Title of Invention

"A FLUE GAS SHARING SYSTEM FOR A COKE OVEN BATTERY AND METHOD THEREOF"

Abstract " A FLUE GAS SHARING SYSTEM FOR A COKE OVEN BATTERY" The invention provides a method and apparatus for decreasing gas flow rates in a sole flue gas system for a coke oven during at least an initial coking operation after charging a coking oven with coal. The method includes providing a duct system between a first coke oven having a first coking chamber and a second coke oven having a second coking chamber to direct at least a portion of gas from a gas space in first coking chamber to the second coke oven thereby reducing a gas flow rate in the first sole flue gas system of the first coke oven. Reduction in sole flue gas flow rates has a beneficial effect on product throughput, the life of the coke oven and environmental control of volatile emissions from coke ovens.
Full Text FIELD OF THE INVENTION
The invention relates flue gas sharing system for a coke oven battery and in particular to methods and apparatus for operating coke ovens which improve oven life, reduce emissions and increase coke yield from the ovens.
BACKGROUND:
Coke is a solid carbon fuel and carbon source used to melt and reduce iron ore in the production of steel. During an irwwnalcmg process, iron ore, coke, heated air and limestone or other fluxes are fed into a blast furnace. The heated air causes combustion of the coke which provides beat and a source of carbon for reducing iron oxides to iron. Limestone or other flaxes may be added to react with and remove the acidic impurities, called slag, from the molten iron. The limestone-impurities float to the top of the molten iron and are skimmed off
In one process, known as the "Thompson Coking Process," coke used for refining metal ores is produced by batch feeding pulverized coal to an oven which is sealed and heated to very high temperatures for 24 to 4$ hours under closely controlled atmospheric conditions. Coke ovens have been used for many years to covert coal into metallurgical coke. During the coking process, finely crashed coal is heated under controlled temperature conditions to devolanlize the coal and form a fused mass having a predetermined porosity and strength. Because the production of coke is a batch process, multiple coke ovens are operated simultaneously, hereinafter referred to as a "coke oven battery".
At the end of the coking cycle, the finished coke is removed from the oven and quenched with water. The cooled coke may be screened and loaded onto rail cars or trucks for shipment or later use or moved directly to an iron melting furnace.
The melting and fusion process undergone by the coal particles during the heating process is the most important pan of the coking process. The degree of


the second coke oven is heated by a second sole flue gas system. At least one of the chamber sidewalls between the first and second coke ovens contains at least one downcomer in flow communication between the gas space of the first coking chamber
I
and the first colc flue gas system for directing flue gases from the gas space of the first coking chamber to the first sole flue gas system.the coke oven batter)' also contains
a connecting gas conduit in gas flow communication between the gas space of the first
coking chamber and the gas space of at least the second coking chamber or the .sole flue gas system of at least the second coke oven for directing at least a portion of flmi
gas from the gas space of the first coking chamber to the second coke oven in order to
reduce a gas flow rate in the first sole flue gas system. j
In another aspect the invention provides a flue gas sharing system for a I
I coke oven battery containing at least a first coke oven and a second coke oven. The j
first coke oven has a first sole flue gas system, a first coking chamber and a first gas ; space above a coke bed in the first coking chamber. The second coke oven has a second sole flue gas system, a second coking chamber and a second gas space above a coke bed in the second coking chamber. The flue gas sharing system includes a refractory lined duct, in gas flow communication between the first gas space and at least the second gas space or the second sole flue gas system whereby a flue gas flow rate in the first sole flue gas system is reduced compared to a flue gas flow rate in the first sole flue gas system in the absence of the refractory lined duct.
In yet another aspect the invention provides a method for decreasing gas flow rates in a sole flue gas system for a coke oven during at least an initial coking operation after charging a coking oven with coal. The method includes providing a duct .system between a first coke oven Slaving a first coking chamber, a first gas space above a first coke bed and a first sole flue gas .system and a second coke oven having a second coking chamber, a second gas .space above a second coke bed and a second sole flue gas system to direct at least a portion of pas in the first gas space to at least the second gas space or the second sole flue gas system for the second coke oven thereby reducing a gas flow fate in The first sole flue pas system ,
melting and degree 'of assimilation of the coal particles into the molten mass deicnmne the characteristics of the coke produced. In order to produce, the strongc.st coke irorn a particular coal or coal blend, there is an optimum ratio of reactive to inert entities in the coal. The porosity and strength of the coke arc important for the ore icfimng process and arc, determined by the coal source and/or method of cokini!.
Coal particles or a blend of coal particles are charged into hot ovens on a
predetermined schedule, and the coal is healed for a predetermined period of time in the ovens in order to remove volaliles from the resulting coke. The coking, process is highly dependent on the oven design, the type of coaf and conversion temperature used. Ovens are adjusted during the coking process so that each charge of coal is coked out in approximately the same amount of cycle time. Once the coal is coked out, the coke is removed from the oven and quenched with water to cool it bcknv its ignition temperature. The quenching operation must also he carefully controlled so that the coke does not absorb too much moisture. Once it is quenched, the coke is screened and loaded into rail care or trucks for shipment,
As the sources of high grade coal for coking operations continue to decrease, less desirable coals are being used to produce coke. Such less desirable coals may have variable moisture and volatile matter content which a fleet the coking operations. Control of the coking operation is important to provide high quality coke for metallurgical processes. There continues to be a need for improved coking processes and apparatus for providing high quality coke.
SUMMARY OF THF INVENTION:
With regard The above and other advantages, the invention provides a coke oven bail cry meludinj! at least a first coke oven and a second coke oven adjacent the Jast coke oven, bach of the firsl and second coke ovens contains a coking chamber dciuuxJ by chamber sidcwalls, chamber roof and chamberfloor, where in each coking chamber includes a gas space above a coke bed. The chamber lloor of the fir si coke oven ts healed by a first sole flue ga.s sistem and the chamber floor o!

