Title of Invention

A RECORD CARRIER A RECORDING DEVICE AND A METHOD OF MANUFACTURING A RECORD CARRIER

Abstract A record carrier (1) is described which has a servo track (4) indicating an information track (9) intended for recording information blocks represented by marks, which servo tgrack (4) has a periodic variation of a physical parameter at a first frequency and modulated parts for encoding record carrier inforamtion. The modulated parts have a bit synchronization element constituted by a phase modulation of the periodic variation and a data part comprising data bits of the record carrier information encoded by direct digital modulation. Alternatively the modulated parts comprise a second requency which is substantially different from the first requency for encoding data bits of the record carrier information, the second frequency being an integral multiple N of the first frequency. A recording and/or playback device has means for recording/reading the information blocks and for reading the record carrier information.
Full Text The invention relates to a record carrier comprising a servo track indicating an information track intended for recording information blocks represented by marks Slaving lengths expressed in channel bits, which servo track has a periodic variation of a physical parameter which periodic variation is modulated for encoding record carrier information
The invention further relates to recording and/or playback device comprising means for writing and/or reading information blocks represented by marks having lengths expressed in channel bits in an information track on the record carrier, which device comprises means for scanning the servo track and retrieving the record carrier information.
The invention further relates to a method for manufacturing the record carrier.
A record carrier and device of the type defined in the opening paragraph for reading and/or writing information, are known from WO 00/43996 (PHN 17323). The information is encoded into an information signal which includes time codes and may be subdivided in accordance with this time codes into information blocks, the time codes being used as addresses such as with CD-ROM or DVD+RW. The record carrier has a servo track, usually called reprove, for causing servo signals to be generated when scanning the track. A physical parameter, .e.g. the radial position, of the reprove periodically varies constituting a so-called wobble. During the scanning of the track, this wobble leads to a variation of the servo signals. The variation is modulated by record carrier information, e.g. synchronization symbols and encoded position information, which position information indicates the absolute length of the track from the start. During recording, the position of the information blocks is synchronized as much as possible with the synchronization symbols, so that the information blocks are written on the record carrier at a position corresponding to their addresses.
A problem of the known system is that the reprove wobble signal cannot be demodulated reliably for recovering the encoded position information.
It is an object of the invention, for example, to provide a record carrier and device in which the record cannier intonation can be recorded and read easily.
13JUNZ00B
DUPLICATE

According to the invention a record carrier as defined in the opening paragraph is characterized in claim 1. According to a second aspect of the invention a record carrier as defined in the opening paragraph is characterized in claim 6. Further, the recording and/or playback device as described in the opening paragraph is characterized in claim 12, This has the effect, that data bits can be detected independently from a type of modulation which has a substantial difference with the non modulated periodic variation. A further advantage is, that disturbance ia detection of the physical location of the periodic variations, which may be used for positioning the marks when record, is accurate, because the substantial different modulation in a neighboring track does have a low influence on non modulated variations when compared to modulated variations like frequency modulation.
A further embodiment of the record carrier is characterized in that the length of one periodic variation corresponds to a third predetermined number of channel bits. The effect is, that the nominal position of the nth channel bit corresponds exactly to the physical position of the nth periodic variation divided by the third predetennined number. This has the advantage, that the recording location can be synchronized to the periodic variations. A relatively small third predetermined number of channel bits per periodic variation allows a high accuracy of positioning. Inparticular32 is a suitable number, because this is sufficiently longer than the longest mark used in common channel coding, which are smaller than 16 channel bits, and allows easy address calculation in a briary system.
Further preferred embodiments of the method, devices and record carrier according to the invention are given in the dependent claims.
These and other aspects of the invention will be apparent from and elucidated further with reference to the embodiments described by way of example in the following description and with reference to the accompanying drawings, in which
Figure 1 shows a record carrier,
Figure 2 shows servo track frequency modulation
Figure 3 shows servo track digital modulation
Figure 4 shows bit sync and word sync.
Figure 5 shows a playback device, and
Figure 6 shows a recording device
Figure 7 shows a set of address symbols
Figure S shows a content of an address word

