Title of Invention

A WIRELESS COMMUNICTION DEVICE AND A BI-DIRECTIONAL SYSTEM AND METHOD FOR SENDING AND RECEIVING OPERATION CODES BETWEEN A WIRELESS COMMUNICATION DEVICE AND A SERVER COMPUTER

Abstract A wireless communication device and a bi-directional system and method for sending and receiving operational codes between a wireless communication device and a server computer are disclosed. The wireless communication device (10) comprises: a library of server operation codes (70); a library of remote operation codes (60); a set of executable instructions (80) and a runtime engine (50). The method for sending and receiving operational codes between a wireless communication device (10) and a server computer (30) comprises: compiling (522) a set of server operation codes from a library of server operational codes (70) within a runtime engine of the wireless communication device; attaching (528) a data payload to the compiled set of server operation codes, wherein the data payload corresponds to the compiled set of server operation codes; sending (530) the compiled set of server operation codes and data payload to the server computer for execution thereon; receiving (500) a set of remote operation codes from the server computer; and executing (510) a set of executable instructions, each executable instruction from this set corresponding to an operation code in the received set of remote operation codes.
Full Text A WIRELESS COMMUNICATION DEVICE AND A BI-
DIRECTIONAL SYSTEM AND METHOD FOR SENDING AND
RECEIVING OPERATIONAL CODES BETWEEN A WIRELESS
COMMUNICATION DEVICE AND A SERVER COMPUTER
Background
1. Field of the Invention
[01] The present invention relates to a wireless communication device and a bi-
directional system and method for sending and receiving operational codes between a
wireless communication device and a server computer and, generally relates to the
filed of wireless communications and more particularly relates to two way
communication of dynamic instruction sets between a handset and a wireless
communication network
2. . Related Art
[02] Conventional wireless communication devices typically become isolated
computing platforms once they are deployed, i.e. sold to a consumer. These conventional
wireless communication devices have extremely limited or no ability to communicate
data such as operational or maintenance data with a parent network. This lack of data
communication ability presents significant challenges for the provider of the wireless
communication device with respect to updating the software that executes on the device
and obtaining operationalor maintenance data from the device. For example, in order to
upgrade the operating system of a cell phone, the consumer must physically bring the
phone into a service center where a technician must plug the phone into a computer in
order to update the phone. The same is true for performing comprehensive or in-depth
diagnostics on a cell phone.
[03] The conventional solutions for updating a wireless communication device or
obtaining inlbrmation from such a device generally require that the device be brought
into a service station where a technician can interact with the device to update its
software programs or obtain data from the device. This is extremely costly for both the
consumer and the provider of the device.
[04] Additionally, conventional methods for updating a wireless communication
device or obtaining information from such a device generally require a hard-wired
connection with the device. This further complicates the updating and maintenance
needs for a wireless communication device, requiring special cables and even requiring
the device itself to have a hard-wired interface. These necessities drive up both the
production and maintenance costs of a wireless communication device while also
decreasing the life span of the device.
[05] Finally, conventional methods for data communication with a wireless
communication device are unidirectional. Conventional networks may have the ability to
provide the wireless communication device with application software and data.
Additionally; conventional wireless communication devices may have the ability to
respond to such communications with limited configuration data and status information.
However, this limited master-slave communication ability found in the conventional
systems suffers from the inability of the wireless communication device to initiate
communications with the network.
[06] Therefore, what is needed is a system and method that overcomes these
significant problems found in the conventional systems as described above.
Summary
[07j Once deployed, conventional wireless communication devices become isolated
computing platforms with extremely limited or no ability to maintain data
communications with a parent network. This lack of data communication ability presents
significant challenges with respect to updating the software that executes on the wireless
communication device and deriving operational data from the device. Additionally,
conventional wireless communication devices lack the ability to initiate requests for
information or software updates that may improve their ability to interact with then-
environment.
[08] The present invention provides systems and methods for bi-directional
communication of dynamic instruction sets between a handset and a wireless
communication network. A dynamic instruction set, e.g. one or more Patch Manager
Run Time Instructions ("PMRTIs"), represents a discrete function or a discrete action
thatlis to be carried out by the recipient device. The wireless communication network can
send a dynamic instruction set to a handset in order to instruct the handset to perform
certain oparitions such as reporting status back to the network. Similarly, the present
invention pnvides for the handset to compile a dynamic instruction set, e.g. one or more
Reverse Patch Manager Run Time Instructions ("RPMRTIs"), and send the instruction
set to the network for execution. This ability allows the handset to provide or request
information, software, or other data that allows the handset to perform desirable
functions.
Brief Description of the Accompanying Drawings
{09] The details of the present invention, both as to its structure and operation, may be
gleaned in part by study of the accompanying drawings, in which like reference numerals
refer to like parts, and in which:
[10] Figure 1 is a schematic block diagram of the overall wireless device software
maintenance system;
[11] Figure 2 is a schematic block diagram of the software maintenance system,
highlighting the installation of instruction sets via the airlink interface;
[12] Figure 3 is a schematic block diagram illustrating the present invention system
for executing dynamic instruction sets in a wireless communications device;
[13] Figure 4 is a schematic block diagram of the wireless device memory;
[14] Figure 5 is a table representing the code section address table of Fig. 3;
[15] Figure 6 is a detailed depiction of symbol library one of Fig. 3, with symbols;
[16] Figure 7 is a table representing the symbol offset address table of Fig. 3;
[17] Figure 8 is a depiction of the operation code ("opcode") being accessed by the
run-time engine;
[18] Figure 9 is a more detailed depiction of the first operation code of Fig. 8;
[19] Figure 10 is a flowchart illustrating the present invention method for
executing dynamic instruction sets in a wireless communications device;
[20] Figure 11 is a flowchart illustrating an exemplary dynamic instruction set
operation;
[21] Figure 12 is a flowchart illustrating another exemplary dynamic instruction set
ope ration;
[22] Figure 13 is a flowchart illustrating a third exemplary dynamic instruction set
ope-ation; ;
[23] Figure 14 is a flowchart illustrating a fourth exemplary dynamic instruction set
operation;
[24] Figure 15 is a flowchart illustrating a fifth exemplary dynamic instruction set
operation;
[25] Figure 16 is a high level network diagram illustrating an example wireless
communication network;
[26] Figure 17A is block diagram illustrating an example wireless communication
device;
[27] Figure 17B is block diagram illustrating an example remote runtime instructions
code section;
[28] Figure 18A is a block diagram illustrating an example PMRTI server;
[29] Figure 18B is a block diagram illustrating an example server runtime instructions
cods section;
[30] Figure 19 is a flow diagram illustrating an example process for executing
dynamic instruction sets on a wireless communication device;
[31] Figure 20 is a flow diagram illustrating an example process for compiling
dynamic instruction sets on a wireless communication device;
[32] Figure 21 is a flow diagram illustrating an example process for executing
dynamic instruction sets on a PMRTI server;
[33] Figure 22 is a flow diagram illustrating an example process for synchronizing
operation code libraries; and
[34] Figure 23 is a block diagram illustrating an exemplary computer system that may
be used in connection with various embodiments described herein.
Detailed Description
[35] Systems and methods for bi-directional communication of dynamic instruction
sets between a wireless communication' device and a wireless communication network
are disclosed. For example, one method as disclosed herein allows for a wireless
communication device to dynamically construct an instruction set and send that
instruction set to the network for execution and processing.
[36] After reading this description it will become apparent to one skilled in the art how
to implement the invention in various alternative embodiments and alternative
applications. However, although various embodiments of the present invention will be
described herein, it is understood that these embodiments are presented by way of
example only, and not limitation. As such, this detailed description of various alternative
embodiments should not be construed to limit the scope or breadth of the present
invention as set forth in the appended claims.
[37] Some portions of the detailed descriptions that follow are presented in terms of
procedures, steps, logic blocks, codes, processing, and other symbolic representations of
operations on data bits within a wireless device microprocessor or memory. These
descriptions and representations are the means used by those skilled in the data
processing arts to most effectively convey the substance of their work to others skilled in
the art. A procedure, microprocessor executed step, application, logic block, process,
etc. is here, and generally, conceived to be a self-consistent sequence of steps or
instructions leading to a desired result. The steps are those requiring physical
manipulations of physical quantities. Usually, though not necessarily, these quantities
take the form of electrical or magnetic signals capable of being stored, transferred,
combined, compared, and otherwise manipulated in a microprocessor based wireless
devibe. It has proven convenient at times, principally for reasons of common usage, to
refer to these, signals as bits, values, elements, symbols, characters, terms, numbers, or the
like. Where physical devices, such as a memory are mentioned, they are connected to
other physical devices through a bus or other electrical connection. These physical
devipes can be considered to interact with logical processes or applications and, therefore,
are "connected" to logical operations. For example, a memory can store or access code
to further a logical operation, or an application can call a code section from memory for
execution.
[38] It should be borne in mind, however, that all of these and similar terms are to be
associated with the appropriate physical quantities and are merely convenient labels
applied to these quantities. Unless specifically stated otherwise as apparent from the
following discussions, it is appreciated that throughout the present invention, discussions
utilizing terms such as "processing" or "connecting" or "translating" or "displaying" or
"prompting" or "determining" or "displaying" or "recognizing" or the like, refer to the
action and processes of in a wireless device microprocessor system that manipulates and
transforms data represented as physical (electronic) quantities within the computer
system's registers and memories into other data similarly represented as physical
quantities within the wireless device memories or registers or other such information
storage, transmission or display devices.
[39] Fig. 1 is a schematic block diagram of the overall wireless device software
maintenance system 100. The present invention system software organization is
presented in detail below, following a general overview of the software maintenance
system 100. The general system 100 describes a process of delivering system software
updates and instruction sets (programs), and installing the delivered software in a
wireless device. System software updates and patch manager run time instructions
(PMRTI), that are more generally known as instruction sets or dynamic instruction sets,
are created by the manufacturer of the handsets. The system software is organized into
symbol libraries. The symbol libraries are arranged into code sections. When symbol
libraries are to be updated, the software update 102 is transported as one or more code
sections. The software update is broadcast to wireless devices in the field, of which
wireless communications device 104 is representative, or transmitted in separate
communications from a base station 106 using well known, conventional air, data or
message transport protocols. The invention is not limited to any particular transportation
format, as the wireless communications device can be easily modified to process any
available over-the-air transport protocol for the purpose of receiving system software and
PMRTI updates.
[40] The system software can be viewed as a collection of different subsystems. Code
objects can tightly coupled into one of these abstract subsystems and the resulting
collection can be labeled as a symbol library. This provides a logical breakdown of the
code base and software patches and fixes can be associated with one of these symbol
libraries. In most cases, a single update is associated with one, or at most two, symbol
libraries. The rest of the code base, the other symbol libraries, remains unchanged.
[41] The notion of symbol libraries provides a mechanism to deal with code and
constants. The read-write (RW) data, on the other hand, fits into a unique individual RW
library that contains RAM based data for all libraries.
[42] Once received by the wireless device 104, the transported code section must be
processed. This wireless device over-writes a specific code section of nonvolatile
memory 108. The nonvolatile memory 108 includes a file system section (FSS) 110 and
a code storage section 112. The code section is typically compressed before transport in
order to minimize occupancy in the FSS 110. Often the updated code section will be
accompanied by its RW data, which is another kind of symbol library that contains all the
RW data for each symbol library. Although loaded in random access volatile read-write
memory 114 when the system software is executing, the RW data always needs to be
stored in the nonvolatile memory 108, so it can be loaded into random access volatile
read-write memory 114 each time the wireless device is reset. This includes the first time
RW data is loaded into random access volatile read-write memory. As explained in more
detail below, the RW data is typically arranged with a patch manager code section.
[43] The system 100 includes the concept of virtual tables. Using such tables, symbol
libraries in one code section can be patched (replaced), without breaking (replacing) other
parts of the system software (other code sections). Virtual tables execute from random
access volatile read-write memory 114 for efficiency purposes. A code section address
table and symbol offset address table are virtual tables.
[44] The updated code sections are received by the wireless device 104 and stored in
the FSS 110. A wireless device user interface (UI) will typically notify the user that new
software is available. ;In response to UI prompts the user acknowledges the notification
and signals the patching or updating operation. Alternately, the updating operation is
performed automatically. The wireless device may be unable to perform standard
communication tasks as the updating process is performed. The patch manager code
section includes a non-volatile read-write driver symbol library that is also loaded into
random access volatile read-write memory 114. The non-volatile read-write driver
symbol library causes code sections to be overwritten with updated code sections. The
patch manager code section includes the read-write data, code section address table, and
symbol offset address table, as well a symbol accessor code and the symbol accessor
cod e address (discussed below). Portions of this data are invalid when updated code
sections are introduced, and an updated patch manager code sections includes read-write
data, a code section address table, and a symbol offset address table valid for the updated
code sections. Once the updated code sections are loaded into the code storage section
112, the wireless device is reset. Following the reset operation, the wireless device can
execute the updated system software. It should also be understood that the patch
manager code section may include other symbol libraries that have not been discussed
above. These other symbol libraries need not be loaded into read-write volatile memory
114.
[45] Fig. 2 is a schematic block diagram of the software maintenance system 100,
highlighting the installation of instruction sets via the airlink interface. In addition to
updating system software code sections, the maintenance system 100 can download and
install dynamic instructions sets, programs, or patch manager instruction sets (PMIS),
referred to herein as patch manager run time instructions (PMRTI). The PMRTI code
section 200 is transported to the wireless device 104 in the same manner as the above-
described system software code sections. PMRTI code sections are initially stored in the
FSS 110. A PMRTI code section is typically a binary file that may be visualized as
compiled instructions to the handset. A PMRTI code section is comprehensive enough to
provide tor the performance of basic mathematical operations and the performance of
conditionally executed operations. For example, an RF calibration PMRTI could perform
the following operations:
IF RF CAL ITEM IS LESS THAN X
EXECUTE INSTRUCTION
ELSE
EXECUTE INSTRUCTION
[46] A PMRTI can support basic mathematical operations, such as: addition,
subtraction, multiplication, and division.1 As with the system software code sections, the
PMRTI code section may be loaded in response to UI prompts, and the wireless device
must be reset after the PMRTI is loaded into code storage section 112. Then the PMRTI
section can be executed. If the PMRTI code section is associated with any virtual tables
or read-write data, an updated patch manager code section will be transported with the
PMRTI for installation in the code storage section 112. Alternately, the PMRTI can be
kept and processed from the FSS 110. After the handset 104 has executed all the
instructions in the PMRTI section, the PMRTI section can be deleted from the FSS 110.
Alternately, the PMRTI is maintained for future operations. For example, the PMRTI
may be executed every time the wireless device is energized.
[47] PMRTI is a very powerful runtime instruction engine. The handset can execute
any instruction delivered to it through the PMRTI environment. This mechanism may be
used to support RF calibrations. More generally, PMRTI can be used to remote debug
wireless device software when software problems are recognized by the manufacturer or
service provider, typically as the result of user complaints. PMRTI can also record data
needed to diagnose software problems. PMRTI can launch newly downloaded system
applications for data analysis, debugging, and fixes. PMRTI can provide RW data based
updates for analysis and possible short term fix to a problem in lieu of an updated system
software code section. PMRTI can provide memory compaction algorithms for use by
the wireless device.
[48] In some aspects of the invention, the organization of the system software into
symbol libraries may impact the size of the volatile memory 114 and nonvolatile memory
108 required for execution. This is due to the fact that the code sections are typically
larger than the symbol libraries arranged in the code sections. These larger code sections
exist to accommodate updated code sections. Organizing the system software as a
collection of libraries impacts the nonvolatile memory size requirement. For the same
code size, the amount of nonvolatile memory used will be higher due to the fact that code
sections can be sized to be larger than the symbol libraries arranged within.
[49] Once software updates have been delivered to the wireless device, the software
maintenance system 100 supports memory compaction. Memory compaction is similar
to disk de-fragmentation applications in desktop computers. The compaction mechanism
ensures that memory is optimally used and is well balanced for future code section
updates, where the size of the updated code sections are unpredictable. The system 100
analyzes the code storage section as it is being patched (updated). The system 100
attempts to fit updated code sections into the memory space occupied by the code section
being replaced. If the updated code section is larger than the code section being replaced,
the system 100 compacts the code sections in memory 112. Alternately, the compaction
can be calculated by the manufacturer or service provider, and compaction instructions
can be transported to the wireless device 104.
[50] Compaction can be a time consuming process owing to the complexity of the
