Title of Invention | A METHOD AND APPARATUS FOR PRESENTING AT LEAST A PART OF AN OBJECT |
---|---|
Abstract | This invention relates to method for presenting at least a part of an object, comprising at least partially dividing at least one object into a plurality of sub-objects, presenting said plurality of sub-objects in a first representation, making at least one sub-object of said plurality of sub-objects an active sub-object, and in response to a user operation on said at least one active sub-object, presenting at least one of said at least one active sub-objects in a second representation. Said at least one object may be a 2D object, e.g. a Hypertext Markup Language HTML page or a page of a text document, or a 3D object, e.g. a Virtual Reality Markup Language VRML object, and said display may be integrated in a portable electronic device. The invention further relates to a device, a system, a computer program and a computer program product. |
Full Text | SC/cw 040242WO Improved Presentation of Large Objects on Small Displays FIELD OF THE INVENTION This invention relates to a method, a computer program, a computer program product, a device and a system for presenting at least a part of an object on a display. BACKGROUND OF THE INVENTION The ongoing miniaturization of multi-media devices such as Personal Digital Assistants (PDAs) or mobile phones in recent years appears to be only bounded by the perceptual limits of the human user. This particularly applies to the design of the displays of multimedia devices, with a remarkable trend to increase the relative area of the device that is consumed by its display. However, the display sizes of, for example, hand-held devices are necessarily significantly smaller than the display sizes, for which content is usually designed. If for instance content of the World Wide Web (WWW), i.e. web pages formatted according to the Hypertext Markup Language (HTML) or derivatives thereof (such as Extensible HTML (XHTML)), is to be displayed on the display of a handheld device, it has to be considered that these web pages normally have an original presentation size designed for portrayal on a computer monitor, the dimensions of which are often remarkably larger than the display dimensions of a hand-held device such as a mobile phone. Viewing web pages on a small display requires horizontal and vertical scrolling with scroll bars, which is generally experienced as uncomfortable or even annoying for the user. Consequently, most browsers that are installed in, for example, hand-held devices and provide for the interpretation of the web page content offer the possibility to view web pages in a format that is optimized for the display dimensions of the hand-held device. This is usually achieved by rendering the web page so that it fits the width of the device's display. This method of rendering the page so that it fits the width of the device's display causes at least the following problems: - Rendered pages get very tall, so a lot of vertical scrolling is required. - The structure of the web page is not preserved well by the rendering process, for example form elements like input fields frequently get separated far away from each other if they are aligned using tables. - An original layout mode is required as an additional viewing method, as all the pages just do not convert usably into tall and narrow format. In said original layout mode, the web page is displayed in its original presentation size, i.e. a size wherein objects of said web page have the size that is prescribed by the object format (e.g. image or text format) and/or the markup language. Even when such an original layout Mode is provided by the browser, there arise further problems: - As the web page area is big, a lot of panning and zooming is needed to explore the entire content of the web page. - On a small display, it is difficult to figure out the structure of a large page, i.e. the viewer may lose an overview of the entire web page. - Text paragraphs in the original layout usually are wider than the display width, so that paragraphs in the original layout mode on a small display are often difficult to read. Quite similar problems are encountered when instead of two-dimensional (2D) objects (such as pages), three-dimensional (3D) objects are to be presented on a display. Examples of such 3D objects are a 3D map of a town, for instance obeying the Virtual Reality Markup Language (VRML), or a 3D calendar representation, wherein days, weeks, months or years may be represented by cubes that are accordingly positioned to each other. There currently exists no technique to clearly present such usually large 3D objects on a small display. SUMMARY OF THE INVENTION In view of the above-mentioned problems, it is, inter alia, an object of the present invention to provide a method, a computer program, a computer program product, a device and a system for an improved presentation of large objects on small displays. A method is proposed for presenting at least a part of an object, comprising at least partially dividing at least one object into a plurality of sub-objects, presenting said plurality of sub-objects in a first representation, making at least one sub-object of said plurality of sub-objects an active sub-object; and in response to a user operation on said at least one active sub-object, presenting at least one of said at least one active sub-objects in a second representation. Said at least one object comprises content that may be structured or organized, for instance, the object may contain pictures, tables, text paragraphs, forms, 3D blocks, or similar elements. The layout and size of said at least one object may be optimized for portrayal on a computer monitor or television screen. To allow for a presentation of at least a part of said at least one object, for instance for a displaying on a display the dimensions of which, such as display diagonal or height and width of the display, may be substantially smaller than those of a computer monitor or television screen, said at least one object is at least partially divided into a plurality of sub-objects. For instance, if said at least one object is structured as a table, the cells of the table may represent said sub-objects, and/or if the at least one object contains pictures,said pictures may represent said sub-objects. Said at least one object is at least partially divided into said plurality of sub-objects. Thus either the complete object,or only a part thereof may be divided into sub-objects. In case of several objects, said Objects may be completely divided into sub-objects or only parts of each object may be divided into sub-objects. Said parts may be the same for said objects, for instance only a center region or the content of a specific frame on each object, or said parts of said objects may be different. Said