Title of Invention | FERMENTED FOOD PRODUCT COMPRISING SOY PROTEIN |
---|---|
Abstract | N/A |
Full Text | F7728 / V FORM - 2 THE PATENTS ACT, 1970 (39 of 1970) & The Patents Rules, 2003 COMPLETE SPECIFICATION (See Section 10 and Rule 13) FERMENTED FOOD PRODUCT COMPRISING SOY PROTEIN HINDUSTAN LEVER LIMITED, a company incorporated under the Indian Companies Act, 1913 and having its registered office at Hindustan Lever House, 165/166, Backbay Reclamation, Mumbai -400 020, Maharashtra, India The following specification particularly describes the invention and the manner in which it is to be performed. WO 2005/(113706 PCT/EP2004/0076I0 Fermented food product comprising soy protein Description 5 Field of the invention The present invention relates to a food product fermented with lactic acid bacteria comprising soy protein. The invention further relates to use of such food products as a health food and a process for the preparation of the food 10 products. Background to the invention According to the Codex Alimentarius (FAO/WHO 1977), yogurt is milk fermented with Lactobacillus bulgaricus and 15 Streptococcus thermophilus and the microorganisms in the final product must be "viable and abundant". Other food products fermented with S. thermophilus, which may not be called yogurt according to the above definition exist. For instance "Bifidus yogurt" is made using selected cultures 20 of B. bifidum, B. longum, S. thermophilus, and L. delbrueckii, which results in a yogurt-like product having a milder taste than yogurt. Also known are so-called "soy yogurts", in which the main 25 source of protein is not milk, but soy protein and which are fermented with yogurt culture. These soy yogurts are herein also described as yogurts. Examples of commercially available soy yogurts are Yofy produced by Van der Moortele and Sojasun produced by Triballat. Though the preparation 30 of these commercial food products is not always known, most of these soy yogurts are prepared from soy beans and have a soy protein content that is relatively low. WO 2005/013706 2 PCT/EP2004/007610 US 6013771 describes isoflavone rich soy protein isolates and their application in food products. Column 8, Formulation 4, shows the preparation of a soy yogurt with SPI containing about 8 grams of soy protein per 170 gram 5 serving. We have found that a food product prepared with soy protein isolate (SPI) as sole protein source is very thick and gives a non-dairy yogurt characteristic dry mouthfeel. 10 We have found that the use of hydrolysed SPI in yogurt applications results in improved product stability at low pH, but the products have no yogurt texture. The texture/firmness in these products may be improved by 15 addition of thickeners, such as starch or pectin. However, addition of these thickeners still does not create a dairylike yogurt texture. Further for fruit yogurt applications additional problem is that the shear required to mix the fruit preparation into the yogurt further breaks down the 20 texture. Summary of the invention It is therefore an object of the invention to provide a food product fermented with one or more lactic acid 25 bacteria comprising soy protein that has a high level of soy protein and a good taste and texture resembling that of yogurt. It is a further object of the invention to provide such food products in which the presence of thickeners or gums is not required. Still a further object is to provide 30 a food product that is a stirred-type food product, preferably spoonable as defined herein, in which flavouring WO 2005/013706 3 PCT/EP2004/007610 such as fruit can be easily mixed without disrupting the texture of the product. One or more of these objects are attained according to the 5 invention in that characterised in that the food product comprises at least 0.2 wt.% hydrolysed protein. According to the invention dairy-like spoonable yogurt texture may be obtained even without the need of thickeners. 10 Detailed description of the invention Lactic-acid Bacteria herein are gram-positive, rod- or sphere-shaped bacteria that produce lactic acid as the principal or sole end product of carbohydrate fermentation. 