Title of Invention | "PYRIDIMINE DERIVATIVES AND PROCESSES FOR PREPARATION THEREOF" |
---|---|
Abstract | A pyrimidine derivates of formula (I) or a pharmaceutically acceptable non-toxic salt thereof and the process of the same is disclosed: The process of preparation comprises halogenating the corresponding hydroxyl group of compound of formula (II) to obtain compound of formula (1-1); |
Full Text | NOVEL PYRJMIDINE DERIVATIVES AND PROCESSES FOR THE PREPARATION THEREOF Field of the Invention The present invention relates to novel pynmidine derivatives and pharmaceutically acceptable non-toxic salts thereof which possess an excellent inhibitory activity against gastric acid secretion, a pharmaceutical composition containing the same as an active ingredient, and a process for the preparation thereof. Background of the Invention For the treatment -of peptic ulcer disease, various drugs such as antacid, anticholinergic agents, H2-receptor antagonist and proton pump inhibitor have been used. The advent of proton pump inhibitors has rekindled research activities in mis field. However, it has been pointed out that the irreversible mode of action by proton pump inhibitors may induce undesirable effects. Accordingly, various attempts to develop a reversible proton pump inhibitor (i.e., reversible acid pump antagonist) are being actively made. For example, European Patent Nos. 322,133 and 404,322 disclose quinazoline derivatives, European Patent No. 259,174 describes quinoline derivatives, and WO 91/18887 offers pyrimidine derivatives, as reversible proton pump inhibitors. Further, the present inventors have also reported quinazoline derivatives in WO 94/14795 and pyrimidine derivatives in WO 96/05177 and WO 98/43968. Summary of the Invention The present inventors have carried out further research to develop reversible acid pump antagonists with improved efficacy; and, as a result, have discovered that pyrimidine derivatives having one or more halogen groups at the 5- or 6-position of a pyrimidine nucleus or at the tetrahydroisoquinoline group of the 4-position of the pyrimidine nucleus exhibit excellent acid pump inhibition effects and inhibitory activity against gastric acid secretion. Accordingly, it is a primary object of the present invention to provide novel pyrimidine derivatives having one or more halogen groups at the 5- or 6-position of a pyrimidine nucleus or at the tetrahydroisoquinoline group of the 4-position of the pyrimidine nucleus, and phannaceutically acceptable non-toxic salts thereof. It is another object of the present invention to provide processes for preparing said compounds. It is a further object' of the present invention to provide pharmaceutical compositions for treating gastrointestinal diseases containing the same as an active ingredient. Detailed Description of the Invention In accordance with one aspect of the present invention, there are provided novel pyrimidine derivatives of formula (I) or phannaceutically acceptable non-toxic salts thereof: (Formula Removed) Wherein R1 is hydrogen, methyl or halogen and R2,R3,R4,R5 and R6 are independently each other, hydrogen or halogen, provided that when all of R3,R4,R5 and R6 are hydrogen, R1 and R2 are, independently each other, halogen. Among the pyrimidine derivatives of the present invention, preferred are those wherein R2,R3,R4,R5 and R6 are independently fluoro or chloro. The present invention also includes within its scope pharmaceutically acceptable non-toxic salts of the compounds of formula (I), the non-toxic salts, within the scope of the present invention, may include inorganic or organic salts, such as hydrochloride, maleate, sulfate, phosphate, mesylate, nitrate, tartrate, fumarate, citrate, acetate. In addition, conventional acidic salt forms used in the field of anti-ulcer agents may be included. Such salts may be prepared in accordance with any of the conventional methods. The present invention further includes, within its scope, processes for the preparation of the compounds of formula (1-1) and (1-2). The compounds of the formula (1-1) and (1-2) may be prepared in accordance with the following methods. In accordance with the present invention it relates to a pyrimidine derivative of formula (I) or a pharmaceutically acceptable non-toxic salt thereof: (Formula Removed) wherein R1 is hydrogen, methyl, and halogen and R2, R3, R4, R5 and R6 are, independently each other, hydrogen and halogen, provided that when all of Ra, R4, Rs and R6 are hydrogen, R1 and R2 are, independently each other, halogen. In accordance with the present invention it relates to a process for preparing a pyrimidine derivatives of formula (1-1), which comprises halogenating the corresponding hydroxyl group of a compound of formula (II): (Formula Removed) Wherein R1 is hydrogen, methyl, or halogen and R2, R3, R5 and R6 are independently each other, hydrogen or halogen provided that one or more of R3, R5 and R6 is/are halogen; and Ra, Rs and Re is independently hydrogen or hydroxyl provided that one or more of R3, Rs and Re are hydroxyl. Method for preparation of formual (1-1) The compound of formula (1-1) may be prepared by halogenating the corresponding hydroxyl group of compound of formula (II) in accordance with Scheme 1 described below. Scheme 1 (Scheme Removed) wherein Rt is hydrogen, methyl, or halogen and R2, RS, RS and R$ are, independently each other, hydrogen or halogen, provided that one or more of R3, R5 and R6 is/are halogen; and R3\ R5' and R* is independently hydrogen or hydroxy, provided that one or more of RS , RS and R$ are hydroxy. In the process of Scheme 1, when halogen is fluoro, the compound of formula (1-1) may be prepared by adding (diemylamino)sulrur trifluoride to the solution of the compound of formula (II) in an appropriate solvent. Suitable