at least one object may be divided into different types of sub-objects, wherein each type may for instance be characterized by a different degree of detail, a different size or a different appearance, and wherein sub-objects of different types may be associated with each other. Said object may for instance be a map of a town, and then a first type of sub-objects may be buildings of said town, and a second type of sub-objects may be rooms of the buildings, wherein the rooms then may be associated with the buildings. The plurality of sub-objects then may have a hierarchical structure. According to the present invention, it is also possible that several objects are at least partially divided into sub-objects. These several objects may for instance be pages of a text document, slides of a presentation, several web pages, several 3D objects or any other accumulation of information-carrying objects. When dividing said several objects into sub-objects, not necessarily each sub-object corresponds to one object. For instance, several objects may correspond to a sub-object, or only parts of an object may correspond to a sub-object. At least partially dividing several objects into sub-objects that are presented in a first representation and then, upon user operation, at least Partially in a second representation allows the user to comfortably gain an overview on information that is spread across several objects and thus naturally difficult to perceive. Said plurality of sub-objects is then presented in a first representation. This may for instance be a small representation, i.e. the size of said sub-objects may be reduced as compared to their original presentation size, wherein said original presentation size of said sub-object depends on the original presentation size of said at least one object said sub-object is a part of. Said original presentation size of said at least one object may for instance be the size of said at least one object as prescribed by a format of said object, for instance a 2D or 3D image or text format or a markup language, and may for instance be defined in units of pixels or inches. In said first representation, said sub-objects of said plurality of sub-objects may, for instance, be scaled to a smaller size by reducing the height and/or width and/or depth of the original presentation size of said sub-object, or may be cropped by cutting off parts of said sub-object and displaying the remaining part, for instance, the content in the upper left corner of a 2D sub-object, or may be indicated by an icon, for instance, an icon symbolizing an image or an input field. For different sub-objects of said plurality of sub-objects, different size reduction techniques such as scaling, cropping, using icons or any combination of them may be used. Said first representation may also comprise total skipping of sub-objects of a object, if said sub-objects are decided to contain no relevant information, or if it Is desired to remove advertisements or other unwanted content. In said first representation, the actual content of said sub-objects in first representation may no longer be clearly distinguishable. However, active elements such as hyperlinks, animated images, forms or similar elements within said sub-objects may still properly work in said first representation (or at least be recognizable). With said plurality of sub-objects being presented in first representation, it may be possible to reduce the original presentation size of the at least one object down to a size that lends itself for portrayal on a small display. However, even in this first representation, ID, 2D or 3D scrolling may be required (in one, two or three dimensions of a Cartesian or spherical coordinate system, respectively) to explore sub-objects of said plurality of sub-objects in said first representation. Even when the content of one or more sub-objects in said first representation may no longer be clearly visible, a viewer gets an overview on the structure and contents of the at least one object, wherein the required amount of 1D, 2D or 3D scrolling may be eliminated or at least reduced. The same holds for the presentation of more than one object by dividing the objects into sub-objects and displaying said sub-objects in a first and a second representation, which allows the user to gain a structured overview on information that is spread across several objects. When presenting said plurality of sub-objects in said first representation, at least one of said sub-objects is made an active sub-object, i.e. it may, for instance, be Made selectable, for instance by a viewer or by a browser. Said user operation on said at least one active sub-object then would be a selection, and said at least one active sub-object being selected then becomes a selected sub-object. Prior to said selection, said at least one active sub-object may be focused. Focusing may be implemented in a way that an accentuation can be navigated among said active sub-objects, for instance, via a cursor, and by pressing a key or a button, the active sub-object that is currently accentuated/focused,is selected. As an alternative for selection, each active sub-object may be assigned a number, letter or symbol, and the active sub-object then can be selected by pressing a key with the corresponding number, letter or symbol or entering a command into a user interface. Further alternatively, said selection may be accomplished via tipping on the active sub-object with a stylus or a finger on a touchscreen display, or with a mouse pointer, if mouse functionality is provided in a device, or via eye tracking, voice control or similar non-contact techniques that allow for an identification of selected sub-objects. In this case, said user interaction then may only be an eye movement or a spoken word. Said selection may also be automatically accomplished by a device or application, based on pre-defined selection information, for instance a sub-object that contains new content or a sub-object that contains a form may be automatically selected or alternatively, said active sub-object may be automatically highlighted, for example, by Placing a focus or cursor onto it, but not automatically-selected. At least one of said at least one active sub-objects is then presented in a second representation. If said user operation is a selection of said at least one active sub-object , said at least one active sub-object presented in said second representation then corresponds to said selected sub-object. In said second representation, which may, for instance, be a large representation, said selected sub-object may be scaled to a larger format than in said first representation, or may be less cropped, or both, so that its content may be more properly inspected and used. If said selected sub-object is indicated by an icon in said first representation, in