Figure 9 shows the wobbles in DVD+RW
Figure 10 shows reverse order word sync
Figure 11 shows servo track on/off modulation
Figure 12 shows servo track on/off modulation with bit sync
Corresponding elements in different Figures have identical reference numerals.
Fig. la shows a disc-shaped record carrier 1 which comprises a continuous track 9 intended for recording, which track is arranged in a spiral pattern of windings 3, The windings may also be arranged concentrically instead of spirally. The track 9 on the record carrier is indicated by a servo track in which for example, a primrose 4 enables a read/write head during scanning to follow the track 9. A servo track may also he formed, for example, he regularly spread sub-tacks which, in the servo track system, periodically cause signals to occur. Fig. lb shows a cross-section along a line b-b of the record carrier 1, in which a transparent substrate 5 is covered by a recording layer 6 and a protective layer 7. The reproof 4 may also be arranged as a land or he a material property that differs from its environment. The recording layer 6 may be deposited in optical manner, magneto-optical! or magnetic manner by an apparatus for reading and/or writing information such as the known CD recordable or hard disc for computer use. The drawing Figures 1c and Id show two examples of a periodic modulation (usually called wobble) of the pregroove. This wobble causes an additional signal to arise in a service track recorder. In the prior art the wobble is, for example, frequency modulated and disc information is modulation encoded. A comprehensive description of the inscribable CD system comprising disc information obtained in such a manner can be found in US 4,901,300 (PHN 12.398) and US 5,187,699 (PHQ 8S.002),
Figure 2 shows servo track, frequency modulation. The larger part of the servo hack is modulated with a constant wobble frequency, so called monotone, The monotone parts are alternated with small modulated parts, which are shown in Figure 2, The upper trace shows the modulated part for a word sync pattern, a second and third trace show the modulated part for data bits data=0 and data=l, Each of the modulated parts starts with a bit synchronization element (bit sync) of length corresponding to one wobble period. The bit and word sync are constituted by a substantially higher frequency, or. the figure 2 times the

wobble frequency. The data bits have two parts, one at the Such frequency can be easily detected because of this substantial difference.
Figure 3 shows servo track digital modulation. The top trace shows a monotone wobble, which can bop used as reference wobble for locking a PLL (Phase Locked loop) in a decoder. It is shown to use inverted wobbles for the timing signals bit sync and word sync in the second trace. This is a robust to detect from the monotone wobble. The address bits are encoded using direct digital modulation, in Figure 3 a RLL wobble modulation is applied, which is robust because position is known from timing signals. Such Run Length Limited modulation has a maximum length of contiguous zeroes and ones, which has the advantage that the signal can be decoded easily because signal reversals occur within a short period. Further the modulation is different from phase-modulation, hence it can be detected easily. There are four steps in wobble detection, step one is to lock the wobble PLL to the long mono-torte parts, step two is to Lock to the bit-say, which are equidistar.t inverted wobble,'?. Step 3 is to lock to the word-sync, which is a pattern of equidistant inverted wobbles, which is an inverted-wobble pattern different from the fait sync. Step 4 is to read the address data for the digitally madolated wobble. For a specific implerflentation a practical choice for the relationship between the length often encoded addresses and the data to be recorded is the following:
The bit syncs are equidistant, which is required for locking a decoder to the bit syncs. The distance is one bit sync in 7l wobbles, and each wobble is 69 T, T being the channel bit period of the data to be recorded. One address word comprises a number of bit syncs, the Length of the address word is 49 bit syncs. The bit sync itself is one inverted wobble as shown in Figure 3. The data is recorded in blocks (RUB, Recording Unit Block). A RUB is the smallest unit for recording and consists of 496 data frames and one linking frame. Then a RUB contains 497 frames on1932 channel bits, which results in 497*1932/69 = 13916 wobbles for each RUB. Further in each RUB 4 addresses are located, hence 3479 (= 49 * 71) wobbles/address. The digital modulation of address symbols can be the RLL modulation as follows. For a digital zero ("0") move the mastering beam (and hence the servo track) to the inside of the record cannier, and for a digital one ("1") move mastering beam to the outside. Preferably the length of a data bit of the recording information (addresses and auxiliary codes for controlling the recording process) is equal to the wobble period. The detection can be done by integration, whereas the integration time can be easily derived from wobble PLL. Further the data bits are encoded in a DC free way, i.e. with an equal number of "0"s and "l"s. No effect on servo signals is achieved as follows: k=l (k+l is

