Title of Invention

COAXIAL COMMUNICATION CABLE HAVING BIMETALLIC OUTER CONDUCTOR .

Abstract A coaxial communications cable comprises a center conductor extending coaxially of the longitudinal axis of the cable with a low loss foam dielectric surrounding the inner conductor and bonded thereto. An electrically and mechanically continuous sheath surrounds the foam dielectric. The sheath is a smooth-walled longitudinally welded tube formed of a bimetallic material, which in one embodiment has an inwardly facing copper layer and an outwardly facing aluminum layer. A polymeric jacket surrounds the tubular sheath and is bonded thereto.
Full Text COMMUNICATION
COAXIAL COMMUNICATION CABLE HAVING BIMETALLIC OUTER CONDUCTOR
FIELD OF THE INVENTION
The present invention relates to a coaxial cable, and more
particularly to an improved low-loss coaxial cable having enhanced attenuation
and mechanical bending properties.
BACKGROUND OF THE INVENTION
Coaxial cables are commonly used today in the transmission of
broadband signals, such as cable television signals and cellular telephone broadcast
signals, for example. One typical type of coaxial cable includes a core containing
an inner conductor, an aluminum sheath surrounding the core and serving as an
outer conductor, and a foam polymer dielectric which surrounds the inner
conductor and electrically insulates it from the surrounding metallic sheath. A
protective jacket is often provided surrounding the metallic sheath.
Coaxial cable manufacturers continue to strive to improve the
electrical performance of the cable, and in particular, to lower the signal
attenuation at high frequency. At the same time, any alterations in the cable design
must maintain adequate mechanical characteristics, such as cable bending
performance and resistance to unwanted deformation during installation, which can
impair the electrical performance. U.S. Patent 4,104,481 addressed these concerns
by improving the composition of the foam dielectric. U.S. Patent 4,472,595
provided improvements in cable performance by reducing the stiffness of the
tubular sheath in relation to the stiffness of the cable core.
SUMMARY OF THE INVENTION
The present invention provides an improved cable with excellent
mechanical performance and with lowered attenuation at high frequency. In
accordance with the present invention, the cable uses an outer tubular sheath
formed of a bimetallic material of two different metals.
The cable comprises at least one inner conductor, a foam dielectric
surrounding this inner conductor, and an electrically and mechanically continuous
tubular sheath formed of a bimetallic material closely surrounding the foam
dielectric and being adhesively bonded thereto. The bimetallic tubular sheath
includes an inwardly facing layer of a first metal bonded to the dielectric and an
outwardly facing layer of a second metal different from the first metal. The
inwardly facing first metal layer preferably has a lower resistivity than the
outwardly facing second metal layer.
The wall thickness of the tubular metallic sheath is suitably less
than about 750 micrometers and the first metal layer may have a thickness less
than about 100 micrometers. In a further more specific aspect, the first metal is
copper and the second metal is aluminum.
The coaxial cable may further include a protective outer jacket
surrounding the sheath. Preferably, the tubular metallic sheath has a thickness of
no greater than about 2.5 percent of its outer diameter.
In one specific embodiment, the coaxial communications cable
comprises a center conductor extending coaxially of the longitudinal axis of the
cable and formed of a copper-clad aluminum bimetallic conductor, a low loss foam
dielectric surrounding the inner conductor, and an electrically and mechanically
continuous smooth-walled tubular sheath formed of a bimetallic material closely
surrounding said foam dielectric. The bimetallic tubular sheath includes an
inwardly facing copper layer and an outwardly facing aluminum layer
metallurgically bonded to the copper layer. The sheath has a wall thickness of less
than 750 micrometers and the wall thickness is no greater than about 2.5 percent of
its outer diameter. A thin continuous layer of adhesive is disposed between the
foam dielectric and the sheath and serves to bond the foam dielectric to the
inwardly facing copper layer to form a structural composite. A polymeric jacket
surrounds the tubular sheath and is bonded to the outwardly facing aluminum
layer.
The present invention provides a coaxial communication cable comprising
at least one inner conductor, a foam dielectric surrounding said at least one inner
conductor, and an electrically and mechanically continuous tubular sheath
formed of a bimetallic material closely surrounding said foam dielectric and being
adhesively bonded thereto, said bimetallic tubular sheath having an inwardly
facing copper layer bonded to said dielectric and an outwardly facing aluminum
layer, and wherein said aluminum layer is of such a thickness as to constitute