15 The amount of soy protein in the food product according to the invention is 4-10 wt.%, preferaby 4-7 wt.%. The amount of hydrolysed protein in the food product according to the invention is at least 0.2 wt., preferably, 20 at least 0.5 wt.% more preferably at least 1 wt.% and most preferably at least 1.5 wt.%. Amounts of hydrolysed soy protein present are included in the amounts of soy protein. The presence and amounts of proteins (non-hydrolysed and 25 hydrolysed) present in the food product may be determined by the skilled person using common analysis techniques e.g. mass spectroscopy and liquid chromatography. The production of the fermented soy according to the 30 invention may include the following steps: 1) Standardizing of soy starting material 2) Thermal treatment and homogenisation WO 2005/013706 4 PCT/EP2004/00761O 3) Addition of starter culture 4) Fermentation at 40-45°C 5) Cooling to about 10°C and packaging 6) Mixing in fruit other flavouring components 5 The characteristic flavor of yogurt is largely due to carbonyl compounds, particularly acetaldehyde (25 - 50 mg/kg), volatile fatty acids, and to some extent, due to acetone and acetoin. 10 The typical pH of soy yogurt varies from 4.0 - 5.0, according to type of yogurt, fat content, and specific starter cultures used. 15 Low-acidity yogurts have a pH above 4.6, while normal acidity yogurt has a pH of 4.0-5.0. The soy yogurt according to the invention may be set-style yogurt with a firm gelled texture, or may be stirred-style 20 yogurt, with a spoonable or fluid texture. Fruit yogurts are preferably stirred type. Preferably the fermentation for the set-style soy yogurt takes place in the package of the yogurt after packaging. 25 Stirred-type soy yogurt is preferably fermented in fermentation tanks. After fermentation, the product may be stirred at a low speed prior to its transport by pumping and filling. A moderate to low shear rate is critical to 30 achieve the desired viscous properties of stirred-style yogurt. WO 2005/013706 5 PCT/EP2004/2007610 The food products according to the invention may be frozen like ice cream, or it may be dehydrated to give yogurt powder. 5 Non-hydrolysed soy protein isolate, when used alone in the food products results in very firm and dry textures at soy protein levels above 4 wt. %. Such food products also have a taste that is less preferred, in particular they give a dry mouthfeel. 10 Further texture improvement can be achieved by addition of some milk protein, e.g. skim milk powder (SMP) buttermilk powder (BMP) and/or whey powder (such as sweet whey 15 powder), which will result in a smoothier texture and better taste, in which case the soy protein isolate ratio still largely determines the texture. Although firmness of the food products according to the 20 invention is lower for all products after application of shear for instance for mixing in fruit preps, still spoonable textures may be achieved. Preferably vegetable oil and/or may be added to the food 25 products. The addition of oil leads to an improvement in terms of smoothness and appearance. Although the addition of thickeners is not needed in food products according to the invention, thickeners may be 30 added, e.g. for further improving syneresis (e.g. pectin, carrageenans, locust bean gum). WO 2005/013706 6 PCT/EP2004/007610 The food product may be fermented with any lactic acid bacteria or any combinations of lactic acid bacteria. Preferably the food product is fermented with Streptococcus 5 thezmophilus and Lactobacillus bulgaricus. The combination of these lactic acid bacteria gives a characteristic yogurt taste. The hydrolysed protein is preferably hydrolysed soy 10 protein. Preferably the food product has a Stevens value of 50 to 300 g, more preferably 50 to 250 g, even more preferably 120 to 200 g. Preferably the food product is spoonable. 15 Preferably the food product has a viscosity of 10000 to 800000 m Pa s, more preferably 50000 to 200000, most preferably 50000 to 100000 mPa.s. 20 Preferably the food product comprises 0.1-3 wt.