solvents for this reaction may include chloroform and dichloromethane. The reaction temperature preferably ranges from -78oC to 25 oC and the reaction time preferably ranges from 4 to 18 hours. In the process of Scheme 1, when halogen is chloro, the compound of formula (1-1) may be prepared by adding thionyl chloride to the solution of the compound of formula (II) in an appropriate solvent. The compound of formula (II) may be prepared in accordance with conventional methods (e.g., WO 98/43968). Method for preparation of formula (1-2) The compound of formula (1-2) which R3, R5 and R6 are hydrogen may be prepared by reacting a compound of formula (El) with a compound of formula (IV) in accordance with Scheme 2 described below. Scheme 2 (Scheme Removed) wherein R1is hydrogen, methyl, or halogen and R2 and R4 are, independently each other, hydrogen or halogen, provided that when R4 is hydrogen, R1 and R2 are, independently each other, halogen. Suitable solvents for this reaction include dimethylformamide, 1,4-dioxane, dimethyl sulfoxide, and propylene glycol. The reaction temperature preferably ranges from 80 °C to 140°C and the reaction time preferably ranges from 2 to 5 hours. The compounds of formula (III) may be prepared in accordance with the same method as described in WO 96/05177. And also, tetrahydroisoquinolines substituted with fluoro or chloro group at 5-, 6-, or 7-position of tetrahydroisoquinoline, which are useful as an intermediate for preparing the compound of formula (III), may be prepared in accordance with a known method (e.g., J. Org. Chem., 1991, 16, 6034). The present invention further includes, within its scope, Pharmaceutical compositions for treating gastrointestinal diseases, which Comprise a therapeutically effective amount of the pyrimidine derivative Df formula (I) or a pharmaceutically acceptable non-toxic salt thereof as in active ingredient, and a pharmaceutically acceptable carrier, excipient and/or other additives, if necessary. The active ingredient present hi the composition may range from 0.1% to 99.9% by weight thereof. The pharmaceutical composition of the present invention may be formulated in accordance with conventional methods. For example, the pharmaceutical composition may be formulated into various forms such as solution, suspension or emulsion in an oily or aqueous vehicle, which may contain conventional additives such as a dispersant, suspending agent, or emulsifiers, stabilizer and the like. Alternatively, the active ingredient may be formed into a dried powder that may be dissolved hi sterile pyrogen-free water before use. The compounds of the present invention may be administered, either orally or intraperitoneally, in an amount ranging from 0.1 to 500 mg/kg per day, preferably from 1.0 to 100 mg/kg per day, to human beings or animals suffering from gastrointestinal diseases, depending on the age and body weight of the patient, the nature and severity of the illness and so on. The compounds of the present invention may be formulated for administration in unit dose or multi-dose containers. The following Examples and Test Examples are given for the purpose of illustration only, and are not intended to limit the scope of the invention. Preparation 1: Preparation of l-methvl-1.23.4-tetrahvdroisoquinolme Step 1 : N-(2-phenylethyl)acetamide After phenethylamine (37.8ml, 0.3mol) and triethylamine (42ml, O.Smol) were dissolved in dichloromethane (200ml), acetyl chloride (20.7ml, O.Smol) was dropwise added thereto, while maintaining the reaction temperature below 0oC. The resulting solution was stirred for 10 minutes at room temperature, washed with water, dried over anhydrous magnesium sulfate, and concentrated in vacuo to give 45.8g of the titled compound as a white solid. Step 2: l-methyl-3,4-dihydroisoquinoline The compound (25.3g, 154.8mmol) prepared in Step 1 above was added to polyphosphoric acid (250g) and then stirred for 1.5 hours at 160°C. The reaction mixture was poured into ice water, neutralized with ammonia solution, and extracted with ethyl acetate. The extract was dried over anhydrous magnesium sulfate and concentrated in vacuo. The resulting residue was subjected to silica gel column chromatography (eluent : methanol/dichloromelhane - 1/20) to give 21.8g of the titled compound as an oily substance. Steps : 1-methyl-1,23,4-tetrahydroisoqmnoh'ne To the suspension of sodium borohydride (5.28 g, 138mmol) in ethanol, was added the compound (19.8 g, 133.8mmol) prepared in Step 2 above. The reaction mixture was stirred for 1 hour at room temperature, cooled to below 5 °C, acidified with diluted hydrochloric acid, neutralized with sodium hydroxide solution, and extracted with ethyl acetate. The ethyl acetate layer was dried over anhydrous sodium sulfate and concentrated in vacuo to give 18.5g of the titled compound. Preparation 2: Preparation of l-methyl-7-fluoro-1,2,3.4-tetrahvdroiso-quinoline Step 1 : 6,10b-dihydro-10b-methyl-5H-oxazolo[2,3-a]isoquinolin-2,3-dione To the solution of N-[2-(4-fluorophenylethyl)acetamide (5.8g, 32mmol) prepared in accordance with the same procedure as in Step 1 of Preparation 1 in dichloromethane (15ml), oxalyl chloride (3.07ml, l.leq.) was dropwise added. The reaction mixture was stirred for 30 minutes at room temperature and cooled to below -10°C. Aluminum chloride (5.1g, 1.2eq.) was added to the reaction mixture and then it was stirred for 18 hours at room temperature. IN hydrochloric acid solution was added to the reaction mixture, which was men stirred for 1 hour at room temperature. The organic layer was washed with brine and concentrated in vacuo to give 5.2g of the titled compound. Step 2: l-methyl-7-fluoro-3,4-dihydroisoquinoline To 6,10Wihydro-10b-methyl-5H-oxazolo[2,3-a] isoquinolin-2,3-dione (5.2g) prepared in Step 1 above, methanol (30ml) and sulfuric acid (1.6ml) were added. The reaction mixture was refluxed for 18 hours, cooled to room temperature, and concentrated in vacuo. To the resulting residue, IN hydrochloric acid and dichloromethane were added. The water layer was adjusted to pH 12 with potassium hydroxide solution and extracted with dichloromethane. The extract was washed with water, dried over sodium sulfate, and concentrated in vacuo to give 2.4g of the titled compound. Step 3 : l-methyl-7-fluoro-l,2,3,4-tetrahydroisoquinoline To the solution cf l-methyl-7-fluoro-3,4-dihydroisoquinoline (2.4g, 14.7mmol) prepared in Step 2 in methanol (10ml), sodium borohydride (0.28g, 1 eq.) was portionwise added. The reaction mixture was stirred for 3 hours and 1N hydrochloric acid solution (20ml) was added thereto. The reaction mixture was washed with dichloromethane. The water layer was adjusted to pH 12 with potassium hydroxide solution and extracted with dichloromethane. The extract was washed with water, dried over anhydrous sodium sulfate, and concentrated in vacuo to give 2.0g of the titled compound. Preparation 3 : Preparation of 1 -methyl-6-fluoro-1.2.3.4-tetrahydroiso-quinoline The same procedures as in Preparation 2 above were repeated using N-[2-(3-fluorophenyl)ethyl]acetamide (13.7g, 75.5mmol) prepared in accordance with the same procedure as in Step 1 of Preparation 1 as a starting material to afford 6.95g of the titled compound. Preparation 4 : Preparation of l-methvl-5-fluoro-1.2.3,4-tetrahydroiso-quinoline The same procedures as in Preparation 2 above were repeated using N-[2-(2-fluorophenyl)ethyl]acetamide (4.36g, 24.06mmol) prepared in accordance with the same procedure as in Step 1 of Preparation 1 as a starting material to afford 1.2g of the titled compound. Preparation 5 : Preparation of l-methvl-7-chloro-L23,4-tetrahydroiso-quinoline The same procedures as in Preparation 2 above were repeated using N-[2-(4-chlorophenyl)ethyl]acetamide (3.8g, 19.2mmol) prepared in accordance with the same procedure as in Step 1 of Preparation 1 as a starting material to afford 1.5g of the titled compound. Preparation 6 : Preparation of l-methvl-6-chloro-l,2.3.4-tetrahydroiso-quinoline The same procedures as in Preparation 2 above were repeated using N-[2-{3-chlorophenyl)ethyl]acetamide (12.55g, 63.5mmol) prepared in accordance with the same procedure as in Step 1 of Preparation 1 as a starting material to afford 4.56g of the tided compound. Preparation 7 : Preparation of 1-methyl-5-chloro-1,2.3.4-tetrahydroiso-quinoline The same procedures as in Preparation 2 above were repeated using N-[2-(2-chlorophenyl)ethyl]acetamide (12.55g, 63.5mmol) prepared in accordance with the same procedure as in Step 1 of Preparation 1 as a starting material to afford 5.8g of the titled compound. Example 1 : Preparation of 5.6-dimethyl-2-(3.4-difluorophenylamino't-4-n-methvl-L23.4-tetraydroisoquinolin-2-yl)pyrimidine hydrochloride To the solution of 5,6-dimethyl-2-chloro-4-(l-methyl-l,2,3,4-teti^ydroisoquinok'n-2-yl)pyrirnidine (0.5g, 1.74mmol) prepared in accordance with WO 96/05177 hi propylene glycol (2ml), were added triethylamine (0.3ml, 2.09mmol) and 3,4-difluoroaniline (0.2ml, 2.09mmol). The reaction mixture was heated to 140 "C, stirred for 18 hours, and cooled to room temperature. The resulting solution was diluted with dichloromethane, washed with water, and dried over anhydrous sodium sulfate. The organic layer was concentrated in vacuo. The resulting residue was subjected to silica gel column chromatography (eluent : ethyl acetate/hexane = 1/3), and then treated with ethyl ether solution saturated with hydrocnloric acid to afford O.lg (13.8%) of the titled compound. NMR(CDC13) : 6 1.6 (d, 3H), 2.2 (s, 3H), 2.4 (s, 3H), 2'9 (m, 1H), 3.2 (m, 1H), 3.6 (m, 1H), 4.2 (m, 1H), 5.4 (q, 1H), 7.1 (m, 6H), 7.8 (m, 1H), 10.5 (s, 1H), 14.0 (s, 1H). Example 2 : Preparation of 5.6-dimethyl-2-(2.4-difluorophenylamino)-4-(1-methyl-1.2.3.4-tetrahvdroisoquinoiin-2-yl)pyrimidine hydrochloride To the solution of 5,6-dimethyl-2-chloro-4-(l-methyl-l,2,3,4-tecrahydroisoquinoliji-2-yl)pyriinidine (0.8g, 2.78mmol) in dimethyl sulfoxide (1.5ml), was added 2,4-difluoroaniline (0.5ml, 4.9mmol). The reaction mixture was heated to 120 °C, stirred for 2 hours, and cooled to room temperature. The resulting solution was diluted with ethyl acetate, washed with water and sodium hydroxide solution, and dried over anhydrous magnesium suifate. The organic layer was concentrated in vacuo. The resulting residue was' subjected to silica gel column chromatography (eluent : ethyl acetate/dichloromethane = 1/5), and then treated with ethyl ether solution saturated with hydrochloric acid to afford 0.2g (17 %) of the titled compound. NMR(CDC13): 6 1.6 (d, 3H), 2.2 (s, 3H), 2.6 (s, 3H), 2.8 (m, 1H), 3.1 (m, 1H), 3.5 (m, 1H), 4.2 (m, 1H), 5.3 (q, 1H,), 6.9-7.2 (m, 6H), 7.8 (q, 1H), 9.7 (s, 1H), 14.4 (bs, 1H). Example 3 : Preparation of 5,6-dimethvl-2-(4-fluorophenylamino)-4-(l-methyl-7-fluoro-1.2.3,4-tetrahydroisoquinolin-2-yl)pyrimidine hydrochloride Step 1 : 5,6-dimethyl-2-chloro-4-(l-methyl-7-fluoro-1^3,4-tetrahydro-isoquinoUn-2-yl)pyrimidine To the solution of the compound (1.6g, 9.7mmol) prepared in Preparation 2 in dimethylformamide (5ml), were added 5,6-dimethyl-2,4-dichloropyrimidine (1.71g, 9.7mmol) prepared in accordance with WO 96/05177 and triethylamine (1.62ml). The reauion mixture was stirred for 5 hours at 70°C, cooled to room temperature, and diluted with dichroromethane. The resulting mixture was washed with water, dried over anhydrous sodium suifate, and concentrated in vacuo. The resulting residue was subjected to silica gel column chromatography (eluent : ethyl acetate/hexane = 1/5) to give 1.2g (40.2 %) of the titled compound . Step 2 : 