more than half the overall cross sectional thickness of the bimetallic material.
These and other features of the present invention will become more
readily apparent to those skilled in the art upon consideration of the following
detailed description which describes both the preferred and alternative
embodiments of the invention.
BRIEF DESCRIPTION OF THE ACCOMPANYING DRAWINGS
The drawing figure is a perspective view showing a coaxial cable in
accordance with the present invention in cross-section and with portions of the
cable broken away for purposes of clarity of illustration.
DETAILED DESCRIPTION OF THE INVENTION
The drawing illustrates a coaxial cable produced in accordance with
the present invention. The coaxial cable comprises a core 10 which includes an
inner conductor 11 of a suitable electrically conductive material, and a surrounding
continuous cylindrical wall of expanded foam plastic dielectric material 12.
Preferably, the foam dielectric 12 is adhesively bonded to the inner conductor 11
by a thin layer of adhesive 13 such that the bond between the inner conductor 11
and dielectric 12 is stronger than the dielectric material. The inner conductor 11
may be formed of solid copper, copper tubing or of copper-clad aluminum. The
inner conductor 11 preferably has a smooth surface and is not corrugated. In the
embodiment illustrated, only a single inner conductor 11 is shown, but it is to be
understood that the present invention is applicable also to cables having more than
one inner conductor insulated from one another and forming a part of the core 10.
Furthermore, in the illustrated embodiment, the inner conductor 11 is a wire
formed of an aluminum core 1 la with a copper outer cladding layer 11b.
The dielectric 12 is a low loss dielectric formed of a suitable plastic
such as polyethylene. Preferably, in order to reduce the mass of the dielectric per
unit length and hence reduce the dielectric constant, the dielectric material should
be of an expanded cellular loam composition, and in particular, a closed cell foam
composition is preferred because of its resistance to moisture transmission.
Preferably, the cells of the dielectric 12 are uniform in size and less than 200
microns in diameter. One suitable foam dielectric is an expanded high density
polyethylene polymer such as described in commonly owned U.S. Pat. No.
4,104,481, issued Aug. 1,1978. Additionally, expanded blends of high and low
density polyethylene are preferred for use as the foam dielectric. The foam
dielectric has a density of Less than about 0.28 g/cc, preferably, less than about 0.25
g/cc.
Although the dielectric 12 of the invention generally consists of a
uniform layer of foam material, the dielectric 12 may have a gradient or graduated
density such that the density of the dielectric increases radially from the inner
conductor 11 to the outside surface of the dielectric, either in a continuous or a
step-wise fashion. For example, a foam-solid laminate dielectric can be used
wherein the dielectric 12 comprises! a low density foam dielectric layer surrounded
by a solid dielectric layer. These constructions can be used to enhance the
compressive strength and. bending properties of the cable and permit reduced
densities as low as 0.10 g/cc along the inner conductor 11. The lower density of
the foam dielectric 12 along the inner conductor 11 enhances the velocity of RF
signal propagation and reduces signal attenuation.
Closely surrounding the core is a continuous tubular smooth-walled
sheath 14. The sheath 14 is characterized by being both mechanically and
electrically continuous. This allows the sheath 14 to effectively serve to
mechanically and electrically seal the cable against outside influences as well as to
seal the cable against leakage of RF radiation. The tubular sheath 14 has a wall
thickness selected so as to maintain a T/D ratio (ratio of wall thickness to outer
diameter) of less than 2.5 percent. Preferably, the thickness of the bimetallic
sheath 14 is less than 2.5% of its outer diameter to provide the desired bending and
electrical properties of the invention. In addition, the tubular bimetallic sheath 14
is smooth-walled and not corrugated. The smooth-walled construction optimizes
the geometry of the cable to reduce contact resistance and variability of the cable
when connectorized and to eliminate signal leakage at the connector.
In the preferred embodiment illustrated, the tubular bimetallic
sheath 14 is made from a bimetallic strip formed into a tubular configuration with
the opposing side edges of the strip butted together, and with the butted edges
continuously joined by a continuous longitudinal weld, indicated at 15. The
welding may be carried out generally as described in U.S. Patents 4,472,595 and
5,926,949, which are incorporated herein by reference. While production of the
sheath 14 by longitudinal welding has been illustrated as preferred, persons skilled
in the art will recognize that other methods for producing a mechanically and
electrically continuous thin walled tubular bimetallic sheath could also be