said second representation its actual content may be presented. In said second representation, said selected sub-object may be scaled to fit at least one dimension of a display, for instance the width of the display (scaling may also be done so that e.g. text is shown in its full presentation size but forced to wrap to display width), or it may be scaled to its original presentation size (possibly so that all text inside a sub-object is forced to wrap to the display width and is, for example, left aligned). However, scrolling may still be required to entirely view the selected sub-object in said second representation. In said second representation, said selected sub-object may be presented alone, or together with neighboring sub-objects, wherein active neighboring sub-objects or both active and non-active neighboring sub-objects may be presented. Scrolling from said selected sub-object to said neighboring sub-objects may be possible by Interaction of the viewer or browser. Said at least one selected sub-object and possibly said neighboring sub-objects in said second representation, and sub-objects in said first representation may well be presented at the same time. For instance, when said plurality of sub-objects in said first representation is presented, the selection of an active sub-object may cause an enlargement of the selected sub-object, wherein said selected sub-object then is displayed in said second representation, together with the plurality of sub-objects in said first representation, but possibly without the first representation of the selected sub-object, which now is presented in said second representation. To preserve the layout of the at least one object when mixing first and second representations, it may be advantageous that sub-objects that are at least partially at the same height or width or depth as the selected sub-object, for instance, in the same row or column in a 2D table layout, are also displayed in second representation, wherein their up-scaling then depends on the size or scaling of the selected sub-object in said second representation. For these sub-objects on the same height/width/depth, enlarging may also be done in one dimension, for example increasing only the width of sub-objects above/below the selected sub-object. By deselecting said selected sub-object, said plurality of sub-objects is then presented in said first representation again, and a different active sub-object may be selected for closer inspection. When one active sub-object is selected, the user may scroll a display on which said active sub-object is presented, so that one or more of the neighboring sub-objects become visible, wherein these neighboring sub-objects may be in first or second representation. The user may then directly select any of the neighboring sub-objects, and after selection, the new selected sub-object is shown in second representation and other sub-objects (including the sub-object that was previously shown in second representation) are shown in first representation. Alternatively, it is possible that when selecting a neighboring sub-object, both the neighboring sub-object and a previously selected sub-object are shown in second representation. In this way the user can choose more than one sub-object to be shown in second representation at a time. The user can also de-select sub-objects one by one to return them to be shown in first representation. The present invention obviously allows for an improved presentation of large objects on small displays by breaking down at least one object into a plurality of sub-objects, which are presented in a clear first representation that may grant the viewer an overview on the structure of the at least one object, and, via the possibility to select active sub-objects in said first representation via user operation and then to view said selected sub-objects in a second representation, also may allow to present relevant sub-objects of the at least one object in adequate size. In contrast to state-of-the-art techniques, it may be possible to skip the necessity of a complex original layout mode. The amount of scrolling, panning and zooming required to get an overview on the at least one object and to explore its content can be Significantly reduced, so that less user interaction is needed and one-hand usage is facilitated. According to a method of the present invention, said at least one object and said sub-objects are 3D-objects. Said at least one object may for instance be a 3D map, which may for instance obey the Virtual Reality Markup Language (VRML), or a 3D calendar, or any other information that is presented under exploitation of the third spatial dimension. If said 3D object is a 3D map of a town, said sub-objects may for instance be blocks or buildings of said town, and if said 3D object is a building, said sub-objects may for instance be rooms of said building. If 3D objects are to be displayed, said display may be a special display that is particularly suited for the portrayal of 3D objects, for instance a 3D display, or a standard display. According to a method of the present invention, said at least one object is a page, and said sub-objects are areas. Said at least one object and said sub-objects then are 2D objects. Said page may for instance be a page of a text document, a slide of a presentation, or a web page. According to a method of the present invention, in said user operation, at least one of said at least one active sub-objects is selected, and wherein at least said selected sub-object is presented in said second representation. According to a method of the present invention, at least two sub-objects of said plurality of sub-objects are made Active sub-objects. Then the viewer may select at least one of said two active sub-objects to be presented in said second representation. According to a method of the present invention, said at least partial division of said at least one object into said plurality of sub-objects is based on a structure of at least a part of said at least one object. Said structure may be based on the appearance of at least a part of said at least one object, for instance, if the at least one object is a picture, which contains several elements, said elements may be assigned to respective sub-objects. In case of several objects, said structure may at least partially be based on the sequence of logical linking of said objects, so that, for instance, said several objects are divided into sub-objects in a way that each sub-object contains some consecutive objects or similar. Said structure may also be based on the format that defines the object. For instance, if the object is a web page that obeys the Hypertext Markup Language (HTML) or a similar language format, the object is inherently structured in terms of HTML elements such as for instance frames, tables, paragraphs, images