., "yellow" copper carbonate); basic (or
"alkaline") copper carbonates; basic copper sulfates including particularly tribasic copper
sulfate; basic copper nitrates; copper oxychlorides (basic copper chlorides); copper borates;
basic copper borates; copper ferricyanate copper fluorosilicate; copper thiocyanate; copper
diphosphate or copper pyrophosphate, copper cyanate; and mixtures thereof. In one
embodiment, the copper-based particles comprise a substantially crystalline copper
compound. At least about 20%, 30%, 50%, or 75% of the weight of the copper-based
particles may be composed of the substantially crystalline copper compound(s).
[0170] In a preferred embodiment, the substantially crystalline (or amorphous sparingly
soluble) copper salts in the copper-based particulates comprise or consist essentially of one or
more copper salts selected from copper hydroxides; copper carbonates, basic (or "alkaline")
copper carbonates; basic copper sulfates including particularly tribasic copper sulfate; basic
copper nitrates; copper oxychlorides (basic copper chlorides); copper borates, basic copper
borates, and mixtures thereof. In one embodiment, the copper-based particles comprise a
substantially crystalline copper compound. At least about 20%, 30%, 50%, or 75% of the
weight of the copper-based particles may be composed of the substantially crystalline copper
compound.
[0171] In another embodiment the substantially crystalline (or amorphous sparingly
soluble) copper salts in the copper-based particulates in a wood preservative formulation can
comprise or consist essentially of a plurality of sparingly soluble substantially crystalline (or
amorphous sparingly soluble) copper salts selected from copper oxide, copper hydroxides;
copper carbonates, alkaline (or "basic") copper carbonates; alkaline copper sulfates; alkaline
copper nitrates; copper oxychlorides; copper borates, basic copper borates, and mixtures
thereof, with the proviso that at least one of the substantially crystalline (or amorphous
sparingly soluble) copper salts is not a copper oxide. Of the copper oxides, Cu2O is preferred
over CuO. In a variant of this, the copper-based particulate material can comprise or consist
essentially of one or more sparingly soluble substantially crystalline copper salts selected
from copper hydroxides; copper carbonates, alkaline (or "basic") copper carbonates; alkaline

copper nitrates, alkaline copper sulfates; copper oxychlorides; copper borates, basic copper
borates, and mixtures thereof. In one embodiment, the copper-based particles comprise a
substantially crystalline copper compound. At least about 20%, 30%, 50%, or 75% of the
weight of the copper-based particles may be composed of the substantially crystalline copper
compound(s).
[0172] In any of the above, the substantially crystalline (or amorphous sparingly soluble)
copper composition can have a substantial amount of one or more of magnesium, zinc, or
both, wherein these cations are either dispersed within the substantially crystalline (or
amorphous sparingly soluble) copper composition, or be a separate phase within a particulate.
In preferred embodiments of the invention, at least some particulates comprise copper
hydroxide, basic copper carbonate, or both. In more preferred embodiments, the copper
hydroxide comprises between 6 and 20 parts of magnesium per 100 parts of copper, for
example between 9 and 15 parts of magnesium per 100 parts of copper. Alternatively, in
another more preferred embodiments, the copper hydroxide comprises between 6 and 20
parts total of magnesium and zinc per 100 parts of copper, for example between 9 and 15
parts total of magnesium and zinc per 100 parts of copper. In some embodiments, the basic
copper carbonate comprises between 6 and 20 parts of magnesium per 100 parts of copper,
for example between 9 and 15 parts of magnesium per 100 parts of copper, or alternatively
between 6 and 20 parts total of magnesium and zinc per 100 parts of copper, for example
between 9 and 15 parts total of magnesium and zinc per 100 parts of copper. Alternatively or
additionally, in a preferred embodiment, the copper hydroxide and/or basic copper carbonate
comprises between about 0.01 and about 5 parts of phosphate per 100 parts of copper, for
example between 9 and 15 parts of phosphite per 100 parts of copper.
[0173] In another preferred embodiment, the slurry comprises a sparingly soluble copper
salt particulates and also comprises zinc borate particulates. Preferably, at least some of the
sparingly soluble copper salt-based particulates comprise copper borate. It is known to use a
two stage process where a zinc or copper salt is injected into the wood followed by a second
step, wherein the borax is injected and the insoluble metal borate is formed in situ. Such a
complicated, time-consuming, and therefore expensive process in not sufficiently cost-
effective. As the solubility of copper borate is very pH sensitive, in a preferred embodiment
the sparingly soluble copper salts comprise an alkaline material, e.g., copper hydroxide or
copper carbonate, to reduce the solubility of the copper borate. The zinc borate loading can
range from 0.025% to 0.5%, for example, independent of the copper loading in the wood.

[0174] In any of the above described embodiments, the substantially crystalline copper
composition in copper-based particulates and/or copper-based particuiate material can further
comprise one or more soluble substantially crystalline copper salts, for example copper
sulfate, copper fluoroborate; copper fluoride, or mixtures thereof, where the soluble
substantially crystalline copper salts phase is stabilized against dissolution.
[0175] In any of the above-described embodiments, the substantially crystalline copper
composition in copper-based particulates and/or copper-based particuiate material can further
comprise the substantially insoluble copper salt copper phosphate, Cu3(PO4)2. In any of the
above-described embodiments, the copper composition in copper-based particulates and/or
copper-based particuiate material can further comprise the insoluble copper salt copper 8-
quinolinolate. In any of the above-described embodiments, the composition can further
comprise copper quinaldate, copper oxime, or both in particuiate form. If there are copper-
based-particulates substantially comprising Cu3(PO4)2 and/or copper oxide and/or copper 8-
quinolinolate, the particulates should be exceedingly small, e.g., less than about 0.07 microns,
preferably less than about 0.05 microns, to provide maximum surface area to help dissolution
of the particles, and the wood treatment :,hould contain another type of substantially
crystalline (or amorphous sparingly soluble) copper-based particulates, e.g., basic copper
carbonate, basic copper borate, tribasic capper sulfate, copper hydroxides, and the like.
[0176] The zinc analogs of the above are useful for the zinc-based particulates of the
alternate embodiments of the invention. In one embodiment the copper-based particuiate
material can further comprise one or more of crystalline zinc salts selected from zinc
hydroxide; zinc oxides; zinc carbonate; zinc oxychloride; zinc fluoroborate; zinc borate, zinc
fluoride, or mixture thereof. The zinc salts may be in a separate salt phase, or may be mixed
Cu/Zn salts, or combinations thereof. In preferred embodiments the particle comprises at
least about 40%, preferably at least about 60%, and more preferably at least about 80% by
weight of one or more substantially crystalline (or amorphous sparingly soluble) copper salts,
crystalline zinc salts, or mixtures or combinations thereof.
[0177] In one embodiment the copper-based particuiate preservative treatment for wood can
further comprise zinc-based particulates comprising one or more of crystalline zinc salts
selected from zinc hydroxide; zinc oxides zinc carbonate; zinc oxychloride; zinc
fluoroborate; zinc borate, zinc fluoride, or mixture thereof. The preferred zinc-based
substantially crystalline material are zinc hydroxide, zinc borate, zinc carbonate, or mixture
thereof, which may be doped with other cations, e.g., from 0.1 to 10% copper, from 0.1 to
10% magnesium, or both, for example, based on the total weight of the cations in the