employed.
The bimetalic strip from which the sheath is formed is composed of
two metal layers metallurgically bonded to one another to form a integral unitary
metal strip. The two metal layers are formed of different metals having different
electrical resistivities. In producing the tubular sheath, the metal layers are
preferably oriented so that the lower resistivity metal layer 14a is inwardly facing
and the higher resistivity metal layer 14b faces outwardly of the tubular sheath in
order to improve the attenuation properties of the cable. While various different
metals could be selected, in a preferred embodiment, the invention uses a
bimetallic strip of copper and aluminum. The thickness of the strip is less than
about 750 micrometers (desirably less than about 500 micrometers) and the copper
layer has a thickness less than about 100 micrometers. Most desirably, the
thickness of the copper is such that in the sheath, after fabrication and sinking onto
the cable core, the copper layer has a thickness between 25 and 75 micrometers. In
certain other specific applications, it may be desirable for the copper layer to be
oriented outwardly, e.g. for compatibility with connectors (providing a copper-to-
copper connection) or for improved mechanical performance.
The inner surface of the tubular sheath 14 is continuously bonded
throughout its length and throughout its circumferential extent to the outer surface
of the foam dielectric 12 by a thin layer of adhesive 16. A preferred class of
adhesive for this purpose is a random copolymer of ethylene and acrylic acid
(EAA). The adhesive layer 16 should be made as thin as possible so as to avoid
adversely affecting the electrical characteristics of the cable. Desirably, the
adhesive layer 16 should have a thickness of about 25 micrometers or less.
The outer surface of the sheath 14 is surrounded by a protective
jacket 18. Suitable compositions for the outer protective jacket 18 include
thermoplastic coating materials such as polyethylene, polyvinyl chloride,
polyurethane and rubbers. Although the jacket 18 illustrated in Figure 1 consists
of only one layer of material, laminated multiple jacket layers may also be
employed to improve toughness, strippability, burn resistance, the reduction of
smoke generation, ultraviolet and weatherability resistance, protection against
rodent gnaw-through, strength resistance, chemical resistance and/or cut-through
resistance. In the embodiment illustrated, the protective jacket 18 is bonded to the
outer surface of the sheath 14 by an adhesive layer 19 to thereby increase the
bending properties of the coaxial cable. Preferably, the adhesive layer 19 is a thin
layer of adhesive, such as the EAA copolymer described above. Although an
adhesive layer 19 is illustrated in the drawing, the protective jacket 18 can also be
directly bonded to the outer surface of the sheath 14.
The coaxial cables of the present invention are beneficially designed
to limit buckling of the bimetallic sheath during bending of the cable. During
bending of the cable, one side of the cable is stretched and subject to tensile stress
and the opposite side of the cable is compressed and subject to compressive stress.
If the core is sufficiently stiffin radial compression and the local compressive yield
load of the sheath is sufficiently low, the tensioned side of the sheath will elongate
by yielding in the longitudinal direction to accommodate the bending of the cable.
Accordingly, the compression side of the sheath preferably shortens to allow
bending of the cable. If the compression side of the sheath does not shorten, the
compressive stress caused by bending the cable can result in buckling of the
sheath.
The ability of the sheath to bend without buckling depends on the
ability of the sheath to elongate or shorten by plastic material flow. Typically, this
is not a problem on the tensioned side of the cable. On the compression side of the
tube, however, the sheath will compress only if the local compressive yield load of
the sheath is less than the local critical buckling load. Otherwise, the cable will be
more likely to buckle thereby negatively affecting the mechanical and electrical
properties of the cable.
The coaxial cables of the present invention have enhanced bending
characteristics over conventional coaxial cables. One feature which enhances the
bending characteristics of the cable is the use of a very thin bimetallic sheath 14.
In an aluminum/copper bimetallic sheath, the relatively lower compressive yield
strength of the aluminum component contributes to the avoidance of buckling
failures during bending. The copper component, which has a higher compressive
yield strength, is of such thinness mat it does not adversely impact the overall
compressive yield strength of the bimetallic sheath and the presence of the copper
component of the bimetallic sheath contributes significantly to enhanced electrical
performance, i.e. attenuation values. Preferably, the aluminum layer is of such a