and hyperlinks. HTML tags marking the beginning and the end of HTML elements may then be exploited when dividing the object into said plurality of elements. The same holds if the object is a 3D object that obeys the Virtual Reality Markup Language (VRML), for example. Said division may for instance be performed by a browser or any other application that is installed in the device or by a content optimization server in the network, i.e. a server that is located between the client and the server that provides objects. Data traffic goes through the content optimization server that may be capable of modifying objects to be better suitable for a mobile client. According to a method of the present invention, said at least partial division of said at least one object into said plurality of sub-objects is based on a sectioning algorithm. Said sectioning algorithm may be based on predefined rules and perform a partial or complete division of said at least one object into a plurality of sub-objects according to these rules. If said object is an object with a hierarchical structure, said structure may be considered in said sectioning algorithm. Otherwise, said object may be divided into sub-objects of a certain size, for instance certain rectangles for 2D objects and certain parallelepipeds for 3D objects. According to a method of the present invention, in said first representation, at least one sub-object of said plurality of sub-objects is scaled to a size that is smaller than the original presentation size of said respective sub-object. Said original presentation size of said sub-object depends on the original presentation size of said at least one object said sub-object is a part of. Said original presentation size of said at least one object may for instance be the size of said at least one object as prescribed by a format of said object, for instance a 2D or 3D image or text format or a markup language, and may for instance be defined in units of pixels or inches. Said original presentation size of said at least one object may substantially differ from the original size of the content of said at least one object. For instance, if said at least one object is an image, the content (or motive) of said image may be substantially larger or smaller than its representation in said image, i.e. the image may contain a zoomed-in or zoomed-out representation of said content. Said scaling may refer to the height, width and/or depth of said original presentation size of said sub-object. Said scaling may also comprise image processing techniques, for instance to improve the appearance of the sub-object in said first representation after the scaling, or be combined with cropping techniques. Each sub-object of said plurality of sub-objects may be subject to the same scaling, or different scaling methods and amount of scaling may be applied. For instance, if sub-objects are made active and/or focused in said first representation, different amounts of scaling may be applied to said sub-objects in said first representation in a way that sub-objects that are in a close neighborhood of an active/focused sub-object, and said active/focused sub-object are scaled by a first scale factor, and the remaining sub-objects in said first representation are scaled by a second scale factor, wherein said first scale factor causes less down-scaling than said second scale factor. Then said active/focused sub-object and said neighboring sub-objects are presented in larger size than said remaining sub-objects. It may also be possible that the scale factor of each sub-object gradually increases or decreases with increasing distance of said respective sub-object to said active/focused sub-object . According to a method of the present invention, in said first representation, at least one sub-object of said plurality of sub-objects is cropped. Cropping comprises cutting of certain portions of said sub-object, for instance, the upper left portion or a center portion or a particularly important portion of an sub-object may be presented, wherein said important portion may be automatically determined. Said cropping may be combined with scaling and/or image processing. According to a method of the present invention, in said first representation, at least one sub-object of said plurality of sub-objects is indicated by an icon. For instance, a sub-object that contains an image may be indicated by an image icon. The size of said icon may be smaller than the original presentation size of said sub-object. It is also possible that when the user focuses a sub-object that is shown in said first representation (scaled or/and cropped), a small icon may be shown in the corner of that sub-object, to indicate to the user that upon selection the sub-object will be enlarged. If the user removes focus from that sub-object, then the icon is taken away too. The icon can be drawn to be transparent, too, so as not to hide content behind it that much. Said icon may be a 2D or a 3D icon. According to a method of the present invention, sub-objects of said plurality of sub-objects with a size that is above a size threshold and/or that contain an amount of information that is above an information threshold are made active sub-objects. Said size threshold may for instance refer to the original presentation size of a sub-object, or to said size of said sub-object in said first or second representation, and said information threshold may quantitatively refer to an amount of characters in a text area. Said information threshold may also qualitatively prescribe that if a sub-object, for example, only contains an input field or a similar element without further text, the amount of information that this sub-object represents is below said information threshold. In case of a 3D sub-object, said information threshold may also refer to a resolution of said 3D sub-object, as for instance a number of pixels contained therein. According to a method of the present invention, at least one of said at least one active sub-objects is automatically focused and/or selected according to a selection criterion. Said active sub-object may for instance be determined by an instance in the device, based on said selection criterion, which may for instance prescribe that the first active sub-object of an object has to be focused and/or selected or that the first active sub-object with an input field or image or text or other characteristic content has to be focused and/or selected or that the first sub-object containing new information has to be focused and/or selected. The sub-object containing new information may, for instance, be determined by comparing information of the current object and a previous object. Also the size of the active sub-object may be used as a selection criterion. According to a method of the present invention, in said second