The invention provides a unique system for reducing peak oven t temperatures and gas flow rates in coking chambers in order to prolong the life off! refractory lined ovens and to further reduce undesirable emissions from the coking operation. The system is adaptable to use with at least two coke ovens and may 1 used with three or more the coke ovens in a coke oven battery. Furthermore, (I system is readily adaptable to existing coke ovens without major modifications of th ovens and without substantial changes in coke oven operations.
As will be described in more detail below, coke oven temperatures ar dependent on the quality of coal, the amount of coal charged to the oven and the amount of combustion air provided to the oven. From a practical point of view, prior to the invention, the only way to control peak oven temperature was to reduce the charge of coal to the oven for a given coal source. A coal high in volatiles results in the need for additional combustion air being provided to an oven to assure complete combustion of the volatiles. However, the amount of combustion air provided to an oven is limited by the natural or induced draft system for the coke battery. Additional combustion air reduces the natural or induced draft in a coke oven battery and may result in increased emissions from the ovens during charging and coking operations. The invention provides a unique means for operating a coke oven battery so that increased coke production may be achieved.
BRIEF DESCRIPTION OF THE DRAWINGS:
Further advantages and benefits of the invention will become apparent by reference to the detailed description of preferred embodiments when considered in conjunction with the drawings, which arc not to scale, wherein like reference characters designate like or similar elements throughout the several drawings as follows:
H FIG 2 is a longitudinal sectional view through a coke oven in the battery of coke ovens;

Fig. 3 is an enlarged fragmentary sectional view, taken on line 3-3 FIGS. 4A and 4B are an enlarged fragmentary sectional views, taken on line 4—4 of FIG. 2, showing coke oven interiors and sole flue systems; and
FIG. 5 is a plan view of a sole flue system for a coke oven according to the invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS:
A coal coking plant 10 is illustrated in Figs. 1 and 2 and includes a plurality of coke ovens 12 preferably constructed in side-by-side relation in a battery 14, with the adjacent ovens 12 in the battery preferably having common sidewalls 16. The individual ovens 12 in the battery 14 each have an elongate coking chamber 18 do lined by the opposed vertically extending sidewalls 16, a generally arcuate roof 20 supported on the sidewalls 16, and a horizontal floor 22 which supports the charge of coal to be coked. The ovens are constructed with the opposed ends of the chamber 18 open, and the ends are closed during the coking process by removable doors 24 and 26 (Fig. 2), with door 24 closing the charging end and door 26 closing the coke end of the oven 12. The sidewalls 16, roof 20, and floor 22 are formed from a suitable heal resistant material such as refractory brick or castable refractory material capable of withstanding the high temperatures encountered in the coking process and the thermal shock resulting from the deposit of fresh charges of coal in the heated oven chambers 18.
As best .seen in FIGS. 3 and 4, the floor 22 preferably consists of a top layer 28 of refractory brick resting upon a bed 30 of castable refractory material which is cast over the brick arch tops 32 of a .system of generally rectangular, elongate sole Hue chambers 34 extending beneath each oven chamber 18. The arch tops 32 are supported by oven sidewalls 16 and by a plurality of parallel intermediate refractory brick sidewalls 30, with the oven sidewafls 16 and the intermediate .sidewalls 30 cooperating to define the elongate sole the chambers 34 beneath the floor 22 the