algorithm and also the vast volume of data movement. The compaction algorithm
predicts feasibility before it begins any processing. UI prompts can be used to apply for
permission from the user before the compaction is attempted.
[51] In some aspects of the invention, all the system software code sections can be
updated simultaneously. A complete system software upgrade, however, would require a
larger FSS 110.
[52] Fig. 3 is a schematic block diagram illustrating the present invention dynamic
instruction set execution in a wireless communications device. The system 300
comprises a code storage section 112 in memory 108 including executable wireless
device system software differentiated into a plurality of current code sections. Code
section one (302), code section two (304), code section n (306), and a patch manager
code section 308 are shown. However, the invention is not limited to any particular
number of code sections. Further, the system 300 further comprises a first plurality of
symbol libraries arranged into the second plurality of code sections. Shown are symbol
library one (310) arranged in code section one (302), symbol libraries two (312) and three
(314) arranged in code section two (304), and symbol library m (316) arranged in code
section n (306). Each library comprises symbols having related functionality. For
example, symbol library one (310) may be involved in the operation of the wireless
device liquid crystal display (LCD). Then, the symbols would be associated with display
functions. As explained in detail below, additional symbol libraries are arranged in the
patch manger code section 308.
[53] Fig. 4 is a schematic block diagram of the wireless device memory. As shown,
the memory is the code storage section 112 of Fig. 1. The memory is a writeable,
nonvolatile memory, such as Flash memory. It should be understood that the code
sections need not necessarily be stored in the same memory as the FSS 110. It should
also be understood that the present invention system software structure could be enabled
with code sections stored in a plurality of cooperating memories. The code storage
section 112 includes a second plurality of contiguously addressed memory blocks, where
each memory block stores a corresponding code section from the second plurality of code
sections. Thus, code section one (302) is stored in a first memory block 400, code
section two (304) in the second memory block 402, code section n (306) in the nth
memory block 404, and the patch, manager code section (308) in the pth memory block
406.
[54] Contrasting Figs. 3 and 4, the start of each code section is stored at corresponding
start addressees in memory, and symbol libraries are arranged to start at the start of code
sectons. That is, each symbol library begins at a first address and runs through a range
of addresses in sequence from the first address. For example, code section one (302)
starts at the first start address 408 (marked with "S") in code storage section memory 112.
In Fig. 3, symbol library one (310) starts at the start 318 of the first code section.
Likewise code section two (304) starts at a second start address 410 (Fig. 4), and symbol
library two starts at the start 320 of code section two (Fig. 3). Code section n (306) starts
at a third start address 412 in code storage section memory 112 (Fig. 4), and symbol
library m (316) starts at the start of code section n 322 (Fig. 3). The patch manager code
section starts at pth start address 414 in code storage section memory 112, and the first
symbol library in the patch manager code section 308 starts at the start 324 of the patch
manager code section. Thus, symbol library one (310) is ultimately stored in the first
memory block 400. If a code section includes a plurality of symbol libraries, such as
code section two (304), the plurality of symbol libraries are stored in the corresponding
memory block, in this case the second memory block 402.
[55] In Fig. 3, the system 300 further comprises a code section address table 326 as a
type of symbol included in a symbol library arranged inthe patch manager code section
308. The code section address table cross-references code section identifiers with
corresponding code section start addresses in memory.
[56] Fig. 5 is a table representing the code section address table 326 of Fig. 3. The
code section address table 326 is consulted to find the code section start address for a
symbol library. For example, the system 300 seeks code section one when a symbol in
symbol library one is required for execution. To find the start address of code section
one, and therefore locate the symbol in symbol library one, the code section address table
326 is consulted. The arrangement of symbol libraries in code sections, and the tracking
of code sections with a table permits the code sections to be moved or expanded. The
expansion or movement operations may be needed to install upgraded code sections (with
upgraded symbol libraries).
[57] Returning to Fig. 3, it should be noted that not every symbol library necessarily
starts at the start of a code section. As shown, symbol library three (314) is arranged in
code section two (304), but does not start of the code section start address 320. Thus, if a
symbol in symbol library three (314) is required for execution, the system 300 consults
the code section address table 326 for the start address of code section two (304). As
explained below, a symbol offset address table permits the symbols in symbol library
three (314) to be located. It does not matter that the symbols are spread across multiple
libraries, as long as they are retained with the same code section.
[58] As noted above, each symbol library includes functionally related symbols. A
symbol is a programmer-defined name for locating and using a routine body, variable, or
data structure. Thus, a symbol can be an address or a value. Symbols can be internal or
external. Internal symbols are not visible beyond the scope of the current code section.
More specifically, they are not sought by other symbol libraries, in other code sections.
External symbols are used and invoked across code sections and are sought by libraries in
different code sections. The symbol offset address table typically includes a list of all
external symbols.
[59] For example, symbol library one (310) may generate characters on a wireless
device display. Symbols in this library would, in turn, generate telephone numbers,
names, the time, or other display features. Each feature is generated with routines,
referred to herein as a symbol. For example, one symbol in symbol library one (310)
generates telephone numbers on the display. This symbol is represented by an "X", and
is external.' When the! wireless device receives a phone call and the caller ID service is
activated, the system must execute the "X" symbol to generate the number on the display.
Therefore, the system must locate the "X" symbol.
(60] Fig. 6 is a detailed depiction of symbol library one (310) of Fig. 3, with symbols.
Symbols are arranged to be offset from respective code section start addresses. In many
circumstances, the start of the symbol library is the start of a code section, but this is not
true if a code section includes more than one symbol library. Symbol library one (310)
starts at the start of code section one (see Fig. 3). As shown in Fig. 6, the "X" symbol is
located at an offset of (03) from the start of the symbol library and the "Y" symbol is
located at an offset of (15). The symbol offset addresses are stored in a symbol offset
address table 328 in the patch manager code section (see Fig. 3).
[61] Fig. 7 is a table representing the symbol offset address table 328 of Fig. 3. The
symbol offset address, table 328 cross-references symbol identifiers with corresponding
offset addresses, and with corresponding code section identifiers in memory. Thus, when
the system seeks to execute the "X" symbol in symbol library one, the symbol offset
address table 328 is consulted to locate the exact address of the symbol, with respect to
the code section in which it is arranged.
[62] Returning to Fig. 3, the first plurality of symbol libraries typically all include
read-write data that must be consulted or set in the execution of these symbol libraries.
For example, a symbol library may include an operation dependent upon a conditional
statement. The read-write data section is consulted to determine the status required to
complete the conditional statement. The present invention groups the read-write data
from all the symbol libraries into a shared read-write section. In some aspects of the
invention, the read-write data 330 is arranged in the patch manager code section 308.
Altemately (not shown), the read-write data can be arranged in a different code section,
code section n (306), for example.
[63] The first plurality of symbol libraries also includes symbol accessor code
arranged in a code section to calculate the address of a sought symbol. The symbol
accessor code can be arranged and stored at an address in a separate code section, code
section two (304), for example. However, as shown, the symbol accessor code 332 is
arranged and stored at an address in the patch manager code section 308. The system 300
further comprises a first location for storage of the symbol accessor code address. The
first location can be a code section in the code storage section 112, or in a separate
memory section of the wireless device (not shown). The first location can also be
arranged in the same code section as the read-write data. As shown, the first location 334
is stored in the patch manager code section 308 with the read-write data 330, the symbol
offset address table 328, the code section address table 326, and the symbol accessor code
332, and the patch library (patch symbol library) 336.
[64] The symbol accessor, code accesses the code section address table and symbol
offset address tables to calculate, or find the address of a sought symbol in memory. That
is, the symbol accessor code calculates the address of the sought symbol using a
corresponding symbol identifier and a corresponding code section identifier. For
example, if the "X" symbol in symbol library one is sought, the symbol accessor is
invoked to seek the symbol identifier (symbol ID) "X l", corresponding to the "X"
symbol (see Fig. 7). The symbol accessor code consults the symbol offset address table
to determine that the "X_l" symbol identifier has an offset of (03) from the start of code
section one (see Fig. 6). The symbol accessor code is invoked to seek the code section
identifier "CS_1", corresponding to code section one. The symbol accessor code consults
the code section address table to determine the start address associated with code section
identifier (code section ED) "CS_1". In this manner, the symbol accessor code
determines that the symbol identifier "X_l" is offset (03) from the address of (00100), or
is located at address (00103).
[65] The symbol "X" is a reserved name since it is a part of the actual code. In other
words, it has an absolute data associated with it. The data may be an address or a value.
The symbol identifier is an alias created to track the symbol. The symbol offset address
table and the code section address table both work with identifiers to avoid confusion
with reserved symbol and code section names. It is also possible that the same symbol
name is used across many symbol libraries. The use of identifiers prevents confusion
between these symbols.
[66] Returning to Fig. 1, the system 300. further comprises a read-write volatile
memory 114, typically random access memory (RAM). The read-write data 330, code
section address table 326, the symbol offset address table 328, the symbol accessor code
332, and the symbol accessor code address 334 are loaded into the read-write volatile
memory 114 from the patch manager code section for access during execution of the
system software. As is well known, the access times for code stored in RAM is
significantly less than the access to a nonvolatile memory such as Flash.
[67] Returning to Fig. 3, it can be noted that the symbol libraries need not necessarily
fill the code sections into which they are arranged, although the memory blocks are sized
to exactly accommodate the corresponding code sections stored within. Alternately
stated, each of the second plurality of code sections has a size in bytes that accommodates
the arranged symbol libraries, and each of the contiguously addressed memory blocks
have a size in bytes that accommodates corresponding code sections. For example, code
section one (302) may be a 100 byte section to accommodate a symbol library having a
length of 100 bytes. The first memory block would be 100 bytes to match the byte size
of code section one. However, the symbol library loaded into code section 1 may be
smaller than 100 bytes. As shown in Fig. 3., code section one (302) has an unused section
340, as symbol library one (310) is less than 100 bytes. Thus, each of the second
plurality of code sections may have a size larger than the size needed to accommodate the
arranged symbol libraries. By "oversizing" the code sections, larger updated symbol
libraries can be accommodated.
[68] Contiguously addressed memory blocks refers to partitioning the physical
memory space into logical blocks of variable size. Code sections and memory blocks are
terms that are essentially interchangeable when the code section is stored in memory.
The concept of a code section is used to identify a section of code that is perhaps larger
than the symbol library, or the collection of symbol libraries in the code section as it is
moved and manipulated,
[69] As seen in Fig. 3, the system 300 includes a patch symbol library, which will be
referred to herein as patch library 336, to arrange new code sections in the code storage
section with the current code sections. The arrangement of new code sections with
current code sections in the code storage section forms updated executable system
software. The patch manager 336 not only arranges new code sections in with the current
code sections, it also replaces code sections with updated code sections.
[70] Returning to Fig. 4, the file system section 110 of memory 108 receives new code
sections, such as new code section 450 and updated patch manager code section 452.
The file system section also receives a first patch manager run time instruction (PMRTI)
454 including instructions for arranging the new code sections with the current code
sections. As seen in Fig. 1, an airlink interface 150 receives new, or updated code
sections, as well as the first PMRTI. Although the airlink interface 150 is being
represented by an antenna, it should be understood that the airlink interface would also
include an RF transceiver, baseband circuitry, and demodulation circuitry (not shown).
The file system section 110 stores the new code sections received via the airlink interface
150. The patch library 336, executing from read-write volatile memory 114, replaces a
first code section in the code storage section, code section n (306) for example, with the
new, or updated code section 450, in response to the first PMRTI 454. Typically, the
patch manager code section 308 is replaced with the updated patch manager code section
452. When code sections are being replaced, the patch library 336 over-writes the first
code section, code section n (306) for example, in the code storage section 112 with the
updated code sections, code section 450 for example, in the file system section 110. In
the extreme case, all the code sections in code storage section 112 are replaced with
updated code sections. That is, the FSS 110 receives a second plurality of updated code
sections (not shown), and the patch library 336 replaces the second plurality of code
sections in the code storage section 112 with the second plurality of updated code
sections. Of course, the FSS 110 must be large enough to accommodate the second
plirality off updated code sections received via the airlink interface.
[71] As noted above, the updated code sections being received may include read-write
data code sections, code section address table code sections, symbol libraries, symbol
offset address table code sections, symbol accessor code sections, or a code section with a
new patch library. All these code sections, with their associated symbol libraries and
symbols, may be stored as distinct and independent code sections. Then each of these
code sections would be replaced with a unique updated code section. That is, an updated
read-write code section would be received and would replace the read-write code section
in the code storage section. An updated code section address table code section would be
received and would replace the code section address table code section in the code
storage section. An updated symbol offset address table code section would be received
and would replace the symbol offset address table code section in the code storage
sec ion. An updated symbol accessor code section would be received and would replace
the symbol 'accessor code section in the code storage section. Likewise,, an updated patch
manager code section (with a patch library) would be received and would replace the
patch manager code section in the code storage section.
[72] However, the above-mentioned code sections are typically bundled together in the
• patch manager code section. Thus, the read-write code section in the code storage section
is replaced with the updated read-write code section from the file system section 110
when the p atch manager code section 308 is replaced with the updated patch manger code
section 450. Likewise, the code section address table, the symbol offset address table, the
symbol accessor code sections, as well as the patch library are replaced when the updated
patch manager code section 450 is installed. The arrangement of the new read-write data,
the new code section address table, the new symbol offset address table, the new symbol
accessor code, and the new patch library as the updated patch manager code section 450,
together with the current code sections in the code storage section, forms updated
executable system software.
[73] When the file system section 110 receives an updated symbol accessor code
address, the patch manager replaces the symbol accessor code address in the first location
in memory with updated symbol accessor code address. As noted above, the first
location in memory 334 is typically in the patch manager code section (see Fig. 3).
[74] As seen in Fig. 3, the patch library 308 is also includes a compactor, or a
compactor symbol library 342. The compactor 342 can also be enabled as a distinct and
independent code section, however as noted above, it is useful and efficient to bundle the
functions associated with system software upgrades into a single patch manager code
section. Generally, the compactor 342 can be said to resize code sections, so that new
sections can be arranged with current code sections in the code storage section 112.
[75] With the organization, downloading, and compaction aspects of the invention now
established, the following discussion will center on the wireless communications device
dynamic instruction set execution system 300. The system 300 comprises executable
system software and system data differentiated into code sections, as discussed in great
detail, above. Further, the system 300 comprises dynamic instruction sets for operating
on the system data and the system software, and controlling the execution of the system
software. As seen in Fig. 4, a dynamic instruction set 470 is organized into the first
PMRTI 454. As seen in Fig. 3, the system also comprises a run-time engine for
processing the dynamic instruction sets, enabled as run-time library 370. As with the
compactor library 342 and patch library 336 mentioned above, the run-time library 370 is
typically located in the patch manager code section 308. However, the run-time library
370 could alternately be located in another code section, for example the first code
section 304.
[76] The dynamic instruction sets are a single, or multiple sets of instructions that
include conditional operation code, and generally include data items. The run-time
engine reads the operation code and determines what operations need to be performed.
Operation code can be conditional, mathematical, procedural, or logical. The run-time
engine, or run-time library 370 processes the dynamic instruction sets to perform
operations such as mathematical or logical operations. That is, the run-time engine reads
the dynamic linstruction set 470 and performs a sequence of operations in response to the
operation code. Although the dynamic instruction sets are not limited to any particular
language, the operation code is typically a form of machine code, as the wireless device
memory is limited and execution speed is important. The operation code is considered
conditional in that it analyzes a data item and makes a decision as a result of the analysis.
The run-time"engine may also determine that an operation be performed on data before it
is analyzed.
[77] For example, the operation code may specify that a data item from a wireless
device memory be compared to a predetermined value. If the data item is less than the
predetermined value, the data item is left alone, and if the data item is greater than the
predetermined value, it is replaced with the predetermined value. Alternately, the
operation code may add a second predetermined value to a data item from the wireless
device memory, before the above-mentioned comparison operation is performed.
[78] As mentioned above, the file system section nonvolatile memory 110 receives the
dynamic instruction sets through an interface such as the airlink 150. As shown in Fig. 1,
the interface can also be radio frequency (RF) hardline 160. Then, the PMRTI can be
received by the FSS 110 without the system software being operational, such as in a
factory calibration environment. The PMRTI can also be received via a logic port