the maximum number of consecutive "0"s oi "1 "s), which k constraint limits the low frequency content and allows high-pass filtering.
In encoding the address and auxiliary data into the wobble it is proposed to combine a number of address bits to an address bit symbol after the bit sync. A number of address bits is sown in the address symbol in Figure 3. In the DVD+RW only 1 address bit is encoded after each bit sync. Now, for better protection against errors while reading, the address symbols are selected to constitute a set suitable for error detection and correction (KCC). For an ECC based on 4-bit symbols, it is better to store 4 bits or 1 nibble after each bit Sync, because of lower sensitivity to short burst errors.
Figure 1 shows suitable set of address symbols. To have at least 16 different symbols with Hamming distances equal to at least 4, we need address symbols with a length of 10 wobble periods, A Hamming distance 4 between address symbols allows good distinction between different words. The number of address symbols is selected as follows; for sufficient addressing it is proposed to use 48 address bits, encoded in 12 address symbols, each containing 1 nibble of 4 bits. Preferably isolated bit syncs that are not followed by an address symbol are included in the address word, The advantage is that locking to the bit sync is improved, because a lower number of false bit syncs will be detected. When detecting the bit sync next to the modulated address data bits the detector might confuse an address bit with the bit sync. An isolated bit sync cannot be confused, because only non modulated wobbles are surrounding the isolated bit sync.
A practical selection is to have 1 out of 4 bit syncs is followed by an address symbol, and by having one bit sync followed by a word sync the total length is 49 bit syncs (as described above).
Figure 8 shows a content of an address word according to a different embodiment. The address word is 60 address bits, i.e. 15 address symbols, each containing 1 nibble. Now more bits are available for data and/or ECC, and a maximum number of bits for nibble-based ECC. To keep the total address word length limited to the same length of 49 bit syncs now I out of 3 bit syncs is followed by an address symbol.
Figure 4 shows bit sync and word sync. The upper trace A shows the bit synC of one inverted wobble. Trace B shows a stronger by sync of 2 inverted wobbles, A further option is shown in trace C, where the bit sync is not adjacent to the digitally modulated area but flirtier to the left. The properties of the word sync are as follows: it is based on a pattern of inverted wobbles, e.g. 4 consecutive inverted wobbles as shown in Figure 3. Alternatively the word sync may be based on special "address symbols", which do not occur in the address

symbol set used for encoding the address bits. Such a word sync that is based on a special address symbol alone has the disadvantage that the detection of the word sync is only as strong as the detection of one of the further data nibbles, which might not be sufficient. This may be improved by using a larger Hamming distance or a violation of other constraints of the code (like the k constraint), it is proposed to include a word sync after at least one of the 49 bit syrcs, but the detection may be made more reliable by including word syncs after more than one bit sync within each address word. In that case prediction in the detector may be used to reliably detect the word syncs. Slightly different word syncs may be used to distinguish the location of the word sync within the address word. For example Figure 4 trace D shows a first word sync (wordSyncO) consisting of one inverted wobblier, and trace E shows a second word sync (wordSyncl) consisting of 4 inverted wobbles. Such different word syncs can be easily distinguished. Such word syncs based on inverted wobbles are preferred to special symbols the address-symbol area, because the are more wobbles and less digital modulation. Alternatively word syncs can also be located before the bit sync.
Figures 5 and 6 show apparatuses according to the invention for scanning a record carrier 1. Wartime and reading of information on optical discs and formatting, error correcting and channel coding rules, are well-known in the art, e.g. from the CD system. The apparatus of Figure 5 is arranged for reading the record carrier \1,which record carrier is identical to the record carriers shown in Figure 1, The de\'ice is provided with a read head 52 for scanning the track on the record carrier and read control means comprising drive unit 55 for rotating the record carrier 1, a read circuit 53 for example comprising a channel decoder and an emir corrector, Tracking unit 51 and a system control unit 56, The read head comprises optical elements of the usual type for generating a radiation spot 66 focused on a track of the recording layer of the record canker via a radiation beam 65 guided through optical elements. The radiation beam 65 is generated by a radiation source, e,g. a laser diode. The read head further comprises a focusing actuator for focusing the radiation beam 65 on the recording layer and a tracking actuator 59 for fine positioning of the spot 66 in radial direction on the center of the back. The apparatus has a positioning unit 54 for coarsely positioning the read head 57 in the radial direction on the track. The tracking actuator 59 may comprise coils for racially moving an optical element or may be managed for changing the angle of a reflecting element on a movable part of the read head or on apart on a fixed position in the case part of the optical system is mounted on a fixed position. The radiation reflected by the recording layer is detected by a detector of a usual type, e.g. a four-quadrant diode, for generatmg a detector signals 57 includmg a read signal, a tracking error and a focusing error signal. "The tracking unit SI is coupled to the

