Title of Invention

AN EXPRESSION VECTOR FOR TREATMENT OR PREVENTION OF MELANOMA

Abstract This invention relates to an expression vector for treatment or prevention of melanoma which expression vector comprises ALVAC (2), TRICOM and at least two tumor antigens selected from the group consisting of NY-ESO-1, TRP-2, gp lOO, gplOOM, MART-1, MAGE-1, MAGE-3 and MAGE-l/3minigene. Figure 1
Full Text

Mutti-Antigen Vectors for Melanoma
FTELn OF THE INVENTION
The present invention relates to multi-antigen vectora for use in preventing and / or treating cancer. In particular, the invention relates to multi-antigen vectors for use in treating and/or preventing melanoma.
BACKGROUND OF THE INVENTION
There has been tremendous increase in last few years in the development of cancer vaccines with tumour-associated antigens (TAAs) due to the great advances in identification of molecules based on the expression profiling on primary tumours and normal cells with the help of several techniques such as high density microarray, SEREX, immunohistochemistry (IHC), RT-PCR, in-situ hybridization (ISH) and laser capture microscopy (Rosenberg, Immunity, 1999; Sgroi et al, 1999, Schena et alj 1995, Offringa et al, 2000). The TAAs are antigens expressed or over-expressed by tumour cells and could be specific to one or several tumours for example CEA antigen is expressed in colorectal, breast and lung cancers. Sgroi et al (1999) identified several genes differentially expressed in invasive and metastatic carcinoma cells with combined use of laser capture microdissection and cDNA microarrays. Several delivery systems like DNA or viruses could be used for therapeutic vaccination against human cancers (Bonnet et al, 2000) and can elicit immune responses and also break immune tolerance against TAAs. Tumour cells can be rendered more immunogenic by inserting transgenes encoding T cell co-stimulatory molecules such as B7.] or cytokines such as IFN-y, IL2, or GM-CSF, among others. Co-expression of a TAA and a cytokine or a co-stimulatory molecule can develop effective therapeutic vaccine (Hodge et al, 95, Bronte et al, 1995, Chamberlain et al, 1996).
There is a need in the art for reagents and methodologies useful in stimulating an immune response to prevent or treat cancers. The present invention provides such reagents and methodologies that overcome many of the difficulties encountered by others in attempting to treat cancer.

SUMMARY OF THE INVENTION
The present invention provides multi-antigen vectors for administration to a patient to prevent and / or treat cancer. In particular, the multi-antigen vector encodes one or more tumor antigens ('TA"). The multi-antigen vector may also encode an immune stimulator such as a co-stimulatory molecule and/or be administered with an adjuvant.
BRIEF DESCRIPTION OF THE DRAWINGS Figure 1. Schematic of plasmids pALyAC.Tricom(#33) and pT1132. Figure 2. DNA sequence of plasmidpALVAC.Tricom(#33). Figure 3. DNA sequence of plasmid pT1132. Figure 4. Scliematic of plasmid pT3217. Figure 5. DNA sequence of plasmid pT3217.
Figure 6. Amino acid sequences of exemplary NY-ESO-1, TRP-2, gplOO, gplOOM, MART-1, MAGE-1, MAGE-3, B7.1, LFA-3, and ICAM-1 proteins.
DETAILED DESCRIPTION
The present invention provides reagents and methodologies useful for treating and / or preventing cancer. All references cited within this application are incorporated by reference.
In one embodiment, the present invention relates to the induction or enhancement of an immune response against one or more tumor antigens ("TA") to prevent and / or treat cancer. In certain embodiments, one or more TAs may be combined. In preferred embodiments, the immune response results from expression of a TA in a host cell following administration of a / nucleic acid vector encoding the tumor antigen or the tumor antigen itself in the form of a / pq)tide or polypeptide, for example.
As used herein, an "antigen" is a molecule (such as a polypeptide) of a portion thereof that produces an imune response in a host to whom the antigen has been administered. The immune response may include the production of antibodies that bind to at least one epitope of the antigen and / or the generation of a cellular immune response against cells expressing an epitope of the antigen. The response may be an enhancement of a current immune response by, for example, causing increased antibody production, production of antibodies with increased affinity for the antigen, or an increase in the cellular immune response (i.e., increased number or activity
/

of immunoreactive T cells). An antigen that produces an immune response may alternatively be referred to as being immunogenic or as an inmunogen. In describing the present invention, a TA may be referred to as an "immunogenic target". The present invention provide expression vectors for expressing in a host one or more immunogenic targets.
The term TA includes both tumor-associated antigens (TAAs) and tumor-specific antigens (TSAs), where a cancerous cell is the source of the antigen. A TAA is an antigen that is expressed on the surface of a tumor cell in higher amounts than is observed on normal cells or an antigen that is expressed on norrnal cells during fetal development. A TSA is an antigen that is unique to tumor cells and is not expressed on normal cells. TA further includes TAAs or TSAs, antigenic fragments thereof, and modified versions that retain their antigenicity.
TAs are typically classified into five categories according to their expression pattern, fiinction, or genetic origin: cancer-testis (CT) antigens (i.e., MAGE, NY-ESO-1); melanocyte ( Ip ^^^ ' differentiation antigens (i.e., Melan A/MART-1, tyrosinase, gplOO); mutational antigens (i.e., MUM-1, p53, CDK-4); overexpressed 'self antigens (i.e., HER-2/neu, p53); and, viral antigens (i.e., HPV, EBV). For the purposes of practicing the present invention, a suitable TA is any TA that induces or enhances an anti-tumor immune response in a host to whom the TA has been administered. Suitable TAs include, for example, species of gplOO (Cox et al,, Science, 264:716-719 (1994); U.S. Pat. No. 6,500,919 Bl and WO 01/30847 with Val at residue 162, also referred to as "gplOOM"; U.S. Pat. No. 6,537,560 Bl with Phe at residue 162), MART-1/Melan A (Kawakami et al., J. Exp, Med., 180:347-352 (1994); U.S. Pat. No. 5,874,560), gp75 (TRP-1) (Wang et al., J. Exp. Med., 186:1131-1140 (1996)), TRP-2 (Wang et al. 1996 J. Exp. Med. 184:2207; U.S. Pat. Nos. 5,831,016 and 6,083,783), tyrosinase (Wolfel et al:, Eur. J. Jmmunol, 24:759-764 (1994); WO 200175117; WO 200175016; WO 200175007), NY-ESO-1 (WO 98/14464; WO 99/18206; GenBank Accession No. P78358; U.S. Pat. No. 5,804,381), melanoma proteoglycan (Hellsti-om et al., J. Immunol, 130:1467-1472 (1983)), MAGE family antigens (i.e., MAGE-1, 2,3,4,6,12, 51; Van der Bruggen et al.. Science, 254:1643-1647 (1991); U.S. Pat. Nos. 6,235,525; CN 1319611), BAGB family antigens (Boel et al., Immunity, 2:167-175 (1995)), GAGE family antigens (i.e., GAGE-1,2; Van den Eynde et al., J., Exp. Med., 182:689-698 (1995); U.S. Pat. No. 6,013,765), RAGE family antigens (i.e., RAGE-1; Gaugler et at, Immunogenetics, 44:323-330 (1996); U.S. Pat. No. 5,939,526), N-acetylglucosaminyltransferase-V (Guilloux et at, J. Exp. Med., 183:1173-1183 (1996)), pl5 (Robbins et al., J. Immunol.

154:5944-5950 (1995)), IJ-catenin (Robbins et al, /. Exp. Med., 183:1185-1192 (1996)), MUM-1 (Coulie et al., Proc. Natl. Acad. Sci. USA, 92:7976-7980 (1995)), cyclin dependent kmase-4 (CDK4) (Wolfel et al., Science, 269:1281-1284 (1995)), p2l-ras (Fossum et at., Int. J. Cancer, 56:40-45 (1994)), BCR-aW (Bocchia et al.. Blood, 85:2680-2684 (1995)), p53 (Tlieobald et al., Proc. Natl. Acad. Sci. USA, 92:11993-11997 (1995)), pl85 HER2/neu (erb-Bl; Fisk et al., J. Exp. Med., 181:2109-2117 (1995)), epidermal growth factor receptor (EGFR) (Harris et al.. Breast Cancer Res. Treat, 29:1-2 (1994)), carcinoembiyonic antigens (CEA) (Kwong et al., J. Natl. Cancer Inst., 85:982-990 (1995) U.S. Pat. Nos. 5,756,103; 5,274,087; 5,571,710; 6,071,716; 5,698,530; 6,045,802; EP 263933; EP 346710; and, EP 784483); carcinoma-associated mutated mucins (i.e., MUC-1 gene products; Jerome et al., J. Immunol., 151:1654-1662 (1993)); EBNA gene products of EBV (i.e., EBNA-1; Rickinson et al., Cancer Surveys, 13:53-80 (1992)); E7, E6 proteins of human papillomavirus (Ressing et al., J. Immunol, 154:5934-5943 (1995)); prostate specific antigen Preferred TAs are useful for inducing an immune response against melanoma cells. The term "melanoma" includes but is not limited to melanomas, metastatic melanomas, melanomas derived from either melanocytes or melanocj^e related nevus cells, melanocarcinomas, melanoepitheliomas, melanosarcomas, melanoma in situ, superficial spreading melanoma, I nodular melanoma, lentigo maligna melanoma, acral lentiginous melanoma, invasive melanoma and familial atypical mole and melanoma (FAM-M) syndrome, for example. In general.