entire length of the elongate coking chamber 18. As described in more detail below,
the sole flue gas system may include separate sole flue chamber sections beneath the
chamber floor 22. |
A plurality of vertically extending downcomers, or channels 38 arc) preferably formed in the sidewails 16, with the respective downcomers 38 having an iniet 40 leading from gas space 41 in the upper portion of the respective oven chamber 18 above a coal charge 43 and an outlet 42 leading into the sole flue chamber 34 adjacent the sidcwall 16 in which the downcomer 38 is formed (Fig. 4). One or more j uptakes, or chimneys 44, are also formed in the sidewails 16, with each chimney 44 | having an inlet 46 in its base leading from the adjacent sole flue chamber 34 adjacent the sidewal! 16 in which the chimney 44 is formed. The chimneys 44 extend upwardly through the sidewails 16 to a point spaced above the roof 20 as more fully described hereinbeJow.
The downcomers 38, sole flue chambers 34, and chimneys 44 associated with the sole flue gas system 47the area enclosed by the broken lines in Fig. 5) for each oven 1.2 are preferably arranged in two separate sole flue gas sections 48 and 50 as illustrated in FIG. 5. Thus, the structure enclosed below floor 22 shown in Fig. 5 constitutes the sole flue gas system 47 for a single oven 12. As shown in FIG. 5, each section 48 and 50 of the sole flue gas system 47 preferably contains at least 3 downcomers 38a or 38b and at least one chimney 44a or 44b, preferably two chimneys 44a or 44b in each sidewall 16. The downcomers 38a are disposed in sole flue gas section 48 with chimney 44a being in the opposing sidewall 16 from the downcomers 38a. Likewise, the downcomers 38b are disposed in sole flue pas section 50 with chimney 44b being in the opposing sidewall 16 from the downcomers 38b. A series of divider walls 52 extend perpendicular to the intermediate walls 36a and 36h and sidewails 16 and divide the sole flue gas system 47 into sections 48 and 50 isolated from one another on opposite ends of each oven 12. The intermediate walls 36a and 36b in each section 48 or 50 provide a labyrinth path through each .section 48 or 50 the full widlh of the coking chamber 18 of each oven 12 by providing a gas flow

path through the gaps- 54a or 54b between the intermediate walls 36a and 36b and en *
' walls 56a arid 56b. Likewise gaps 58a and 58b are provided between intermediate walls 36a and 36b and divider walls 52 for gas flow therethrough from the downcomers 38a and 38b to the chimneys 44a and 44b.
Accordingly, in the sole flue system 47 for each oven 12, gas flows from the gas space 41 in the upper portion of the oven chamber 18 adjacent the roof 20 through the downcomers 38a in the right-hand end of wall 16 (Fig. 2 and 5), into a sole due section 48 across the width of the oven 12 and out through a chimney 44a in wall 16 on the opposing side of the sole flue gas section 48. Similarly, downcomers 38b in the left end of wall 16, (Figs. 2 and 5) provide a gas flow pattern from the gas space 41 in the upper portion of the oven chamber 18 into the sole flue gas section 50 to flow in a back-and-forth pattern transversely across the width of the oven 12 to exit through a chimney 44b in wall 16, so that the gas flows transverse the oven 12 in the sole flue gas sections 48 and 50 in opposite directions on opposite longitudinal ends of the oven 12.
As best seen in FIGS. 1 and 2, a plurality of elongated combustion tunnels 60 extend above the arcuate roofs 20 of ovens 12 throughout essentially the full length of the battery 14 with each tunnel 60 preferably extending over a group adjacent ovens 12, preferably at least about 6 ovens. The tunnels 60 are constructed of refractory brick or other suitable high temperature resistant material and are supported on steel beams 61 which, in turn, are supported on upstanding blocks, or columns 62 supported on the top of each of the sidcwalls 16. The blocks 62 may be formed of any .suitable load-bearing material such as concrete or refractory brick.
Duct systems 64 connecting the chimneys 44 of each sole flue gas system 47 to the tunnels 60 arc supported on the top of each sidcwall 16 adjacent the tunnel support blocks 62, with the chimneys 44a and 44h in the respective .sidcwalls 16 discharging into the interior of duct systems 64. Each duct system 64 includes chimney extension tranrition 66 and an elbow section 68 for directing pas flow from the sole flue healing .systems 48 and 50 into a longitudinally extending interior