read head for receiving the tracking error signal from the read head and controlling the tracking actuator 59, During reading, the read signal is converted into output information, indicated by anon 64, in the read circuit 33. The apparatus is provided with an address detector 50 for detecting and the retrieving address information from the detector signals 57 when scanning the servo track of the record carrier. The device is flirter provided with a system control brut 56 for receiving commands from a controlling computer system or from a user and for controlling the apparatus via control lines 58, e.g. a system bus connected to the drive unit 55, the positioning unit 54, the address detector 50, the tracking unit 51 and the read circuit 53. To this end, the system control unit comprises control circuitry, for example a microprocessor, a program memory and control gates, for performing the procedures described below. The system control unit 56 may also be impleracnted as a stale machine in logic circuits. The read device is arranged for reading a disc Irving tracks leaving a periodic variation, e.g. a contemnors wobble. The read control unit ate arranged for detecting the periodic variations and for reading in dependence thereon a predetermined amount data from the track. In particular the address detector 50 is arranged for reading record carrier information, e.g. position information and recording control data, from the modulated servo signals. A suitable embodiment of the address detector is a synchronous frequency detector for detecting the frequency used for modulating the recording control information according to Figure 2,Tje digital RLL modulation can be detected by a digital demodulator which is switched on bailer the bit sync has been detected. Further other demodulators for the modulated servo signals may be used. The address detector further has a word detection unit for retrieving the words of record career information, as described with reference to Figure 3 and 4. The beginning of such a word is detected from a predetermined number of inverted wobbles as shown in the word sync, after a long sequence of non modulated wobbles.
Figure 6 shows a device for writing information on a record carrier according to the invention of a type which is (ie)writable in, for example a magneto-optical or optical manner (via phase change or dye) by means of a beam 65 of electromagnetic radiation. The device is also equipped for reading and comprises the same elements as the apparatus for reading described above with Figure 5, except that it has a write/read head 62 and recording control means which comprise the same elements as the read control means, except for a write circuit 60 that comprises for example a formatter, an error encoder and a channel encoder. The White/read head 62 has the same function as the read head 52 together with a write ftmction and is coupled to the write circuit 60. The information presented to the input of the write circuit 60 (indicated by the arrow 63) is distributed over logical and physical sectors