substantially crystalline (or amorphous sparingly soluble) material. In prelerred
embodiments, the particle comprises at least about 40%, preferably at least about 60%, and
more preferably at least about 80% by weigh; of one or more crystalline zinc salts.
[0178] Preferred embodiments of the invention comprise particles comprising one or more
of copper hydroxide, alkaline copper carbonate, alkaline copper oxychloride, tribasic copper
sulfate, copper borate, or mixtures thereof. The most preferred embodiments of the invention
comprise particles comprising copper hydroxide, alkaline copper carbonate, copper borate,
alkaline copper borate, or mixtures thereof.
[0179] In preferred embodiments of this invention the slurry comprises: a liquid carrier;
sparingly soluble (and preferably substantially crystalline) copper based particulates,
sparingly soluble (and preferably substantially crystalline) zinc-based particulates, sparingly
soluble (and preferably substantially crystalline) tin-based particulates, or mixtures thereof;
and optionally the slurry also advantageously contains one or more organic biocides, one or
more corrosion inhibiting agents, and optionally other ingredients including those discussed
herein. The particulates, and the sparingly soluble salts forming the core thereof, have been
previously discussed. The organic biocides can be in the form of a solution with the carrier
(for water-soluble biocides); an emulsion; a coating on the sparingly soluble copper based,
zinc-based, and/or tin-based particulates; a coating on and/or in other injectable solid
particulates; or any combination thereof. In one embodiment substantially all (e.g., greater
than 99% by weight) of the copper-based, zinc-based particulates, and/or tin-based
particulates of preferred preservatives have a diameter smaller than 0.4 microns (400
nanometers). Such particles may be insufficiently large to scatter enough light to discolor
wood or wood products treated with the particles. In another embodiment, exemplary wood
preservatives comprise copper-based particles having a size distribution in which at least 50%
of particles have a diameter smaller than about 0.5 µm, 0.25 µm, 0.2 µm, or 0.15 µm.
[0180] An exemplary preservative of the invention comprises sparingly soluble copper salt
(e.g., copper hydroxide) or sparingly soluble zinc salt particles having an average particle
diameter of less than about 500 nanometers, for example less than about 250 nanometers, or
less than about 200 nanometers. In a preferred embodiment, the average particle diameter is
at least 25 nanometers, for example, at least 50 nanometers. In a most preferred embodiment,
the sparingly soluble (and preferably substantially crystalline) copper based particulates,
sparingly soluble (and preferably substantially crystalline) zinc-based particulates, and/or
sparingly soluble (and preferably substantially crystalline) tin-based particulates
advantageously have a median particle size below about 0.6 microns, preferably between

about 0.1 and about 0.4 microns. The particle size distribution of the participates is such that
less than about 1% by weight, preferably less than about 0.5% by weight, of the particulates
have an average diameter greater than 1 micron. Preferably, the particle size distribution of
the particulates is such that less than about 1% by weight, preferably less than about 0.5% by
weight, of the particulates have an average diameter greater than about 0.6 microns. In one
embodiment the particle size distribution of the particulates is such that at least about 30% by
weight of the particulates have an average diameter between about 0.07 microns and about
0.5 microns. In a preferred embodiment, the particle size distribution of the particulates is
such that at least about 50% by weight of the particulates have an average diameter between
about 0.1 microns and about 0.4 microns.
[0181] In preferred embodiments of this invention, the slurry is substantially free of
alkanolamines, e.g., the slurry comprises less than 1% alkanolamines, preferably less than
0.1% alkanolamines, or is totally free of alkanolamines.
[0182] In preferred embodiments of this invention, the slurry is substantially free of amines,
e.g., the slurry comprises less than 1% amines, preferably less than 0.1% amines, or is totally
free of amines, with the proviso that amines whose primary function is as an organic biocide
are excluded.
[0183] In preferred embodiments of this invention, the slurry is substantially free of
ammonium compounds (e.g., ammonium hydroxide), e.g., the slurry comprises less than 1%
ammonia, preferably less than 0.1% ammonia, or is totally free of ammonium compounds,
with the proviso that ammonium compounds whose primary function is as an organic biocide
are excluded. In another embodiment, the composition comprises an amount of ammonium
hydroxide to keep the pH of the liquid carrier between about 7 and about 10, for example
between about 7.5 and 9, or between about 8 and about 8.5.
[0184] In preferred embodiments of this invention, the slurry is substantially free of
solvents, e.g., the slurry comprises less than 1% organic solvents, preferably less than 0.1%
organic solvents, or is totally free of organic solvents.
[0185] The slurry contains sparingly soluble (and preferably substantially crystalline)
copper based particulates, sparingly soluble (and preferably substantially crystalline) zinc-
based particulates, sparingly soluble (and preferably substantially crystalline) tin-based
particulates, or mixtures thereof. The sparingly soluble materials may have a fraction of
additional cations, e.g., zinc and/or magnesium. The particulates may have an organic
coating covering at least a portion of the exterior of at least a fraction of the particulates. For
example, the particles can be wetted with an oil or solvent comprising e.g., linseed oil,

turpentine, and/or pine oil, and typically the oil or solvent will include at least a portion of the
organic biocides. In another embodiment, he slurry will alternately or additionally comprise
inert metal oxide carrier particulates having organic biocide associated therewith. The
particulates may have an inorganic coating covering at least a portion of the exterior of at
least a fraction of the particulates. The inorganic coating in one preferred embodiment
comprises copper phosphate formed by having phosphate absorb onto the sparingly soluble
copper salt.
[0186] The loading of the particulates in :he slurry will depend on a variety of factors,
including the desired copper loading in the wood, the porosity of the wood, and the dryness
of the wood. Calculating the amount of copper-based particulates and/or other particulates in
the slurry is well within the skill of one of ordinary skill in the art. Generally, the desired
copper loading into wood is between 0.025 and about 0.5 pounds copper per cubic foot of
wood.
[0187] In a preferred embodiment, the liquid carrier consists essentially of water and,
optionally, one or more additives to aid paticulate dispersion, pH maintenance, interfacial
tension (surfactants), and anticoagulants. In another embodiment, the carrier consists
essentially of water and, optionally, one or more additives to aid particulate dispersion, pH
maintenance, interfacial tension (surfactants), anticoagulants, and oil-in-water emulsion of oil
containing organic biocides dissolved therein.
[0188] Advantageously, the pH of the liquid carrier is between about 7 and about 9, for
example, between about 7.5 to about 8.5. The pH can be adjusted with sodium hydroxide,
potassium hydroxide, alkaline earth oxide;, methoxides, or hydroxides; or less preferably
ammonium hydroxide. The pH of the injectable slurry is typically between pH 6 and 11,
preferably between 7 and 10, for example, between 7.5 and about 9.5. Acidic pH slurries are
not preferred because several of the sparir gly soluble copper salts of this invention have a
higher solubility at lower pH. Therefore, delays in preparing the slurry, injecting the slurry,
and removing the water carrier may result in undesired dissolution of sparingly soluble
material from the particulates. The pH can be adjusted to the desired pH with alkali or
alkaline earth oxides, methoxides, or hydroxides, or less preferably ammonium hydroxide.
Alkaline earth bases are less preferred because if carbon dioxide or carbonates are present in
solution, there is a possibility of precipitation, for example, of calcite. Such precipitation