channel 70 of the tunnel structure 60. Chimney exteasion transition 66 and elbov, section 68 are formed from refractory brick or other suitable material capable of withstanding the intense heat of the gas from the sole flue gas system 47.
A draft control valve 72 including a vertically moveablc refractory valve plate 74 and valve body 76 is preferably mounted between each elbow section 68 and the turinel60 for movement between a lowered position shown in FIG. 2 for direct gas How communication between the chimneys 44 and the interior channel 70 of the tunnel 60 and a raised position for stopping gas flow from the flue gas system 47 into the interior channel 70 of the tunnel 60. 'the draft control valve 72 is used to control the rate of combustion air drawn into the gas space 41 and into the sole flue chamber 34. The draft control valve 72 is also used to direct coal volatiles to either the sole flue gas section 48 or 50 (Fig. 5) if there is a temperature imbalance in either sole flue gas section 48 or 50. Generally the draft control valve plate 74 b is totally open during the eariy part of a coking cycle and is gradually closed off during the latter stages of the coking cycle. Any suitable means, such as a pneumatic cylinder, gear motor or the like may be used to move the refractory valve plate 74 from the open to the closed position. Details of a suitable valve 72 may be found in U.S. Patent No. 5,114,542 to Childress, et al., the disclosure of which is incorporated herein by reference as if fully set forthTunnel 60 is preferably operated under a subatmosphcric pressure ranging from about -0.3 to about -0.5 inches of water to provide a draft of gases into tunnel 60 from the flue gas systems 47. Subatmospheric pressure in tunnel 60 may be provided by natural draft or by induced draft fans including dampers.
Gases from the interior channel 70 of the combustion tunnel 60 may he discharged to the atmosphere at the top of vertically extending stacks 86 which arc in direct fluid communication with the combustion tunnel 60 at the base of the stacks X6 or the combustion gases may be directed to a heat recovery system for generating steam. the stacks 86 are supported on the top of the tunnel 60, directly above one of

the sidewalls 16 of the ovens 12, with the base of the stacks 86 opening directly in to the channel 70 of the combustion tunnel 60.
Ovens according to the present invention are preferably charged will-powdered or compacted coal through the front door by use of a pushing and charging machine of the type disclosed in U.S. Patent Nos. 3,784,034; 4,067,462; 4,287,02/ and 4,344,820 to thiompson and U.S. Patent No. 5,447,606 to Pruitt, the disclosures of which are incorporated herein by reference as if fully set forth. Such a charging machine preferably runs on rails extending parallel to and in front of the battery 14 of ovens 12 adjacent doors 24. A door handling assembly on the charging machine is adapted to engage oven door 24 to remove and support the door 24 during coke pushing and oven charging operations. Coal to be coked is fed into the oven 32, fiiling the oven to the desired depth from charging end 88 progressively to coke discharge end 90 of the oven 12.
After an oven 12 is completely charged with coal, the door 24 is lowered arid secured in position on the charging end 88 of the oven sealing the oven 12. Due to the draft in the flue gas system 47, a slight negative pressure is immediately created in gas space 4! in the upper portion of the charged oven 12 adjacent the roof 20 as soon as the door 24 is secured, so that there is reduced tendency for oven gases to escape around the doors 24 or 26 during the coking process.
After the coking operation is completed, door 26 is removed from the coke discharge end 90 of the oven 12. The coke is pushed from the oven 12 through a coke guide into a hot coke car supported on rails adjacent coke discharge end 90 ofthe coke oven 12. The incandescent coke removed from the oven (2 is then moved in the hot coke car to a quenching station where water is dumped onto the coke for quenching,
An important feature of the invention is a sole flue gas .sharing system used to control oven temperature during the initial coking operation. Until now, each coke oven 12 has been operated substantially independently of adjacent coke ovens