representation, said at least one active sub- Object is scaled to a size that is larger than its size in said first representation. In said first representation, the selected sub-object is scaled, cropped or indicated by an icon, or modified according to any combination of these techniques, wherein the size of said first representation of said selected sub-object may be smaller than the original presentation size of said selected sub-object in order to allow a compact presentation of the object (or parts thereof) on said display. In contrast, in said second representation, said selected sub-object is scaled or enlarged to a size that is larger than said size of said selected sub-object in said first representation, so that an improved portrayal of the contents of said selected sub-object is possible. In said second representation contents of an sub-object may be additionally zoomed in and out. This may be done so that zooming affects size of contents of a sub-object shown in second representation. Alternatively, the zooming may be applied to all sub-objects (in first and second representation). In addition to this, there might be a separate zoom for sub-objects that are shown in said first representation. According to a method of the present invention, within at least one of said sub-objects presented in said first representation, elements can be directly selected by a user. Said elements may for instance be hyperlinks, buttons,portions of 3D objects or similar elements. In that case, the user may separately select said at least one sub-object containing said elements to be presented in said second representation. According to a method of the present invention, said plurality of sub-objects is composed of different types of sub-objects, and wherein at least one group of sub-objects of a second type is associated with at least one sub-object of a first type. Said types may for instance be different levels of detail, size or appearance of said sub-objects. For instance, if said object is a 3D object, as for instance a 3D map of a town, said object then is divided into a plurality of sub-objects, wherein one type of said sub-objects may be houses, and a second type of said sub-objects may be the rooms of the houses. Then said rooms form a group of sub-objects of said second type that is associated with a house, which is a sub-object of said first type. Said plurality of sub-objects then may have a leveled or hierarchical structure. According to a method of the present invention, said at least one active sub-object that is present in said second representation is said at least one sub-object of said first type, and wherein in response to a further user operation on said at least one sub-object of said first type, said at least one group of sub-objects of said second type associated with said at least one sub-object of said first type is presented. For instance, if said object is a 3D object that is divided into a sub-objects of a first type, i.e. houses, and sub-objects of a second type, i.e. rooms of the houses, and if one of said houses is presented in said second representation, said house may be made active and then be selected by a user, and then the group of rooms associated with said house as group of sub-objects of said second type may be presented. It may then further be possible to make at Least one of said rooms active and to select one of said active rooms in order to get a more detailed or larger view of said room. It is further proposed a computer program with instructions operable to cause a processor to perform the above-mentioned method steps. Said computer program may for instance be implemented in a device, or may be operated or contained in a browser that is used by said device. The program may also be on the server where the objects are stored or on a content optimization server. It is further proposed a computer program product comprising a computer program with instructions operable to cause a processor to perform the above-mentioned method steps. Said computer program product may for instance be any type of storage medium that is suited for cooperation with an electronic device that houses said display, for instance a flash card, a SIM card, a RAM, a ROM, a memory stick, a CD, a DVD, or a diskette. From said computer program product, said computer program may be loaded into an internal memory of a digital processor of said device and then be processed. It is further proposed a device for presenting at least a part of an object, comprising means for at least partially dividing at least one object into a plurality of sub-objects, means for presenting said plurality of sub-objects in a first representation, means for making at least one sub-object of said plurality of sub-objects an active sub-object; and means for presenting at least one of said at least one active sub-objects in a second Representation. Said device may for instance be a handheld electronic device, as for instance a PDA or a mobile phone, or be a part of such a device. According to a device of the present invention, said sub-objects are presented on a display of a portable electronic device. It is further proposed a system for presenting at least a part of an object, comprising means for at least partially dividing at least one object into a plurality of sub-objects, means for presenting said plurality of sub-objects in a first representation, means for making at least one sub-object of said plurality of sub-objects an active sub-object, and means for presenting at least one of said at least one active sub-objects in a second representation. Said system may comprise several logically or physically separated instances that may jointly or separately implement said means for dividing said at least one object into said plurality of sub-objects, said means for presenting said plurality of sub-objects in a first representation, said means for making at least one sub-object of said plurality of sub-objects an active sub-object, and said means for presenting at least one of said at least one active sub-objects in a second representation. For instance, said system may comprise a content optimization server that divides objects received from a server into a plurality of sub-objects, and a client, on which said sub-objects in first and second representation then are presented. These and other aspects of the invention will be apparent from and elucidated with reference to the embodiments described hereinafter. BRIEF DESCRIPTION OF THE DRAWINGS In the figures show: Fig. 1: an exemplary Hypertext Markup Language HTML page according to the prior art; Fig. 2a: the HTML page of Fig. 1 being rendered to fit the width of a display according to the prior art; Fig. 2b: the HTML page of Fig. 1 being displayed in original layout mode according to the prior art; Fig. 3: a division of the HTML page of