interface 162 or an installable memory module 164. The memory module 164 can be
installed in the wireless device 104 at initial calibration, installed in the field, or installed
during factory recalibration. Although not specially shown, the PMRTI can be received
via an infrared or Bluetooth interfaces.
[79] Fig. 8 is a depiction of instructions being accessed by the run-time engine 370.
Shown is a first instruction 800, a second instruction 802, and a jth instruction 804,
however, the dynamic instruction set is not limited to any particular number of
instructions. The length of the operation code in each instruction is fixed. The run-time
engine 370 captures the length of the instruction, as a measure of bytes or bits, determine
if the instruction includes data items. The remaining length of the instruction, after the
operation code is subtracted, includes the data items. The run-time engine extracts the
data items from the instruction. As shown, the length 806 of the first instruction 800 is
measured and data items 808 are extracted. Note that not all instructions necessary
include data items to be extracted. The run-time engine 370 uses the extracted data 808
in, performing the sequence of operations responsive to the operation code 810 in
instruction 800.
[80] Fig. 9 is a more detailed depiction of the first instruction 800 of Fig. 8. Using the
first instruction 800 as an example, the instruction includes operation code 810 and data
808. The instruction, and more specifically, the data item section 808 includes symbol
identifiers,! which act! as a link to symbols in the wireless device code sections. As
explained in detail above, the symbol identifiers are used with the code section address
table 326 (see Fig. 5) and the symbol offset address table 328 (see Fig. 7) to locate the
symbol corresponding to the symbol identifier. As shown, a symbol identifier "X_l" is
shown in the first instruction 800. The symbol offset address table 328 locates the
corresponding symbol in a code section with the "CS_1" identifier and an offset of "3".
The code section address table 326 gives the start address of code section one (302). In
this manner, the symbol "X" is found (see Fig. 6).
[81] After the run-time engine locates symbols corresponding to the received symbol
identifiers using the code section address table and symbol offset address table, it extracts
data when (the located symbols are data items. For example, if the symbol "X" is a data
ite:n in symbol library one (310), the run-time engine extracts it. Alternately, the "X"
symbol can! be operation code, and the run-time engine executes the symbol "X" when it
is located.
[82] PMRTI can be used to update system data, or system data items. In some aspects
of jthe invention system data is stored in a code section in the file system section 110,
code section 472 for example, see Fig. 4. The run-time engine accesses system data from
code section 472 and analyzes the system data. The run-time engine processes the
operation code of the dynamic instruction sets to perform mathematical or logical
operation on data items, as described above. After the operation, the run-time engine
processes the instructions to create updated system data. Note that the updated system
data may include unchanged data items in some circumstances. The system data in the
second code section 472 is replaced with the updated system data in response to the
operation code. Thus, by the processing of instruction by the run-time engine, the system
sof ware is controlled 'to execute using the updated system data in code section 472. In
this manner, specifically targeted symbols in the system software can be updated, without
replacing entire code sections. By the same process, the system data can be replaced in a
code section in the code storage section 112. For example, the system data can be stored
in the third code section 344, and the run-time engine can replace the system data in the
third code section with updated system data in response to the operation code.
[83] PMRTI can also be used to update data items in volatile memory 114. As an
example, the volatile memory 114 accept read-write data 330, see Fig. 1. The read-write
data can be from one, or from a plurality of code sections in the code storage section 112
and/or the FSS 110. The run-time engine accesses the read-write data, analyzes the read-
write data 330, creates updated read-write data, and replaces the read-write data 330 in
the volatile memory 114 with the updated read-write data in response to the operation
cod;. Then, the system software is controlled to execute using the updated read-write
data in volatile memory 114.
(84] In some aspects of the invention, the run-time engine monitors the execution of
the'system software, Performance monitoring is broadly defined to include a great
number of wireless device activities. For example, data such as channel parameters,
channel characteristics, system stack, error conditions, or a record of data items in RAM
through a sequence of operations leading to a specific failure condition or reduced
performance condition can be collected. It is also possible to use dynamic instructions
sets to analyze collected performance data, provide updated data variants, and recapture
data. to study possible solutions to the problem. Temporary fixes can also be provisioned
usir.g PMRTI processes.
[85] Mors specifically, the run-time engine collects performance data, and stores the
performance data in the file system section in response to the operation code. Then, the
system software is controlled to execute by collecting the performance data for evaluation
of the system software. Evaluation can occur as a form of analysis performed by
dynamic instruction set operation code, or it can be performed outside the wireless
device. In some aspects of the invention, the run-time engine accesses the performance
data that has been collected from the file system section and transmits the performance
data via an airlink interface in response to the operation code. Collecting performance
data from wireless devices in the field permits a manufacturer to thoroughly analyze
problems, either locally or globally, without recalling the devices.
[861 In some aspects of the invention, file system section 110 receives a patch manager
run time instruction including a new code section. For example, a new code section 474
is shown in Fig. 4. Alternately, the new code section can be independent of the PMRTI,
such as new code section n (450). For example, the new code section n (450) may have
been received in earlier airlink communications, or have been installed during factory
calibration. The run-time engine adds the new code section 474 (450) to the code storage
section in response to the operation code. In some aspects of the invention, the new code
section is added to an unused block in the code storage section 112. Alternately, a
compaction operation is required. Then, the system software is controlled to execute
using the new code section 474 (450). In other aspects of the invention, the PMRTI 454
includes an updated code section 474. Alternately, the new code section 450 is an
updated code section independent of the PMRTI. The run-time engine replaces a code
section in the code storage section, code section two (304) for an example, with the
updated code section 474 (450) in response to the operation code. The system software is
controlled to execute using the updated code section 474 (450). In some aspects of the
invention al compaction operation is required to accommodate the updated code section.
Alternately, the updated code section is added to an unused or vacant section of the code
storage section.
[87] As explained above, the addition of a new code section or the updating of a code
section typically requires the generation of a new code section address table, as these
operation involve either new and/or changed code section start addresses. Further, a
compaction operation also requires a new code section address table. The compaction
operations may be a result of the operation of the compactor 342, explained above, or the
result of PMRTI instructions that supply details as to how the compaction is to occur.
When the 'PMRTI includes downloading and compaction instructions, the PMRTI
typically also includes a new code section address table that becomes valid after the
downloading and compaction operations have been completed.
[88] Figs.j 10a and 10b are flowcharts illustrating the present invention method for
executing dynamic instruction sets in a wireless communications device. Although
depicted as a sequence of numbered steps for clarity, no order should be inferred from the
numbering (and the numbering in the methods presented below) unless explicitly stated.
The method starts at Step 1000. Step 1001a forms the system software into symbol
libraries, each symbol library comprising symbols having related functionality. Step
1001b arranges the symbol libraries into code sections. Step 1002 executes system
software. Step 1003 receives the dynamic instruction sets. Receiving the dynamic
instruction sets in Step 1003 includes receiving the dynamic instruction sets through an
interface selected from the group including airlink, radio frequenqy (RF) hardline,
installable memory module, infrared, and logic port interfaces. In some aspects of the
invention, receiving the dynamic instruction set in Step 1003 includes receiving a patch
manager run time instruction (PMRTI) in a file system section nonvolatile memory.
[89] Step 1004 launches a run-time engine. Typically, launching a run-time engine
includes invoking- a run-time library from a first code section. The run-time engine can
be launched from either volatile or nonvolatile memory. Step 1006 processes dynamic
instruction sets. Processing dynamic instruction sets includes processing instructions in
response to mathematical and logical operations. In some aspects of the invention, Step
1007 (not shown), following the processing of the dynamic instruction sets, deletes
dynamic instruction sets. Step 1008 operates on system data and system software. Step
1010, in response to operating on the system data and system software, controls the
execution of the system software.
[9C] Typically, receiving the patch manager run time instructions in Step 1003
includes receiving conditional operation code and data items. Then, processing dynamic
instruction sets in Step 1006 includes substeps. Step 1006al uses the run-time engine to
read the patch manager run time instruction operation code. Step 1006b performs a
sequence of operations in response to the operation code.
[91] In some aspects, arranging the symbol libraries into code sections in Step 1001b -
includes starting symbol libraries at the start of code sections and arranging symbols to be
offset from their respective code section start addresses. Then the method comprises
further steps. Step 1001c stores the start of code sections at corresponding start
addresses. Step 1001d maintains a code section address table (CSAT) cross-referencing
code section identifiers with corresponding start addresses. Step 1OO1e maintains a
symbol offset address table (SOAT) cross-referencing symbol identifiers with
corresponding offset addresses, and corresponding code section identifiers.
[92] In some aspects of the invention, receiving the patch manager run time instruction
in Step 1003 includes receiving symbol identifiers. Then, the method comprises a further
step. Step 1006a2 locates symbols corresponding to the received symbol identifiers by
using the code section address table and symbol offset address table. Performing a
sequence of operations in response to the operation code in Step 1006b includes substeps.
Step 1006bl extracts the data when the located symbols are data items. Step 1006b2
executes the symbols when the located symbols are instructions.
[93] In some aspects of the invention, processing dynamic instruction sets in Step
1006bl includes additional substeps. Step 1006bla uses the run-time engine to capture
the length of the patch manager run time instruction. Step 1006blb extracts the data
items from the patch manager run time instruction, in response to the operation code.
Step 1006blc uses the extracted data in performing the sequence of operations responsive
to the operation code.
[94] Fig. 11 is a flowchart illustrating an exemplary dynamic instruction set operation.
Several of the Steps in Fig. 11 are the same as in Fig. 10, and are not repeated here in the
interest of brevity. Processing dynamic instruction sets in Step 1106 includes substeps.
Step 1106a accesses system data stored in a second code section in the file system
section. Step 1106b analyzes the system data. Step 1106c creates updated system data.
Then, operating on system data and system software in Step 1108 includes replacing the
system data in the second section with the updated system data, and controlling the
execution of the system software in Step 1010 includes using the updated system data in
the execution.of the system software.
[95] Fig.12 is a flowchart illustrating another exemplary dynamic instruction set
operation. Several of the Steps in Fig. 12 are the same as in Fig. 10, and are not repeated
here in the interest of brevity. Step 1201c stores a plurality of code sections in a code
storage section nonvolatile memory. Processing dynamic instruction sets in Step 1206
includes substeps. Step 1206a accesses system data stored in a third code section in the
code storage section (CSS). Step 1206b analyzes the system data. Step 1206c creates
updated system data. Operating on the system data and system software in Step 1208
includes replacing the system data in the third code section with the updated system data.
Controlling the execution of the system software in Step 1210 includes using the updated
system data in the execution of the system software.
[96] Fig. 13 is a flowchart illustrating a third exemplary dynamic instruction set
operation. Several of the Steps in Fig. 13 are the same as in Fig. 10, and are not repeated
here in the interest of brevity. Step 1301c stores a plurality of code sections in a code
storage section nonvolatile memory. Step 1301d loads read-write data into volatile
memory. Processing dynamic instruction sets in Step 1306 includes substeps. Step
1306a accesses the read-write data in volatile memory. Step 1306b analyzes the read-
write data. Step 1306c creates updated read-write data. Operating on the system data
and system software in Step 1308 includes replacing the read-write data in volatile
memory with the updated read-write data. Controlling the execution of the system
software includes using the updated read-write data in the execution of the system
software.
[97] Fig. 14 is a flowchart illustrating a fourth exemplary dynamic instruction set
operation. Several of the Steps in Fig. 14 are the same as in Fig. 10, and are not repeated
here in the interest of brevity. Processing dynamic instruction sets includes substeps.