pH modifying agent may be provided in the form of a preferably aqueous solution comprising
at least one hydroxide salt.
[0189] The slurry is beneficially buffered, by, for example, adding phosphoric acid or salts
thereof in an amount sufficient to give a phosphate content of between about 5 ppm and about
500 ppm. An alternative buffer comprises an alkali bicarbonate and alkali carbonate. The
higher concentrations of phosphates may t e beneficial if the particulates do not have any
coatings formed thereon, as the soluble phosphate ions will discourage dissolution of the
copper salts from the particulates into the liquid carrier. The salts of metal phosphates are
extremely insoluble, for example, the solubility product constant of copper phosphate is about
1 E-37, so in pure water this amount of phosphate would limit the copper ion concentration to
a negligible quantity. The phosphate ions would therefore discourage dissolution and re-
precipitation of the copper, zinc, tin, or any combination thereof. This phosphate may also
allow an existing phosphate-based coating to repair after damage by for example abrasion
with other particles or abrasion while being handled. Finally, the presence of phosphate ions
will slow the leach rate of copper from the wood. On the other hand, the bioactive efficacy of
copper phosphate is probably very low, for the same reasons that the efficacy of copper
oxides is low. The solubilized copper ion;, are believed to be bioactive and therefore
contribute to the bioactivity of the formulation, and the solubility of copper phosphate is very
low. Therefore, it is desirable that any copper phosphate coating on the particulates be so
thin as to be short-lived in the wood. Excessive soluble phosphate may not allow the
phosphate coating to readily break down in the wood, and this could impair the bioactivity of
the particulates. Also, if the mixing tank has, for example, a residual salts from previous
injection of soluble materials, then the phosphates can result in unwanted precipitates
forming. For this reason the concentration of phosphates in the liquid carrier is beneficially
kept below 1000 ppm, for example below 500 ppm or below 100 ppm.
[0190] In one embodiment the slurry comprises between 50 and 800 ppm of one or more
scale precipitation inhibitors, particularly organophosphonates. Alternately or additionally
the slurry may contain between about 50 and about 2000 ppm of one or more chelators. Both
of these additives are meant to inhibit precipitation of salts such as calcium carbonate and the
like, where the source of calcium may be from the water used to make up the slurry. The
preferred inhibitors are hydroxyethylidene diphosphonic acid (HEDP), thethylenetriamine-
pentamethylenephosphonic acid (DTPMP), and/or 2-phosphonobutane-l,2,4-tricarboxylic
acid (PBTC). If the preservative is in a slurry concentrate, the slurry should comprise
between 10 mmoles and 100 mmoles/L oi HEDP, or between 30 mmoles and 170 mmoles/L

of PBTC or DTPMP. Mixtures of inhibitors are preferred, as concentrates may have more
inhibitor than can readily be solubilized therein. If the preservative is in a solid form, the
preservative should comprise between about 0.1 to about 1 mole HEDP per kg of particulates,
or between about 0.17 to about 2 mole PBTC and/or DTPMP per kg of particulates.
[0191] In one embodiment of the invent on, a precipitate comprising copper-based particles
is prepared in the presence of a material that inhibits precipitation of at least one of calcium
and magnesium. Alternatively, a material that inhibits precipitation of at least one of calcium
and magnesium is added to a mixture comprising copper-based particles of the invention. In
one embodiment, the precipitation inhibitor is a chelator comprising having at least one
ethylene diamine compound, such as an ethylenediamine-tetramethylene compound or
ethylenediaminetetracetate compound. An acid, such as a phosphonic or acetic acid, of the
ethylenediamine compound may be used. Salts of the ethylenediamine compound may also
be used. In one embodiment, the precipitation inhibitor comprises at least one and preferably
at least two phosphonic groups. The precipitation inhibitor may comprise a phosphonic acid
or salt of a phosphonic acid. The precipitation inhibitor may comprise at least one of a
hydroxyethylidene diphosphonic acid and an aceto diphosphonic acid. A suitable
phosphonate may be synthesized from phosphorous acid by reaction with formaldehyde and
either ammonia or amines. A wood preservative of the invention may include at least one of
a ethylenediamine tetra methylenephosphonic acid, a hexamethylenediamine terra
methylenephosphonic acid, a thethylenethamine penta methylenephosphonic acid, and a 1-
hydroxy ethane diphosphonic acid.
[0192] In some embodiments of the invention, the sparingly soluble (and preferably
substantially crystalline) copper based particulates, sparingly soluble (and preferably
substantially crystalline) zinc-based particulates, sparingly soluble (and preferably
substantially crystalline) tin-based particu ates, or mixtures thereof, are used in conjunction
with a liquid carrier comprising soluble copper, for example, any of the soluble copper
formulations discussed in the background, including, for example, a copper
monoethanolamine carbonate complex, copper monoethanolamine borate complex, copper
azole borate, or copper citrate. Advantageously, this soluble copper material is kept separate
from the particulate slurry or paste of this invention until the injectable slurry is formulated.
If such material is admixed into a concentrated slurry or paste for shipping and storage, then
beneficially the particulates have one or more protective coating layers thereon to minimize
copper dissolution of the particulates.

[0193] In some embodiments of the invention, the sparingly soluble (and preferably
substantially crystalline) copper based particulates, sparingly soluble (and preferably
substantially crystalline) zinc-based particulates, sparingly soluble (and preferably
substantially crystalline) tin-based particulates, or mixtures thereof, are used in conjunction
with a liquid carrier comprising one or more soluble; borate salts. Soluble borates can be
added in an amount from about 5 ppm to about 2000 ppm in the slurry, where less than 5 ppm
has little effect and more than 2000 ppm s cost-prohibitive. Borates have both a biocidal
activity and a fire-retardant activity.
[0194] In some embodiments of the invention, the sparingly soluble (and preferably
substantially crystalline) copper based particulates, sparingly soluble (and preferably
substantially crystalline) zinc-based parti culates, sparingly soluble (and preferably
substantially crystalline) tin-based particulates, or mixtures thereof, are used in conjunction
with a liquid carrier comprising one or more soluble chromate salts. Soluble chromates can
be added in an amount from about 5 ppm to about 2000 ppm in the slurry, where less than 5
ppm has little effect and more than 200C ppm is cost-prohibitive. Chromates have both a
biocidal activity and may have a corrosion-reducing activity.
[0195] Increased corrosion of metal fillings has been observed in formulations using soluble
copper preservatives, as opposed to the prior art CCA formulations. The slurry, having a
slightly basic pH and having very low amine content, is expected to reduce the corrosion rate
over that seen with soluble copper. There are additional treatment that can help reduce
corrosion. The presence of small quantities of buffered phosphate may further reduce
corrosion. Eliminating certain sparingly soluble salts such as the oxychlorides will remove
chloride, which will reduce corrosion from that source. Finally, some of the injectable
particulates can comprise at least a porion of reduced metallic zinc or copper. The
particulates are advantageously sized about the same as for the injectable particulates
comprising the sparingly soluble, usually substantially crystalline copper salts. Indeed, in
addition to being useful in slurries of this invention, corrosion of metallic fittings may be
somewhat alleviated by incorporating metallic copper and/or zinc particulates in the soluble
copper solution preservatives of the prior art. Metallic zinc and copper are not considered to
be substantially crystalline, nor are they considered to be sparingly soluble salts. The amount
of these anti-corrosion metallic particulates can range from about 1 part to about 25 parts per
100 parts of copper in the sparingly soluble copper salts.
[0196] Contact with air can facilitate oxidation of certain sparingly soluble copper salts, for
example, copper hydroxide (especially in very small particulate form, and especially if not