12. Flue gas sharing provides a substantial improvement in coke oven operations enabling greater oven charge capacity, lower emissions, and/or shorter coking times.
From the standpoint of volatile emissions from coal during the coking operation, the evolution of volatile matter from a coal charge to an oven 12 is not constant over the duration of the coking cycle. For a typical coking cycle of 48 hours, volatile matter evolving from the coal is highest during the first 3 hours after charging an oven 12 with coal. The initial volume of volatile matter evolving from the coal may be as high as two to three times the average volume of volatile matter evolving, from the coal over the coking cycle. After the first 3 hours, the volume of volatile matter decreases gradually to the average rate for the next about 4 to about 36 hours. Thereafter, the volume of volatile matter gradually decreases to approximately 1/5 to 1/10 the average volume of volatile matter for the period of time from about 36 to about 48 hours into the coking cycle.
The amount of volatile matter evolving from the coal is also dependent on the amount of coal charged to the oven 12, the moisture content of the coal and the volatiles content of the coal. Coal having a low moisture content, no more than about 6 % by weight, and a high volatile matter content, more than about 26 to about 28 % by weight, may result in exceeding the capacity of the oven to handle increased combustion gas flows resulting in higher sole flue temperatures, greater than about 2700°F, thereby causing heat damage to the sole flue arches 32 and oven floors 22.
With reference again to Fig. 4A, one means for providing flue gas sharing between adjacent ovens 12 is illustrated. According to one aspect of the invention, a flue gas passage 94 is provided in sidewall 16 of the oven 12 to direct volatile matter from the gas space 41 in chamber 18 above the coal charge 43 into the downcomcr 38 one or more adjacent ovens 12. ft is contemplated that the adjacent oven(s) 12 will be further along in the coking cycle whereby the volume of volatile matter evolving from the coal in the adjacent oven(s) 12 is substantially below that of the recently charged ov:n.

Another-means for flue gas sharing is to provide external refractory, lined ducts 100 (Fig. 5) between the sole flue chambers 34 of adjacent ovens 12 or refractory-lined jumper pipes 96 and jumper pipe connectors 98 connecting the gas spaces 41 in the upper portions of chambers 18 of adjacent ovens through roofs 20 or through the oven walls 16 (Fig. 4B). For existing coking ovens 12, it is particularly preferred to provide jumper pipes through the oven roofs 20 to provide for flow of volatile matter from the gas space 41 of a first oven 12 into gas space 41 of an adjacent oven 12. New ovens 12 may be constructed with openings or apertures in the common oven walls 16 between the ovens thereby connecting the gas spaces 41 of the ovens in gas flow communication with one another.
The cross-sectional flow area of the flue gas passage 94 or jumper pipes 96 for a coke oven 12 preferably ranges from about 1.5 to about 1.8 ft2 per 100 tons of coal charged to the coke oven. With regard to the design flow rate of the jumper pipes, a cross-sectional flow area ranging from about 0.55 to about 0.62 fi2 per 1000 scfm of gas flow is preferred. It will be recognized that new coke ovens 12 may be initially constructed with a suitable flue gas sharing system selected from the systems described above. The system is adaptable to flue gas sharing between at least two ovens 12 and may be used for flue gas sharing between three ovens, four ovens or all of the ovens in a coke battery 14. From an operational point of view, it is preferred to share flue gas between two, three or four ovens 12 in a coke oven battery 14.
Proper design of the jumper pipes for sufficient gas flow preferably eliminates the need for gas flow regulation in the jumper pipes. However, if desired, suitable flow control systems may be used to further adjust the flow of flue pas shared between ovens. Furthermore, a system may be provided for flue gas sharing between a recently charged oven and any other oven in the coke battery 14 by use of a common conduit connecting the ga.s .spate 41 of all of the ovens in the coke battery 14 and gas Shut off valves between the common conduit and cach of the ovens 12. The amount o flue gas shared between ovens may also be controlled by adjusting the refractory off

valve 72 as described-above to change the rate of combustion air drawn into the gas