Step 1406a, in response to the operation code, monitors the execution of the system
software. S;tep 1406b collects performance data. Step 1406c stores the performance data.
Step 1406d transmits the stored data via an airlink interface. Operating on the system
data and system software in Step 1408 includes using the performance data in the
evaluation of system software.
[98] Fig. 15 is a flowchart illustrating a fifth exemplary dynamic instruction set
operation. Several of the Steps in Fig. 15 are the same as in Fig. 10, and are not repeated
here in the interest of brevity. Step 1501c stores a plurality of code sections in a code
storage section nonvolatile memory. Receiving patch manager run time instructions in
Step 1503 includes receiving a new code section. Operating on the system data and
system software in Step 1508 includes adding the new code section to the code storage
section, and controlling the execution of the system software in Step 1510 includes using
the new code section in the execution of the system software.
[99] Alternately, receiving a new code section in Step 1503 includes receiving an
updated code section. Then, operating on the system data and system software in Step
1508 includes replacing a fourth code section in the code storage section with the updated
code section.
[100] A system and method have been provided for executing dynamic instruction sets
in a wireless communications device, so as to aid in the process of updating the software
and monitoring the performance of the software. The system is easily updateable because
of the arrangement of symbol libraries in code sections, with tables to access the start
addresses of the code sections in memory and the offset addresses of symbols in the
symbol libraries. The use on dynamic instruction sets permits custom modifications to be
performed to each wireless device, based upon specific characteristics of that device. A
few general examples have been given illustrating possible uses for the dynamic
instructions sets. However, the present invention is not limited to just these examples.
Other variations and embodiments of the invention will occur to those skilled in the art.
[101] Fig. 16 is a high level network diagram illustrating an example wireless/
communication network. The illustrated wireless communication network comprises a
plurality of wireless communication devices 10, 12, and 14; a plurality of base stations 20
and 22; and a PMRTI server 30 that is connected to the wireless communication devices j
10, 12, and 14 via a network 40.
[102] Wireless communication device 10 can be any sort of device with the ability to
communicate, within the wireless communication network 100. For example, wireless
communication device 10 may be a cell phone, a personal digital assistant ("PDA"), a
laptop computer, wristwatch, or any other device configured for wireless communication.
Wireless communication devices may also be referred to herein as "handsets" or "mobile
phones" or "mobile devices".
[103] Base station 20 is preferably configured to communicate over-the-air with a
plurality of wireless communication devices and includes a transceiver (not shown) that
converts the over-the-air communications to wired communications that travel over
network 40. Preferably, network 40 is aiprivate network operated by the wireless carrier.
Network 40 preferably provides the infrastructure for handoffs between base stations
such as base station 20 and 22. Additionally, network 40 preferably provides the
communication link between various application, services, and other computer based
servers such as PMRTI server 30.
[104] Network 40 may also serve as the conduit for connections to other networks (not
pictured) such as an Integrated Services Digital Network ("ISDN"), Public Switched
Telephone Network ("PSTN"), Public Land Mobile Network ("PLMN"), Packet
Switched Public Data Network ("PSPDN"), and the Internet, just to name a few.
[105] PMRTI server 30 can be implemented as a single computer or as a plurality of
servers logically arranged to provide dynamic instruction sets to mobile devices and to
execute dynamic instruction sets received from mobile devices.
[106] Fig. 17A is block diagram illustrating an example wireless communication device
10. The general features of wireless communication device 10 that allow it to function as
such are well known in the art and are therefore not illustrated or described herein.
[107] Wireless communication device 10 includes runtime engine 50, remote operation
code ("opcode") library 60, server opcode library 70, and remote runtime instructions
code section 80. Runtime engine 50 is preferably configured to process dynamic
instructions sets. One example of a dynamic instruction set is a PMRTI instruction set.
Another example of a dynamic instruction set is an RPMRTI instruction set. The
difference between these two instruction sets is that the PMRTI set includes those
functions that can be executed by the wireless device while the RPMRTI instruction set
includes those functions that can be executed by the PMRTI server 30 that resides on the
network 40:
[108] The, processing of dynamic instruction sets includes execution of PMRTI sets that
are received from the PMRTI server 30 and the compilation of RPMRTI sets and
corresponding data for delivery to the PMRTI server 30. Preferably, runtime engine 50
can be launched by wireless communication device 10 when needed so that it runs only
when necessary and consumes a minimal amount of system resources (e.g. memory, CPU
cycles, etc.) on the device 10.
[109] Remote opcode library 60 preferably includes the universe of operation codes that
represent each PMRTI function or executable code segment. Advantageously, remote
opcode library 60 includes the operation codes that serve as place holders for the actual
executable machine code functions or code segments. As such, the remote opcode library
60 contains a list of all available operation codes that correspond to each and every
PMRTI function that can be executed by the wireless communications device 10.
[110] Similarly, the server opcode library 70 preferably includes the universe of
operation codes that represent each RPMRTI function or executable code segment.
Advantageously, server opcode library 70 only includes the operation codes for the actual
executable machine code functions or code segments, which do not reside on the wireless
communication device 10. As such, the server opcode library 70 contains a list of all the
operation codes for each available RPMRTI function that can be executed by the PMRTI
server 30 on behalf of the wireless communication device 10.
[111] In the preferred embodiment, the number of available RPMRTI functions can well
exceed the number of available PMRTI functions because the PMRTI server 30 does not
suffer from the minimal resources typically found on mobile devices such as, for
example, ceil phones and PDAs.
[112] Additionally, wireless communication device 10 includes remote runtime
instructions bode section 80. The code section 80 is where the actual machine code or
executable instructions reside in persistent memory on the device 10. These executable
instructions or code segments preferably correspond in a one-to-one relationship with the
opcodes contained in the remote opcode library 60. Fig. 17B is block diagram illustrating
an example code section 80. As shown, any number of PMRTI functions can be included
in code section 80, from instruction 01 through instruction n. Optimally, a large number
of functions are available in code section 80 and yet consume very little resources (e.g.
persistent memory) of the device 10.
[113] Advantageously, the server opcode library 70, the remote opcode library 60, and
the corresponding code section 80 can be installed in persistent memory on the wireless
comnunication device 10 during manufacture of the device 10 and prior to its
deployment in. the field (i.e., prior to being sold to the consumer). Future updates to the
set c f opcodes contained in either library or to the set of executable instructions in the
code section 80 can be provided by the PMRTI server 30 implementing the process later
described with respect to Fig. 22.
[114] Finally, in the illustrated embodiment, wireless communication device includes an
over-the-air communication link 90. Implementation of the communication link 90 is
well known in the art and provides the wireless communication device 10 with the ability
to communicate within the wireless communication network 100 via a radio or other
over-the-air connection. Advantageously, over-the-air communication link 90 can
provide the means for PMRTI server 30 to update remote opcode library 60, server
opcode library 70, and remote runtime instructions codes section 80.
[115] Fig. 18A is a block diagram illustrating an example PMRTI server 30. The
features of a general purpose computer that may implement the PMRTI server are later
described with respect to Fig. 23.
[116] In 'the illustrated embodiment, PMRTI server 30 includes control module 95,
remote opcode library 60, server opcode library 70, and server runtime instructions code
section 82. The remote opcode library 60 and server opcode library 70 preferably contain
the same list of opcodes as the libraries that are present on the wireless communication
device 10. The control module 95 is preferably configured to process dynamic
instructions sets and manage a network of PMRTI communications between the PMRTI
server 30 and a plurality of wireless communication devices available via the wireless
communication network.
[117] For example, the control module 95 may compile various dynamic PMRTI sets
and send those instruction sets to a variety of discrete wireless communication devices.
Similarly, the control module 95 may also receive a plurality of dynamic RPMRTI sets
and execujte those instruction sets on behalf of the sending wireless communication
device.
[118] Remote opcode library 60 preferably includes the universe of operation codes
corresponding to each available PMRTI function or executable code segment.
Advantageously, remote opcode library 60 comprises a list of the operation codes that
serve as place holders for the actual executable machine code functions or code segments
in the remote runtime instructions code section 80 (on the wireless communication
device). As such, the remote opcode library 60 contains a list ot all available opcodes tor
all available PMRTI functions that can be executed by a wireless communications device.
[119] Similarly, the server opcode library 70 preferably includes the universe of
operation codes corresponding to each RPMRTI function or executable code segment.
Advantageously, server opcode library 70 only includes the operation codes for the actual
executable machine code functions or code segments that can be carried out the PMRTI
server 30. Preferably, the number of available RPMRTI functions well exceeds the
number of available PMRTI functions because the PMRTI server 30 does not suffer from
the minimal resources typically found on mobile devices such as, for example, cell
phones and PDAs.
[120] Additionally, PMRTI server 30 includes the server runtime instructions code
section 82. The code section 82 is where the actual machine code or executable
instructions reside in persistent memory on the server 30. These executable instructions
or code segments preferably correspond in a one-to-one relationship with the operation
codes contained in the server opcode library 70, which resides both on the server 30 and
the wireless communication device 10. Fig. 18B is a block diagram illustrating an
example server runtime instructions code section.
[121] Fig. 19 is a flow diagram illustrating an example process for executing dynamic
instpction sets on a wireless communication device. Initially, in step 500, the wireless
device receives a set of remote opcodes. The set of remote opcodes can be received via
an over-the-air communication link, for example a link with a wireless communication
network. Preferably, the opcodes are optimized to minimize the amount of data sent
over-the-air. Additionally, a data payload may be included with the set of opcodes
received by the wireless device.
[122] In step 502, the wireless device launches its runtime engine to process the remote
opcode set. As illustrated in step 504, the runtime engine parses the remote opcode set
and then extracts the data payload in step 506. If no data payload exists, then this step
can be skipped. If a data payload does exist, then the resulting data can be stored in an
available portion of volatile memory for later use. Next, the runtime engine obtains the
executable instructions that correspond to the opcodes in the remote opcode set as shown
in step 508. These instructions can be obtained from the remote runtime instructions
code section of the wireless device.
[123] Once the executable instructions corresponding to the opcodes in the remote
opcode set have been obtained, the runtime engine executes the instructions, as illustrated
in step 510. When the instructions are being executed, any necessary data to be operated
on can be obtained from volatile memory where the data payload is stored. Alternatively,
or additionally, any necessary data to be operated on may be obtained as the result of an
executed instruction.
[124] For example, the data payload may include an updated software module for the
wreless device. Additionally, one of the opcodes in the remote opcode set may
correspond to an executable instruction for replacing a section of persistent memory with
a portion of the data payload. In this! example, the portion of persistent memory being
replaced is the outdated software module and as a result the updated software module is
loaded into persistent memory by the instruction. Thus, the remote opcode set and data
payload operate on the wireless device to update a software module.
[125] Once the instruction set has been executed in its entirety by the runtime engine,
the runtime engine can be terminated, as shown in step 512. Advantageously, the
runtime engine may be launched and terminated so that it only runs when necessary.
This saves system resources on the wireless device, for example it may save volatile
memory space and CPU cycles.
[126] Fig. 20 is a flow diagram illustrating an example process for compiling dynamic
instruction sets on a wireless communication device. Initially, the runtime engine is
launched, as illustrated in step 520. Once the runtime engine is running, the engine can
compile a set of server opcodes, as shown in step 522. The set of server opcodes may be
obtained from a background process running on the wireless device. Alternatively, the
server opcode set may be obtained from a process running on the wireless device under
the direction of a user.
[127] For example, the wireless device may include a set of routines that are
periodically and automatically run by the operating system in order to perform system
maintenance or other desirable functions. These procedures may, as a result of their