coaled and/or if not containing a stabilizer such as magnesium ions, to form into copper
oxides). This transition is generally not preferred because copper oxide has such limited
solubility that it may not be sufficiently bioactive. The concentrated slurry or paste may
comprise one or more antioxidants. Soluble sulfite salts between 5 ppm and 100 ppm in the
liquid carrier is a useful inexpensive antioxidant.
[0197] If the wood preservative treatment will comprise organic biocides, these biocides
may be partially or fully coated onto the sparingly soluble (and preferably substantially
crystalline) copper based particulates, sparingly soluble (and preferably substantially
crystalline) zinc-based particulates, sparingly soluble (and preferably substantially
crystalline) tin-based particulates, or mixtures thereof. Preferred preservative materials
inhibit organisms that may be resistant to copper-based preservatives. Moldicides useful in
wood or wood product preservation are a so preferred organic biocides. Alternatively or
additionally, these biocides may be partially or fully coated onto the available surface area of
an inert particulate carrier. If the biocides are to be added to the slurries as an emulsion, the
organic biocides are beneficially kept separate from the concentrated slurry or paste is of this
invention until the injectable slurry is formulated.
[0198] The slurry can advantageously contain one or more additives to aid wetting, for
example surfactants. Surfactants may be in solution, or alternatively may bind to the surface.
When bound to the surface these surfactants function as disbursing agents. A dispersing agent
may be combined with the precipitated copper-based particles. Alternatively, copper-based
particles may be formed in the presence of the dispersing agent. Preferred dispersing agents
include a surface active portion that interacts with the copper-based particle and a second
preferably different portion, which operates to inhibit irreversible agglomeration of the
copper-based particles. For example, a polyacrylate dispersing agent may include at least one
carboxyl group capable of associating, such as electrostaticaly, with a copper-based particle
and a second, hydrophobic portion that may operate to inhibit the permanent agglomeration
of the copper-based particles. Exemplary dispersing agents may include at least one of a
surfactant, a polyacrylate, a polysaccharide, a polyaspartic acid, a polysiloxane, and a
zwitterionic compound. Exemplary compounds useful as dispersing agents are disclosed in
for example, Kirk-Othmer, Encyclopedia of Chemical Technology, 3rd Edition, Vol. 22
(John Wiley & Sons, 1983); Napper, Polymeric Stabilization of Colloidal Dispersion
(Academic Press, 1983); and Rosen, Surfactants & Interfacial Phenomena, 2nd edition (John
Wiley & Sons, 1989), all of which are incorporated herein by reference. In one embodiment
of the invention, the copper-based particles may comprise a polymer. In this embodiment,

the ratio of the weight of copper present in the particles to polymer present in the particles
may be at least about 1 to 1, for example at least about 2 to 1,4 to 1, 5 to 1, 7 to 1, or at least
about 10 to 1. For example, if ratio of the weight of copper present in the particles to the
weight of polymer present in the particles is at least about 2 to 1, the particles comprise at
least about twice as much copper by weight as polymer. Another aspect of the invention
relates to a preservative useful for wood or wood products, the preservative preferably
comprising a preferably aqueous suspension of copper-based particles. If a dispersing agent
is present in the suspension, the ratio of he weight of copper present in the copper-based
particles of the suspension to the weight of dispersing agent present in the suspension may be
at least about 1 to 1, for example at least about 5 to 1,10 to 1,15 to 1, 20 to 1 or at least about
30 to 1.
[0199] In one embodiment, the dispers ng agent is substantially free of phosphate ion. For
example, the dispersing agent may be substantially free of trisodium phosphate. The
dispersing agent may be substantially free of silicates, sodium carbonate and ammonia. By
substantially free of one or more particular dispersing agents, it is meant that the weight
percent of the one or more dispersing agent relatives to the copper-based particles is less than
3%. In one embodiment, the weight percent of the one or more particular dispersing agents
relative to the copper-based particles is less than about 2%, such as less than about 1%, for
example, less than about 0.5%. In one embodiment, the dispersing agent is free of at least
one of phosphate ion, trisodium phosphate, silicates, sodium carbonate, and ammonia.
[0200] Dispersing agents aid particulate dispersion and to prevent aggregation of
particulates. Sub-micron sized particulates have a tendency to form much larger aggregates.
Aggregates as used herein are physical combinations of a plurality of similarly-sized
particles, often brought together by VanDerWaal's forces or electrostatic forces. By
similarly-sized we mean the particles forming the aggregate have diameters that are generally
within a factor of five of each other. Such aggregates are not desired in the compositions of
this invention. If aggregates are allowed to form, they often can age into a stable aggregate
that can not be readily broken up by mechanical agitation, for example by vigorous stirring of
a slurry. Such aggregates may grow to a size where the aggregates are not readily injectable,
or may be of a size to make the aggregates visible, therefor giving undesired color. In
preferred embodiments of the invention at least 30%, preferably at least 60%, more
preferably at least 90% by weight of the substantially crystalline copper-based particulates in
a slurry are mono-disbursed, e.g., are not in aggregates. To prevent particulates from
agglomerating, the concentrated slurry or paste may comprise cationic, anionic, and/or non-

Ionic surfactants; emulsifiers such as gelatine, casein, gum arabic, lysalbinic acid, and starch;
and/or polymers, such as polyvinyl alcohols, polyvinyl pyrrolidones, polyalkylene glycols
and polyacrylates, in quantities of 0.1 to 20% by weight, based on the weight of the
particulates.
[0201] Another aspect of the invention relates to a preservative useful for wood or wood
products, the preservative preferably comprising a preferably aqueous suspension of copper-
based particles. The suspension may be stabilized by a suspension-stabilizing amount of a
dispersing agent. Preferred dispersing agents include a surface active portion that interacts
with the copper-based particle and a second, preferably different portion, which operates to
inhibit irreversible agglomeration of the copper-based particles. For example, a polyacrylate
dispersing agent may include at least one carboxyl group capable of associating, such as
electrostatically, with a copper-based particle and a second, hydrophobic portion that may
operate to inhibit the permanent agglomeration of the copper-based particles. Exemplary
dispersing agents may include at least one of a surfactant, a polyacrylate, a polysaccharide, a
polyaspartic acid, a polysiloxane, or a zwitterionic compound. If a dispersing agent is present
in the suspension, the ratio of the weight of copper present in the copper-based particles of
the suspension to the weight of dispersing agent present in the suspension may be at least
about 1 to 1, for example at least about 5 to 1,10 to 1,15 to 1, 20 to 1 or at least about 30 to
1.
[0202] The slurry formulations mentioned can be prepared in a manner known per se, for
example by mixing the active compounds with the liquid carrier, and including emulsifier,
dispersants and/or binders or fixative, and other processing auxiliaries. Particulates can be
provided in a concentrated slurry, in a very concentrated paste, as dry particulates, as coated
dry particulates, as part of a dry pre-mix, or any combination thereof.
[0203] Slurry Concentrate -- If the wood preservative is to be manufactured, stored, or
transported in a wetted form, it is beneficial that it be in a concentrated form to minimize the
volume and increased handling expense. Preferably the concentrated slurry or paste
comprises between 5% and 80% by weight, for example between about 15% and 40%, of
sparingly soluble (and preferably substantially crystalline) copper based particulates,
sparingly soluble (and preferably substantially crystalline) zinc-based particulates, sparingly
soluble (and preferably substantially crystalline) tin-based particulates, or mixtures thereof,
with the remainder of the concentrated slurry or paste being a fluid carrier. The concentrated
slurry or paste may further comprise solid particulates that are carriers for one or more
organic biocides, solid particulates comprising metallic copper and/or zinc as corrosion