5,6-dimethyl-2-(4-fluorophenylamino)-4-(l-methyl-7-fluoro-l,2,3,4-tetrahydroisoquinolin-2-yl)pyriinidine hydrochloride To the solution of the compound (O.lg, 0.33mmol) prepared in Step 1 above m dimethylformamide (5ml), was added 4-fluoroaniline (0.08ml, 0.84mmol). The reaction mixture was refluxed for 3 hours, cooled to room temperature, diluted with dichloromethane, and washed with water. The extracted dichloromethane layer was adjusted to basic with sodium hydroxide solution, washed with water, dehydrated, and concentrated. The resulting residue was subjected to silica gel column chromatography (eluent : ethyl acetate/n-hexane = 1/3), and then treated with ethyl ether solution saturated with hydrochloric acid to afford 75 mg (54.5 %) of the titled compound. NMR(CDC13): δ 1.5 (d, 3H), 2.1 (s, 3H), 2.3 (s, 3H), 2.7 (d, 1H), 3.1 (m, 1H), 3.5 (m, 1H), 4.2 (m, 1H), 5.3 (q, 1H), 6.7-7.2 (m, 5H), 7.4 (m, 2H), 10.2 (s, 1H), 14.0 (bs, 1H). Example 4- 13 The same procedures as in Step 2 of Example 3 above were repeated using 5,6-dimethyl-2-chioro-4-(l-methyl-7-fluoro-1,2,3,4-tetrahydroisoqumoh"n-2-yl)pyrirnidine (O.lg, 0.33mmol) and the corresponding aniline derivatives (0.84mmol) to afford the following titled compounds. Example 4 : Preparation of 5,6-dimethvl-2-phenylamino-4-(l-methvl-7-fluoro-1.2,3.4-tetrahvdroisoquinolin-2-yl)pyrimidine hydrochloride NMR(CDC13): δ 1.6 (d, 3H), 2.2 (s, 3H), 2.5 (s, 3H), 2.9 (m, 1H) 3.1 (m, IH), 3.6 (m, IH), 4.3 (m, IH), 5.4 (q, IH), 6.7-7.0 (m, 2H), 7.0-7.5 (m, 4H), 7.6(d, 2H), 10.2 (s, IH), 14.1 (bs, IH). Example 5 : Preparation of 5,6-dimethyl-2-(2-methylphenyiamino)-4-(l-methvl-7-fluoro-1.2.3.4-tetrahvdroisoquinolin-2-yl)pyrinudine hydrocfaloride NMR(CDC13): δ 1.6 (d, 3H), 2.3 (s, 3H), 2.4 (s, 3H), 2.5 (d, 3H), 2.8 (m, IH) 3.1 (m, IH), 3.6 (m, IH), 4.2 (m, IH), 5.3 (q, IH), 6.7-7.0 (m, 2H), 7.0-7.4 (m, 3H), 7.6 (m, IH), 9.5 (s, IH), 14.4 (bs, IH). Example 6 : Preparation of 5.6-dimetfavl-2-(2-methvl-4-fluorophenylainino)-4-(l-inethyl-7-fluoro-l,2.3.4-tetrahvdroisoquinoIin-2-vi)pyrimidine hydrochloride NMR(CDC13): δ 1.5 (d, 3H), 2.2 (s, 3H), 2.4 (s, 3H), 2.5 (s, 3H), 2.8 (m, 1H) 3.0 (m, 1H), 3.5 (m,1H), 4.2 (m, 1H), 5.2 (q, 1H), 6.7 (d, 1H), 6.8-7.0 (m, 3H), 7.1 (m, 1H), 7.5 (m, 1H), 9.5 (s, 1H), 14.3 (bs, 1H). Example 7 : Preparation of 5.6-dimethyl-2-(3.4-difluoroohenylamino)-4-(l-methyl-7-fluoro-1.2.3.4-tetrahydroisoquinolin-2-pyrimidine hydrochloride NMR(CDC13): δ 1.7 (d, 3H), 2.2 (s, 3H), 2.5 (s, 3H), 2.9 (m, 1H) 3.2 (m, 1H), 3.6 (m, 1H), 4.3 (m, 1H), 5.4 (q, IH), 6.7-7.0 (m, 2H), 7.1 (m, 3H), 7.7 (m, 1H), 10.5 (s,1H), 14.1 (bs, 1H). Example 8 : Preparation of 5,6-dimethyl-2-(2,4-difluorophenylamino)-4- n-methvl-7-fluoro-1.23.4-tetrahydroisoquinolin-2-yl)pyrimidine hydrochlorideNMR(CDC13): δ 1.5 (d, 3H), 2.2 (s, 3H), 2.5 (s, 3H), 2.8 (m,1H) 3.1 (m, 1H), 3.5 (m,1H), 4.2 (m, 1H), 5.2 (q, 1H), 6.7 (m, 2H), 6.9 (m, 2H), 7.1 (m, 1H), 7.6 (m,1H), 10.2 (s, 1H), 14.1 (bs, 1H). Example 9 : Preparation of 5.6Hdimethyl-2-(4-chlorophenylamino)-4-(l-methyl-7-fluoro-1.2.3.4-tetrahydroisoquinolin-2-yl)pyrimidine hydrochlorideNMR(CDC13): δ 1.7 (d, 3H), 2.2 (s, 3H), 2.5 (s, 3H), 2.9 (m, 1H) 3.1 (m, 1H), 3.6 (m, 1H), 4.3 (m, 1H), 5.4 (q, 1H), 6.7-7.0 (m, 2H), 7.1 (m, 1H), 7.3 (t, 2H), 7.5 (d, 2H), 10.4(s, 1H), 14.1(bs, 1H). Example 10 : Preparation of 5.6-dimethyl-2-(3.4-dicfalorophenyiamino')-4-(1 -methyl-7-fluoro-1.2.3.4-tetrahydroisoquinolin-2-yl)pyrimidine hydrochlorideNMR(CDC13): δ 1.7 (d, 3H), 2.2 (s, 3H), 2.5 (s, 3H), 2.9 (m, 1H) 3.2 (m, 1H), 3.6 (m, 1H), 4.3 (m, 1H), 5.5 (q, 1H), 6.7-7.0 (m, 2H), 7.2 (m, 1H), 7.3 (m, 1H), 7.4 (d, 1H), 8.2 (s, 1H), 10.6(s, 1H), 14.1(bs, 1H). Example 11 : Preparation of 5.6-diinethyl-2-('2-fluorophenylamino)-4-(l-methyl-7-fluoro-1.2.3.4-tetrahvdroisoquinolin-2-vl)pyrimidine hydrochlorideNMR(CDC13): δ 1.5 (d, 3H), 2.2 (s, 3H), 2.5 (s, 3H), 2.8 (m, 1H) 3.1 (m, 1H), 3.5 (m, 1H), 4.2 (m, 1H), 5.3 (q, 1H), 6.7 (d, 1H), 6.9 (m, 1H), 7.0- 7.4 (m, 4H), 7.7 (t, 1H), 9.8 (s, 1H), 14.6 (bs, 1H). Example 12 : Preparation of 5.6-rtmethyl-2-(3-fluorophenylamino)-4-(l-methvl-7-fluoro-1.2.3.4-tetrahydroisoquinolin-2-yl)pyrimidine hydrochlorideNMR(CDC13): δ 1.7 (d, 3H), 2.2 (s, 3H), 2.5 (s, 3H), 2.9 (m, 1H) 3.2 (m, 1H), 3.6 (m, 1H), 4.3 (m, 1H), 5.4 (q, 1H), 7.9 (m, 3H), 7.1-7.4 (m, 3H), 7.6 (d, 1H), 10.5(s, 1H), 14.2(bs, 1H). Example 13 : Preparation of5,6-dimethyl-2-(3-chlorophenylamino-4-(1- methyl-7-fluoro1.2.3.4-tetrahydroisoquinolin-2-yl)pyrimidine hydrochloride NMR(CDC13): δ 1.7 (d, 3H), 2.2 (s, 3H), 2.5 (s, 3H), 2.9 (m, 1H) 3.2 (m, 1H), 3.6 (m, 1H), 4.3 (m, 1H), 5.5 (q, 1H), 6.8-7.4 (m, 6H), 8.0(s, 1H), 10.5(s, 1H), 14.1(bs, 1H). Example 14 : Preparation of 5.6-dimethyl-2-(4-fluorophenylamino)-4-(l-methvl-6-fluoro-1,2.3.4-tetrahvdroisocniinolin-2- yl)pyrimidine hvdrochloride Step 1 : 5,6-dimethyl-2-chloro-4-(l-methyl-6-fluoro-l,2,3,4-tetrahydro-isoquinolin-2-yl)pyrimidine The same procedures as in Step 1 of Example 3 above were repeated using the compound (3.2g, 19.4mmol) prepared in Preparation 3, 5,6-dmernyl-2,4-dichloropyrimidine (3.42g, 19.4mmol), and triethylamine (3.24ml) to afford 2.6g (43.8%) of the titled compound. Step 2 • 5,6-1imethyl-2-(4-fluorophenylaniino)-4-(l-methyl-6-fluoro-1,2,3,4-teti^ydroisoqumolin-2-yl)pyrimidine hydrochloride The same procedures as in Step 2 of Example 3 above were repeated using 5,6-dimethyl-2-chloro-4-(l-methyl-6-fluoro-l,2,3,4- tetrahydroisoquuioUn-2-y1)pyrimidine (O.lg, 0.33mmol), dimethylformamide (5ml), and 4-fluoroaniline (0.08ml, 0.84mmol) to afford 84 mg (61 %) of the titled compound. NMR(CDC13): δ1.5 (d, 3H), 2.1 (s, 3H), 2.4 (s, 3H), 3.1 (m, 1H), 3.5 (m, 1H), 4.2 (m, 1H), 5.3 (q, 1H), 6.7-7.2 (m, 5H), 7.5 (m, 2H), 10.2 (s, 1H), 14.1 (bs, 1H). Example 15-23 The same procedures as in Step 2 of Example 3 above were repeated using 