execution, cause a server opcode set to be generated by the runtime engine.
Alternatively, a user may initiate a particular set of routines that are only executed when
requested by a user. This set of routines may also cause a server opcode set to be
generated by the runtime engine. In both cases, the result is a server opcode set generated
by the runtime engine; as shown in step 522.
[128] Once the server opcode set has been generated, the runtime engine determines in
step 524 if a data payload should accompany the server opcode set. If there is data that
needs to go along with the server opcode set, in step 526 the runtime engine fetches the
data from persistent or volatile memory, or executes an instruction that returns the data
needed. Once the data has been obtained, the run time engine next inserts the data into
the server opcode set, as illustrated in step 528. One simple way to achieve this is to
append the data payload to the server opcode set in a single data packet.
[129] Once the data payload has been combined with the server opcode set, or if no data
payload is required, then the runtime engine sends the server opcode set (with or without
a data payload) to the server, as shown in step 530. After the server opcode set has been
sent, the runtime engine may be terminated to free up resources on the wireless device, as
illustrated in step 532.
[130] Fig. 121 is a flow diagram illustrating an example process for executing dynamic
instruction sets on a PMRTI server. Initially, in step 540 the server receives the server
opcode set. The opcode set is preferably a list of monikers that represent a series of
executable instructions, with each opcode representing a discrete executable instruction
or a discrete set of executable instructions. Once the set of server opcodes has been
received, the server then parses the server opcode set in step 542 and extracts any data
payload included with the server opcode set, as illustrated in step 544. When the data
payload is extracted, it may be temporarily stored in volatile memory on the server for
later use.
[131] Next, the server obtains the corresponding instruction set, as shown in step 546.
Preferably] the corresponding instruction set is stored in a server runtime instructions
code section that resides in persistent memory on the PMRTI server machine. Once the
instruction set has been obtained, the server then executes the instruction set, as seen in
step 548. When the instruction set is being executed, the executing routines may use the
data payload that came with the server opcode set. Preferably, the data payload is stored
in memory on the server for this purpose. Alternatively, the executing routines may
include instructions that generate the data necessary for the instruction set to carry out its
function.
[132] Fig. 22 is a flow diagram illustrating an example process for synchronizing
opcode libraries. Initially, in step 580 the wireless device obtains a list of server opcodes.
This may be done most easily by consulting the server opcode library. Alternatively, an
routine may be called or a program may be run, the result of which is the desired list of
server opcodes. In a general sense, the process for synchronizing opcode libraries may be
periodically and automatically initiated by the wireless device or it may be initiated by
input from a user.
[133] Once a list of server opcodes has been obtained, the list is included as the data
payload in a server opcode set and sent to the server for processing, as shown in step 582.
The server executes the instructions corresponding to the opcode and thereby processes
the data payload, which is the list of all available server opcodes according to the wireless
device. In response, the wireless device receives a remote opcode set and data payload,
as illustrated in step 584. The data payload received from the server advantageously
includes any updated or modified opcodes and the corresponding executable instruction.
Additionally, the data payload also includes any new opcodes and the corresponding
executable instruction.
[134] The wireless device next extracts this data payload in step 586 and preferably
stores the data payload in an available memory of the wireless device, fpr example a free
segment oflvolatile memory. Once the data payload has been extracted, the wireless
device obtains the executable instructions corresponding to the remote opcode set, as
illustrated in step 588. Once the set of executable instructions corresponding to the
remote opcode set have been obtained, the wireless device then executes those
instructions, as shown in step 590. When the instructions are executed, the data from the
data payload can be accessed from the temporary storage location within the wireless
device.
[135] For example, a first executable instruction may cause the wireless device to
replace a first portion of persistent memory with a first portion of the data payload. After
, doing so, the result is preferably an updated server opcode in the server opcode library.
Correspondingly, a second executable instruction may cause the wireless device to
replace a second portion of persistent memory with a second portion of the data payload.
After doing so, the result is preferably an updated executable instruction in the server
runtime instructions c;ode section. This advantageously allows the wireless device to
periodically query the PMRTI server for updates to its functionality suite.
[136] Additional applications of the ability of a handset to construct a server opcode set
and corresponding data payload and send them to the PMRTI server 30 for processing
include providing location updates (e.g., GPS information), saving a voice memo on the
network, sending files to the network or other users. In the general sense, sending files to
the network or other users encompasses an extremely broad range of desirable
applications such as sending custom rings to a friend or family member, sending photos
or digital images captured by the wireless device, sending emails, documents, or any
other desirable data to be stored on the network or sent to another user.
[137] Fig. 23 is a block diagram illustrating an exemplary computer system 550 that
may be used in connection with the various examples described herein. For example, the
computer system 550 may be employed as the PMRTI server that resides within the
wireless communication network. Computer system 550 may also be employed as any of
the various other general or specific purpose computer systems that comprise the wireless
communication network and its constituent components. However,, other computer
systems and computer architectures may be used, as will be clear to those skilled in the
art.
[138] The computer system 550 preferably includes one or more processors, such as
processor 552. Additional processors may be provided, such as an auxiliary processor to
manage input and output, an auxiliary processor to perform floating point mathematical
operations, a special-purpose microprocessor having an architecture suitable for fast
execution of signal processing algorithms (e.g., digital signal processor), a slave
processor subordinate to the main processing system (e.g., back-end processor), an
additional microprocessor or controller for dual or multiple processor systems, or a
coprocessor. Such auxiliary processors may be discrete processors or may be integrated
with the processor 552.
[139] The processor 552 is preferably connected to a communication bus 554. The
communication bus 554 may include a data channel for facilitating information transfer
between storage and other peripheral components of the computer system 550. The
communication bus 554 further may provide a set of signals used for communication
with the processor 552, including a data bus, address bus, and control bus (not shown).
The. communication bus 554 may comprise any standard or non-standard bus architecture
such as, for example, bus architectures compliant with industry standard architecture
("ISA"), extended industry standard architecture ("EISA"), Micro Channel Architecture
("MCA"), peripheral component interconnect ("PCI") local bus, or standards
promulgated by the Institute of Electrical and Electronics Engineers ("IEEE") including
IEEE 488 general-purpose interface bus ("GPIB"), IEEE 696/S-100, and the like.
[140] Computer system 550 preferably includes a main memory 556 and may also
include a secondary memory 558. The main memory 556 provides storage of instructions
and data for programs executing on the processor 552. The main memory 556 is
typically semiconductor-based memory such as dynamic random access memory
("DRAM") and/or static random access memory ("SRAM"). Other semiconductor-based
memory types include, for example, synchronous dynamic random access memory
("SDRAM"), Rambus dynamic random access memory ("RDRAM"), ferroelectric
random access memory ("FRAM"), and the like, including read only memory ("ROM").
[141] The secondary memory 558 may optionally include a hard disk drive 560 and/or a
removable storage drive 562, for example a floppy disk drive, a magnetic tape drive, a
compact disc ("CD") drive, a digital versatile disc ("DVD") drive, etc. The removable
storage drive 562 reads from and/or writes to a removable storage medium 564 in a well-
known manner. Removable storage medium 564 may be, for example, a floppy disk,
magnetic tape, CD, DVD, etc.
[142] The removable storage medium 564 is preferably a computer readable medium
having stored thereon computer executable code (i.e., software) and/or data. The
computer software or data stored on the removable storage medium 564 is read into the
computer system 550 as electrical communication signals 578.
[143] In alternative embodiments, secondary memory 558 may include other similar
means for allowing computer programs or other data or instructions to be loaded into the
computer system 550. Such means may include, for example, an external storage
medium 572 and an interface 570. Examples of external storage medium 572 may
include an external hard disk drive or an external optical drive, or and external magneto-
optical drive.
[144] Other examples of secondary memory 558 may include semiconductor-based
memory such as programmable read-only memory ("PROM"), erasable programmable
read-only memory ("EPROM"), electrically erasable read-only memory ("EEPROM"), or
flash memory (block oriented memory similar to EEPROM). Also included are any other
removable storage units 572 and interfaces 570, which allow software and data to be
transferred from the removable storage unit 572 to the computer system 550.
[145] Computer system 550 may also include a communication interface 574. The
communication interface 574 allows software and data to be transferred between
computer system 550 and external devices (e.g. printers), networks, or information
sources. For example, computer software or executable code may be transferred to
computer system 550 from a network server via communication interface 574. Examples
of communication interface 574 include a modem, a network interface card ("NIC"), a
communications port, a PCMCIA slot and card, an infrared interface, and an IEEE 1394
fire-wire, just to name a few.
[146] Communication interface 574 preferably implements industry promulgated
protocol standards, such as Ethernet IEEE 802 standards, Fiber Channel, digital
subscriber line ("DSL"), asynchronous digital subscriber line ("ADSL"), frame relay,
asynchronous transfer mode ("ATM"), integrated digital services network ("ISDN"),
personal communications services ("PCS"), transmission control protocol/Internet
protocol ("TCP/IP"), serial line Internet protocol/point to point protocol ("SLIP/PPP"),
and so on[ but may also implement customized or non-standard interface protocols as
well.
[147] Software and data transferred via communication interface 574 are generally in
the form of electrical communication signals 578. These signals 578 are preferably
provided to communication interface 574 via a communication channel 576.
Communication channel 576 carries signals 578 and can be implemented using a variety
of communication means including wire or cable, fiber optics, conventional phone line,
cellular phone link, radio frequency (RP) link, or infrared link, just to name a few.
[148] Computer executable code (i.e., computer programs or software) is stored in the
main memory 556 and/or the secondary memory 558. Computer programs can also be
received via communication interface 574 and stored in the main memory 556 and/or the
secondary memory 558. Such computer programs, when executed, enable the computer
system 550 to perform the various functions of the present invention as previously
described.
[149] In this description, the term "computer readable medium" is used to refer to any
media used to provide computer executable code (e.g., software and computer programs)
to the computer system 550. Examples of these media include main memory 556,
secondary memory 558 (including hard disk drive 560, removable storage medium 564,
and external storage medium 572), and any peripheral device communicatively coupled
with communication interface 574 (including a network information server or other
network device). These computer readable mediums are means for providing executable
code, programming instructions, and software to the computer system 550.
[150] In an embodiment that is implemented using software, the software may be stored
on a computer readable medium and loaded into computer system 550 by way of
removable storage drive 562, interface 570, or communication interface 574. In such an
embodiment, the software is loaded into the computer system 550 in the form of
electrical communication signals 578. The software, when executed by the processor
552, preferably causes the processor 552 to perform the inventive features and functions
previously described herein.
[151] Various embodiments may also be implemented primarily in hardware using, for
example, components such as application specific integrated circuits ("ASICs"), or field
programmable gate arrays ("FPGAs"). Implementation of a hardware state machine
capable of performing the functions described herein will also be apparent to those
skilled in ,the relevant art. Various embodiments may also be implemented using a
combination of both hardware and software.
[152] While the particular systems and methods herein shown and described in detail
are fully capable of attaining the above described objects of this invention, it is to be
understood that the description and drawings presented herein represent a presently
preferred embodiment of the invention and are therefore representative of the subject
matter which is broadly contemplated by the present invention. It is further understood
that the scope of the present invention fully encompasses other embodiments that may
become obvious to those skilled in the art and that the scope of the present invention is
accordingly limited by nothing other than the appended claims.