according to formatting and encoding rules and converted into a write signal 61 for the write/read head 62. The system control unit 56 is arranged for controlling the write circuit 60 and for performing the position intonations recovery and positioning procedure as described above for the reading apparatus, During the writing operation, mark representing the information are formed on the record carrier. The recording control means are arranged for detecting the periodic variations, for example by locking a phase locked loop to the periodicity thereof. A predetermined, fixed number of channel bits is recorded corresponding to each instance of the periodic characteristics, e.g. 32 channel bits for a wobble. Hence, during recoating of a block, the recording of the marks tepreseiiiing the information is synchronized exactly to the corresponding wobble. In an embodiment of the writing device the positioning unit is amended for positioning of blocks to be recorded based on the exact correspondence of the length of the wobble to a predetermined number of channel bits, and comprises a calculation unit arranged for calculating said position based on the relation between the address word in the wobble and the address of the information block, e.g. according to the DVD format.
In an embodiment the reading and/or writing device comprises a phase locked loop, for example accommodated in the address detector, which phase locked loop is locked to the periodic variations of the tack, such as the wobble, during skimming. After a jaunt of the head 52,62 to a new scanning location the phase locked loop may be preset to the data clock value at the new location, or the bandwidth of said phase locked loop may be increased to lock quickly to the new wobble frequency.
Its is noted that DVD+RW discs contain a wobbled groove. These wobbles have two functions; generation of an accurate and stable write clock and retrieval of address information. This gives conflicting requirements for the wobble. The first is that for optimal write-clock generation, the wobble should be as monotonic as possible, it is then easiest to lock a PLL with high accuracy. The second is that for robiat retrieval of a sufficiently high rate of address information, the wobble should be modulated in QOB way or another (in DVD+RW, phase modulation is used but the same story holds for other modulation schemes such as frequency modulation). Modulation implies that the wobble is not purely monotonic.
Figure 9 shows the wobbles in DVD+RW. The disc contains a structure of 93 wobbles that consist of 85 monotone wobbles and an ADIP unit of 8 wobbles. This structure is repeated 52 times to form an ADIP word. Each ADIP word starts with an ADIP unit containing a word sync that is followed by 51 ADIP units contemning data, either 0 or 1. An ADIP unit with a word sync has 3 inverted wobbles in the word-sync area of length 3 and an

ADIP unit with data has 2 inverted wobbles in the data area of length 4. Figure 9 shows that each ADIP unit 91 starts with a bit-syac area 92 with a length of 1 wobble that is always inverted. This leads lo the following average numbers of inverted wobble in the different areas. Bit-sync area 92: 100% inverted wobbles; Word-sync area 93; 2% hovered wobbles; Data area 94: 49% inverted wobbles; Monoloi:e-wobble area 95: 0% inverted wobbles. The problem is that for the generation of the write clock, one can choose to use all wobbles and accept that the phase errors in the modulated parts deteriorate the clock jitter. In a preferred embodiment only the monotone-wobble area 95 is used for ■White-clock generation and lo ignore (blank) the modulated plaits foe the PLL. This has the advantage that The PLL does not see the phase error in the modulated parts, hut the disadvantage that also the phase information in part of the positive wobbles is thrown away. A further option is to use both the monotone-wobble area 95 and the word-sync area 93. In this way the number of positive wobbles is increased compared to the second option, by adding only a very small number of inverted wobbles. The problem with this last option is that the worth-sync area 93 and the monotone wobble area 95 are not adjacent to each other which makes the implementation complicated.
Figure lO shows reverse order word sync. A reverse the order of the word-sync areola and the data area 100 so that the word-sync area 101 and the mono tone-wobble area 102 are adjacent allows the use of all wobblier information to lock a wobble PLL for recovering the wobble frequency. This allows a simple implementation of a detector according to the last option described above for a wobble having the reverse order word sync.
Figure 11 shows seal’s track on/off modulation. The sync signals for bit sync and word sync are encoded by switching off the wobble signal, so called on/off modulation. Further the data bits are encoded by a combination of wobble periods and a switched out area. The format is suitable for the address format of a groove-only record earner. The signal-to-noise ratio may be smaller than for phase-modulated wobbles, but this would be irrelevant if that is not the critical factor for system robustness, and detection is simpler. In an embodiment inverted wobbles may be used in the Word Sync and/or the bit sync for timing purposes.
Figure 12 shows servo track on/off modulation with bit sync. The bit sync is encoded by an inverted wobble.
Although the invention has been explained by embodiments using a wobble modulation, any other suitable parameter of the track may be modulated, e.g. the track width. Aiso for the record carrier an optical disc has been described, bat other media, such as a

magnetic disc or tape, may be used. It is noted, that in this document the word 'comprising' does not exclude the presence of other elements or steps than those listed and the word 'a' or 'an' preceding an clement does not exclude the presence of a plurality of such elements, that any reference signs do not limit the scope of the claims, that the invention may be implemented by means of both hardware and software, and that several 'means' may be represented by the same item of hardware. Further, the scope of the invention is not limited to the embodiments, and the invention lies in each and every novel feature or combination of features described above.