inhibitors, or both. The fluid carrier beneficially comprises one or more additives as
discussed for the slurry, including anti-oxidants; surfactants; disbursing agents; other biocidal
salts and compounds; chelators; corrosion inhibitors;, e.g., phosphates or metallic zinc or
copper particulates; pH modifiers and/or buffers; and the like. The concentration of these
additives will depend in part on the degree to which the slurry concentrate is expected to be
diluted to make a commercially useful injectable slurry having the proper copper loading.
[0204] The moisture content of the copper-based particles of the invention may be reduced,
such as by drying. A dispersing agent may be used to inhibit irreversible agglomeration of
reduced moisture particles of the inventio 1. The reduced moisture particles may be diluted,
such as by hydration with water or combination with another liquid. Generally, dilution is
with water, beneficially fresh water.
[0205] Another aspect of the invention relates to an agglomeration comprising a plurality of
copper-based particles and, optionally, a cispersing agent. The agglomeration may also
include one or more materials in addition to the copper-based particles that also provide a
wood or wood product preservative function. The agglomeration may have a liquid content
(excluding any additional preservative material that may be present) of less than about 75%
by weight, for example, of less than about 50%, less than about 25%, less than about 15%, or
less than about 5% by weight. The liquid may be water. The agglomeration may be diluted
and/or dispersed with mixing or agitation, such as mechanically or ultrasonically.
[0206] As in the injectable slurry itself, the particle size distribution of the particulates is
such that less than about 1% by weight, preferably less than about 0.5% by weight, of the
particulates have an average diameter greater than 1 micron. Preferably the particle size
distribution of the particulates is such that less than about 1% by weight, preferably less than
about 0.5% by weight, of the particulates have an average diameter greater than about 0.6
microns. The particle size distribution of the particulates is such that at least about 30% by
weight of the particulates have an average diameter between about 0.07 microns and about
0.5 microns. In a preferred embodiment, the particle size distribution of the particulates is
such that at least about 50% by weight of the particulates have an average diameter between
about 0.1 microns and about 0.4 microns.
[0207] The pH of the wood preservative in the form of a concentrate or paste is in general
between pH about 6 and about 13, preferably between about 7 and about 10.5, for example,
between about 7.5 and about about 9.5. The pH can be adjusted to the desired pH with alkali
or alkaline earth oxides, methoxides, or hydroxides; or less preferably ammonium hydroxide.
The preferred ingredient to increase the pH is an alkali hydroxide such as sodium hydroxide.

The concentrated slurry or paste is beneficially buffered, for example, by adding phosphoric
acid in an amount sufficient to give a phosphate content of between about 10 ppm and about
1000 ppm.
[0208] If the wood preservative comprises organic biocides, these biocides may be partially
or fully coated onto the sparingly soluble (and preferably substantially crystalline) copper
based particulates, sparingly soluble (and preferably substantially crystalline) zinc-based
particulates, sparingly soluble (and preferably substantially crystalline) tin-based particulates,
or mixtures thereof. Alternatively, or additionally, these orgnanic biocides may be partially
or fully coated onto the surface area of an inert particulate carrier. If the organic biocides are
to be added to the slurries as an emulsion, the organic biocides are beneficially kept separate
from the concentrated slurry or paste of this invention until the injectable slurry is
formulated.
[0209] Dry Particulates and Dry Mix For Slurrv -- The particulates are preferably sold as a
dry component. The dry component can be simply the copper-based, zinc-based, and/or tin-
based particulates, which may be coated or uncoated. If coated, the coating can be inorganic,
organic, or both. The particulates advantageously comprise one or more additives such as are
described as being present in the slurry, including, for example, inert particulates having
organic biocides thereon; anti-oxidants; surfactants; disbursing agents; other biocidal salts
and compounds; chelators; corrosion inhibitors, e.g., phosphates or metallic zinc or copper
particulates; pH modifiers; and/or buffers, such as carboxylic acid salts, or inorganic salts,
such as phosphate salts and the like. The additives can be coated onto the sparingly soluble
copper-based particulates and/or can be a second particulate.
[0210] The dry-mix material advantageously has, in addition to dry particulates discussed
above, all necessary components in a single mix, and each component is present in a range
that is useful when the dry mix is forned into an injectable slurry. The dry-mix material may
optionally, but preferably, incorporate a granulating material, which is a material that, when
wet, holds a plurality of particulates ogether in the form of a granule, but that dissolves and
releases the individual particulates on being admixed with the liquid carrier. Granules are
preferred over sub-micron-sized particulates because of dust problems and also the ease of
measuring and handling a granular mixture. Granulating agents can be simple soluble salts,
for example alkali carbonates, that are sprayed onto or otherwise admixed with the particulate
material. Several additives to a shiny can be also used as granulating agents.
[0211] One embodiment of the invention relates to a dry-mix material having a copper
content of at least about 8% by weight. A preferred material includes a plurality of copper-

based particles, which may be in the form of granules. The material may be shipped, such as
in granular form, to a location where the material will be prepared for use as a wood
preservative. The dry-mix material may also comprise at least one of a wetting agent; a
dispersing agent; a diluent, which may be a particulate comprising organic biocides thereon;
an antifoaming agent; and an additional material having a biocide function.
[0212] One embodiment of the invention relates to a dry-mix material having a copper
content of at least about 15% by weight. A preferred dry-mix material includes a plurality of
copper-based particles, which may be in the form of granules. The dry-mix material also
comprises at least one of a wetting agent, a dispersing agent, a diluent, an antifoaming agent,
or an additional material having a biocide function. In one embodiment, the dry-mix material
is a granular material comprising about 50% to about 70%, for example about 58%, copper
hydroxide or other sparingly soluble copper salts, about 10% to about 25%, for example
about 18%, of a dispersing agent, such as Borresperse NA, about 1% to about 8%, e.g., about
4%, of a wetting agent, such as Morvet EP, and about 10% to about 30% filler, e.g., about
20% attapulgite clay, such as Diluex A.
[0213] In one embodiment, the dry mix material is a granular material comprising about
40% to about 80% by weight of a sparingly soluble copper salt, e.g., copper hydroxide, about
5% to about 30% of a dispersing agent, such as Borresperse NA, about 1% to about 10% of a
wetting agent, such as Morwet EP, and about 5% to about 30% of a inert particulate filler
which may additionally comprise organic biocides absorbed thereon, e.g., attapulgite clay,
such as Diluex A. In one embodiment, the dry-mix material is a granular material comprising
about 58% copper hydroxide, about 18% of a dispersing agent, such as Borresperse NA,
about 4% of a wetting agent, such as Morwet EP, and about 20% attapulgite clay, such as
Diluex A.
[0214] Another aspect of the invention relates to dry-mix material comprising a copper
content of at least about 15%, for example, at least about 20%, such as at least about 30% by
weight. In one embodiment, the dry-mix material may have a copper content of about 35%
by weight. The dry-mix material has a copper content of less than about 50%, for example,
less than about 45%, such as less than about 40% by weight. The dry-mix material may
comprise a plurality of granules each comprising a plurality of copper-based particles. The
copper-based particles may be associated with a dispersing agent.
[0215] In one embodiment, the dry-mix material comprises A) about 30% to about 70% by
weight of a slightly soluble copper salt, e.g.. copper hydroxide, for example, about 35% to
about 65%, such as about 38% to about 61% of the slightly soluble copper salt; B) about 10%