melanomas result from chromosomal abnormalities, degenerative growth and development disorders, mitogenic agents, ultraviolet radiation (UV), viral infections, inappropriate tissue expression of a gene, alterations in expression of a gene or carcinogenic agents, for example.
In certain cases, it may be beneficial to co-immunize patients with both TA and other antigens, such as angiogenesis-associated antigens ("AA")- An AA is an immunogenic molecule (i.e., peptide, polypeptide) associated with cells involved in the induction and / or continued development of blood vessels. For example, an AA may be expressed on an endothelial cell ("EC"), which is a primary structural component of blood vessels. Where the cancer is cancer, it
Ifc- « ' " ■■II--M—"
is preferred that that the AA be found within or near blood vessels that supply a tumor. Immunization of a patient against an AA preferably results in an anti-AA immime response whereby angiogenic processes that occur near or within tumors are prevented and / or inhibited. Exemplary AAs include, for example, vascular endothelial growth factor (i.e., VEGF; Bemardini, et al. J. Urol, 2001, l^diA): 1275-9; Stames, et al. J. Thorac. Cardiovasc. Surg., 2001, 122(3): 518-23; Dias, et al. Blood, 2002, 99: 2179-2184), the VEGF receptor (i.e., VEGF-R, flk-1/KDR; Stames, et al. J. Thorac. Cardiovasc. Surg., 2001, 122(3): 518-23), EPH receptors (i.e., EFHA2; Gerety, et al. 1999, Cell, 4: 403-414), epidermal growth factor receptor (i.e., EGFR; Ciardeillo, et al. Clin. Cancer Res., 2001, 7(10): 2958-70), basic fibroblast growth factor (i.e., bFGF; Davidson, et al. Clin. Exp. Metastasis 2000,18(6): 501-7; Poon, et al. Am J. Surg., 2001, 182(3):298-304), platelet-derived cell growth factor {i.e., PDGF-B), platelet-derived endothelial cell growth factor (PD-ECGF; Hong, et al. J. Mol. Med., 2001, 8(2): 141-8), transforming growth factors (i.e., TGF-a; Hong, et al. J. Mol. Med., 2001, 8(2):141-8), endoglin (Balza, et al. Jnt. J. Cancer, 2001, 94: 579-585), Id proteins (Benezra, R. Trends Cardiovasc. Med., 2001,11(6):237-41), proteases such as uPA, uPAR, and matrix raetalloproteinases (MMP-2, MMP-9; Djonov, et al. J. Pathol., 2001, 195(2): 147-55), nitric oxide synthase (Am, J. Ophthahnol., 2001, 132(4):551-6), aminopeptidase (Rouslhati, E. Nature Cancer, 2: 84-90, 2002), thrombospondins (i.e., TSP-1, TSP-2; Alvarez, et al. Gynecol, Oncol., 2001, 82(2):273-8; Seki, et al. Int. J. Oncol., 2001, 19(2):305-10), k~ras (Zhang, et al. Cancer Res., 2001, 61(16):6050-4), Wnt (Zhang, et al. Cancer Res., 2001, 61(16):6050-4), cyclin-dependent kinases (CDKs; Drug Resist. Updat. 2000, 3(2):83-88), microtubules (Timar, et al. 2001. Path. Oncol. Res., 7(2): 85-94), heat shock proteins (i.e., HSP90 (Timar, supra)), heparin-binding factors (i.e., heparinase; Gohji, et al. Int. J. Cancer, 2001, 95(5):295-301), synthases (i.e., ATP synthase.

thymidilate synthase), collagen receptors, integrins (i.e., au^S, aupS, aipi, a2pl, aSpi), the surface proteolglycan NG2, AAC2-1, or AAC2-2, among others, including "wild-type" (i.e., normally encoded by the genome, naturally-occurring), modified, mutated versions as well as other fragments and derivatives thereof. Any of these targets may be suitable in practicing the present invention, either alone or in combination with one another or with, other agents.
The nucleic acid molecule may comprise or consist of a nucleotide sequence encoding one or more immunogenic targets, or fragments or derivatives thereof, such as that contained in a DNA insert in an ATCC Deposit. The term "nucleic acid sequence" or "nucleic acid molecule" refers to a DNA or KNA sequence. The term encompasses molecules formed from any of the known base analogs of DNA and RNA such as, but not limited to 4-acetyIcytosuie, 8-hydroxy-N6-methyladenosine, aziridinyl-cytosine, pseudoisocytosine, 5-(cafbbxyhydroxylmethyl) uracil, 5-fluorouracil, 5-bromouracil, 5-carboxymethylaminomethyl-2-thiouracil, 5-carboxy-methylaminomethyluracil, dihydrouracil, inosine, N6-iso-pentenyladenine, 1-methyladenine, 1-methylpseudouracil, 1-raethylguanine, 1-methylinosine, 2,2-dimethyl-guanine, 2-methyladenine, 2-methylguanine, 3-methylc>tosine, 5-methylcytosine, N6-methyladenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyamino-methyl-2-thiouracil, beta-D-mannosylqueosine, 5' -methoxycarbonyl-methyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid, oxybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thioviracil, 4-thiouracil, 5-methyluracil, N-uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid, pseudouracil, queosine, 2-tiiiocytosine, and 2,6-diaminopurine, among others.
An isolated nucleic acid molecule is one that: (1) is separated from at least about 50 percent of proteins, lipids, carbohydrates, or other materials with which it is naturally found when total nucleic acid is isolated from the source cells; (2) is not be linked to all or a portion of a polynucleotide to which the nucleic acid molecule is linked in nature; (3) is operably linked to a polynucleotide which it is not linked to in nature; and / or, (4) does not occur in nature as part of a larger polynucleotide sequence. Preferably, the isolated nucleic acid molecule of the present invention is substantially free from any other contaminating nucleic acid mo]ecule(s) or other contammants that are foimd in its natural environment that would interfere with its use in polypeptide production or its therapeutic, diagnostic, prophylactic or research, use. As used herein, the term "naturally occurring" or "native" or "naturally found" when used in connection
-6^

with biological materials such as nucleic acid molecules, polypeptides, host cells, and the like, refers to materials which are found in nature and are not manipulated by man. Similarly, "non-naturally occurring" or "non-native" as used herein refers to a material that is not found in nature or that has been structurally modified or sjmthesized by man.
The identity of two or more nucleic acid or amino acid sequences is determined by comparing the sequences. As known in the art, "identity" means the degree of sequence relatedness between nucleic acid or amino acid sequences as determined by the match between the units making up the molecules (i.e., nucleotides or amino acid residues). Identity measures the percent of identical matches between the smaller of two or more sequences with gap alignments (if any) addressed by a particular mathematical model or computer program (i.e., an algorithm). Identity between nucleic acid sequences may also be determined by the ability of the nucleic acid sequences to hybridize to one another. In defining the process of hybridization, the term "highly stringent conditions" and "moderately stringent conditions" refer to conditions fliat permit hybridization of nucleic acid strands whose sequences are complementary, and to exclude hybridization of significantly mismatched nucleic acids. Examples of "highly stringent conditions" for hybridization and washing are 0.015 M sodium chloride, 0.0015 M sodium citrate at 65-68°C or 0.015 M sodium chloride, 0.0015 M sodium citrate, and 50% formamide at 42°C. (see, for example, Sambrook, Fritsch & Maniatis, Molecular Cloning: A Laboratory Manual (2nd ed., Cold Spring Harbor Laboratory, 1989); Anderson et al, Nucleic Acid Hybridisation: A Practical Approach Ch. 4 (IRL Press Limited)). The term "moderately stringent Conditions" refers to conditions under which a DNA duplex with a greater degree of base pair mismatching than could occur under "highly stringent conditions" is able to form. Exemplary moderately stringent conditions are 0.015 M sodium chloride, 0.0015 M sodium citrate at 50-65°C or 0.015 M sodium chloride, 0.0015 M sodium citrate, and 20% formamide at 37-50°C. By way of example, moderately stringent conditions of 50°C in 0,015 M sodium ion will allow about a 21% mismatch. During hybridization, other agents may be included in the hybridization and washing buffers for the purpose of reducing non-specific and/or background hybridization. Examples are 0.1% bovine serum albumin, 0.1% polyvinylrpyrrolidone, 0,1% sodium pyrophosphate, 0.1% sodium dodecylsulfate, MaDodS04, (SDS), ficoll, Denhardt's solution, sonicated salmon sperm DNA (or another non-complementary DNA), and dextran sulfate, although other suitable agents can also be used. The concentration and types of these