1 space 41 and sole flue chamber 34 of the oven 12.
The following example is given to illustrate one or more advantages of the invention. In the following table, oven No. 2 is recently charged with 45 tons of coal having a volatile content of 28 wt.% and a moisture content of 6 wt.%. The total crown air into oven No. 2 is assumed to be 280 standard cubic feet per minute (scfrn). Oven Nos. 1 and 3 are at 24 hours into the coking cycle. The crown air into oven Nos. 1 and 3 is assumed to he 325 scfm
Table Removed
As seen by comparing Hue gas flow rates given in the foregoing table, Hue gas sharing between oven No. 2 and oven Nos. 1 and 3 significantly decreases the gas flow in the soJe Hue for oven No, 2 more than about 25 percent and thus decreases
the temperature (lie sole Hue and oven floor are exposed to given the air How and lue! conditions indicated. Accordingly, diverting volatile gases from oven No. 2 during the initial coking cycle will) one or more adjacent ovens is effective to reduce the gas flow rale of vnlaliles generated by a recently charged coke oven so that the design capacity with respect k> temperature am! gas Mow rale of the sole Hue gas system is not exceeded. Otherwise, additional combustion air is needed to compensate for me
increased fuel value- of the flue gas during the initial coking operation thereby
' exceeding the design flow rate of gas in the flue gas system and/or increasing oven
pressure thereby reducing the draft on the oven.
Other non-limiting oenefits of the invention include reduction IE charging emissions due to increased draft in the oven being charged, increased over life due to decreased sole flue temperatures, increased oven yield due to Iowa infiltration air in adjacent coke ovens, easier oven operation due to a reduction in tin peak volatile How rate and better combustion conditions in the ovens thereby lowering air pollution emissions.
It is believed apparent that various modifications might be made in the structure described above without departing from the spirit and scope of the invention. Tlius, while preferred embodiments of the invention have been specifically disclosed, it is understood thai the invention is not intended to be restricted solely thereto, but rather is intended to include all embodiments thereof which would be apparent to one skilled in the art and which come within the spirit and scope of the invention.



We Claim:
1. A flue gas sharing system for a coke oven battery (14) comprising at least a first coke
oven (12) and at least a second coke oven (12), each of the first and second coke ovens (12)
containing a coking chamber (18) defined by chamber sidewalls (16), chamber roof (20) and
chamber floor (22), wherein each coking chamber (18) has a gas space (41) above a coke bed
(43) and wherein the chamber floor (22) below the coke bed (43) of the first coke oven (12) is
heated by a first sole flue gas system (47), the chamber floor of the second coke oven (12) is
heated by a second sole flue gas system (47) and wherein at least one of the chamber sidewalls
(16) between the first and second coke ovens contains at least one downcomer (38) in flow
communication between the gas space (41) of the first coking chamber (18) and the first sole
flue gas system (47) for directing flue gases from the gas space (41) of the first coking chamber
(18) to the first sole flue gas system (47) the flue gas sharing system characterized in that the
*
coke oven battery contains a connecting gas conduit (94, 96, 100) in gas flow communication between the gas space (41) of the first coking chamber (18) and the gas space (41) of at least the second coking chamber (18) or the sole flue gas system (47) of at least the second coke second coking chamber (18) or the sole flue gas system (47) of at least the second coke oven (12) for directing at least a portion of flue gas from the gas space (41) of the first coking chamber (18) to the second coke oven (12).
2. The flue gas sharing system as claimed in claim 1, wherein the chamber sidewall (16) between the first and second coke ovens (12) is a chamber sidewall (16) shared by the first and second coke ovens (12).
3. The flue gas sharing system as claimed in claim 2, wherein the chamber sidewall (16) between the first and second coke ovens (12) is a refractory chamber sidewall (16) including refractory bricks.
4. The flue gas sharing system as claimed in claim 3, wherein the gas conduit comprises an aperture (94) in the chamber sidewall (16) provided by removal of refractory bricks from the chamber sidewall (16) to provide gas flow communication between the first coking chamber (18) and second coking chamber (18) or the downcomer (38) of the second sole flue gas system (47).
5. The flue gas sharing system as claimed in claim 1, wherein the chamber sidewalls (16) between the first and second coke ovens (12) are refractory chamber sidewalls including