WE CLAIM:
1. A record carrier comprising a servo track (4) indicating an information track (9) intended for recording information blocks represented by marks having lengths expressed in channel bits, said servo track (4) having a periodic variation of a physical parameter at a first frequency and modulated parts for encoding record carrier information, characterized in that the modulated parts comprise a second frequency, substantially different from the first frequency, for encoding data bits of the record carrier information, the second frequency being a integral multiple N of the first frequency.
2. The record carrier as claimed in claim 1, wherein in the case that M periods of said periodic variation correspond to one bit of the record carrier information, the second frequency being a multiple N of the first frequency divided by M.
3. The record carrier as claimed in claim 1, wherein the modulated parts comprise low frequency units directly representing digital bits, said low frequency being at least 4 times lower than the first frequency.
4. The record carrier as claimed in claim 1, wherein the modulated parts comprise a sync part and a data part, the sync part comprising at least one period of said periodic variation having a phase inverse to the phase of the non-modulated periodic variations.
5. The record carrier as claimed in claim 1, wherein the length of one periodic variation corresponds to a third predetermined number of channel bits.
6. A recording and/or playback device comprising means for writing and/or reading information blocks represented by marks having lengths expressed in channel bits in an information track (9) on a servo track of a record carrier as claimed in claim I, said device further comprising means for scanning the servo track (4) and means for retrieving the record carrier information, characterized in that the retrieving means comprises demodulation means for retrieving data bits of the record carrier information from the modulated parts.

7. The recording and /or playback device as claimed in claim 6, wherein the device comprises synchronization means for synchronizing to a sync part included in the modulated parts, the sync part comprising at least one variation of a phase inverse to the phase of the not modulated periodic variations.
8. The recording and /or playback device as claimed in claim 6, wherein the device comprises recording positioning means for positioning an information block to be recorded based on the physical location of one of the periodic variations corresponding to an address of said information block by calculating said physical location from the length of one periodic variation corresponding to a third predetermined number of channel bits.
9. A method of manufacturing a record carrier, said method comprising the steps of
providing the record carrier with a servo track (4) indicating an information track
(9) intended for recording information blocks represented by marks having lengths
expressed in channel bits,
varying a physical parameter of the servo track (4) with a periodic variation at a
first frequency, and
modulating parts of the servo track for encoding record carrier information, characterized in that the modulated parts have a second frequency, substantially
different from the first frequency, for encoding data bits of the record carrier information,
the second frequency being an integral multiple N of the first frequency.

Documents:

in-pct-2002-1878-che abstract.jpg

in-pct-2002-1878-che abstract.pdf

in-pct-2002-1878-che claims.pdf

in-pct-2002-1878-che correspondence others.pdf

in-pct-2002-1878-che correspondence po.pdf

in-pct-2002-1878-che description (complete).pdf

in-pct-2002-1878-che drawings.pdf

in-pct-2002-1878-che form-1.pdf

in-pct-2002-1878-che form-26.pdf

in-pct-2002-1878-che form-3.pdf

in-pct-2002-1878-che form-5.pdf

in-pct-2002-1878-che pct search report.pdf

in-pct-2002-1878-che pct.pdf

in-pct-2002-1878-che petition.pdf

in-pct-2002-1878-che-abstract.jpg


Patent Number 235139
Indian Patent Application Number IN/PCT/2002/1878/CHE
PG Journal Number 29/2009
Publication Date 17-Jul-2009
Grant Date 25-Jun-2009
Date of Filing 15-Nov-2002
Name of Patentee KONINKLIJKE PHILIPS ELECTRONICS N.V.
Applicant Address GROENEWOUDSEWEG 1 NL-5621 BA EINDHOVEN.
Inventors:
# Inventor's Name Inventor's Address
1 SCHEP, CORNELIS, M., C/O PROF. HOLSTLAAN 6, NL-5656 AA EINDHVOEN.
2 STEK, AALBERT C/O PROF. HOLSTLAAN 6,NL-5656 AA EINDHOVEN
3 VAN HOUTEN, HENDRIK C/O PROF.HOLSTLAAN 6, NL-5656 A EINDHOVEN
PCT International Classification Number G11B27/24
PCT International Application Number PCT/IB02/00776
PCT International Filing date 2002-03-14
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 01201012.0 2001-03-16 EUROPEAN UNION