5,6-dimethyl-2-chloro-4-(l-methyl-6-fluoro-l,2,3,4-tetrahydroisoquinolin-2-yl)pyrimidine (O.lg, 0.33mmol) prepared in Step 1 of Example 14 and the corresponding aniline derivatives (0.84mmol) to afford the following titled compounds. Example 15 : Preparation of 5,6-imethyl-2-phenylamino-4-(l-methyl-6-fluoro-1.2.3.4-tetrahydroisoquinolin-2-yl)pyrimidine hvdrocnloride NMR(CDC13):δ 1.6 (d, 3H), 2.2 (s, 3H), 2.5 (s, 3H), 2.8 (m, 1H), 3.2 (m, 1H), 3.6 (m, 1H), 4.3 (m, 1H), 5.4 (q, 1H), 6.8-7.6 (m, 8H), 10.2 (s, 1H). Example 16 : Preparation of 5.6-dimethyl-2-('2-methylphenylamino')-4-(l-methyl-6-fluoro-1.2.3.4-tetrahydroisoquinolin-2- yl)pyrimidine hydrochloride NMR(CDC13):δ 1.6 (d, 3H), 2.2 (s, 3H), 2.4 (m, 3H), 2.5 (s, 3H) 2.8 (m, 1H), 3.1 (m, 1H), 3.5 (m, 1H), 4.2 (m, 1H), 5.3 (q, 1H), 6.8 - 7.1 (m, 3H), 7.2 (m, 3H), 7.6 (d, 1H), 9.5 (s, 1H), 14.4(bs, 1H). Example 17 : Preparation of 5.6-dimethyl-2-(2-methyl-4-flurophenylamino)-4-( 1 -methyl-6-fluoro-1,23.4-tetrahydroisoquinolin-2-yl)pyrimidine hydrochloride NMR(CDC13):δ 1.5 (d, 3H), 2.2 (s, 3H), 2.4 (s, 3H), 2.5 (s, 3H), 2.8 (m, 1H) 3.1 (m, 1H), 3.5 (m, 1H), 4.2 (m, 1H), 5.2 (q, 1H), 6.8-7.1 (m, 5H), 7.5 (m, 1H), 9.6 (s, 1H), 14.4 (bs, 1H). Example 18 : Preparation of 5.6-dimethyl-2-(3.4-diflurohenylamino)-4- ' 1 -methyl-6-fluoro- 1 .2.3 ,4-tetrahydroisoquinolin-2- yl)pyrimidine hydrochloride MMR(CDC13):δ 1.7 (d, 3H), 2.2 (s, 3H), 2.5 (s, 3H), 2.9 (m, 1H) 3.2 (m, 1H), 3.6 (m, 1H), 4.3 (m, 1H), 5.4 (q, 1H), 6.8-7.3 (m, 5H), 7.8 (m, 1H), 10.5(s, Example 19 : Preparation of 5.6-dimethyl-2-(2.4-difluorophenylamino)-4-(l-methyl-6-fluoro- 1 .2.3.4-tetrahydroisoquinolin-2-pyrimidine hydrochlorideNMR(CDC13): δ 1.5 (d, 3H), 2.2 (s, 3H), 2.5 (s, 3H), 2.8 (m, 1H) 3.1 (m, 1H), 3.5 (m, 1H), 4.2 (m, 1H), 5.2 (q, 1H), 6.7-7.0 (m, 5H), 7.6 (m, 1H), 9.5(s, Example 20 : Preparation of 5.6-dimethyl-2-('4-chlorophenylamino)-4-(l-methyl-6-fluoro- 1 .2.3. 4-tetrahydroisoquinolin-2- yl)pyrimidine hydrochlorideNMR(CDC13): δ1.7 (d, 3H), 2.2 (s, 3H), 2'. 5 (s, 3H), 2.9 (m, 1H), 3.2 (m, 1H), 3.6 (m, 1H), 4.3 (m, 1H), 5.4 (q, 1H), 6.8-7.2 (m, 4H), 7.3 (t, 2H), 7.5 (d, 1H), 10.4 (s, 1H), 14.1 (bs, 1H). Example 21 : Preparation of 5.6-dimethyl-2-('2-fluorophenylainino)-4-(l-methyl-6-fluoro- 1 .2.3.4-tetrahydroisoquinolin-2-vi)pyrimidine hydrochloride NMR(CDC13): 6 1.5 (d, 3H), 2.2 (s, 3H), 2.5 (s, 3H), 2.8 (m, 1H), 3.2 (m, 1H), 3.6 (m, 1H), 4.2 (m, 1H), 5.3 (q, 1H), 6.7-7.1 (m, 4H), 7.2 (m, 2H), 7.8 (m, 1H), 9.4 (s, 1H). Example 22 : Preparation of 5.6-dimethyl-2-(3-flurophenylamino)-4-(l-methyl-6-fluoro- 1 .2.3.4-tetrahydroisoquinolin-2-vI)pyrimidine hydrochloride NMR(CDC13): δ 1.7 (d, 3H), 2.3 (s, 3H), 2.5 (s, 3H), 2.9 (m, 1H), 3.2 (m, 1H), 3.6 (m, 1H), 4.3 (m, 1H), 5.5 (q, 1H), 6.8-7.0 (m, 3H), 7.1-7.4 (m, 3H), 7.7 (d, 1H), 10.5 (s, 1H), 14.1 (bs, 1H). Example 23 : Preparation of 5.6-dimethyl-2-(3-chlorophenylamino)-4-(l-methyl-6-fluoro-1,2,3.4-tetrahydroisoquinolin-2-vl)pyrimidine hydrochloride NMR(CDC13): δ 1.7 (d, 3H), 2.3 (s, 3H), 2.5 (s, 3H), 3.0 (m, 1H), 3.3 (m, 1H), 3.7 (m, 1H), 4.3 (m, 1H), 5.5 (q, 1H), 6.8-7.1 (m, 3H), 7.1-7.4 (m, 3H), 8.1 (s, 1H), 10.5 (s, 1H), 14.1 (bs, 1H). Example 24 : Preparation of 5-methyl-6-fluoromethyl-2-(4-flurophenylamino)-4-(l-methyl-1.2.3.4-tetrahydroisoquinolin-2-vn-pyrimidine hydrochloride The solution of 6-hydroxymethyl-5-methyl-2-(4-fluorophenyl-amino)-4-( 1 -methyl-1,2,3,4-tetrahydroisoquinolin-2-yl)pyrimidine (0.19g, 0.5mmol) prepared in accordance with WO 98/43968 in dichloromethane (5ml) and cooled to -75 °C and (diethylamino)sulfur trifluoride (0.15ml, 2.26mmol) was dropwise added thereto. The reaction mixture was stirred for 2 hours at -75 °C, further stirred for 2 hours at -45 °C, and slowly heated to room temperature. The reaction mixture was stirred for 18 hours at room temperature, and then water was added thereto to terminate the reaction. The extracted organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo. The resulting residue was subjected to silica gel column column chromatography (eluent : ethyl acetate/hexane=l/3), and then treated with ethyl ether solution saturated with hydrochloric acid to afford 72mg (34,5%) of the titled compound. NMR (DMSO-d6): 8 1.6(d, 3H), 2.2(s, 3H), 2.8(m, 1H), 3.1(m, 1H), 3.5(m, 1H), 4.2(m, 1H), 5.3(q, 1H), 5.5(d, 2H), 7.2(m, 6H), 7.6(m, 2H), 10.0(br, Example 25 : Preparation of 5-fluoromethyl-6-methyl— 2-(4-flurophenylamino)-4-(l -methyl- 1 ,2.3,4-tetrahydroisoquinoiin-2-vi)-pyrimidine hydrochloride The same procedures as in Example 24 above were repeated using 5-hydroxymethyl-6-methyl-2-(4-fluorophenylamino)-4-( 1 -methyl- 1 ,2,3,4-tetrahydroisoqumolm-2-yl)pyrimidine (0.1 9g, 0.5mmol) prepared in accordance with WO 98/43968, dichloromethane (5ml), and (diethylamino)sulfar trifluoride (0.15ml, 2.26mmol) to afford 27 mg (14%) of the titled compound. NMR(CDC13): δ 1.6(d, 3H), 2.2(s, 3H), 2.7(m, 1H), 3.1(m, 1H), 3.5(m, 1H), 4.0(m, 1H), 5.1(m, 2H), 5.4(s, 1H), 6.9(m, 3H), 7.1(m, 4H), 7.5(m, 2H). Example 26 : Preparation of 5.6-dimethyl-2-(4-fluorophenylamino)-4-(l-Imoromethvl- 1 .2.3.4-tetrahydroisoquinolin-2-yl)pyrimidine hydrochloride The same procedures as in Example 24 above were repeated using 5,6^1imemyl-2-(4-fluorophenylamino)-4-{l-hydroxymethyl- 1,2,3,4-tetrahydroisoqumolm-2-yl)pyrimidine(0.1g, 0.26mmol) prepared in accordance with WO 98/43968, dichloromethane (5ml), and (diethylarnino)sulfiir trifluoride (77 ui, 0.58mmol) to afford O.lg (92.2 %) of the titled compound. NMR (DMSO-d6) : δ 2.2 (d, 6H), 3.0 (m, 1H), 3.9 (m, 1H), 4.4 (m, 2H), 5.0 (m, 1H), 5.6 (m, 1H), 7.2 (m, 6H), 7.6 (m, 2H). Example 27 : Preparation of 5 .6-dimethyl-2-(4-flurophenylamino)-4-( 1 - methvI-5-fluoro-1,2,3,4-tetrahydroisoquinolin-2-yl)pyrimidine hydrochloride Step 1 : 5,6-dimethyl-2-chloro-4-(l-niethyl-5-fluoro-1,2,3,4-tetrahydro-isoquinolin-2-yl)pyrimidine