% milk protein. The presence of oil and/or fat is advantageous in the products according to the invention. Oil and/or fat has a 25 positive effect on mouthfeel, the products become more creamy, smoother and less watery. Additionally, the preferred addition of oil or fat make it easier to control foaming of the protein during preparation of the food product. Therefore preferably, the food product comprises 30 0,2-10 wt.%, more preferably 0,5-5, even more preferably 0,5-2 wt.% oil or fat. WO 2005/013706 7 PCT/EP2004/007610 The invention further relates to a process for the preparation of a fermented food product, wherein a starting material comprising soy protein is fermented with on or more lactic acid bacteria and wherein 40 wt.% or more 5 relative to the total amount of soy protein is hydrolysed soy protein. The starting material may comprise a partially hydrolyzed soy protein or it may alternatively comprise a mixture of 10 non-hydrolysed and hydrolyseed protein. Preferably, the starting material comprises a mixture of non-hydrolysed soy protein and hydrolysed soy protein. More preferably the mixture comprises 50-95 wt.% of hydrolysed 15 soy protein relative to the total amount of soy protein. Preferably the mixture is prepared from hydrolysed soy protein isolate (herein also designated as SPI) and non-hydrolysed soy protein isolate. 20 Examples Stevens value Stevens values give an indication about the firmness 25 (spoonability) of a product. The firmness of all products at 5°C (after storage at 5°C for 24 hours) was measured using a Stevens Texture Analyser (1 mm/sec, 25 mm depth, mayonnaise grid (mesh 7, thread thickness 0.8 mm, mesh width 2.8 mm) and is quoted herein as the Stevens value (in 30 g). The accuracy of this measurement in all cases is ± 10 g- WO 2005/0137(16 8 PCT/EP2004/007610 Stevens values of above 120 and well below 300 g are typical for a spoonable product. Viscosity 5 Viscosity of the food products is measured using a Brookfield viscometer, spindle 6, at 5 rotations per minute (herein abbreviated rpm). Syneresis 10 Syneresis was measured by after storing flasks with the food product for 24 hours at 25°C and subsequently 24 hours at 5°C. The weight of the flasks before (wi) and after (wd) decantation of supernatant water and syneresis values were expressed as (WI.- Wd) / wi. 15 Bostwick The Bostwick equipment consists of a 125 ml reservoir provided with a outlet near the bottom of a horizontally placed rectangular tub and closed with a vertical barrier. 20 The tub's bottom is provided with a 25 cm measuring scale, extending from the outlet of the reservoir. When equipment and sample both have a temperature of 5°C, the reservoir is filled with 125 ml of the sample after it has been shaken by hand ten times up and down. When the closure of the 25 reservoir is removed the sample flows from the reservoir and spreads over the tub bottom. The path length of the flow is measured after 30 seconds. The value, expressed as cm per 3 0 seconds is the Bostwick ratio. 30 WO 21105/(113706 9 PCT/EP2004/007610 Example 1 A fermented food product (yogurt) was prepared as follows. Soy protein isolate Supro Plus™ 651 and hydrolysed soy protein isolate FXP H220D, both containing about 80 wt.% 5 soy protein and originating from Protein Technology International, skimmed milk powder and salt in amounts as given in table 1 were mixed with hot demi water at 70°C using a Silverston mixer at a speed of 2500 rpm until a homogeneous mixture is obtained. The mixture was sterilized 10 in an Ultra High Temperature (UHT) apparatus at 170-200 bar, with heating bath temperature 85°C and holding bath temperature 75°C. The sterilized product was filled into 125 ml flasks and 0.2 wt.% yogurt culture YF202 (ex Rhodia) suspended in tripton solution was added to the flasks. The 15 flasks were incubated at 43°C for 12 hours and thereafter cooled to 10°C and stored at 5°C. Viscosity, hardness and syneresis of the prepared yogurt-type food compositions were measured according to the above 20 described test methods. The results are given in table 2. Examples 2-4 and comparative experiments A and B The food products in these experiments were prepared as in 25 example 1, however with different amounts of non-hydrolysed and hydrolysed soy protein isolates as indicated in table 1. The results are given in table 1. 