WE CLAIM :
1. A wireless communication device (10) comprising:
a library of server operation codes (70);
a library of remote operation codes (60);
a set of executable instructions (80), each executable instruction
corresponding to an operation code in the library of remote operation codes (60);
a runtime engine (50) configured to compile a set of server operation
codes from the library of server operation codes (70) and send the set of
compiled server operation codes to a server computer (30) communicatively
coupled with the wireless communication device (10) via a wireless
communication network (40), the runtime engine (50) configured to receive a set
of remote operation codes and execute a second set of executable instructions
from the first set of executable instructions (80), each executable instruction of
the second set corresponding to an operation code in the received set of remote
operation codes.
2. The wireless communication device as claimed in claim 1, wherein the
compiled set of server operation codes comprises a data payload (808).
3. The wireless communication device as claimed in claim 1, wherein the
runtime engine is configured to automatically compile the set of server operation
codes and send the compiled set of server operation codes at a predetermined
time.
4. The wireless communication device as claimed in claim 1, wherein the
runtime engine is configured to compile the set of server operation codes and
send the compiled set of server operation codes in response to input from a user
of the wireless communication device.
5. A bi-directional system for sending and receiving operational codes
between a wireless communication device (10) and a server computer (30),
wherein the wireless communication device and the server computer are
communicatively coupled via a wireless communication network (40), the system
comprising:
a wireless communication device (10) having
a runtime engine (50),
a library of server operation codes (70),
a library of remote operation codes (60), and
a first set of executable instructions (80), each executable
instruction in said first set corresponding to an operation code in
the library of remote operation codes (60); and
a server computer having
a control module (95),
a library of server operation codes (70),
a library of remote operation codes (60), and
a second set of executable instructions (82), each executable
instruction in said second set corresponding to an operation code
in the library of server operation codes (70) of the server computer;
wherein the runtime engine (50) is configured to compile a set of server
operation codes from the library of server operation codes (70) and send the
compiled set of server operation codes to the server computer (30),
wherein the server computer (30) is configured to receive the compiled set
of server operation codes from the wireless communication device and execute a
third set of executable instructions from the second set of executable
instructions, each executable instruction of the third set corresponding to an
operation code in the received set of server operation codes,
wherein the server computer is further configured to compile a set of
remote operation codes from the library of remote operation codes (60) and send
the compiled set of remote operation codes to the wireless communication
device (10), and
wherein the runtime engine (50) is further configured to receive the
compiled set of remote operation codes and execute a fourth set of executable
instructions from the first set of executable instructions (80), each executable
instruction of the fourth set corresponding to an operation code in the received
set of remote operation codes..
6. The system as claimed in claim 5, wherein the compiled set of server
operation codes comprises a data payload (808).
7. The system as claimed in claim 5, wherein the runtime engine is
configured to automatically compile the set of server operation codes and send
the compiled set of server operation codes at a predetermined time.
8. The system as claimed in claim 5, wherein the runtime engine is
configured to compile the set of operation codes and send the compiled set of
server operation codes in response to input from a user of the wireless
communication device.
9. A method for sending and receiving operational codes between a wireless
communication device (10) and a server computer (30), wherein the wireless
communication device (10) and the server computer (30) are communicatively
coupled via a wireless communication network (40), the method comprising:
compiling (522) a set of server operation codes from a library of server
operational codes (70) within a runtime engine of the wireless communication
device;