additives can be changed without substantially affecting the stringency of the hybridization conditions. Hybridization experiments are usually carried out at pH 6.8-7.4; however, at typical ionic strength conditions, the rate of hybridization is nearly independent of pH.
In preferred embodiments of the present invention, vectors are used to transfer a nucleic acid sequence encoding an immunogenic target to a cell. A vector is any molecule used to transfer a nucleic acid sequence to a host cell. In certain cases, an expression vector is utilized. An expression vector is a nucleic acid molecule that is suitable for transformation of a host cell and contains nucleic acid sequences that direct and / or control the expression of the transferred nucleic acid sequences. Expression includes, but is not limited to, processes such as transcription, translation, and splicing, if introns are present. Expression vectors typically comprise one or more flanking sequences operably linked to a heterologous nucleic acid sequence encoding a polypeptide. Flanking sequences may be homologous (i.e., fiom the same species and / or strain as the host cell), heterologous (i.e., from a species other than the host cell species or strain), hybrid (i.e., a combination of flanking sequences from more than one source), or synthetic, for example.
A flanking sequence is preferably capable of effecting the replication, transcription and / or translation of the coding sequence and is operably linked to a coding sequence. As used hCTein, the term operably linked refers to a linkage of polynucleotide elements in a fiinctional relationship. For instance, a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the coding sequence. However, a flanking sequence need not necessarily be contiguous with the coding sequence, so long as it functions correctly. Thus, for example, intervening untranslated yet transcribed sequences can be present between a promoter sequencie and the coding sequence and the promoter sequence may still be.considered operably linked to the coding sequence. Similarly, an enhancer sequence may be located upstream or downstream from the coding sequence and affect transcription of the sequence.
In certain embodiments, it is preferred that the flanking sequence is a transcriptional regulatory region that drives high-level gene expression in the target cell. The transcriptional regulatory region may comprise, for example, a promoter, enhancer, silencer, repressor element, or combinations thereof The transcriptional regulatory region may be either constitutive, tissue-specific, cell-type specific (i.e., the region is drives higher levels of transcription in a one type of tissue or cell as compared to another), or regulatable (i.e., responsive to interaction with a

compoviiid such as tetracycline). The sovirce of a transcriptional regulatory region may be any prokatyotic or eukaiyotic organism, any vertebrate or invertebrate organism, or any plant, provided that the flanking sequence functions in a cell by causing transcription of a nucleic acid within that cell. A wide variety of transcriptional regulatory regions may be utilized in practicing the present invention.
Suitable transcriptional regulatory regions include the CMV promoter (i.e., the CMV-immediate early promoter); promoters from eukaiyotic genes (i.e., the estrogen-inducibie chicken ovalbumin gene, the interferon genes, the gluco-corticoid-inducible tyrosine aminotransferase gene, and the thymidine kinase gene); and the major early and late adenovirus gene promoters; the SV40 early promoter region (Bemoist and Chambon, 1981, Nature 290:304-10); the promoter contained in the 3' long terminal repeat (LTR) of Rous sarcoma virus (RSV) (Yamamoto, et al, 1980, Cell 22:787-97); the herpes simplex virus thymidine kinase (HSV-TK) promoter (Wagner et al, 1981, Proc. Natl. Acad. Sci. U.S.A. 78:1444-45); the regulatory sequences of the metallothionine gene (Brinster et al, 1982, Nature 296:39-42); prokaryotic expression vectors such as the beta-lactamase promoter (Villa-Kamaroff et al, 1978, Proc. Natl Acad. Set U.S.A., 75:3727-31); or the tac promoter (DeBoer et al, 1983, Proc. Natl Acad. Scl U.S.A., 80:21-25). Tissue- and / or cell-type specific transcriptional control regions include, for example, the elastase I gene control region which is active in pancreatic acinar cells (Swift et al, 1984, Cell 38:639-46; Omitz et al, 1986, Cold Spring Harbor Symp. Quant. Biol 50:399-409 (1986); MacDonald, 1987, Hepatology 7:425-515); the insulin gene control region which is active in pancreatic beta cells (Hanahan, 1985, iVa^wre 315:115-22); the immunoglobulin gene control region which is active in lymphoid cells (Grosschedl et al, 1984, Cell 38:647-58; Adames et al, 1985, iVa/Mre 318:533-38; Alexander et al, 1987, Mol Cell Biol, 7:1436-44); the mouse mammary tumor virus control region in testicular, breast, lymphoid and mast cells (Leder et al, 1986, Cell 45:485-95); the albumin gene control region in liver (Pinkert et al, 1987, Genes andDevel 1:268-76); the alpha-feto-protein gene control region in liver (Krumlauf e/ a/., 1985, Mol Cell Biol, 5:1639-48; Hammer et al, 1987, Science 235:53-58); the alpha 1-antitrypsin gene control region in liver (Kelsey et al, 1987, Genes and Devel 1:161-71); the beta-globin gene control region in myeloid cells (Mogram et al, 1985, Nature 315:338-40; KoUias et al, 1986, Cell 46:89-94); the myelin basic protein gene control region in oligodendrocyte cells in the brain (Readhead et al, 1987, Cell 48:703-12); the myosin light chain-2 gene control region in
/

skeletal muscle (Sani, 1985, Nature 314:283-86); the gonadotropic releasing hormone gene control region in the hypothalamus (Mason et al, 1986, Science 234:1372-78), and the tyrosinase promoter in melanoma cells (Hart, I. Semin Oncol 1996 Feb;23(l): 154-8; Siders, et al. Cancer Gene Ther 1998 Sep-Oct;5(5):281-9l), among others. Inducible promoters that are activated in the presence of a certain compound or condition such as light, heat, radiation, tetracycline, or heat shock proteins, for example, may also be utilized (see, for example, WO OOA 0612). Other suitable promoters are known in the art.
As described above, enhancers may also be suitable flanking sequences. Enhancers are cis-acting elements of DNA, usually about 10-300 bp in length, that act on the promoter to increase transcription. Enhancers are typically orientation- and position-independent, having been identified both 5' and 3' to controlled coding sequences. Several enhancer sequences available from mammalian genes are known (i.e., globin, elastase, albumin, alpha-feto-protein and insulin). Similarly, the SV40 enhancer, the cj^omegalovirus early promoter enhancer, the polyoma enhancer, and adenovirus enhancers are usefiil with eukaryotic promoter sequences. While an enhancer may be spliced into the vector at a position 5' or 3' to nucleic acid coding sequence, it is typically located at a site 5' from the promoter. Other suitable enhancers are known in the art, and would be appUcable to the present invention.
While preparing reagents of the present invention, cells may need to be transfected or transformed. Transfection refers to the uptake of foreign or exogenous DNA by a cell, and a cell has been transfected when the exogenous DNA has been introduced inside the cell membrane. A number of transfection techniques are well known in the art (i.e., Graham et al, 1973, Virology 52:456; Sambrook et al, Molecular- Cloning, A Laboratory Manual (Cold Spring Harbor Laboratories, 1989); Davis et al, Basic Methods in Molecular Biology (Elsevier, 1986); and Chu etal,\9%\. Gene 13:197). Such techniques can be used to introduce one or more exogenous DNA moieties into suitable host cells.
In certain embodunents, it is preferred that transfection of a cell results in transformation of that cell. A cell is transformed when there is a change in a characteristic of the cell, being transformed when it has been modified to contain a new nucleic acid. Following transfection, the transfected nucleic acid may recombine with that of the cell by physically integrating into a chromosome of the cell, may be maintained transiently as an episomal element without being

replicated, or may replicate independently as a plasmid. A cell is stably transformed when the nucleic acid is replicated with the division of the cell.
The expression vectors of the present invention also provide for expression of fragments of immunogenic targets. Fragments may include sequences truncated at the amino terminus (with or without a leader sequence) and / or the carboxy terminus. Friagments may also include variants (i.e., allelic, splice), orthologs, homologues, and other variants having one or more amino acid additions or substitutions or internal deletions as compared to the parental sequence, hi preferred embodiments, truncations and/or deletions comprise about 1-5 amino acids, 5-li) amino acids, 10-20 amino acids, 20-30 amino acids, 30-40 amino acids, 40-50 amino acids, or more. Such polypeptide fragments may optionally comprise an amino terminal methionine residue. It will be appreciated that such fragments can be used, for example, to generate antibodies or cellular immune responses to immunogenic targets.
A variant is a sequence having one or more sequence substitutions, deletions, and/or additions as compared to the subject sequence. Variants may be naturally occurring or artificially constructed. Such variants may be prepared from the corresponding nucleic acid molecules. In preferred embodiments, the variants have from 1 to 3, or from 1 to 5, or from 1 to 10, or from 1 to 15, or from 1 to 20, or from 1 to 25, or from 1 to 30, or from 1 to 40, or from 1 to 50, or more than 50 amino acid substitutions, iasertions, additions and/or deletions.
An allelic variant is one of several possible naturally-occurring alternate forms of a sequence occupying a given locus on a chromosome of an organism or a population of organisms. A splice variant is a polypeptide generated from one of several RNA transcript resulting from splicing of a primary transcript. An ortholog is a similar nucleic acid or polypeptide sequence from another species. For example, the mouse and human versions of an immunogenic target may be considered orthologs of each other. A derivative of a sequence is one that is derived from a parental sequence those sequences having substitutions, additions, deletions, or chemically modified variants. Variants may also include fusion proteins, which refers to the fusion of one or more first sequences (such as a peptide) at the amino or carboxy terminus of at least one other sequence (such as a heterologous peptide).
"Similarity" is a concept related to identity, except ttiat similarity refers to a measure of relatedness which includes both identical matches and conservative substitution matches. If two polypeptide sequences have, for example, 10/20 identical amino acids, and the remainder are all

non-conservative s\ibstitutions, then the percent identity and similarity would both be 50%. If in the same example, there are five more positions where there are conservative substitutions, then the percent identity remains 50%, but the percent similarity would be 75% (15/20). Therefore, in cases where there are conservative substitutions, the percent similarity between two polypeptides will be higher than the percent identity between those two polypeptides.
Substitutions may be conservative, or non-conservative, or any combination thereof. Conservative amino acid modifications to the sequence of a polypeptide (and the corresponding modifications to the encoding nucleotides) may produce polypeptides having functional and chemical characteristics similar to those of a parental polypeptide. For example, a "conservative amino acid substitution" may involve a substitution of a native amino acid residue with a non-native residue such that there is little or no effect on the size, polarity, charge, hydrophqbicity, or hydrophilicity of the amino acid residue at that position and, in particlar, does not result in decreased immunogenicity. Suitable conservative amino acid substitutions are shown in Table I.