refractory bricks.
6. The flue gas sharing system as claimed in claim 5, wherein the gas conduit comprises an aperture (94) in the chamber sidewalls (16) provided by removal of refractory bricks from the side walls (16) to provide gas flow communication between the first coking chamber (18) and the second coking chamber (18) or the downcomer (38) of the second sole flue gas system (47).
7. The flue gas sharing system as claimed in claim 1, wherein the gas conduit comprises a cross-over duct (96) between the first gas space (41) of the first coke oven and the gas space (41) of at least the second coke oven (12).
8. The flue gas sharing system as claimed in claim 1, wherein the gas conduit comprises a connecting duct (96) between the gas space (41) of the first coke oven and the gas space (41) of at least the second coke oven (12) or the downcomer (38) of the second coke oven (12).
9. A flue gas sharing system for a coke oven battery (14) as claimed in claim 1 , wherein the said system contains at least a first coke oven (12) and a second coke oven (12), the first coke oven (12) having a first sole flue gas system (47), a first coking chamber (18) and a first gas space (41) above a coke bed in the first coking chamber (18), and the second coke oven having a second sole flue gas system (47), a second coking chamber (18) and a second gas space (41) above a coke bed (43) in the second coking chamber (18), the flue gas sharing system having a refractory lined duct (96, 100) in gas flow communication between the first gas space (41) and at least the second gas space (41) or the second sole flue gas system (47).
10. A flue gas sharing system for a coke oven battery (14) as claimed in claim 1, wherein the said system contains at least a first coke oven (12) and a second coke oven (12), the first coke oven (12) having a first sole flue gas system (47) and a first coking chamber (18) and the second coke oven (12) having a second sole flue gas system (47) and a second coking chamber (18), the flue gas sharing system having a refractory lined duct (96, 100) in gas flow communication between the first coking chamber (18) and the second coking chamber (18).
11. A flue gas sharing system for a coke oven battery (14) as claimed in claim 1, wherein the said system contains at least a first coke oven (12) and a second coke oven (12), the first coke oven (12) having a first sole flue gas system (47) and a first coking chamber (18) and the second coke oven (12) having a second sole flue gas system (47) and a second coking chamber

(18), the flue gas sharing system being having a refractory lined duct (96, 100) in gas flow communication between the first sole flue gas system (47) and the second sole flue gas system (47).
12. The flue gas sharing system as claimed in any of the preceding claims , wherein the first and second coke ovens (12) each contain a sole flue gas system (47) having separate first and second sole flue gas sections (48, 50) and at least one downcomer (38) from the coking chamber (18) to each of the first and second sole flue gas sections (48, 50).
13. The flue gas sharing system as claimed in any of the preceding claims , wherein each downcomer (38) has an inlet (40) in flow communication with the coking chamber (18) and an outlet (42) in flow communication with the sole flue gas system (47).
14. The flue gas sharing system as claimed in any of the preceding claims , wherein each coke oven (12) contains a downcomer (38) having an inlet (40) in flow communication with the coking chamber (18) and an outlet (42) in flow communication with the sole flue gas system (47).
15. A method for sharing flue gas in order to decrease gas flow rates in a sole flue gas system
(47) for a coke oven during at least an initial coking operation after charging a coking oven
with coal, the method characterized by directing at least a portion of gas from a first gas space
(41) above a coke bed (43) of a first coke oven(12) having a first coking chamber (18) to a
second sole flue gas system (47) of a second coke oven(12) having a second coking chamber
(18), a second gas space (41) above a coke bed (43) or to the second gas space (41) of the
second coke oven (12) through a conduit (94, 96, 100) provided between the first coke oven
(12) and the second coke oven (12) thereby reducing gas flow rate in the first sole flue gas
system (47) of the first coke oven (12).
16. The method as claimed in claim 15, wherein the conduit comprises a downcomer (38) in a
chamber sidewall (16) made of refractory bricks, the chamber sidewall (16) being shared by
the first and second coke ovens (12), the downcomer (38) having an inlet (40) in gas flow
communication with the first gas space (41) and an outlet (42) in gas flow communication with
the first sole flue gas system (47) for the first coke oven (12), the method comprising
removing one or more refractory bricks from the chamber side wall (16)-to provide an aperture
(94) for gas flow communication between the first gas space (41) and the second gas space (41)
or the second sole flue gas system (47).