Fig. 1 according to the present invention; Fig. 4a: the HTML page of Fig. 3 being displayed in small representation according to the present invention; Fig. 4b: a selected area of the HTML page of Fig. 3 being displayed in large representation according to a first embodiment of the present invention; Fig. 4c: a selected area of the HTML page of Fig. 3 being Displayed in large representation according to a second embodiment of the present invention; Fig. 4d: a selected area of the HTML page of Fig. 3 being displayed in large representation according to a third embodiment of the present invention; Fig. 5a: a further example of an HTML page being Displayed in small representation according to the present invention; Fig. 5b: a selected area of the HTML page of Fig. 5a being displayed in large representation according to a fourth embodiment of the present invention; Fig. 5c: a further selected area of the HTML page of Fig. 5a being displayed in large representation according to the fourth embodiment of the present invention; Fig. 6: an exemplary flowchart of an algorithm for dividing a page into a plurality of areas according to the present invention; Fig. 7a: an exemplary 3D map of a town; Fig. 7b: an example of the 3D map of Fig. 7a being Divided into 3D sub-objects and presented on a display in small representation according to the present invention; Fig. 7c: a selected 3D sub-object of the divided 3D map of Fig. 7b being presented on a display in large representation according to the present invention; Fig. 8: an exemplary flowchart of a method according to the present invention; and Fig. 9: an exemplary set-up of a device according to the present invention. DETAILED DESCRIPTION OF THE INVENTION The present invention proposes a method, a device, a system, a computer program and a computer program product for presenting at least a part of an object, wherein at least one object is at least partially divided into a plurality of sub-objects, wherein said plurality of sub-objects is presented in a first representation, wherein at least one sub-object of said plurality of sub-objects is made an active sub-object, and wherein in response to a user operation on said at least one active sub-object, at least one of said at least one active sub-objects is presented in a second representation. Therein, said objects may either be 2D objects or 3D objects, which are then divided into 2D sub-objects and 3D sub-objects, respectively. In Figs. 1 to 6, preferred embodiments of the present invention will be explained that are suited for the presentation of 2D objects. Therein, the 2D objects are Denoted as pages, and the sub-objects are denoted as areas. With reference to Figs. 7a and 7b, a preferred embodiment of the present invention that is suited for the presentation of 3D objects will be explained. Finally, Figs. 8 and 9 present a flowchart of a method and a device according to the present invention, which are suited for the presentation of both 2D and 3D objects. Fig. 1 depicts an exemplary Hypertext Markup Language HTML page 1 that basically comprises a table with four rows and four columns. Said HTML page 1 is given in original presentation size, which is defined by the HTML format. For instance, said HTML format may prescribe the font sizes, and the image sizes in pixels. The content of this HTML page 1 is related to information on cars, and each of the last three rows of the table contains a picture, dimension parameters, engine parameters and performance parameters of one specific type of car. Note that the textual information in the table cells is only depicted symbolically. Fig. 2a depicts the HTML page of Fig. 1 being rendered to fit the width of a display 2 according to the prior art. With the HTML page 1 being too large to fit on the display 2 of a portable device, for instance, a mobile phone, the page has to be rendered, and it is the result of the rendering that only the left upper quarter of the HTML page, in slightly reduced scale, is visible on the display 2. To avoid at least horizontal scrolling, the right upper quarter of the HTML page 1 is now positioned below the left upper quarter that is visible in the Display 2, and can be inspected by means of vertical scrolling with a vertical scroll bar 3a. This is schematically depicted in Fig. 2a by the dashed box 2a being positioned below the display 2. Further vertical scrolling then would move the left lower quarter of the HTML page 1 into the display 2, and finally the right lower quarter of the HTML page 1 would be moved into the display 2. The prior art rendering technique obviously destroys the layout of the table contained in the HTML page 1. Whereas a viewer can easily assign the dimension parameters displayed in the display window 2 of Fig. 2a to the car in the first row of the table, because the required row and column labels of the table are still available in the portion of the HTML page 1 that is visible within the display 2, such a clear assignment is no longer possible for the engine and performance parameters in the right upper quarter of the HTML page 1, when the HTML page 1 is rendered and displayed on the display 2 as indicated by the dashed box 2a in Fig. 2a. This is due to the fact that the row labels, in this case the picture of the car whose parameters are listed in the respective row, are no longer .depicted within the dashed box 2a of Fig. 2a. It is easily seen that, also when displaying the left and right lower quarter of the HTML page 1 on the display 2, no clear assignment of the textual information to the row and/or column labels of the table is possible. The prior art rendering technique thus breaks up the structure of the table and aggravates the comprehension of the content of the HTML page 1. To allow a viewer to inspect the HTML page 1 as a whole, without destroying its structure as it is the case in the rendering technique of Fig. 2a, prior art devices with small displays usually offer an original layout mode. This original layout mode, which is depicted in Fig. 2b, abandons rendering and scaling of the page and thus requires both vertical 3a and horizontal 3b scrollbars, so that all portions of the HTML page 1 can be moved into the display 2, complicating and slowing down the comprehension of the HTML page 1. Fig. 3 depicts a division of the HTML page 1 of Fig. 1 according to the present invention. The 16 table cells of the table contained in the HTML page 1 are assigned a respective area 101 116. This may for instance be performed by a browser or by a device in the device that operates the display, on which the HTML page 1 is to be depicted. The process of dividing the HTML page 1 into areas 101 116 may be based on the structure of the HTML page 1, which may be represented by HTML elements such as tables, paragraphs, frames, images or other, and which may be detected by processing the source code of the HTML page 1. For instance, the structure of the HTML page 1 may be examined by searching the HTML page 1 for specific HTML tags that define the beginning and the end of such HTML elements. Fig. 4a illustrates the HTML page of Fig. 3 being displayed (presented) in a first representation according to the present invention, wherein this first representation is chosen to be a small representation throucrhout this exemplary embodiment of the present invention.The areas 101 116 as obtained by the division of the HTML page 1 are transformed into areas 101a .. 