to about 35% by weight, such as about 15% to about 30% of at least one dispersing agent,
e.g., lignosulfonates or polyacrylates; C) about 2.5% to about 20% by weight, such as about
5% to about 15% of at least one wetting agent, for example, a surfactant, e.g., Morwet EP
available from Barton Solvents, Inc.; D) about 5% to about 25% by weight, such as about
10% to about 20% of at least one diluent for example soluble and insoluble diluents, such as
those used in agricultural products, e.g., clay, such as an attapulgite clay, or particulate carrier
particles comprising organic biocide; E) about 0.05% to about 7.5% by weight, such as about
0.1% to about 5%, of at least one antifoam agent; and optionally F) about 2.5% to about 25%,
alternatively less than about 7.5%, such as less than about 5% by weight, of water.
[0216] The dry-mix material may be shipped in granular form. The dry-mix material of the
invention offers reduced shipping costs and improved ease of handling compared to known
preservative materials. A user may receive the dry-mix material as a flowable material
comprising a plurality of copper-based particles. The dry-mix material may be diluted, for
example, with water or another liquid. The copper-based particles of the dry-mix material
may be injected into wood and/or wood materials as a preservative. Mechanical agitation
and/or mixing may be used to disperse the granules in the liquid. Upon dispersing the
material, wood or wood products may be treated with the dispersed material, such as by
subjecting the wood or wood products to vacuum and or pressure in the presence of the
dispersed material. Upon dispersing granules of the material, dispersed copper-based
particles preferably remain suspended for at least about 30 minutes without further agitation,
preferably, even in standard hard water having a hardness of about 342 ppm. Once dispersed,
about fifty percent of the dispersed copper-based particles may have diameters less than
about 1 micron, for example, less than about 0.5 micron, such as less than about 0.25 micron.
In one embodiment, about 50% of the dispersed copper-based particles have diameters less
than about 0.2 micron, for example about 50% of the dispersed copper-based particles have
diameters of about 0.1 micron.
[0217] The copper-based material may comprise additional material providing a wood
preservative and/or biocide function. For example, in one embodiment, the additional
material comprises a plurality of copper-based particles and a co-biocide. Exemplary co-
biocides may include, for example, one or more of a triazole compound, a quartemary amine,
and a nitroso-amine.
Leaching Data
[0218] One object of the inventi an is to provide an effective, injectable copper-based
particulate preservative treatment that has leaching characteristics similar to CCA. It is

known that copper arsenate (Cu3(AsO4)2) injected as a molecular layer is effectiveas a
preservative. Therefore, the participate preservative should provide a copper concentration
roughly similar (for example, about the same to within a factor of three times) to that
provided by copper arsenate treatment. Generally, leach rate tests involve high leaching
medium flow rates so the leaching medium can not easily dissolve the sparingly soluble salts,
and therefore measured leach rates of paniculates are expected to be low compared to leach
rates from more soluble salts. By "leach rate similar to CCA," we mean the leach rate using
the AWPA Standard Method El l-97( .997), determined as percent of copper leached per
hour. For a particulate inhibitor injected into wood is within a factor of about 2 above,
preferably within a factor of about l.5 above, to within a factor of 5 below, preferably within
a factor of about 3 below, more preferably within a factor of about 2 below, the percent of
copper leached from CCA-treated wood at 240 hours using the AWPA Standard Method
El 1-97 (1997), by using a test extencing to at least 300 hours duration. Another object of the
invention is to provide an effective, injectable copper-based particulate preservative treatment
that retains more than 94% of the injected copper in a 14 day standard leach test.
[0219] Advantageously the copper based particulate is an effective preservative. To be
effective, the copper-based particles comprise one or more sparingly soluble copper salts that
release a small but effective concentration of soluble copper when wetted with water. If the
copper salts have too high a solubility, the copper is quickly leached out of the wood and
contaminates the environment rathe: than protecting the wood. If the copper salts have too
low a solubility, the copper salts (and copper oxides) are not bioactive. The dissolution
rate/leach rate of the sparingly soluble copper salts used in the particulates will be a function
of 1) the solubility of the sparingly soluble copper salt(s) in the leaching medium; 2) the
surface area of the sparingly soluble copper salts available to contact the leaching medium; 3)
the lattice energy of the crystal which must be overcome to dissolve the crystal; and 4) the
flow characteristics of the leaching medium in the wood matrix, especially boundary layer
effects. Each of these properties plays a role in every flowrate scenario, but some are more
dominant than others at certain times. We believe the leach rates will be governed primarily
by the solubility of the sparingly soluble salts and by boundary layer effects of the copper and
counterions diffusing from the particulates in regimes where the leaching medium is moving
extremely slowly, e.g., less than a few millimeters per day. At intermediate leachant flow
rates, we believe the leach rate of copper will depend primarily on the available surface area.
At higher rates, such as found in the standard test methods typically used by industry, the

each rates will be governed more by the available surface area of the sparingly soluble salts
and by the lattice energy of the crystal.
[0220] Generally, surface area is known be an important factor. This is because, as the
sparingly copper salts exist as approximate point sources within the wood matrix, the
leaching medium typically does not contact a sufficient amount of particulates for a sufficient
time to become saturated with the sparingly soluble copper salts. Dissolution is a function
not only of the pH of the water within the wood and the solubility product of the particular
salts in water, but also of dynamic conditions. Since the copper is present in the wood as
particulates, dissolution of copper will also be restricted by the low surface area of the
particles. Larger particulates will reduce the leaching rate in most leaching regimes. The
dissolution of larger particulates is more dependent on surface effects than is the dissolution
of smaller particulates, in part because the available surface area is lower for larger
particulates. At low flow rates, boundary layer effects may multiply the effects of lower
surface area, but at typical leaching regimes boundary layer effects may be minimized if the
flow of the leaching medium through the wood matrix is turbulent.
[0221] The easiest way to alter surface area is to change particle size. In a simplistic model,
reducing the average particle size by one half will increase the available surface area by about
a factor of 2. If the particulates become too small, e.g., below about 0.02 microns (20
nanometers) in diameter or below about 10 nanometers in diameter, for many of the sparingly
soluble copper salts, we believe the leaching medium will always approximate being
saturated by the sparingly soluble copper salts and the available surface area will approach
that of a monolayer, giving leaching properties of an injected soluble copper. The crystals
may then dissolve too quickly if sub ected to a high leaching regime for an extended period
of time. Further, we believe that high leachant flow rates may dislodge and remove from the
wood matrix very small particulates For this reason in preferred embodiments of the
invention at least about 30% or more of the sparingly soluble salts are present as particulates
having a diameter greater than about 0.1 microns.
[0222] Generally, the available surface area can be further reduced by the presence of one
or more coatings, be they organic, inorganic, or both. The coatings must be designed to have
a coverage and efficiency such that at least a bioactive amount of copper is leached from the
sparingly soluble copper salts in the particulates. In some embodiments, the coating is
dissolved over a period of time, thereby allowing the available surface area of the sparingly
soluble copper salts to increase with time. This is advantageous because newly-installed