A skilled artisan will be able to determine suitable variants of an immunogenic target using well-known techniques. For identifying suitable areas of the molecule that may be changed without destroying biological activity (i.e., MHC binding, immunogenicity), one skilled in the art may target areas not believed to be important for that activity. For example, when immunogenic targets with similar activities from the same species or from other species are known, one skilled m the art may compare the amino acid sequence of a polypeptide to such. sunilar polypeptides. By performing such analyses, one can identify residues and portions of the molecules that are conserved, It will be appreciated that changes in areas of the molecule that are not conserved relative to such similar immunogenic targets would be less likely to adversely affect the biological activity and/or structure of a polypeptide. Similarly, the residues fequired for binding to MHC are known, and may be modified to improve binding. However, modifications resulting in decreased binding to MHC will not be appropriate in most situations. One skilled in the art would also know that, even in relatively consei-ved regions, one may substitute chemically similar amino acids for the naturally occurring residues while retaining activity. Therefore, even areas that may be important for biological activity or for structure may be subject to conservative amino acid substitutions without destroying the biological activity or without adversely affecting the structure of the immunogenic target.
Other preferred polypeptide variants include glycosylation variants wherein the number and/or type of glycosylation sites have been altered compared to the subject amino acid sequence. In one embodiment, polypeptide variants comprise a greater or a lesser number of N-linked glycosylation sites than the subject amino acid sequence. An N-linked glycosylation site is characterized by the sequence Asn-X-Ser or Asn-X-Thr, wherein the amino acid residue designated as X may be any amino acid residue except proline. The substitution of amino acid residues to create this sequence provides a potential new site for the addition of an N-linked carbohydrate chain. Alternatively, substitutions that eliminate this sequence will remove an existing N-linked carbohydrate chain. Also provided is a rearrangement of N-Iinked carbohydrate chains wherein one or more N-linked glycosylation sites (typically those that are naturally occurring) are eliminated and one or more new N-linked sites are created. To. affect 0-linked glycosylation of a polypeptide, one would modify serine and / or threonine residues.

Additional preferred variants include cysteine variants, wherein one or more cysteine residues are deleted or substituted with another amino acid (e.g., serine) as compared to the subject amino acid sequence set. Cysteine variants are useful when peptides or polypeptides must be refolded into a biologically active conformation such as after the isolation of insoluble inclusion bodies. Cysteine variants generally have fewer cysteine residues than the native protein, and typically have ah even number to minimize interactions resulting from unpaired cysteines.
In other embodiments, the peptides or polypeptides may be attached to one or more fusion segments that assist in purification of the polypeptides. Fusions can be made either at the amino terminus or at the carboxy terminus of the subject polypeptide variant thereof. Fusions may be direct with no linker or adapter molecule or may be through a^Iinker or adapter molecule, A linker or adapter molecule may be one or more amino acid residues, typically from about 20 to about 50 amino acid residues. A linker or ad^ter molecule may also be designed with a cleavage site for a DNA restriction endonuclease or for a protease to allow for the separation of the fused moieties. It will be appreciated that once constructedj the fusion polypeptides can be derivatized according to the methods described herein. Suitable fusion segments include, among others, metal binding domains (e.g., a poly-histidine segment), immimoglobulin binding domains (i.e.. Protein A, Protein G, T cell, B cell, Fc receptor, or complement protein antibody-binding domains), sugar binding domains (e.g., a maltose bmding domain), and/or a "tag" domain (i.e., at least a portion of a-galactosidase, a strep tag peptide, a T7 tag peptide, a FLAG peptide, or other domains (hat can be ptuified using compounds that bind to the domain, such as monoclonal antibodies). This tag is typically fused to the peptide or polypeptide and upon expression may serve as a means for affinity purification of the sequence of interest polypeptide from the host cell. Affinity purification can be accomplished, for example, by column chromatography using antibodies against the tag as an affinity matrix. Optionally, the tag can subsequently be removed from the purified sequence of interest polypeptide by various means such as using certain peptidases for cleavage. As described below, fusions may also be made between a TA and a co-stimulatory components such as the chemokines CXCIO (IP-10), CCL7 (MCP-3), or CCL5 (RANTES), for example.
A fusion motif may enhance transport of an immunogenic target to an MHC processing compartment, such as the endoplasmic reticulum. These sequences, referred to as tranduction or

transcytosis sequences, include sequences derived from HIV tat (see Kim et al. 1997 J. Immunol. 159:1666),.Drosophila antennapedia (see Schutze-Redelmeier et al. 1996 J. Immunol. 157:650), or human period-1 protein (hPERl; in particular, SRRHHCRSKAKRSRHH).
In addition, the polypeptide or variant thereof may be fused to a homologous peptide or polypeptide to form a homodimer or to a heterologous peptide or polypeptide to form a heterodimer. Heterologous peptides and polypeptides include, but are not litnited to an epitope to allow for the detection and/or isolation of a fusion polypeptide; a transmembrane receptor protein or a portion thereof, such as an extracellular domain or a transmembrane and intracellular domain; a ligand or a portion thereof which binds to a transmembrane receptor protein; an enzyme or portion thereof which is catalytically active; a polypeptide or peptide which promotes oligomerization, such as a leucine zipper domain; a polypeptide or peptide which increases stability, such as an immunoglobulin constant region; a peptide or polypeptide which has a therapeutic activity different from the peptide or polypeptide; and/or variants thereof.
In certain embodiments, it may be advantageous to combine a nucleic acid sequence encoding an immunogenic target with one or more co-stimulatory component(s) such as cell surface proteins, cytokines or chemokines in a composition of the present invention. The co-stknulatory component may be included in the composition as a polypeptide or as a nucleic acid encoding the polypeptide, for example. Suitable co-stimulatory molecules include, for instance, polypeptides that bind members of the CD28 family (i.e., CD28, ICOS; Hutlofif, et al. Nature 1999, 397: 263-265; Peach, et al. J Exp Med 1994, 180: 2049-2058) such as the CD28 binding polypeptides B7.1 (CD80; Schwartz, 1992; Chen et al, 1992; Ellis, et al. J. Immunol, 156(8): 2700-9), B7.2 (CD86; Ellis, et al. J. Immunol, 156(8): 2700-9), and mutants / variants thereof (WO 00/66162); polypeptides which bind members of the integrin family (i.e., LFA-1 (CDlla / CD18); Sedwick, et.al. J Immunol 1999, 162: 1367-1375; Wiilfmg, et al. Science 1998, 282: 2266-2269; Lub, et al. Immunol Today 1995, 16: 479-483) including members of the ICAM family (i.e., ICAM-1, -2 or -3); polypeptides which bind CD2 family members (i.e., CD2, signalling lymphocyte activation molecule (CDwlSO or "SLAM"; Aversa, et al. J Immunol 1997, 158: 4036-4044)) such as CD58 (LFA-3; CD2 ligand; Davis, et al. Immunol Today 1996, 17: 177-187) or SLAM ligands (Sayos, et al. Nature 1998, 395: 462-469); polypeptides which bind heat stable antigen (HSA or CD24; Zhou, et al. Eur J Immunol 1997, 27: 2524-2528); polypeptides which bind to members of the TNF receptor (TNFR) family (i.e.,

4-lBB (CD137; Vinay, et al. Semin Immunol 1998, 10: 481-489), OX40 (CD134; Weinberg, et al. Semin Immunol 1998, 10: 471-480; Higgins, et al. J Immunol 1999, 162: 486-493), and CD27 (Lens, et al. Semin Immunol 1998,10: 491-499)) such as 4-lBBL (4-lBB ligand; Vinay, et al. Semin Immunol 1998, 10: 481-48; DeBenedette, et al. J Immunol 1997,158: 551-559), TNFR associated factor-1 (TRAF-1; 4-lBB ligand; SaouUi, et al. J Exp Med 1998, 187: 1849-1862, Arch, et al. Mol Cell Biol 1998, 18: 558-565), TRAF-2 (4-IBB and OX40 ligand; SaouUi, et al. J Exp Med 1998, 187: 1849-1862; Oshima, et al. Int Immunol 1998, 10: 517-526, Kawamata, et al. J Biol Chem 1998, 273: 5808-5814), TRAF-3 (4-IBB and OX40 ligand; Arch, et al. Mol Cell Biol 1998, 18: 558-565; Jang, et al. Biochem Biophys Res Commun 1998, 242: 613-620; Kawamata S, et al. J Biol Chem 1998, 273: 5808-5814), OX40L (OX40 ligand; Graniaglia, et al. J Immunol 1998, 161: 6510-6517), TRAF-5 (OX40 ligand; Arch, et al. Mol ' Cell Biol 1998, 18: 558-565; Kawamata, et al. J Biol Chem 1998, 273: 5808-5814), and CD70 (CD27 ligand; Couderc, et al. Cancer Gene Titer., 5(3): 163-75). CD 154 (CD40 ligand or "CD40L"; Gurunathan, et al. J. Immunol., 1998, 161: 4563-4571; Sine, et al. Hum. Gene Ther., 2001,12:1091-1102) may also be suitable.
One or more cytokines may also be suitable co-stimulatory components or "adjuvants", either as polypeptides or being encoded by nucleic acids contained within the compositions of the present invention (Parmiani, et al. Immunol Lett 2000 Sep 15; 74(1): 41-4; Berzofsky, et al. Nature Immimol. 1: 209-219). Suitable cytokines include, for example, interIeukin-2 (IL-2) (Rosenberg, et al. Nature Med. 4: 321-327 (1998)), IL-4, rL-7, IL-12 (reviewed by PardoU, 1992; Harries, et al. J. Gene Med. 2000 Jul-Aug;2(4):243-9; Rao, et al. J. Immunol. 156: 3357-3365 (1996)), IL-15 (Xin, et al. Vaccine, 17:858-866, 1999), IL-16 (Cruikshank, et al. J. Leuk Biol. 67(6): 757-66, 2000), IL-18 {J. Cancer Res. Clitt Oncol. 2001. 127(12): 718-726), GM-CSF (CSF (Disis, et al. Blood, 88: 202-210 (1996)), tumor necrosis factor-^alpha (TNF-a), or interferons such as IFN-a or INF-y. Other cytokines may also be suitable for practicing the present invention, as is known in the art.
Chemokines may also be utilized, in either polypeptide or nucleic acid form. Fusion proteins comprising CXCLIO (IP-10) and CCL7 (MCP-3) fused to a tumor self-antigen have been shown to induce anti-tumor immunity (Biragyn, et al. Nature Biotech. 1999, 17: 253-258). The chemokines CCL3 (MlP-la) and CCL5 (RANTES) (Boyer, et al. Vaccine, 1999, 17 (Supp.
r