30 WO 2005/013706 10 PCT/EP2004/007610 Examples 1-4 and the comparative experiments show that when only non-hydrolysed soy protein isolate is used, too thick products are prepared that have a less preferable taste (mouthdry). When only hydrolysed soy protein isolate is 5 used no spoonable yogurt texture may be obtained. The yogurts of examples 1-4 had a clean, fresh yogurt tase with no or little residual soy taste 10 Fruit yogurts may be made by adding fruit or fruit puree to the yogurts of examples 1-4. WO 2005/013706 PCT/EP2004/007610 11 Table 1: Composition of milk starting material Composition Example Example Example Example Comp. Comp. 1 2 3 4 Ex . A Ex. B (wt.%) (wt.%) (wt.%) (wt.%) (wt ..%) (wt.%) Ratio 70/30 60/40 40/60 20/80 100/0 0/100 hydrolysed/ non -■ hydrolysed soy Hydrolysed 5.84 5.00 3.13 1.56 7.81 0.00 SPI FXP H0220D Non-hydrolysed 2.47 3.29 4.63 6.17 0.00 8.23 SPI Supro 651 Sunflower oil 1.50 1.50 1.50 1.50 1.50 1.50 Salt (NaCl) 0.10 0.10 0.10 0.10 0.10 0.10 Sweet milk 3.00 3.00 3.00 3.00 3.00 3.00 powder Demi water 87.09 87.11 87.64 67.67 87.59 87.17 Table 2: Properties of fermented food products, Bostwick values"—" means too low to be measured. Example Ratio pH Viscosity Stevens Bostwick Syneresis Viscosity after Stevens value Bostwick value hydrol./non-hydrol.SP! (mPa.s) value(g) value after 24 hr shear (mPa.s) after shear (9) after shear A 100/0 4.46 70000 44 9 1.62 11200 12 10.5 1 70/30 4.51 278000 184 1.9 1.25 64000 52 2.5 2 60/40 4.49 320000 244 0.75 1.13 84000 62 2.2 3 40/60 4.45 295000 361 -- 1.08 109000 105 1.8 4 20/80 4.46 774000 590 ~ 0.63 225000 197 - B 0/100 4.49 770000 1111 ~ 0.85 386000 814 - 3 o 9 u» o w -J n O o 9 WO 2005/0137(16 PCT/EP20O4/007A10 13 Claims 1. Food product fermented with one or more lactic acid bacteria, comprising 4-10 wt.% soy protein, characterised in that the food product comprises at least 0.2 wt.% hydrolysed protein. 2. Food product according to claim 1, wherein the food product comprises at least 0.5 wt.% hydrolysed protein. 3. Food product according to claim 2, wherein the food product comprises at least 1.5 wt.% hydrolysed protein. 4. Food product according to claim 3, wherein the food product is fermented with Streptococcus thermophilus and Lactobacillus bulgaricus. 5. Food product according to any of claims l to 4, wherein the hydrolysed protein is hydrolysed soy protein. 6. Food .product according to any of claims 1-5, wherein the food product comprises 0.2-10 wt.% oil and/or fat. 7. Food product according to claims 6, comprising 0.5-2 wt.% oil and/or fat. 8. Food product according to any of claims 1 to 7, wherein the food product has a Stevens value of 50 to 300 g. 9. Food product according to any of claims 1 to 8, halting a viscosity of 10000 to 800000 mPa.s. WO 2005/013706 PCT/EP2004/0076100 14 10. Food product according to any of claims 1 to 9, wherein the food product comprises 0.1-3 wt.% milk protein. 11. Process for the preparation of a fermented food product; wherein a starting material comprising soy protein is fermented with one or more lactic acid bacteria, characterised in that 4 0 wt.% or more relative to the total amount of soy protein is hydrolysed soy protein. 12. Process according to claim 11, wherein the starting material comprises a mixture of non-hydrolysed soy protein and hydrolysed soy protein. 13. Process according to claim 12, wherein the mixture comprises 50-95 wt.% of hydrolysed soy protein relative to the total amount of soy protein, 14. Process according to claim 12 or 13, wherein the mixture is prepared from hydrolysed soy protein isolate and non-hydrolysed soy protein isolate. F. 7728 (V)- CPL 13 Amended claims 1. Food product fermented with one or more lactic acid bacteria, comprising 4-10 wt.% soy protein, characterised in that the food product comprises at least 0.2 wt.