The same procedures as in Step 1 of Example 3 above were repeated using the compound (1.2g, 7.3mmol) prepared in Preparation 4, dimethylfonnamide (10ml), 5,6-dimethyl-2,4-dichloropyriniidine (1.3g, 7.3rnmol), and triethylamine (1.22ml) to afford 0.94g (42%) of the titled compound. Step 2 : 5,6^dimethyl-2-(4-fluorophenylamino)-4-(l-methyl-5-fluoro-1,2,3,4-tetrahydroisoquinolih-2-yl)pyrimidine hydrochloride The same procedures as in Step 2 of Example 3 above were repeated using 5,6-dimethyl-2-chloro-4-(l-methyl-5-fluoro-l,2,3,4-tetrahydroisoqimolm-2-yl)pyrinudine (O.lg, 0.33mmol) prepared in Step 1 above, dimethylformamide (5ml), and 4-fluoroaniline (0.08ml, 0.84mmol) to afford 75 mg (54.5 %) of the titled compound. NMR(CDC13): δ 1.6 (d, 3H), 2.2 (s, 3H), 2.5 (s, 3H), 3.1 (m, 1H), 3.6 (m, 1H), 4.3 (m, 1H), 5.4 (q, 1H), 6.9-7.4 (m, 5H), 7.5 (m, 2H), 10.2 (s, 1H), 14.1 (bs, 1H). Example 28 : Preparation of 5.6-dimethyl-2-phenylamino-4-(l-methyl-5-fluoro-1.23.4-tetrahvdroisoQuinolin-2-vl)pvrimidine hvdrocfaloride The same procedures as in Step 2 of Example 3 above were repeated using 5,6-dimethyl-2-chloro-4-(l-methyl-5-fluoro-l,2,3,4-tetrahydroisoquinoun-2-yl)pyrimidine (O.lg, 0.33mmol) prepared in Step 1 of Example 27 and aniline (0.84mmol) to afford 82 mg (59.6 %) of the titled compound. NMR(CDC13): 5 1.6 (d, 3H), 2.2 (s, 3H), 2.5 (s, 3H), 3.2 (m, 1H), 3.5 (m, 1H), 4.3 (m, 1H), 5.4 (q, 1H), 6. 8-7.2 (m, 6H), 7.51 (m, 2H), 10.2 (s, 1H), 14.1 (bs, 1H). Example 29 : Preparation of 5.6-dimethyl-2-f4-flurophenylamino)-4-(l-methyl-7-cfaloro-1.2,3.4-tetrahydroisoouinolin-2-yl)pyrimidine hydrochloride Step 1 : 5,6-dimethyl-2-chloro-4-(l-methyl-7-chloro-1,2,3,4-tetrahydro-isoquinolin-2-yl)pyrimidine The same procedures as in Step 1 of Example 3 above were repeated using the compound (1.5g, 8.26mmol) prepared in Preparation 5, dimethylformamide (10ml), 5,6-dimemyl-2,4-dichloropyriioidine (1.46g, 8.26mmol), and triethylamine(1.38ml) to afford 1.12g (41%) of the titled compound. Step 2 : 5,6-dimethyl-2-(4-fluorophenylamino)-4-(l-methyl-7-chloro-1,2,3,4~tetrahydroisoquinolin-2-yl)pyrimidine hydrochloride The same procedures as in Step 2 of Example 3 above were repeated using 5,6-dimethyl-2-chloro-4-(l-methyl-7-chloro-l,2,3,4-teaahydroisoquinolin-2-yl)pvrimidine (O.lg, 0.31mmol) prepared in Step 1 above, dimethylformamide (5ml), and 4-fluoroaniline (0.07ml, 0.74mmol) to afford 82 mg (61.3 %) of the titled compound NMR(CDC13):δ 1.6 (d, 3H), 2.2 (s, 3H), 2.4 (s, 3H), 2.8 (d, 1H), 3.1 (m, 1H), 3.6 (m, 1H), 4.2 (m, 1H), 5.3 (q, 1H), 6.9-7.2 (m, 5H), 7.5 (m, 2H), 10.2 (s,1H), 14.1 (bs, 1H). Example 30 - 32 The same procedures as in Step 2 of Example 3 above were repeated using 5,6-dimethyl-2-chloro-4-(l-methyl-7-chloro-1,2,3,4-tetrahydroisoquinolin-2-yl)pyrimidine (O.lg, 0.31rmnol) prepared in Step 1 of Example 29 and the corresponding aniline derivatives (0.74mmol) to afford following titled compounds. Example 30 : Preparation of 5.6-dimethyl-2-phenvlarnino-4-(l-methyl-7-chioro-1.2.3.4-tetrahydroisoquinolin-2-vDpvrimidine hvdrochloride NMR(CDC13): δ 1.6 (d, 3H), 2.2 (s, 3H), 2.5 (s, 3H), 2.9 (d, 1H), 3.2 (m, 1H), 3.6 (m, 1H), 4.3 (m, 1H), 5.4 (q/lH), 7.0-7.5 (m, 6H), 7.6 (m, 2H), 10.2 (s, 1H), 14.1(bs, 1H). Example 31 : Preparation of 5.6-dimethyl-2-(2-methylphenylamino)-4-('l-methvI-7-chloro-1.23.4-tefrahvdroisoquinolm-2-vl)pyrimidine hydrochloride NMR(CDC13): 6 1.5 (d, 3H), 2.2 (s, 3H), 2.4 (s, 3H), 2.5 (s, 3H), 2.8 (d, 1H), 3.0 (m, 1H), 3.5 (m, 1H), 4.2 (m, 1H), 5.2 (q, 1H), 6.9-7.3 (m, 6H), 7.6 (d, 1H), 9.5 (s, 1H), 14.5 (bs, 1H). Example 32 : Preparation of 5.6-dimethyl-2-G.4-difluorophenvlamino)-4-(1 -metnvl-7-chloro-1.2.3.4-tetrahydroisoquinolin-2-yl)pyrimidine hydrochloride NMR(CDC13): δ 1.7 (d, 3H), 2.2 (s, 3H), 2.5 (s, 3H), 2.9 (d, 1H), 3.2 (m, 1H), 3.6 (m, 1H), 4.3 (m, 1H), 5.4 (q, 1H), 7.0-7.4 (m, 5H)7:/1(m, 1H), 10.5 (s, 1H), 14.1 (bs, 1H1). Example 33 : Preparation of 5.6-dimethyl-2-(4-flurophenylamino)-4-n-methyl-6-chloro-1.2.3.4-tetrahydroisoqumolin-2-vl)pyrimidine hvdrochloride Step 1 : 5,6-dimethyl-2-chloro-4-(l-methyl-6-chloro-1,2,3,4-tetrahydro-isoquinolin-2-yl)pyrimidine The same procedures as in Step 1 of Example 3 above were repeated using the compound (4.5g, 24.77mmol) prepared in Preparation 6, dimethyiformamide (15ml), 5,6-dimethyl-2,4-dichloropyrimidine (4.39g, 24.77mmoP and triethylamine (4.14ml) to afford 3.43g (4.%) of the titled compound. Step 2 : 5,6-dimemyl-2-(4-fluorophenylarnino)-4-(l-methyl-6-chloro-1,2,3,4-tetrahydroisoqumoim-2-yl)pyriniidine hydrochloride The same procedures as in Step 2 of Example 3 above were repeated using 5,6-dimethyl-2-chloro-4-(l-methyl-6-chloro-1,2,3,4-tetrahydroisoqumolm-2-yl)pyrirnidine (O.lg, 0.31mmol) prepared in Step 1 above, dimethyiformamide (5ml), and 4-fluoroaniline (0.07ml, 0.74mmol) to afford 71mg (53 %) of the titled compound. NMR(CDC13):δ 1.6 (d, 3H), 2.2 (s, 3H), 2.5 (s, 3H), 2.9 (m, 1H), 3.2 (m, 1H), 3.6 (m, 1H), 4.3 (m, 1H), 5.4 (q, 1H), 6.9-7.3 (m, 4H), 7.5 (m, 2H), 10.2 (s, 1H), 14.1(bs, 1H). Example 34 : Preparation of 5.6-dimethyl-2-phenylamino-4-(l-methyl-6-chloro-1.2.3.4-tetrahydroisoquinolin-2-vl)pyrimidine hydrocfaloride The same procedures as in Step 2 of Example 3 above were repeated using 5,6-dimethyl-2-chloro-4-(1-methyl-6-chloro-1,2,3,4-tetrahydroisoquinolin-2-yl)pyrimidine (O.lg, 0.3mmol) prepared in Step 1 of Example 33 and aniline (0.74mmol) to afford 73mg (54.3 %) of the titled compound NMR(CDC13):δ 1.6 (d, 3H), 2.2 (s, 3H), 2.5 (s, 3H), 2.9 (m, 1H), 3.2 (m, 1H), 3.6 (m, 1H), 4.3 (m, 1H), 5.4 (q, 1H), 7.1 (d, 1H), 7.2 (m, 3H), 7.4 (m, 2H), 7.6 (d, 2H), 10.2 (s, 1H), 14.1 (bs, 1H). Example 35 : Preparation of 5.6-dimethyl-2-(4-flurophenylamino)-4-(l-methvi-5-chloro-1.2.3,4-tetrahydroisoquinolin-2-vl)pyrimidine hydrochloride Step 1 : 