2): S53-S64) may also be of use in practicing the present invention. Other suitable chemokines are known in the art.
It is also known in the art that suppressive or negative regulatory inunune mechanisms may be blocked, resulting in enhanced immune responses. For instance, treatment with anti-CTLA-4 (Shrikant, et al. Immunity, 1996, 14: 145-155; Sutmuller, et al. J. Exp. Med., 2001, ' 194: 823-832), anti-CD25 (Sutmuller, supra), anti-CD4 (Matsui, et al. /. Immunol., 1999, 163: 184-193), the fusion protein IL13Ra2-Fc (Terabe, et al. Nature Immunol., 2000, 1: 515-520), and combinations thereof (i.e., anti-CTLA-4 and anti-CD25, Sutmuller, supra) have been shown to upregulate anti-tumor ixnmune responses and would be suitable in practicing the present invention. Such treatments, among others, may also be combined with the one or more immunogenic targets of the present invention.
Any of these components may be used alone or in combination with other agents. For instance, it has been shown that a combination of CD80, ICAM-1 and LFA-3 ("TRICOM") may potentiate anti-cancer immune responses (Hodge, et al. Cancer Res. 59: 5800-5807 (1999). Other effective combinations include, for example, IL-12 + GM-CSF (Ahlers, et al. J. Immunol., 158: 3947-3958 (1997); Iwasaki, et al. J. Immunol. 158: 4591-4601 (1997)), IL-12 + GM-CSF + TNF-a (Ahlers, et al. Int. Immunol. 13: 897-908 (2001)), CD80 + IL-12 (Fruend, et al. Int. J. Cancer, 85: 508-517 (2000); Rao, et al. supra), and CD86 + GM-CSF + IL-12 (Iwasaki, supra). One of skill in the art would be aware of additional combinations useful in carrying out the present invention. In addition, the skilled artisan would be aware of additional reagents or methods that may be used to modulate such mechanisms. These reagents and methods, as well as others known by those of skill in the art, may be utilized in practicing the present invention.
Additional strategies for improving the efficiency of nucleic acid-based immxmization may also be used including, for example, the use of self-replicating viral replicons (Caley, et al.
1999. Vaccine, 17: 3124-2135; Dubensky, et al. 2000. Mol. Med. 6: 723-732; Leitner, et al.
2000. Cancer Res. 60: 51-55), codon optimization (Liu, et al. 2000. Mol. Tlier., 1: 497-500;
Dubensky, supra; Huang, et al. 2001. J. Virol 75: 4947-4951), in vivo electroporation (Widera,
et al. 2000. J. Immunol. 164: 4635-3640), incorporation of CpG stimulatory motifs
(Gurunathan, et al. Ann. Rev. Immunol, 2000, 18: 927-974; Leitner, supra; Cho, et al. J.
Immunol. 168(10):4907-13), sequences for targeting of the endocytic or ubiquitin-processing
pathways (Thomson, et al. 1998. J. Virol 72: 2246-2252; Velders, et al. 2001. J. Immunol
IT/

166: 5366-5373), Marek's disease virus type 1 VP22 sequences (J. Virol. 76(6):2676-82, 2002), prime-boost regimens (Gurunathan, Jwpra; Sullivan, et al. 2000. Nature, 408: 605-609; Hainke, et al. 1998. Vaccine, 16: 439-445; Amara, et al. 2001. Science, 292: 69-74), and the use of mucosal deliveiy vectors such as Salmonella (Darji, et al. 1997. Cell, 91: 765-775; "Woo, et al. 2001. Vaccine, 19: 2945-2954). Other methods are known in the art, some of which are described below.
Chemotherapeutic agents, radiation, anti-angiogenic compounds, or other agents may also be utihzed in treating and / or preventing cancer using immunogenic targets (Sebti, et al. Oncogene 2000 Dec 27;19(56):6566-73). For example, in treating nietastatic melanoma, suitable chemotherapeutic regimens may incliide BELD (bleomycin, vindesine, lomustine, and deacarbazine; Young, et al. 1985. Cancer, 55; 1879-81), BOLD (bleomycin, vincristine, lomustine, dacarbazine; Seigler, et al. 1980. Cancer, 46: 2346-8); DD (dacarbazine, actinomycin; Hochster, et al. Cancer Treatment Reports, 69: 39-42), or POC (procarbazine, vincristine, lomustine; Caimo-Pereira, et al. 1984. Cancer Treatment Reports, 68: 1211-4) among others. Other suitable chemotherapeutic regimens may also be utilized.
Many anti-angiogenic agents are known in the art and would be suitable for co¬administration with the immimogenic target vaccines and/or chemotherapeutic regimens (see, for example, Timar, et al. 2001. Pathology Oncol. Res., 7(2): 85-94). Such agents include, for example, physiological agents such as growth factors (i.e., ANG-2, NK1,2,4 (HGF), transforming growth factor beta (TGF-p)), cytokines (i.e., interferons such as IFN-a, -p, -y, platelet factor 4 (PF-4), PR-39), proteases (i.e., cleaved AT-III, collagen XVIII fragment (Endostatin)), HmwKallikrein-d5 plasmin fragment (Angiostatin), prothrombin-Fl-2, TSP-1), protease inhibitors (i.e., tissue inhibitor of metalloproteases such as TIMP-1, -2, or -3; maspin; plasminogen activator-mhibitors such as PAI-1; pigment epithelium derived factor (PEDF)), Tumstatin (available through ILEX, Inc.), antibody products (i.e., the collagen-bmding antibodies HUIV26, HUI77, XL313; anti-VEGF; anti-integrin. (i.e., Vitaxm, (Lxsys))), and glycosidases (i.e., heparinase-I, -III). "Chemical" or modified physiological agents known or believed to have anti-angiogenic potential include, for example, vinblastine, taxol, ketoconazole, thalidomide, dolestatin, combrestatin A, rapamycin (Guba, et al. 2002, Nature Med., 8: 128-135), CEP-7055 (available from Cephalon, Inc.), flavone acetic acid. Bay 12-9566 (Bayer
Corp.), AG3340 (Agouron, Inc.), CGS 27023A (Novartis), tetracylcine derivatives (i.e., COL-3
1/1

(CoUagenix, Inc.)), Neovastat (Aetema), BMS-275291 (Bristol-Myers Squibb), low dose 5-FU, low dose methotrexate (MTX), irsofladine, radicicol, cyclosporine, captopril, celecoxib, D45152-sulphated polysaccharide, cationic protein (Protamine), cationic peptide-VEGF, Suramin (polysulphonated napthyl urea), compounds that interfere with the function or production of VEGF (i.e., SU5416 or SU6668 (Sugen), PTK787/ZK22584 (Novartis)), Distamycin A, Angiozyme (ribozyme), isoflavinoids, staurosporine derivatives, genistein, EMD121974 (Merck KcgaA), tyrphostins, isoquinolones, retinoic acid, carboxyamidotriazole, TNP-470, octreotide, 2-methoxyestradiol, aminosterols (i.e., squalamine), glutathione analogues (i.e., N-acteyl-L-cysteine), combretastatin A-4 (Oxigene), Eph receptor blocking agents {Nature, 414:933-938, 2001), Rh-Angiostatin, Rh-Endostatin (WO 01/93897), cyclic-RGD peptide, accutin-disintegrin, benzodiazepenes," hximanized anti-avb3 Ab, Rh-PAI-2, amiloride, p-amidobenzamidine, anti-uPA ab, anti-uPAR Ab, L-phanylalanin-N-methylamides (i.e., Batimistat, Marimastat), AG3340, and minocycline. Many other suitable agents are known m the art and would suffice in practicing the present invention.
The present invention may also be utilized in combination with "non-traditional" methods of treating cancer. For example, it has recently been demonstrated that administration of certain anaerobic bacteria may assist in slowing tumor growth. In one study, Clostridium novyi was modified to eliminate a toxin gene carried on a phage episome and administered to mice with colorectal tumors (Dang, et al. P.NA.S. USA, 98(26): 15155-15160, 2001). In combination with chemotherapy, the treatment was shown to cause tumor necrosis in the animals. The reagents and methodologies described in.this application may be combined with such treatment methodologies.
Nucleic acids encoding immunogenic targets may be administered to patients by any of several available techniques. Various viral vectors that have been successfully utilized for introducing a nucleic acid to a host include retrovirus, adenovirus, adend-associated virus (AAV), herpes virus, and poxvirus, among others. It is understood in the art that many such viral i vectors are available in the art. The vectors of the present invention may be constructed using standard recombinant techniques widely available to one skilled in the art. Such techniques may be found in common molecular biology references such as Molecular Cloning: A Laboratory Manual (Sambrook, et al., 1989, Cold Spring Harbor Laboratory Press), Gene Expression Technology (Methods in Enzymology, Vol. 185, edited by D. Goeddel, 1991. Academic Press,
09-