% hydrolysed soy protein, and wherein the soy comprises a mixture of non-hydrolysed soy protein and hydrolysed soy protein and wherein the soy protein comprises 50-95 wt.% of hydrolysed soy protein. 2. Food product according to claim 1, wherein the food product is fermented with Streptococcus thermophilics and Lactobacillus bulgaricus. 3. Food product according to any of claims 1, wherein the food product comprises 0.2-10 wt. % oil and/or fat. 4. Food product according to claim 3, comprising 0.5-2 wt.% oil and/or fat. 5. Food product according to any of claims 1, wherein the food product comprises 0.1-3 wt.% milk protein. 6. Process for the preparation of a fermented food product, according to claim 1 wherein a starting material comprising soy protein is fermented with one or more lactic acid bacteria, characterised in that 40-95 wt.% or more relative to the total amount of soy protein is hydrolysed soy protein. F. 7728 (V)- CPL 14 7. Process according to claim 6, wherein the mixture is prepared from hydrolysed soy protein isolate and non-hydrolysed soy protein isolate. Dated this 8th day of February 2006 HINDUSTAN LEVER LIMITED (S. TenKatramani) Sr. Patents Manager |
---|
155-MUMNP-2006-ABSTRACT(6-10-2008).pdf
155-mumnp-2006-abstract(granted)-(18-6-2009).pdf
155-MUMNP-2006-CANCELLED PAGES(6-10-2008).pdf
155-MUMNP-2006-CLAIMS(6-10-2008).pdf
155-mumnp-2006-claims(8-2-2006).pdf
155-MUMNP-2006-CLAIMS(9-2-2009).pdf
155-MUMNP-2006-CLAIMS(AMENDED)-(6-10-2008).pdf
155-mumnp-2006-claims(amended)-(9-2-2009).pdf
155-MUMNP-2006-CLAIMS(CANCELLED PAGE)-(9-2-2009).pdf
155-mumnp-2006-claims(granted)-(18-6-2009).pdf
155-mumnp-2006-correspondence(12-6-2006).pdf
155-MUMNP-2006-CORRESPONDENCE(23-3-2009).pdf
155-MUMNP-2006-CORRESPONDENCE(6-10-2008).pdf
155-MUMNP-2006-CORRESPONDENCE(9-2-2009).pdf
155-MUMNP-2006-CORRESPONDENCE(9-3-2009).pdf
155-mumnp-2006-correspondence(ipo)-(29-4-2009).pdf
155-mumnp-2006-correspondence-others.pdf
155-mumnp-2006-correspondence-received.pdf
155-mumnp-2006-correspondence1(9-2-2009).pdf
155-mumnp-2006-descripiton (complete).pdf
155-MUMNP-2006-DESCRIPTION(COMPLETE)-(6-10-2008).pdf
155-mumnp-2006-description(complete)-(8-2-2006).pdf
155-MUMNP-2006-DESCRIPTION(COMPLETE)-(9-2-2009).pdf
155-mumnp-2006-description(granted)-(18-6-2009).pdf
155-mumnp-2006-form 1(24-10-2007).pdf
155-MUMNP-2006-FORM 1(6-10-2008).pdf
155-mumnp-2006-form 1(6-8-2008).pdf
155-mumnp-2006-form 1(8-2-2006).pdf
155-MUMNP-2006-FORM 1(9-2-2009).pdf
155-mumnp-2006-form 13(12-2-2007).pdf
155-mumnp-2006-form 13(24-8-2007).pdf
155-MUMNP-2006-FORM 18(12-6-2006).pdf
155-mumnp-2006-form 2(6-10-2008).pdf
155-mumnp-2006-form 2(9-2-2009).pdf
155-mumnp-2006-form 2(complete)-(8-2-2006).pdf
155-mumnp-2006-form 2(granted)-(18-6-2009).pdf
155-MUMNP-2006-FORM 2(TITLE PAGE)-(6-10-2008).pdf
155-mumnp-2006-form 2(title page)-(complete)-(8-2-2006).pdf
155-mumnp-2006-form 2(title page)-(granted)-(18-6-2009).pdf
155-MUMNP-2006-FORM 3(6-10-2008).pdf
155-mumnp-2006-form 3(8-2-2006).pdf
155-MUMNP-2006-FORM 3(9-2-2009).pdf
155-MUMNP-2006-FORM 5(6-10-2008).pdf
155-mumnp-2006-form 5(8-2-2006).pdf
155-MUMNP-2006-FORM 5(9-2-2009).pdf
155-mumnp-2006-form-pct-ipea-409.pdf
155-mumnp-2006-form-pct-ipea-416.pdf
155-mumnp-2006-form-pct-separate sheet-409.pdf
155-MUMNP-2006-OTHER DOCUMENT(6-10-2008).pdf
155-mumnp-2006-pct-search report.pdf
155-mumnp-2006-specification(amended)-(6-10-2008).pdf
155-mumnp-2006-wo international publication report(8-2-2006).pdf
Patent Number | 234855 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Indian Patent Application Number | 155/MUMNP/2006 | |||||||||
PG Journal Number | 28/2009 | |||||||||
Publication Date | 10-Jul-2009 | |||||||||
Grant Date | 18-Jun-2009 | |||||||||
Date of Filing | 08-Feb-2006 | |||||||||
Name of Patentee | HINDUSTAN UNILEVER LIMITED | |||||||||
Applicant Address | HINDUSTAN LEVER HOUSE, 165/166 Backbay Reclamation, Mumbai 400 020. | |||||||||
Inventors:
|
||||||||||
PCT International Classification Number | A23C9/13 | |||||||||
PCT International Application Number | PCT/EP2004/007610 | |||||||||
PCT International Filing date | 2004-07-09 | |||||||||
PCT Conventions:
|