wood generally does not need biocides to be released until the bio-organisms invade or
contact the wood, and this usually takes some time.
[0223] The solubility of the sparingly soluble copper salts can be estimated based on values
of the solubility product constant. However, the presence of ions such as phosphate in the
wood matrix will reduce solubility, while the presence of acids in the leachant will greatly
increase solubility of most of the preferred sparingly soluble salts. At low flow rates, the pH
of the leaching medium will be modified by the dissolution of the copper hydroxides and the
copper carbonates. The isoelectric point of copper hydioxide is at about pH 11, making
copper hydroxide a very effective base. The presence of other salts, for example phosphate
ions, can further hinder leach rates by temporarily holding the solubilized copper, reducing
the flow rate of copper through the wood matrix. At high leaching medium flow rates,
however, such as are used in standard leaching tests, the flow rates are such that the presence
of hydroxides, phosphates, and the like are minimized.
[0224] Generally, the leach rate of copper from particulates of sparingly soluble copper
salts disposed in a wood matrix is dependent on particle size (and hence particle size
distribution), leaching medium flow rates through the wood matrix, and a variety of other
factors. The copper-based particulates oi the invention advantageously have a low leach rate
at both relatively high leaching medium ;Tow rates and at relateively low leaching medium
flow rates, because the copper-based particulates have 1) a wide distribution of particle sizes,
2) sparingly soluble salts of differing solubilities, or 3) both.
Examples
[0225] We have successfully injected slurries comprising sub-micron-sized particles of
various sparingly soluble copper salts into standard 1 inch cubes of Southern yellow pine.
Copper development by colorimetric agents (dithio-oxamide/ammonia) showed the copper to
be fully penetrated across the block in the sapwood portion. Figure 3 shows the penetration
of injected particulate copper hydroxide developed with dithio-oxamide in the third picture.
The stain corresponds to copper. Subsequent acid leaching and quantitative analysis of the
copper from two blocks showed that loadings of 95% and 104% of expectation, or essentially
100% average of expectation had occurred. At 100% loading, values of 0.22 lbs of copper
per cubic foot would be obtained.
[0226] Leaching data from wood preserved with a prior art soluble solution of copper MEA
and from a slurry of injected copper hydroxide particulates of this invention was measured
following the AWPA Standard Method El 1-97. The total copper leached from wood
preserved with copper-MEA-carbonate is 5.7% at 6 hours, 8.5% at 24 hours, 11% at 48

hours, 22% at 96 hours, 36% at 144 hours, 49% at 192 hours, 62% at 240 hours, 69% at 288
hours, and 76% at 336 hours. The amount of copper leached from copper hydroxide
particulates was 0.4% at 6 hours, 0.6% at 24 hours, 0.62% at 48 hours, 1.0% at 96 hours,
1.6% at 144 hours, 2.1% at 192 hours, 3.2% at 240 hours, 3.4% at 288 hours, and 3.7% at 336
hours.
[0227] Leaching data from wood was measured using the AWPA Standard Method E11 -97
for the following preservative treatments, where unless specified the tebuconazole (TEB)
concentration was added as an emulsion at 3% of the weight of the added copper: A) TEB
and injected basic copper carbonate particulates; B) traditionally CCA-treated wood (as a
control); C) TEB and copper methanolamine carbonate (as a control, believed to approximate
the currently available Wolman E treatment); D) TEB and injected basic copper carbonate
particulates with sodium bicarbonate buffer; E) injected basic copper carbonate particulates;
F) TEB and injected copper hydroxide particulates modified with zinc and magnesium; G)
about 5% TEB and injected copper hydroxide particulates modified with phosphate coating;
and H) TEB and injected tribasic copper sulfate particulates; I) TEB and injected copper
oxychloride particulates. The leaching data for the various particulate slurries and from two
controls are shown in Figure 1. of the accompanying drawings.
[0228] Using the copper leach rate of CCA as a standard, and viewing the total leached
copper at 96 and 240 hours as representative, the leach rate ratios given by the "total leached
copper to total CCA-leached copper" is given in Table 3 below:



[0229] Of the sparingly soluble salts used, the leach rate in decending order is copper MEA
carbonate (comparative) >> copper oxychloride > tribasic copper sulfate and/or copper
hydroxide with phosphate > basic copper carbonate > copper hydroxide with Zn and Mg.
The isoelectric point of copper oxychloride is about 5 to 5.5, and the isoelectric point of
tribasic copper sulfate is about 6 to 6.5. As these materials are very poor bases, the higher
leach rates from the materials is consistent with expected higher solubility at lower pH
values.
[0230] The presence of TEB reduced leach rates from basic copper carbonate by about
20%, most likely due to TEB partially coating particulates.
[0231] A buffering system, sodium bicarbonate, reduced the leach rates from TEB/basic
copper carbonate by about 10% relative to a preservative without the buffer.
[0232] Surprisingly, the phosphate material in the copper hydroxide did not appear to show
any protective value at all. The reasor for this is not clear. Copper hydroxide with
magnesium and zinc ions showed the owest leach rates.
Method Of Preserving Wood
[0233] Another aspect of the invention relates to wood or a wood product comprising
copper-based particles and, optionally, one or more additional materials having a preservative
function, injected into the wood or wood product. An exemplary piece of wood comprising
copper-based particles has a volume of at least about 6 cm3, for example, at least about 100
cm3, such as at least about 1,000 cm3
[0234] The material of this invention is useful for wood, and also for wood composites.
Preferred wood composites have the preservatrive of this invention either mixed with the
wood particles before bonding, or preferably injected into the wood particulates and dried
prior to bonding. Exemplary wood products include oriented strand board (OSB), particle
board (PB), medium density fiberboard (MDF), plywood, laminated veneer lumber (LVL),
laminated strand lumber (LSL), hardboard, and the like.
[0235] In one embodiment, the wood or wood product has a surface, a thickness, a width,
and a length. Preferably, the wood or wood product comprises a homogenous distribution of
copper-based particles of the invention. In one embodiment, the volume number density of
the copper-based particles 5 cm from the surface, and preferably throughout the interior of
the wood or wood product, is at lea it about 50%, for example, at least about 60%, at least

about 70%, or at least about 75% of the volume number density of the copper-based particles
about 1 cm from the surface.
[0236] Wood or wood products comprising copper-based particles in accordance with the
present invention may be prepared by subjecting the wood to vacuum and/or pressure in the
presence of a flowable material comprising the copper-based particles. A pre-injection of
carbon dioxide followed by vacuum and then injection of the slurry is a preferred method of
injecting the slurry into wood. Injection of particles into the wood or wood product from a
flowable material comprising the particles may require longer pressure treatments than would
be required for liquids free of such particles. Pressures of, for example, at least about 75 psi,
100 psi, or 150 psi may be used. Exemplary flowable materials include liquids comprising
copper-based particles, emulsions comprising copper-based particles, and slurries comprising
copper-based particles.