San Diego, CA), and PCR Protocols: A Guide to Methods and Applications (Innis, et al. 1990. Academic Press, San Diego, CA).
Preferred retroviral vectors are derivatives of lentivirus as well as derivatives of murine or avian retroviruses. Examples of suitable retroviral vectors include, for example, Moloney murine leukemia virus (MoMuLV), Harvey murine sarcoma virus (HaMuSV), murine mammary tumor virus (MuMTV), SIV, BIV, HIV and Rous Sarcoma Virus (RSV). A number of retroviral vectors can incorporate multiple exogenous nucleic acid sequences. As recombinant retroviruses are defective, they require assistance in order to produce infectious vector particles. This assistance can be provided by, for example, helper cell lines encoding retrovirus structural genes. Suitable helper cell lines include ^2, PA317 and PA12, among others. The vector virions produced using'such cell lines may then be xised to infect a tissue cell line, such as NIH 3T3 cells, to produce large quantities of chinjeric retroviral virions. Retroviral vectors may be administered by traditional methods (i.e., injection) or by implantation of a "producer cell line" in proximity to the target cell population (Culver, K., et al, 1994, Hum. Gene Ther., 5 (3): 343-79; Culver, K., et al, Cold Spring Harb. Symp. Quant. Biol, 59: 685-90); Oldfield, E., 1993, Hum. Gene Ther., 4 (1): 39-69). The producer cell line is engineered to produce a viral vector and releases viral particles in the vicinity of the target cell. A portion of the released viral particles contact the target cells and infect those cells, thus delivering a nucleic acid of the present invention to the target cell. Following infection of the target cell, expression of the nucleic acid of the vector occurs.
Adenoviral vectors have proven especially useful for gene transfer into eukaiyotic cells (Rosenfeld, M., et al, 1991, Science. 252 (5004): 431-4; Crystal, R., et al, 1994, Nat. Genet., 8 (1): 42-51), the study eukaryotic gene expression (Levrero, M., et al, 1991, Gene, 101 (2): 195-202), vaccine development (Graham, F. and Preyec, L., 1992, Biotechnology, 20: 363-90), and in animal models (Stratford-Perricaudet, L., et al, 1992, Bone Marrow Transplant., 9 (Suppl. 1):
1 151-2 ; Rich, D., et al, 1993, Hum. Gene Ther.. 4 (4): 461-76). Experimental routes for administrating recombinant Ad to different tissues in vivo have included intratracheal instillation (Rosenfeld, M., et al, 1992, Cell, 68 (1): 143-55) injection into muscle (Quantin, B., et al, 1992, Proc. Natl Acad. Scl U.S.A., 89 (7): 2581-4), peripheral intravenous injection (Herz, J., and
I Gerard, R., 1993, Proc. Natl Acad. Scl U.S.A., 90 (7): 2812-6) and stereotactic inoculation to brain (Le Gal La Salle, G., et al, 1993, Science, 259 (5097): 988-90), among others.

Adeno-associated virus (AAV) demonstrates high-level infectivity, broad host range and specificity in integratmg into the host cell genome (Hermonat, P., et al., 1984, Proc. Natl. Acad. Set. U.S.A., 81 (20): 6466-70). And Herpes Simplex Virus type-1 (HSV-1) is yet another attractive vector system, especially for use in the nervous system because of its neurotropic property (Geller, A., et al., 1991, Trends NeuroscL, 14 (10): 428-32; Glorioso, et al, 1995, Mol. Biotechnol. 4 (1): 87-99; Glorioso, etal., 1995, Annu. Rev. Microbiol, 49: 675-710).
Poxvirus is another useful expression vector (Smith, et al. 1983, Gene, 25 (1): 21-8; Moss, et al, 1992, Biotechnology, 20: 345-62; Moss, et al, 1992, Curr. Top. Microbiol Immuttol, 158: 25-38; Moss, et al. 1991. Science, 252: 1662-1667). Poxviruses shown to be useful include vacciiiia, NYVAC, avipox, fowlpox,. canaiypox, ALVAC, and ALVAC(2), among others.
NYVAC (vP866) was derived from the Copenhagen vaccine strain of vaccinia virus by deleting six nonessential regions of the genome encoding known or potential virulence factors (see, for example, U.S. Pat. Nos. 5,364,773 and 5,494,807). The deletion loci were also engineered as recipient loci for the insertion of foreign genes. The deleted regions are: thymidine kinase gene (TK; J2R); hemorrhagic region (u; B13R+B14R); A type inclusion body region (ATI; A26L); hemagglutinin gene (HA; A56R); host range gene region (C7L-K1L); and, large subunit, ribonucleotide reductase (I4L). NYVAC is a genetically engineered vaccinia virus strain that was generated by the specific deletion of eighteen open reading frames encoding gene products associated with virulence and host range. NYVAC has been show to be usefiil for expressing TAs (see, for example, U.S. Pat. No. 6,265,189). NYVAC (vP866), vP994, vCP205, VCP1433, placZH6H4Lreverse, pMPC6H6R3E3 and pC3H6FHVB were also deposited with the ATCC under the terms of the Budapest Treaty, accession numbers VR-2559, VR-2558, VR-2557, VR-2556, ATCC-97913, ATCC-97912, and ATCC-97914, respectively.
ALVAC-based recombinant viruses (i.e., ALVAC-1 and ALVAC-2) are also suitable for use in practicing the present invention (see, for example, U.S. Pat. No. 5,756,103). ALVAC(2) is identical to ALVAC(l) except that ALVAC(2) genome comprises the vaccmia E3L and K3L genes under the control of vaccinia promoters (U.S. Pat. No. 6,130,066; Beattie et al, 1995a, 1995b, 1991; Chang et al., 1992; Davies et al., 1993). Both ALVAC(l) and ALVAC(2) have been demonstrated to be useful in expressing foreign DNA sequences, such as TAs (Tartaglia et al., 1993 a,b; U.S. Pat. No. 5,833,975). ALVAC was deposited under the terms of the Budapest

Treaty with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, Va. 20110-2209, USA, ATCC accession number VR-2547.
Another useful poxvirus vector is TROVAC. TROVAC refers to an attenuated fowlpox that was a plaque-cloned isolate derived from the FP-I vaccine strain of fowlpoxvirus which is licaised for vaccination of 1 day old chicks. TROVAC was likewise deposited under the terms of the Budapest Treaty with the ATCC, accession number 2553.
"Non-viral" plasmid vectors may also be suitable in practicing the present invention. Preferred plasmid vectors are compatible with bacterial, insect, and / or mammalian host cells. Such vectors include, for example, PCR-II, pCR3, and pcDNA3.1 (lavitrogen, San Diego, CA), pBSn (Stratagene, La JoUa, CA), pET15 (Novagen, Madison, WI), pGEX (Pharmacia Biotech, Piscataway, NJ), pEGFP-N2 (Clontech, Palo Alto, CA), pETL (BlueBacH, Invitrogen), pDSR-alpha (PCT pub. No. WO 90/14363) and pFastBacDual (Gibco-BRL, Grand Island, NY) as well
as Bluescript plasmid derivatives (a high copy number COLEl-based phagemid, Stratagene Cloiiing Systems, La JoUa, CA), PCR cloning plasmids designed for cloning Taq-amplified PCR products {e.g., TOPO™ TA cloning® kit, PCR2.1® plasmid derivatives, Invitrogen, Carlsbad, CA). Bacterial vectors may also be used with the cunent invention. These vectors include, for example. Shigella, Salmonella, Vibrio cholerae, Lactobacillus, Bacille calmette guerin (BCG), and Streptococcus (see for example, WO 88/6626; WO 90/0594; WO 91/13157; WO 92/1796; and WO 92/213 76). Many other non-viral plasmid expression vectors and systems are known in the art and could be used with the current invention.
Suitable nucleic acid delivery techniques include DNA-ligand complexes, adenovirus-Ugand-DNA complexes, direct injection of DNA, CaP04 precipitation, gene gun techniques, electroporation, and colloidal dispersion systems, among others. Colloidal dispersion systems include macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes. The preferred colloidal system of this invention is a liposome, which are artificial membrane vesicles useful as delivery vehicles in vitro and in vivo. RNA, DNA and intact virions can be encapsulated within the aqueous interior and be delivered to cells in a biologically active form (Fraley, R., et al, 1981, Trends Biochem. Sci., 6: 77). The composition of the liposome is usually a combination of phospholipids, particularly high-phase-transition-temperature phospholipids, usually in

combination with steroids, especially cholesterol. Other phospholipids or other lipids may also
be used. The physical characteristics of liposomes depend on pH, ionic strength, and the
presence of divalent cations. Examples of lipids useful in liposome production include
phosphatidyl compounds, such as phosphatidylglycerol, phosphatidylcholine,
phosphatidylserine, phosphatidylethanolamine, sphingolipids, cerebrosides, and gangliosides.
Particularly useftil are diacylphosphatidylglycerols, where the lipid moiety contains from 14-18
carbon atoms, particularly from 16-18 carbon atoms, and is saturated. Illustrative phospholipids
include egg phosphatidylcholine, dipalmitoylphosphatidylcholine and
distearoylphosphatidylcholine.
An immunogenic target may also be administered in combination with one or more adjuvants to boost the immffiie response. Exemplary adjuvants are shown in Table 11 below:
Table 11 Types of Immunologic Adjuvants