17. The method as claimed in claim 15, wherein flue gas sharing between the first and second coke ovens is provided by connecting the conduit (100) between the first sole flue gas system (47) and the second sole flue gas system (47).
18. The method as claimed in claim 15 wherein flue gas sharing between the first and second coke ovens is provided by connecting the conduit (94) between the first gas space (41) and the second sole flue gas system (47).
19. The method as claimed in claim 15, wherein flue gas sharing between the first and second coke ovens is provided by connecting the conduit (100) between the first gas space (41) and the second gas space (41).
20. A flue gas sharing system for a coke oven battery, substantially as herein before described with reference to the accompanying drawings.
21. A method for sharing flue gas in a coke oven battery , substantially as herein before described with reference to the accompanying drawings.


Documents:

1309-DELNP-2003-Abstract-(18-12-2008).pdf

1309-delnp-2003-abstract.pdf

1309-DELNP-2003-Claims-(02-04-2009).pdf

1309-DELNP-2003-Claims-(06-04-2009).pdf

1309-DELNP-2003-Claims-(13-04-2009).pdf

1309-DELNP-2003-Claims-(18-12-2008).pdf

1309-delnp-2003-claims.pdf

1309-DELNP-2003-Correspondence-Others-(02-04-2009).pdf

1309-DELNP-2003-Correspondence-Others-(06-04-2009).pdf

1309-DELNP-2003-Correspondence-Others-(08-04-2009).pdf

1309-DELNP-2003-Correspondence-Others-(13-04-2009).pdf

1309-DELNP-2003-Correspondence-Others-(18-12-2008).pdf

1309-delnp-2003-correspondence-others.pdf

1309-DELNP-2003-Description (Complete)-(18-12-2008).pdf

1309-delnp-2003-description (complete).pdf

1309-DELNP-2003-Drawings-(18-12-2008).pdf

1309-delnp-2003-drawings.pdf

1309-DELNP-2003-Form-1-(02-04-2009).pdf

1309-DELNP-2003-Form-1-(18-12-2008).pdf

1309-delnp-2003-form-1.pdf

1309-delnp-2003-form-13-(18-12-2008).pdf

1309-delnp-2003-form-18.pdf

1309-DELNP-2003-Form-2-(18-12-2008).pdf

1309-delnp-2003-form-2.pdf

1309-delnp-2003-form-26.pdf

1309-DELNP-2003-Form-3-(02-04-2009).pdf

1309-DELNP-2003-Form-3-(18-12-2008).pdf

1309-delnp-2003-form-3.pdf

1309-delnp-2003-form-5.pdf

1309-delnp-2003-pct-101.pdf

1309-delnp-2003-pct-210.pdf

1309-delnp-2003-pct-220.pdf

1309-delnp-2003-pct-401.pdf

1309-delnp-2003-pct-402.pdf

1309-delnp-2003-pct-408.pdf

1309-delnp-2003-pct-409.pdf

1309-delnp-2003-pct-416.pdf

1309-DELNP-2003-Petition-137-(02-04-2009).pdf

1309-DELNP-2003-Petition-137-(06-04-2009).pdf


Patent Number 234205
Indian Patent Application Number 01309/DELNP/2003
PG Journal Number 23/2009
Publication Date 05-Jun-2009
Grant Date 08-May-2009
Date of Filing 18-Aug-2003
Name of Patentee SUN COKE COMPANY
Applicant Address 1111 NORTHSHORE DRIVE, SUITE N600, LANDMARK CENTER, KNOXVILLE, TN 37919, U.S.A.
Inventors:
# Inventor's Name Inventor's Address
1 WESTBROOK, RICHARD, W. 1015 TAN RARA DRIVE, CONCROD, TENNESSEE, U.S.A.
PCT International Classification Number F23J
PCT International Application Number PCT/US02/00688
PCT International Filing date 2002-01-11
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 09/783,195 2001-02-14 U.S.A.