thickness as to constitute more than half, and preferably more than three-fourths of
the overall cross sectional thickness of the bimetallic strip from which the sheath is
formed.
Another feature which enhances the bending characteristics of the
coaxial cable of the invention is that the sheath 14 is adhesively bonded to the
foam dielectric 12 and the protective jacket 18. In this relationship, the foam
dielectric 12 and the jacket 18 support the sheath 14 in bending to prevent damage
to the coaxial cable. The bending characteristics of the coaxial cable are further
improved by providing an adhesive layer 19 between the tubular bimetallic sheath
14 and the outer protective jacket 18.
Furthermore, increased core stiffness in relation to sheath stiffness
is beneficial to the bending characteristics of the coaxial cable. Specifically, the
coaxial cables of the invention have a core to sheath stiffness ratio of at least 5, and
preferably of at least 10. In addition, the minimum bend radius in the coaxial
cables of the invention is significantly less than 10 cable diameters, more on the
order of about 7 cable diameters or lower. The reduction of the tubular sheath wall
thickness is such that the ratio of the wall thickness to its outer diameter (T/D ratio)
is no greater than about 2.5 percent and preferably no greater than about 1.6
percent. The reduced wall thickness of the sheath contributes to the bending
properties of the coaxial cable and advantageously reduces the attenuation of RF
signals in the coaxial cable. The combination of these features and the properties
of the sheath 14 described above results in a cable with a unique combination of
electrical performance (e.g. low attenuation values) and mechanical bending
performance.
It is understood that upon reading the above description of the
present invention, one skilled in the art could make changes and variations
therefrom. These changes and variations are included in the spirit and scope of the
following appended claims.
WE CLAIM
1. A coaxial communication cable having bimetallic outer conductor
comprising, at least one inner conductor, a foam dielectric surrounding said at
least one inner conductor, and an electrically and mechanically continuous
tubular sheath formed of a bimetallic material closely surrounding said foam
dielectric and being adhesively bonded thereto, said bimetallic tubular sheath
having an inwardly facing copper layer bonded to said dielectric and an
outwardly facing aluminum layer, and wherein said aluminum layer is of such a
thickness as to constitute more than half the overall cross sectional thickness of
the bimetallic material.
2. A coaxial communication cable as claimed in claim 1, wherein said
electrically and mechanically continuous tubular sheath comprises a smooth-
walled longitudinally welded tube formed of said bimetallic material.
3. A coaxial communication cable as claimed in claim 1, wherein a polymer
jacket surrounds said tubular sheath and bonded to said outwardly facing
second metal layer.
4. A coaxial communication cable as claimed in claim 1, wherein the wall
thickness of said tubular bimetallic sheath is less than 750 micrometers and said
copper layer has a thickness less than 100 micrometers.
5. A coaxial communication cable as claimed in claim 1, wherein said copper
layer has a thickness between 25 ar d 75 micrometers.
6. A coaxial communication cable as claimed in claim 1, wherein said tubular
bimetallic sheath has a thickness of no greater than 2.5 percent of its outer
diameter.
7. A coaxial communication cable as claimed in claim 1, wherein said tubular
bimetallic sheath is adhesively bonded to said dielectric by a thin continuous
adhesive layer of a thickness of about 25 micrometers or less.
8. A coaxial communication cable having bimetallic outer conductor
comprising, a center conductor extending coaxially of the longitudinal axis of the
cable and formed of a copper-clad aluminum bimetallic conductor, a low loss
foam dielectric surrounding the inner conductor, a layer of adhesive between
said center conductor and said foam dielectric serving to bond the center
conductor to the dielectric, an electrically and mechanically continuous sheath
comprising a smooth-walled longitudinally welded tube formed of copper-clad
aluminum closely surrounding said foam dielectric, said sheath including an
inwardly facing copper layer having a thickness between 25 and 75 micrometers
and an outwardly facing aluminum layer, said sheath having a wall thickness of
less than 500 micrometers, a thin continuous layer of adhesive disposed
between said foam dielectric and said sheath and bonding the foam dielectric to
said inwardly facing copper layer to form a structural composite, a polymeric
jacket surrounding said tubular sheath, and a thin layer of adhesive disposed
between said sheath and said polymeric jacket and bonding said jacket to said
outwardly facing aluminum layer of said sheath.
9. A coaxial communication cable, substantially as herein described,
particularly with reference to and as illustrated in the accompanying drawings.