WE CLAIM:
1. A wood preservative composition of matter comprising:
a plurality of participates having at least 20% by weight of a sparingly soluble coppei
salt, such as herein described, and
a corrosion inhibitor, such as herein described,
wherein greater than 95% by weight of the participates have a diameter of less than 1.0 microns and
at least 50% by weight have a diameter greater than 40 nanometers.
2. The wood preservative as claimed in claim 1, wherein greater than 98% by weight of the
particulates have a diameter less than 0.3 microns, and less than 0.5% by weight have a diameter
greater than 1.5 microns.
3. The wood preservative as claimed in claim 1, wherein greater than 98% by weight of the
particulates have a diameter less than 0.2 microns and greater than 80% by weight have a diameter
greater than 0.01 microns.
4. The wood preservative as claimed in claim 1, wherein at least 99% of the particulates have a
diameter less than 0.35 microns.
5. The wood preservative as claimed in any one of claims 1, 2, 3 and 4, wherein the sparingly
soluble copper salt comprises at least one member selected from the group consisting of copper (II)
borate, basic copper carbonate, tribasic copper sulfate, copper hydroxide, copper oxychloride,
alkaline copper nitrate, copper ferricyanide, copper ferricyanate, copper fluorosilicate, copper
thiocyanate and copper diphosphate.
6. The wood preservative as claimed in any one of claims 1, 2, 3 and 4, wherein the sparingly
soluble copper salt is substantially crystalline.
7. The wood preservative as claimed in any one of claims 1, 2, 3 and 4, having a plurality of
different particulates comprising at lea;t 20% by weight of a sparingly soluble zinc salt, wherein
greater than 98% by weight of the different particulates have a diameter of less than 0.5 microns as
determined by the settling velocity of the particle in water.
8. The wood preservative as claimed in claim 7, wherein the sparingly soluble zinc salt
comprises zinc borate, basic zinc borate, or a mixture thereof.

9. The wood preservative as claimed in any one of claims 1, 2, 3 and 4, having a plurality or
different participates comprising at least 20% by weight of a sparingly soluble tin salt, wherein
greater than 98% by weight of the different particulates have a diameter of less than 0.5 microns as
determined by the settling velocity of the particle in water.
10. The wood preservative as claimed in any one of claims 1, 2, 3 and 4, containing at least one
organic biocide, such as herein described.
11. The wood preservative as claimed in claim 10, wherein at least a portion of the organic
biocide is coated on the particulates.
12. The wood preservative as claimed in any one of claims 1, 2, 3 and 4, wherein at least a
portion of the particulates has a dispersing agent, such as herein described, attached thereon.
13. The wood preservative as claimed in any one of claims 1, 2, 3 and 4, having a plurality of
different particulates comprising a carrier having an organic biocide associated thereon, wherein
greater than 98% by weight of the different particulates have a diameter of less than 0.3 microns as
determined by the settling velocity of the particle in water.
14. The wood preservative as claimed in any one of claims 1, 2, 3 and 4, which contains an
anionic surfactant, such as herein described.
15. The wood preservative as claimed in any one of claims 1, 2, 3 and 4, wherein the particulates
comprise polymers, and the weight ratio of the polymers to the copper is between about 1: 1 and
about 1: 10.
16. The wood preservative as claimed in any one of claims 1,2, 3 and 4, containing a wetting
agent, such as herein described.
17. The wood preservative as claimed in any one of claims 1, 2, 3 and 4, containing a moldicide,
such as herein described.
18. A method of manufacturing the wood preservative composition as claimed in claim 1,
comprising the steps of : 1) providing particulates of sparingly soluble copper salts, wherein at least
2% by weight of the particulates have a diameter greater than 1 micron; and 2) wet milling the
particulates with a milling medium comprising zirconium having a diameter between 0.1 mm and
1 mm.

19. The method as claimed in claim 18 wherein the milling media has a diameter between 0.3
mm and 0.7 mm.
20. The method as claimed in claim 18 wherein a wetting fluid or a rinsing fluid used in wet
milling comprises between 0.1% phospiate and 6% phosphate.
21. The method as claimed in claim 18 wherein the step of providing particulates of sparingly
soluble copper salts comprises: providing an aqueous copper-alkanolamine complex solution; adding
acid to adjust the pH to between 4 and 7.5 to provide copper hydroxide particulates; and recovering
the copper hydroxide particulates.
22. The method as claimed in claim 21 wherein the acid used is phosphoric acid.
23. The wood preservative as claimed in any one of claims 1, 2, 3 and 4, containing a granulating
agent, such as herein described, wherein the preservative is a granular material that is dispersible in
water.
24. The wood preservative as claimed in claim 23, wherein the granular material comprises A)
30% to 70% by weight of slightly soluble copper salt; B) 10% to 35% by weight of at least one
dispersing agent, such as herein described; C) between 2.5% to 20 % by weight of at least one
wetting agent, such as herein described ; D) between 5% to 25% by weight of at least one diluent,
granulating agent, and/or inert particulate carrier, such as herein described ; and E) between 0.05%
to 7.5% by weight of at least one antifoam agent, such as herein described.

A wood preservative includes injectable particles comprising one or more sparingly soluble copper salts. The copper-
based particles are sufficiently insoluble so as to not be easily removed by leaching but are sufficiently soluble to exhibit toxicity
to primary organisms primarily responsible for the decay of the wood. Exemplary particles contain for example copper hydroxide,
basic copper carbonate, copper carbonate, basic copper sulfates including particularly tribasic copper sulfate, basic copper nitrates,
copper oxychlorides , copper borates, basic copper borates, and mixtures thereof. The particles typically have a size distribution in
which at least 50 % of particles have a diameter smaller than 0.25 µm, 0.2 µm, or 0.15 µm. At least about 20 % and even more than
75% of the weight of the particles may be composed of the substantially crystalline copper salt. Wood or a wood product may be
impregnated with copper-based particles of the invention.

Documents:

89-kolnp-2006-granted-abstract.pdf

89-kolnp-2006-granted-assignment.pdf

89-kolnp-2006-granted-claims.pdf

89-kolnp-2006-granted-correspondence.pdf

89-kolnp-2006-granted-description (complete).pdf

89-kolnp-2006-granted-drawings.pdf

89-kolnp-2006-granted-examination report.pdf

89-kolnp-2006-granted-form 1.pdf

89-kolnp-2006-granted-form 13.pdf

89-kolnp-2006-granted-form 18.pdf

89-kolnp-2006-granted-form 3.pdf

89-kolnp-2006-granted-form 5.pdf

89-kolnp-2006-granted-gpa.pdf

89-kolnp-2006-granted-reply to examination report.pdf

89-kolnp-2006-granted-specification.pdf


Patent Number 230332
Indian Patent Application Number 89/KOLNP/2006
PG Journal Number 09/2009
Publication Date 27-Feb-2009
Grant Date 25-Feb-2009
Date of Filing 10-Jan-2006
Name of Patentee PHIBRO-TECH, INC.
Applicant Address ONE PARKER PLAZA, FORT LEE, NJ
Inventors:
# Inventor's Name Inventor's Address
1 RICHARDSON, H. WAYNE 47 PATHFINDER DRIVE, SUMTER, SC 29150
2 HODGE ROBERT L. 20 MARLEY COURT, SUMTER, SC 29150
PCT International Classification Number B27K 3/27, 3/32
PCT International Application Number PCT/US2004/019659
PCT International Filing date 2004-06-17
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 60/478,825 2003-06-17 U.S.A.
2 60/478,822 2003-06-17 U.S.A.
3 60/571,535 2004-05-17 U.S.A.
4 60/478,820 2003-06-17 U.S.A.
5 60/478,827 2003-06-17 U.S.A.