attaching (528) a data payload to the compiled set of server operation
codes, wherein the data payload corresponds to the compiled set of server
operation codes;
sending (530) the compiled set of server operation codes and data
payload to the server computer for execution thereon;
receiving (500) a set of remote operation codes from the server computer;
and
executing (510) a set of executable instructions, each executable
instruction from this set corresponding to an operation code in the received set of
remote operation codes.
10. The method as claimed in claim 9, wherein the attaching step (528)
comprises the steps of:
determining whether corresponding data is required for each operation
code included in the compiled set of operational codes;
fetching (526) the required corresponding data for each operation code;
and
compiling the corresponding data fetched for each operation code into a
data payload (808).
11. The method as claimed in claim 9, wherein the compiling step comprises
the steps of:
fetching an operation code from the library of server operation codes; and
storing the operation code in a temporary memory location housing the set
of-server operation codes.
12. The method as claimed in claim 9, wherein the data payload comprises
diagnostic information.
A wireless communication device and a bi-directional system and method
for sending and receiving operational codes between a wireless communication
device and a server computer are disclosed. The wireless communication device
(10) comprises: a library of server operation codes (70); a library of remote
operation codes (60); a set of executable instructions (80) and a runtime engine
(50). The method for sending and receiving operational codes between a
wireless communication device (10) and a server computer (30) comprises:
compiling (522) a set of server operation codes from a library of server
operational codes (70) within a runtime engine of the wireless communication
device; attaching (528) a data payload to the compiled set of server operation
codes, wherein the data payload corresponds to the compiled set of server
operation codes; sending (530) the compiled set of server operation codes and
data payload to the server computer for execution thereon; receiving (500) a set
of remote operation codes from the server computer; and executing (510) a set
of executable instructions, each executable instruction from this set
corresponding to an operation code in the received set of remote operation
codes.