A coaxial communications cable comprises a center conductor
extending coaxially of the longitudinal axis of the cable with a low loss foam
dielectric surrounding the inner conductor and bonded thereto. An electrically and
mechanically continuous sheath surrounds the foam dielectric. The sheath is a
smooth-walled longitudinally welded tube formed of a bimetallic material, which
in one embodiment has an inwardly facing copper layer and an outwardly facing
aluminum layer. A polymeric jacket surrounds the tubular sheath and is bonded
thereto.

Documents:

in-pct-2002-1271-kol-granted-abstract.pdf

in-pct-2002-1271-kol-granted-assignment.pdf

in-pct-2002-1271-kol-granted-claims.pdf

in-pct-2002-1271-kol-granted-correspondence.pdf

in-pct-2002-1271-kol-granted-description (complete).pdf

in-pct-2002-1271-kol-granted-drawings.pdf

in-pct-2002-1271-kol-granted-examination report.pdf

in-pct-2002-1271-kol-granted-form 1.pdf

in-pct-2002-1271-kol-granted-form 18.pdf

in-pct-2002-1271-kol-granted-form 3.pdf

in-pct-2002-1271-kol-granted-form 5.pdf

in-pct-2002-1271-kol-granted-gpa.pdf

in-pct-2002-1271-kol-granted-reply to examination report.pdf

in-pct-2002-1271-kol-granted-specification.pdf

in-pct-2002-1271-kol-granted-translated copy of priority document.pdf


Patent Number 231430
Indian Patent Application Number IN/PCT/2002/1271/KOL
PG Journal Number 10/2009
Publication Date 06-Mar-2009
Grant Date 04-Mar-2009
Date of Filing 08-Oct-2002
Name of Patentee COMMSCOPE, INC. OF NORTH CAROLINA ,
Applicant Address 1375 LENOIR-RHINE BOULEVARD, P.O. BOX 339, HICKORY, NC
Inventors:
# Inventor's Name Inventor's Address
1 BIEBUYCK GHISLAIN 6 RUE DU CANAL, B-7180 SENEFFE
PCT International Classification Number H01B 11/18
PCT International Application Number PCT/US2001/19386
PCT International Filing date 2001-06-18
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 09/598,508 2000-06-21 U.S.A.