Administration of a composition of the present invention to a host may be accomplished using any of a variety of techniques known to those of skill in the art. The composition(s) may be processed in accordance with conventional methods of pharmacy to produce medicinal agents for administration to patients, including humans and other mammals (i.e., a "pharmaceutical composition"). The pharmaceutical composition is preferably made in the form of a dosage unit containing a given amount of DNA, viral vector particles, polypeptide or peptide, for example. A suitable daily dose for a human or other mammal may vary widely depending on the condition of the patient and other factors, but, once again, can be determined using routine methods.
The pharmaceutical composition may be administered orally, parentally, by inhalation spray, rectally, intranodally, or topically in dosage unit formulations containing conventional pharmaceutically acceptable carriers, adjuvants, and vehicles. The term "pharmaceutically acceptable carrier" or "physiologically acceptable carrier" as used herein refers to one or more formulation materials suitable for accomplishing or enhancing the delivery of a nucleic acid, polypeptide, or peptide as a pharmaceutical composition. A 'pharmaceutical composition" is a composition comprising a therapeutically effective amount of a nucleic acid or polypeptide. The terms "effective amount" and "therapeutically effective amount' each refer to the amount of a nucleic acid or polypeptide used to induce or enhance an effective immune response. It is preferred that compositions of the present invention provide for the induction or enhancement of an anti-tumor immune response in a host which protects the host from the development of a tumor and / or allows the host to eliminate an existing tumor from the body.
For oral administration, the pharmaceutical composition may be of any of several forms including, for example, a capsule, a tablet, a suspension, or liquid, among others. Liquids may be administered by injection as a composition with suitable carriers including saline, dextrose, or water. The term parenteral as used herein includes subcutaneous, intravenous, intramuscular, mtrastemal, infixsion, or intraperitoneal administration. Suppositories for rectal administration of the drug can be prepared by mixing the drug with a suitable non-irritating excipient such as cocoa butter and polyethylene glycols that are solid at ordinary temperatures but liquid at the rectal temperature.

The dosage regimen for immunizing a host or otherwise treating a disorder or a disease with a composition of this invention is based on a variety of factors, including the type of disease, the age, weight, sex, medical condition of the patient, the severity of the condition, the route of administration, and the particular compound employed. For example, a poxviral vector may be administered as a composition comprising 1 x 10* infectious particles per dose. Thus, the dosajge regimen may vary widely, but can be determined routinely using standard methods.
A prime-boost regimen may also be utilized (WO 01/30382 Al) in which the targeted immunogen is initially administered in a priming step in one form followed by a boosting step in which the targeted immunogen is administered in another form. The forrn of the targeted immunogen in the priming and boosting steps are different. For instance, if the priming step utilized a nucleic acid, the boost may be administered as a peptide. Similarly,'Where a priming step utilized one type of recombinant virus (i.e., ALVAC), the boost step may utilize another type of virus (i.e., NYVAC). This prime-boost method of administration has been shown to induce strong immimological responses. Various combinations of forms are suitable in practicing the present invention.
While the compositions of the invention can be administered as the sole active pharmaceutical agent, they can also be used in combination with one or more other compositions or agents (i.e., other immunogenic targets, co-stimulatory molecules, adjuvants). When administered as a combination, the individual components can be formulated as separate compositions administered at the same time or different times, or the components can be combined as a single composition.
Injectable preparations, such as sterile kijectable aqueous or oleaginous suspensions, may be fonrivilated according to known methods using suitable dispersing or wetting agents and suspending agents. The injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent.. Suitable vehicles and solvents that may be employed are water. Ringer's solution, and isotonic sodium chloride solution, among others. For instance, a viral vector such as a poxvirus may be prepared in 0.4% NaCl. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil may be employed, including synthetic mono- or ) diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables.

For topical admimstration, a suitable topical dose of a composition may be administered one to four, and preferably two or three times daily. The dose may also be administered with intervening days dining which no does is applied. Suitable compositions may comprise from 0.001% to 10% w/w, for example, from 1% to 2% by weight of the formulation, although it may comprise as much as 10% w/w, but preferably not more than 5% w/w, and more preferably from 0.1% to 1% of the formulation. Formulations suitable for topical administration include liquid or semi-liquid preparations suitable for penetration through the skin {e.g., liniments, lotions, ointments, creams, or pastes) and drops suitable for administration to the eye, ear, or nose.
The pharmaceutical compositions may also be prepared in a solid form (including granules, powders or suppositories). The pharmaceutical compositions may be subjected to conventional pharmaceutical operations such as sterilizatibion and/or may contain conventional adjuvants, such as preservatives, stabilizers, wetting agents, emulsifiers, buffers etc. Solid dosage forms for oral administration may include capsules, tablets, pills, powders, and granules. In such solid dosage forms, the active compound may be admixed with at least one inert diluent such as sucrose, lactose, or starch. Such dosage forms may also comprise, as in normal practice, additional substances other than inert diluents, e.g., lubricating agents such as magnesium stearate. In the case of capsules, tablets, and pills, the dosage forms may also comprise buffering agents. Tablets and pills can additionally be prepared with enteric coatings. Liquid dosage forms for oral administration may include pharmaceutically acceptable emulsions, solutions, suspensions, syriips, and elixirs containing inert diluents commonly used in the art, such as water. Such compositions may also comprise adjuvants, such as wetting sweetening, flavoring, and perfuming agents.
Pharmaceutical compositions comprising a nucleic acid or polypeptide of the present invention may take any of several forms and may be administered by any of several routes. In preferred embodiments, the compositions are administered via a parenteral route (intradermal, intramuscular or subcutaneous) to induce an immune response in the host. Alternatively, the composition may be administered directly into a lymph node (intranodal) or tumor mass (i.e., intratumoral administration). For example, the dose could be administered subcutaneously at days 0, 7, and 14. Suitable methods for immunization using compositions comprising TAs are ) known in the art, as shown for p53 (Hollstein et al., 1991), p21-ras (Almoguera et al., 1988), PIER-2 (Fendly et al., 1990), the melanoma-associated antigens (MAGE-1; MAGE-2) (van der


Bruggen et al., 1991), p97 (Hu et al., 1988), melanoma-associated antigen E (WO 99/30737) and carcinoembryonic antigen (CEA) (Kantor et al., 1993; Fishbein et al., 1992; Kaufinan et al., 1991), among others.
Preferred embodiments of administratable compositions include, for examfile, nucleic acids or polypeptides in liquid preparations such as suspensions, syrups, or elixirs. Preferred injectable preparations include, for example, nucleic acids or polypeptides suitable for parental, subcutaneous, intradermal, intramuscular or intravenous administration such as sterile. suspensions or emulsions. For example, a recombinant poxvirus may be in admixture with a suitable carrier, diluent, or excipient such as sterile water, physiological saline, glucose or the like. The composition may also be provided in lyophilized form for reconstituting, ifbr instance, in isotonic aqueous, saline buffer. In' addition, the compositions can be co-administered or sequentially administered with other antineoplastic, anti-tumor or anti-cancer agents and/or with agents which reduce or alleviate ill effects of antineoplastic, anti-tumor or anti-cancer agents.
A kit comprising a composition of the present invention is also provided. The kit can include a separate container containing a suitable carrier, diluent or excipient. The kit can also include an additional anti-cancer, anti-tumor or antineoplastic agent and/or an agent that reduces or alleviates ill effects of antineoplastic, anti-tumor or anti-cancer agents for co- or sequential-administration. Additionally, the kit can include instructions for mixing or combining ingredients and/or administration.
A better understanding of the present invention and of its many advantages will be had fixjm the following examples, given by way of illustration.
EXAMPLES
Example 1
Construction ofthe Multi-Antigen Construct vT416
The expression vector vT416 (ALVAC-NY-ESO-l/Trp-2-LFA-3/ICAM-l/B7.1- ')
E3L/K3L) was constructed in the ALVAC vector using standard techniques. DNA sequences
encoding NY-ESO-1, Trp-2, LFA-3, ICAM-1, B7.1, vvE3L and wK3L were inserted into
I various loci within the ALVAC genome. DNA sequences encoding NY-ESO-1 (Chen et al.
1997 PNAS 94:1914) and TRP-2 (Wang et al. 1996 J, Exp. Med. 184:2207) were inserted into

the C5 locus. DNA sequences encoding LFA-3 (Wallner, et al. (1987) J. Exp. Med. 166:923-932), ICAM-1 (Staunton, et al. (1988) Cell 52:925-933) and B7.1 (Chen, et al. (1992) Cell 71:1093-1102) were inserted into the C3 locus. LFA-3, ICAM-1 and B7.1 form an expression cassette known as TRICOM. DNA sequences encoding vvE3L (Chang, et al. 1992. Proc. Natl. Acad. Sci. U. S. A 89:4825-4829) and wK3L (Beattie, et al. 1991. Virology 183:419-422) were inserted into the C6 locus. Promoters were utilized as follows:

NY-ESO-1 and TRP-2 DNA sequences were inserted into the ALVAC donor plasmid pT1132. This donor plasmid was then used with pALVAC.Tricom(C3) #33 to generate the ALVAC-TRICOM recombinant expressing these genes using standard techniques. The plasmids pALVAC.Tricom(C3) #33 and pT1132 are shown in Figure 1. The DNA sequences of pALVAC.Tricom(C3) #33 and pTl 132 are shown in Figures 2 and 3, respectively.