116a in small representation.For the areas 101a,. 105a, 109a and 113a, this transformation is achieved by scaling the size of the areas 101, 105, 109 and 113 of the original presentation size HTML page 1 to a smaller size. For the areas 102a, 103a and 104a, this transformation is achieved by combined scaling and cropping of the areas 102, 103 and 104. Finally, the areas 106a 108a, 110a 112a and 114a 116a are all assigned a text icon, which indicates that the corresponding areas 106 108, 110 112 and 114 116 contain text that would be unreadable when being scaled to small representation format. In Fig. 4a, all areas in small representation 101a 116a are active areas. Thus a browser or a device within the device that operates the display on which the HTML page 1 is to be displayed may have examined at least a part of the areas 101 116 and, according to a selection criterion, for instance being related to the type and/or amount of information contained in the area, has decided if areas shall be active or not. Fig. 4a further depicts a dashed accentuation frame, which indicates that a viewer currently performs a user operation on said active area 106a, which is chosen as a selection throughout this exemplary embodiment of the present invention. In what follows, a selected area will always be identified by an "s" that is appended to its numeral, so that the selection of area 106a leads to a selected area 106as. The accentuation frame, which may be moved from one active area to the other by a viewer via a user interface, for instance a joystick, is only one of several possible ways of selecting active areas. Active areas may equally well be selected via a stylus or a finger on a touch screen display, via tracking of eye movements, via the assignment of numbers or symbols to active areas and the selection of these numbers or symbols via keyboard input or voice command, or via shortcuts assigned to a certain selection operation, for instance for the selection of the area that is located left, right, above or below the currently selected or focused area or for the selection of the previously selected area. Figs. 4b, 4c and 4d present three specific embodiments of the present invention, wherein each embodiment proposes a different way of displaying (presenting) the selected area 106bs, 106cs or 106ds on the display 2 in a second representation, wherein this second representation is chosen as a large representation throughout this exemplary embodiment of the present invention. According to a first embodiment, Fig. 4b depicts the displaying of the selected area 106bs in large representation, wherein large representation in this embodiment means that the selected area 106bs is scaled to fit the width of the display 2, and wherein in this embodiment, only the selected area 106bs is displayed on the display 2. Note that, whereas in the small representation 106a of area 106, a text icon was used, now a scaled version of the area 106 as in the original HTML page 1 of Fig. 3 is displayed. From the area 106bs in large representation, the viewer now can extract all the information that may not have been clearly visible from area 106a in small representation. According to this first embodiment of the present invention, the viewer thus may first get an overview on the structure of the page according to Fig. 4a, wherein all areas of the page are given in small representation, and then, after selecting an area of interest 106as, this area is displayed in enlarged fashion as area 106bs, i.e. as large as possible but not requiring the use of horizontal and/or vertical scrpll bars. To return to the small scale representation as in Fig. 4a, the viewer may de-select the selected area 106bs, for instance by pressing a deselection key. According to a second embodiment, Fig. 4c depicts the displaying of the selected area 106cs in large representation, wherein large representation in this embodiment means that the selected area 106cs is significantly larger than the area 106a in small representation. The selected area 106cs in large representation is displayed together with other areas 104a, 108a, 112a and 113a .. 116a in small representation on the display 2. Basically, the selected area 106cs is three times the size of its corresponding area 106as in small representation and thus covers the areas 101a .. 103a, 105a .. 107a and 109a .. Ilia. The content of area 106 then may not be presented as large as in the first embodiment, however, the remaining of the areas in small representation on the display when displaying the selected area 106cs in large representation always shows the viewer quite plainly the structure of the page, so when selecting areas and enlarging (large representation) or reducing them (small representation), the viewer's orientation may be supported. According to a third embodiment, Fig. 4d depicts the displaying of the selected area 106ds in large representation, wherein large representation in this embodiment means that the selected area 106ds is significantly larger than the area 106a in small representation. The selected area 106ds in large representation is displayed together with other areas 102d, 105d, 107d, llOd in large representation and areas 101a, 103a, 109a and Ilia in small representation on the display 2. The effect of supporting the orientation of the viewer when switching between large and small representation is similar to the second embodiment. However, to avoid gaps between the selected area 106ds and areas 102d, 105d, 107d, llOd, which are at least partially at the same height or width as the selected area, and to preserve the rectangular layout of the table, all these areas are displayed in large representation too, wherein the scaling of these areas 102d, 105d, 107d, 11Od is related to the scaling of the selected area 106ds. In this case, due to the table layout, all areas 102, 105, 106, 107 and 110 are scaled by the same factor. The displaying of the areas 101a, 103a, 109a and Ilia in small representation may avoid an overloading of the display 2 with information, furthermore, the enlargement effect is accentuated by maintaining the contrast between large and small representation on the same display. Figs. 5a-5c visualize the presentation of selected areas of a HTML page in large representation according to a fourth embodiment of the present invention. In Fig. 5a, an HTML page that already has been divided into a plurality of areas is displayed on a display 2 in small representation. Said areas in small representation are denoted as 501a .. 