5,6-dimethyl-2-chloro-4-(l-methyl-5-chloro-l,2,3,4-tetrahydro-isoquinolin-2-yl)pyrimidine The same procedures as in Step 1 of Example 3 were repeated f using the compound (4.5g, 24.77mmol) prepared in Preparation 7, dimethylformamide (15ml), 5,6-dimethyl-2,4-dichloropyrimidine (4.39g, 24.77mmol), and triethylamine (4.14ml) to afford 3.2Ig (40.2%) of the titled compound. Step 2 : 5,6-dimethyl-2-(4-fluorophenylamino)-4-(l-methyl-5-chloro-1,2,3,4-tetrahydroisoquinoUn-2-yl)pyrimidine hydrochloride The same procedures as in Step 2 of Example 3 above were repeated using 5,6-dimethyl-2rchloro-4-(l-methyl-5-chioro-l,2,3,4-tetrahydroisoquinolin-2-yl)pyrimidine (O.lg, 0.31mmol) prepared in Step 1 above, dimethylformamide (5ml), and 4-fluoroaniline (0.07ml, 0.74mmol) to afford 67 mg (50 %) of the tided compound. NMR(CDC13): δ 1.6 (d, 3H), 2.2 (s, 3H), 2.5 (s, 3H), 3.1 (m, 1H), 3.6 (m, 1H), 4.3 (m, 1H), 5.4 (q, 1H), 6.9-7.4 (m, 5H), 7.5(m, 2H), 10.2 (s, 1H). Example 36-44 The same procedures as in Step 2 of Example 3 above were repeated using 5,6-dimethyl-2-chloro-4-(l-methyl-5-chloro-l,2,3,4-tetrahydroisoquinolin-2-yl)pyrimidine (O.lg, 0.31mmol) prepared in Step 1 of Example 35 and the corresponding aniline derivatives (0.74mmol) to afford the following the titled compound. Example 36 : Preparation of 5.6-dimethyl-2-phenylamino-4-(l-methyl-5-chloro-1.2.3.4-tetrahydroisoQuinolin-2-yl)pyrimidine hydrochloride NMR(CDC13): 5 1.6 (d, 3H), 2.2 (s, 3H), 2.4\s, 3H), 3.1 (m, 1H), 3.5 (m, 1H), 4.3 (m, 1H), 5.3 (q, 1H), 6.8-7.2 (m, 6H), 7.5 (m, 2H), 10.2 (s, 1H), 14.1 (bs, 1H1). Example 37 : Preparation of 5.6-dimethyl-2-(2-methvlphenylaminoV4-(l-methyl-5-cnloro-1.2.3.4-tetrahydroisoquinolin-2-vl)pyrimidine hydrochloride NMR(CDC13): 8 1.6 (d, 3H), 2.2 (s, 3H), 2.4 (s, 3H), 2.5 (s, 3H), 3.0 (m, 2H), 3.5 (m, 1H), 4.3 (m, 1H), 5.3 (q, 1H), 6.9 (d, 1H), 7.0-7.4 (m, 5H), 7.6 (d, 1H), 9.6 (s, 1H). Example 38 : Preparation of 5.6-dimethyl-2-(3,4-difluorophenvlamino)-4-d-methyl-5-chloro-1.23.4-tetrahydroisoquinolin-2-vDpvriniidine hvdrochloride NMR(CDC13):δ 1.7 (d, 3H), 2.2 (s, 3H), 2.5 (s, 3H), 3.1 (m, 2H), 3.6 (m, 1H), 4.4 (m, 1H), 5.5 (q, 1H), 7.0-7.4 (m, 5H), 7.7 (m, 1H), 10.5 (s, 1H), 14.1 (bs, 1H). Example 39 : Preparation of 5.6-dimethyl-2-(2,4-difluorophenylamino')-4-d-methyl-5-chloro-1.2.3.4-tetrahydroisoquinolin-2-vl)pyrimidine hydrochloride NMR(CDC13): δ 1.6 (d, 3H), 2.2 (s, 3H), 2.5 (s, 3H), 3.0 (m, 2H), 3.5 (m, 1H), 4.2 (m, 1H), 5.3 (q, 1H), 6.8-7.1 (m, 3H), 7.1-7.4 (m, 2H), 7.6 (m, 1H), 9.7 (s, 1H), 14.5 (bs, 1H). Example 40 : Preparation of 5.6-dimethyl-2-(4-chiorophenylamino)-4-(l-methyl-5-chaloro-1.2.3.4-teirahydroisoquinolin-2-vi')Pvrimidine hvdrochloride NMR(CDC13): δ 1.7 (d, 3H), 2.2 (s, 3H), 2.5 (3. 3H), 3.1 (m, 2H), 3.6 (m, 1H), 4.3 (m,. 1H), 5.4 (q, 1H), 7.1 (d, 1H), 7.1 7.4 (m, 5H), 7.6 (d, 1H), 10.4 (s, 1H), 14.1(bs, 1H). Example 41 : Preparation of 5.6-dimethyl-2-(3.4-dichlorophenylamino)-4-(1 -metfavl-5-chloro-1.2.3.4-tetrahydroi'soquinoiin- 2-yl)pyrimidine hydrochlorideNMR(CDC13): δ 1.7 (d, 3H), 2.3 (s, 3H), 2.5 (>, 3H), 3.1 (m, 2H), 3.7 (m, 1H), 4.4 (m, 1H), 5.6 (q, 1H), 7.0 (d, 1H), 7.0-7.5 (m, 5H), 8.2 (s, 1H), 10.7 (s, 1H), 14.1 (bs, 1H). Example 42 : Preparation of 5.6-dimethyl-2-(2-f;uorophenylaniino)-4-(l- methyl-5-cfaloro-1.2.3.4-tetrahydroisoquinolin-2-yl)pyrimidine hydrochlorideNMR(CDC13): δ 1.6 (d, 3H), 2.3 (s, 3H), 2.6 (5, 3H), 3.0 (m, 2H), 3.6 (m, 1H), 4.3 (m, 1H), 5.4 (q, 1H), 7.0 (d, 1H), 7.1 7.4 (m, 5H), 7.7 (t, 1H), 9.8 (s, 1H), 14.6(bs, 1H). Example 43 : Preparation of 5.6-dimethyl-2-(3-fiUorophenylaminoV4-(l-methyl-5-chloro-1.2.3.4-tetrahvdroisoquinoiin-2-yl)pyrimidine hydrochlorideNMR(CDC13): δ 1.7 (d, 3H), 2.3 (s, 3H), 2.5 (s 3H), 3.1 (m, 2H), 3.6 (m, 1H), 4.4 (m, 1H), 5.5 (q, 1H), 6.9 (t, 1H), 7.1 'd, 1H), 7.2-7.4 (m, 4H), 7.7 (d, 1H), 10.5 (s, 1H), 14.1(bs, 1H). Example 44 : Preparation of 5,6-dimethyl-2-C3-chlorophenylamino)-4-n-meihvl-5-chloro-1.2.3.4-tetrahydroisoquinolin-2-yl)pyrimidine hydrochlorideNMR(CDC13): δ 1.7 (d, 3H), 2.3 (s, 3H), 2.5 (s, 3H), 3.1 (ra, 2H), 3.7(m, 1H), 4.4 (m, 1H), 5.6 (q, 1H), 7.0-7.4 (m, 6H), 8.1 (s, 1H), 10.5(s, 1H), 14.1(bs, Test Example 1 : Inhibition of proton pump(H+/K+-- ATPase) activity The gastric vesicle as an enzyme source was prepared by the same method as in the Experiment 1-1 of WO 94/14795. Further, the inhibitory effect of proton pump activity was measured by the same method as in Experiment 1-2 of WO 94/14795. Namely, the proton pump activity stimulated by Mg++ was used as a negative control group, and the activity stimulated by Mg++ and K+ was used as a positive control group. Omeprazole was used as the control compound. Test tubes were divided into 4 groups: Group 1 as negative control group (n=3), Group 2 as positive control group (n=3), Group 3 (n=5X2) to be administered with the compound of the present invention and Group 4 (n=5X2) to be administered with the control compound. The inhibitory effects of Group 3 and 4 on proton pump activity were measured by employing the compounds prepared in Examples and omeprazole, respectively, each of which was dissolved in dimethyl sulfoxide (DMSO) at 5 different concentrations. To each of Groups 1, 2, 3, and 4 was added O.lml of magnesium chloride 4mM) dissolved in 40mM Tris-HCl buffer (pH 6.4) and 100ul of enzyme source. The 50ulof potassium chloride (60mM) and 50µlof ammonium chloride (6mM) dissolved in 40mM Tris-HCl buffer (pH 6.4) were added to all groups except for Group 1 . of dimethyl sulfoxide was added to each of Group 1 and 2; and to Group 3 was added10ulof dimethyl sulfoxide solution prepared by dissolving compound of Example at 5 different concentrations (n=5X2). To Group 4, was added 10ulof the solution prepared by dissolving omeprazole in dimethyl sulfoxide at 5 different concentrations (40, 20, 10, 5, 2.5p M) (n=5X2). 