Example 2 Construction of the Multi-Antigen Construct vT419
The expression vector vT419 (ALVAC-gplOOM/Mart-l/ Mage-1,3 minigene-LFA-3/ICAM-1/B7.1-E3L/K3L) was constructed in the ALVAC vector usuig standard techniques. DNA sequences encoding the gpIOOM/MART-l/MAGE-1,3 minigene, LFA-3, ICAM-1, B7.1, wE3L and wK3L were inserted into various loci within the ALVAC genome. The gplOOM/ MART-1/MAGE-1,3 minigene was inserted into the C5 locus. DNA sequences encoding LFA-3 (Walhier, et al. (1987) J. Exp. Med. 166:923-932), ICAM-1 (Staunton, et al. (1988) Cell 52:925-933) and B7.1 (Chen, et al. (1992) Cell 71:1093-1102) were inserted into the C3 locus. LFA-3, ICAM-1 and B7.1 form an expression cassette known as TRICOM. DNA sequences encoding wE3L (Chang, et al. 1992. Proc. Natl. Acad. Sci. U. S. A 89:4825-4829) and wK3L (Beattie, et al. 1991. Virology 183:419-422) were inserted into the C6 locus. Promoters were utilized as follows:

Promoter sE/L is described by Chakrabarti, et al. (BioTechniques 23:1094-1097,1997). The donor plasmids utilized are shown below:


gplOO(M), Mart-1 and Mage-1,3 minigene were inserted into the ALVAC CS donor plasmid pT3217. This donor plasmid was then used with pALVAC.Tricom(C3) #33 to generate the ALVAC-TRICOM recombinant expressmg these genes using standard techniques. This donor plasmid inserts into the C5 site. pALVAC.Tricom(C3) #33 is shown in Figures 1 and 2. The pT3217 plasmid is shown in Figure 4. The DNA sequence of pT3217 is shown in Figure 5.
EXAMPLES Immunological Assessment of Multi-Antigen Vectors
The results of the first animal experiment indicated a trend toward higher immunological responses to three (Mart 1, NY-ESO-1 and gplOO) of the four antigens when the vaccine was given as two separate injections. However, these'differences were not statistically sigruficant. In detail, HLA-A2/K' transgenic mice (5/group) were imtiiunized subcutaneously with vT419 (ALVAC(2)-gpl00M/MART-l/MAGE-l/3 minigene/TRICOM) and vT416 (ALVAC(2)-TRP-2/NY-ESO-l/TRICOM) either combined at one site or given as separate injections. Control mice were immunized with parental ALVAC(2). Mice were vaccmated three times (at three week intervals), and three weeks after the last boost T cell responses in individual mice were analyzed by IFN-g ELISPOT and CTL assays following in vitro restimulation with peptide. Compared to control animals, mice vaccinated with the multi-antigen vectors (at 2 sites) exhibited statistically significant ELISPOT responses against MART-1. The IFN-gamma response to gpl OOM and NY-ESO-1 were also detectable, although these responses were not statistically significant due to response variability and the small number of cultures tested. ELISPOT responses agamst the TRP-2 antigen were elevated in all groups tested (including control aiiimals), presumably due to the fact that the dominant A2-restricted TRP-2 peptide (180-188) cross-reacts with H-2K' and can induce low avidity T cell responses in naive mice following in vitro, culture, and were therefore not statistically significant. Interestingly, ELISPOT responses in mice injected with an admixture of vT416 and vT419 were generally lower than in mice receiving each virus separately, although these differences did not achieve statistical significance. The CTL data were largely negative, except for one strong anti-gplOO response and one marginal anti-MART-1 response, both of which occurred in mice vaccinated with vT416 and vT419 (two sites). Overall, these results provided encouraging data that establish that the multi-antigen vectors can generate

responses against MART-1, and suggest that anti-gplOO and anti-NY-ESO-1 responses cao also bgjnduced.
Two additional pre-clinical animal studies have been completed using the melanoma multi-antigen ALVAC recombinants. In these experiments, HLA-A2/K** transgenic mice (5/group) were immunized subcutaneously with vT419 (ALVAC(2)-gplOOM/MART-l/MAGE-l/3 minigene/TRICOM) and vT416 (ALVAC(2)-TRP-2/NY-ESO-l/rRICOM) either combined at one site or given as separate injections. Control mice were immunized with parental ALVAC(2). After vaccination, the T cell responses in individual mice were assessed by IFN-, gamma ELISPOT assay following in vitro restimulation with peptide. Unlike the previous miilti-antigen experiment, which provided encouraging immunogenicity data, the two most recent studies generated inconclusi\^ data, due to high background responses in control immunized animals. Therefore, overall the results were deemed as inconclusive.
To confirm the immunogenicity of the multi-antigen constructs, and to repeat results from the first study, another pre-clinical animal study has been completed. HLA-A2/K' transgenic mice (10/group) were immunized subcutaneously with vT419 (ALVAC(2)-gplOOM/MART-l/MAGE-1/3 minigene/TRICOM) and vT416 (ALVAC(2)-TRP-2/NY-ESO-1/TRICOM) given as separate injections. Control mice were immunized with parental ALVAC(2). Statistically significant ELISPOT responses were detectable against gplOO, Mart-l and TRP-2, and some responses were detected against NY-ESO-1, which were at the border of being statistically significant.
While the present invention has been described in terms of the preferred embodiments, it is understood that variations and modifications will occur to those skilled in the art. Therefore, it is intended that the appended claims cover all such equivalent variations that come within the scope of the invention as claimed.


1. An expression vector for treatment or prevention of melanoma which
expression vector comprises ALVAC (2), TRICOM and at least two tumor
ant'gens selected from the group consisting of NY-ESO-1, TRP-2, gplOO,
gplOOM, MART-1, MAGE-1, MAGE-3 and MAGE-l/3minigene.
2. A pharmaceutical composition comprising an expression vector as claimed in
claim 1.
3. The pharmaceutical composition as claimed in claim 2 adapted for
administration by injection.
4. The pharmaceutical composition as claimed in claim 2 containing two vectors.
5. A pharmaceutical composition as claimed in claim 4 wherein one vector is
ALVAC (2)-gplOOM/MART-l/MAGE-l/3minigene TRICOM and another
vector is ALVAC (2)-TRP-2/NY-ESO-l/TRICOM.


Documents:

785-chenp-2006 complete specification as granted.pdf

785-CHENP-2006 CORRESPONDENCE OTHERS.pdf

785-CHENP-2006 CORRESPONDENCE PO.pdf

785-chenp-2006 drawings.pdf

785-CHENP-2006 FORM-1.pdf

785-CHENP-2006 FORM-18.pdf

785-CHENP-2006 FORM-3.pdf

785-CHENP-2006 PETITIONS.pdf

785-CHENP-2006 POWER OF ATTORNEY.pdf

785-chenp-2006-abstract.pdf

785-chenp-2006-claims.pdf

785-chenp-2006-correspondnece-others.pdf

785-chenp-2006-description(complete).pdf

785-chenp-2006-drawings.pdf

785-chenp-2006-form 1.pdf

785-chenp-2006-form 3.pdf

785-chenp-2006-form 5.pdf

785-chenp-2006-pct.pdf

785-chenp-2006.tif

abs 785-chenp-2006 abstract.jpg

abs-785-chenp-2006.jpg


Patent Number 234399
Indian Patent Application Number 785/CHENP/2006
PG Journal Number 29/2009
Publication Date 17-Jul-2009
Grant Date 27-May-2009
Date of Filing 03-Mar-2006
Name of Patentee THERION BIOLOGICS, INC.
Applicant Address 76 Rodgers Street, Cambridge, MA 02142-1119
Inventors:
# Inventor's Name Inventor's Address
1 BERINSTEIN, Neil Aventis Pasteur Limited, 1755 Steeles Avenue West, Toronto, Ontario M2R 3T4
2 PARRINGTON, Mark Aventis Pasteur Limited, 1755 Steeles Avenue West, Toronto, Ontario M2R 3T4
3 PANICALI, Dennis 76 Rogers Street, Cambridge, MA 02142-1119
4 GRITZ, Linda 76 Rogers Street, Cambridge, MA 02142-1119
5 TARTAGLIA, Jim Aventis Pasteur Limited, 1755 Steeles Avenue West, Toronto, Ontario M2R 3T4
PCT International Classification Number C12N 15/86
PCT International Application Number PCT/US2004/028751
PCT International Filing date 2004-09-03
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 60/500,572 2003-09-05 U.S.A.
2 60/504,007 2003-09-18 U.S.A.