507a. Said areas in small representation may for instance be obtained from said original presentation size HTML page via a process of dividing said HTML page and scaling the divided parts. As can be seen from Fig. 5a, the HTML page in small representation has a structure that is more complex than the simple table structure of the HTML page of Fig. 1. Fig. 5b depicts the displaying of the HTML page of Fig. 5a when area 502a (in small representation) has been selected by a user and then is displayed in large representation as area 502es. Said selected area in large representation 502es is displayed on the same display 2 with the areas 501a, 503a .. 507a in small representation. However, padding areas 508 .. 511 have been created so that the basic arrangement of the areas of the HTML page with respect to each other is still visible. Said padding areas 508 .. 511 may, for instance, have the same background colour as an adjacent area in small representation, or may have a fixed colour, or may be transparent to that the standard background of the display is visible. The introduction of said padding areas may be interpreted as a scaling in at least one dimension of neighbouring areas of said area 502es that is displayed in large representation. In Fig. 5b, when area 502es is displayed in large representation, the other areas in small representation are left and top aligned, to show them as close to each other as possible. In the selected area 502es, which is displayed in large representation, links and other HTML elements are selectable. This may also account for said areas in small representation. In the example of Fig. 5b, the canvas of areas of said HTML page in small and large representation is aligned to the left upper corner of the display 2. Of course, different alignments to other edges of the display 2 or a centering may equally well be possible. Furthermore, the areas 501a, 503a .. 507a in small representation have the same size as the corresponding areas in small representation of Fig. 5a. Alternatively, said small representation scale might be slightly modified when at least one of said areas in displayed in large representation as depicted in Fig. 5b, for instance in order to better match the dimensions of the display. Fig. 5c depicts a canvas of areas in small and large representation when area 503a of Fig. 5a (in small representation) has been selected by a user and then is displayed in large representation as area 503es together with areas 501a, 502a, 504a .. 507a. Here, again padding areas 512-516 were introduced to preserve the basic layout of the HTML page. Note that, instead of selecting area 503a in a display state as depicted in Fig. 5a (i.e., where all areas are displayed in small representation), it is also possible that area 503a is selected in a display state as depicted in Fig. 5b (i.e., where at least one area is in large representation and the remaining areas are in small representation), in order to arrive at a display state as depicted in Fig. 5c. This may for instance be achieved with an accentuation or focus that can be moved between the areas (regardless whether the areas are in small or large representation or if a mix of large and small representations is presently displayed), and wherein a selection then is manifested by pressing a button or key when the desired area is currently accentuated or focused. The user may also be provided with shortcuts for enlarging certain areas, for instance the left or right area or the previous or next area. Fig. 6 depicts a simplified exemplary flowchart of an algorithm for dividing one or several HTML pages (2D objects) into a plurality of areas (2D sub-objects) according to the present invention. This algorithm may for instance be executed in step 801 of the flowchart of Fig. 8 (see description below). In step 601 of the flowchart of Fig. 6, HTML elements of one or several HTML pages are rendered and investigated in the order they appear in the HTML source code of said page or pages. In said step 601, calculation of pixel values corresponding to said HTML objects is, for instance, performed as if an HTML page was shown in its original layout with 100% zoom factor. As a result, a maximum height and a maximum width in pixels of a number of rendered HTML objects is obtained. In a step 602, it is then checked if the product of said maximum height and said maximum width is larger than a pre-defined threshold, for instance 10 0,00 0 pixels. If this is the case, a rectangular area containing the HTML objects rendered in step 601 is formed in a step 603. Otherwise, the step 601 of rendering HTML elements is continued until the condition of step 602 is met. It should be noted that the calculation of step 602 only has to be performed when an area grows vertically and/or horizontally; it does not have to be performed after every selection of an area or similar changes. In step 603 (and also in step 602), when forming an area (i.e. calculating the display area in pixels that the created area would take), table areas having no information content (no text, no images, no input fields or similar) may not be taken into account (i.e. may not be included into formed area). In other words, within tables, areas are formed according to information content in the order in which said information content appears in the HTML page source code (e.g. HTML, XHTML or similar source code). In a step 604, it is then checked if a lower edge of said formed area would vertically cut an element that cannot be divided (for instance an |
---|
1001-CHENP-2006 CLAIMS GRANTED.pdf
1001-CHENP-2006 CORRESPONDENCE OTHERS.pdf
1001-CHENP-2006 CORRESPONDENCE PO.pdf
1001-chenp-2006 abstract-duplicate.pdf
1001-chenp-2006 claims-duplicate.pdf
1001-chenp-2006 description (complete)-duplicate.pdf
1001-chenp-2006 drawings-duplicate.pdf
1001-chenp-2006-correspondnece-others.pdf
1001-chenp-2006-description(complete).pdf
Patent Number | 232257 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Indian Patent Application Number | 1001/CHENP/2006 | ||||||||||||
PG Journal Number | 13/2009 | ||||||||||||
Publication Date | 27-Mar-2009 | ||||||||||||
Grant Date | 16-Mar-2009 | ||||||||||||
Date of Filing | 24-Mar-2006 | ||||||||||||
Name of Patentee | NOKIA CORPORATION | ||||||||||||
Applicant Address | Keilalahdentie 4, FIN-02150 Espoo, | ||||||||||||
Inventors:
|
|||||||||||||
PCT International Classification Number | G06F3/33 | ||||||||||||
PCT International Application Number | PCT/IB2004/003073 | ||||||||||||
PCT International Filing date | 2004-09-21 | ||||||||||||
PCT Conventions:
|