40mM Tris-HCl buffer (pH 6.4) was added thereto so as to make the total volume 400ul Thereafter, the test tubes of each Group were placed at 37 °C for 30 minutes for the preincubation. ATP solution (6.6 mM) was added until the total volume became 500//£. After the reaction was carried out at 37 °C for 30 minutes, 25% cold trichloroactic acid was added to terminate the enzyme reaction. The released inorganic phosphorous was measured by an automatic analyzer (Express 550, Coming). The difference between Group 1 and Group 2 represents the proton pump activity activated by KT only. The IC50S of Group 3 and 4 were calculated using the Linear Regression method. The concentrations of the test compounds inhibiting 50% of the proton pump activity are represented as IC50 in Table 1. Table 1. Inhibitory effects on proton pump (ITVK+-ATPase) activity (Table Removed) As shown in Table 1, the compounds of the present invention exhibit the highly potent acid pump inhibitory activity over omeprazole. Test Example 2 : Inhibition of gastric secretion In accordance with the method disclosed in Shay, H., et al., Gastroenterology 5, 43-61 (1945), the inhibitory activity against acid secretion was evaluated. Sprague-Dawley rats having a body weight of 200 ± 0g were divided into 3 groups (n=5) and deprived of food for 24 hours before the experiment with free access to water. Under ether anesthesia, the abdomen was incised, and the pylorus was ligated. As a comparative group, Group 1 was administered intraduodenally in the volume of 0.5ml/200g of 0.5% methylcellulose \« solution. Group 2 and 3 were administered intraduodenally in the volume of 0.5ml/200g of the compound of Example and omeprazole, respectively, each of which was suspended in 0.5% methylcellulose solution at a concentration of lOmg/kg. After 5 hours from ligation, the rats were sacrificed, and the gastric contents were collected. The gastric juice collected was centrifnged at l,000g to remove precipitates. The volume and pH of the gastric juice were measured. Relative volumes, relative acid concentrations, and relative acid outputs of the test compounds were calculated from equations (I), (II), and (HI) and the results are shown in Table 2. Relative volume (I) = (the average volume of gastric juice of Group 1 - the average volume of gastric juice of Group 2) / (the average volume of gastric juice of Group 1 - the average volume of gastric juice of Group 2) Relative acid concentration (II) = (the average acidity of Group 1 - the average acidity of Group 2) / (the average acidity of Group 1 - the average acidity of Group 3) Relative acid output (III)the total volume of acid output of Group 1 - the total volume of acid output of Group 2) /(the total volume of acid output of Group 1 - the total volume of acid output of Group 3) Table 2. (Table Removed) As shown in Table 2, the compounds of the present invention exhibit the highly potent inhibitory activity against gastric acid secretion over omeprazole. CLAIM; 1. A pyrimidine derivative of formula (I) or a pharmaceutically acceptable non-toxic salt thereof: (Formula Removed) wherein R1is hydrogen, methyl, and halogen and R2, R3, R4, R5 and R6 are, independently each other, hydrogen and halogen, provided that when all of R3, R4, R5 and R6 are hydrogen, R1 and R2 are, independently each other, halogen. 2. The pyrimidine derivative of formula (I) or the pharmaceutically acceptable non-toxic salt thereof as claimed in claim 1, wherein R1, R2, R3, R4, R5 and Re are independently fluoro or chloro. 3. A process for preparing a pyrimidine derivatives of formula (1-1), which * comprises halogenating the corresponding hydroxyl group of a compound of formula (II): (Formula Removed) Wherein R1 is hydrogen, methyl, or halogen and R2, R3, R5 and R6 are independently each other, hydrogen or halogen provided that one or more of R3, R5 and R6 is/are halogen; and R3, R5 and R6 is independently hydrogen or hydroxyl provided that one or more of R3, R5and R6 are hydroxyl. 4. A pyrimidine derivative formula (I) or a pharmaceutically acceptable non- toxic salt thereof substantially as herein described with reference to the foregoing description, examples and the accompanying tables. 5. A process for preparing a pyrimidine derivatives of formula (1-1) substantially as herein described with reference to the foregoing description, examples and the accompanying tables. |
---|
in-pct-2001-00376-del-abstract.pdf
in-pct-2001-00376-del-assignment.pdf
in-pct-2001-00376-del-claims.pdf
in-pct-2001-00376-del-correspondence-others.pdf
in-pct-2001-00376-del-correspondence-po.pdf
in-pct-2001-00376-del-description (complete).pdf
in-pct-2001-00376-del-form-1.pdf
in-pct-2001-00376-del-form-13.pdf
in-pct-2001-00376-del-form-19.pdf
in-pct-2001-00376-del-form-2.pdf
in-pct-2001-00376-del-form-3.pdf
in-pct-2001-00376-del-form-4.pdf
in-pct-2001-00376-del-form-5.pdf
in-pct-2001-00376-del-pct-210.pdf
in-pct-2001-00376-del-pct-304.pdf
in-pct-2001-00376-del-pct-409.pdf
in-pct-2001-00376-del-petition-137.pdf
Patent Number | 231793 | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Indian Patent Application Number | IN/PCT/2001/00376/DEL | ||||||||||||||||||
PG Journal Number | 13/2009 | ||||||||||||||||||
Publication Date | 27-Mar-2009 | ||||||||||||||||||
Grant Date | 09-Mar-2009 | ||||||||||||||||||
Date of Filing | 02-May-2001 | ||||||||||||||||||
Name of Patentee | YUHAN CORPORATION | ||||||||||||||||||
Applicant Address | 49-6, TAEBANG-DONG, TONGJAK-KU, SEOUL 156-020, REPUBLIC OF KOREA | ||||||||||||||||||
Inventors:
|
|||||||||||||||||||
PCT International Classification Number | C07D 401/04 | ||||||||||||||||||
PCT International Application Number | PCT/KR99/00669 | ||||||||||||||||||
PCT International Filing date | 1999-11-09 | ||||||||||||||||||
PCT Conventions:
|