Documents:

140-KOLNP-2004-CORRESPONDENCE.pdf

140-KOLNP-2004-FORM 27.pdf

140-KOLNP-2004-FORM-27.pdf

140-kolnp-2004-granted-abstract.pdf

140-kolnp-2004-granted-assignment.pdf

140-kolnp-2004-granted-claims.pdf

140-kolnp-2004-granted-correspondence.pdf

140-kolnp-2004-granted-description (complete).pdf

140-kolnp-2004-granted-drawings.pdf

140-kolnp-2004-granted-examination report.pdf

140-kolnp-2004-granted-form 1.pdf

140-kolnp-2004-granted-form 18.pdf

140-kolnp-2004-granted-form 3.pdf

140-kolnp-2004-granted-form 5.pdf

140-kolnp-2004-granted-pa.pdf

140-kolnp-2004-granted-reply to examination report.pdf

140-kolnp-2004-granted-specification.pdf


Patent Number 233021
Indian Patent Application Number 140/KOLNP/2004
PG Journal Number 13/2009
Publication Date 27-Mar-2009
Grant Date 25-Mar-2009
Date of Filing 04-Feb-2004
Name of Patentee KYOCERA WIRELESS CORPORATION
Applicant Address 10300 CAMPUS POINT DRIVE, SAN DIEGO, CA
Inventors:
# Inventor's Name Inventor's Address
1 RAJARAM GOWRI 3520 LEBON DRIVE, APT. 5330, SAN DIEGO, CA 92122
PCT International Classification Number H04L 29/06
PCT International Application Number H04L 29/06
PCT International Filing date 2002-07-25
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 09/916900 2001-07-26 U.S.A.
2 09/927131 2001-08-10 U.S.A.
3 09/969,305 2001-10-02 U.S.A.
4 09/916460 2001-07-26 U.S.A.
5 09/917026 2001-07-26 U.S.A.