Title of Invention

METHOD FOR TREATING MOLTEN METAL

Abstract The invention relates to a method for treating molten metal that is contained in a metallurgical vessel, according to which a fine-grained blanket material containing silicon oxide and aluminium oxide is spread over the surface of the molten metal. The aim of the invention is to prevent the formation of dust and to facilitate the distribution of the blanket material over the surface of the molten metal. To achieve this, the blanket material consists of a synthetic zeolite material, which contains essentially equal fractions of silicon oxide and aluminium oxide. Said blanket material comprises a close grain-size distribution, in such a way that less than 20% of the grains have a diameter of less than 30 pm or greater than 125 pm. According to an additional embodiment of the invention, a vegetable ash, in particular a rice chaff ash, can be added to the blanket material.
Full Text

Method for Treafipg Molten Metal
The invention relates to a method for treating molten metal that is contained in a metallurgical vessel, according to which a fine-grained blanket material containing silicon oxide and aluminium oxide is spread over the surface of the molten metal.
It is known practice to cover the surface of molten metal contained in metallurgical vessels with a layer of high-melting blanket material containing silicon oxide. This blanket serves, on the one hand, to protect the molten metal from being exposed to atmospheric gases (notably oxygen). On the other hand, the blanket provides effective heat insulation, thus slowing down the cooling process of the molten metal while it is being processed. Such blanketing processes are needed especially in foundries and steel mills, where they constitute the only means to effectively protect the molten metal by means of a blanket material that is applied to and spread over the surface of the melt.
It is generally known practice to use, for the above purposes, various finegrained, powdery blanket materials, such as perflte or waste soot. Furthermore, the use of grainy ash of vegetable origin, notably rice chaff ash, admixed with a cellulose broth as an organic binder in the granulation process, such as paper pulp or pulp, is known from the prior art. Graphite and slag are used as additional aggregate materials in prior art blanket materials. Prior art blanket materials may also contain, among others, synthetic resins and colloidal silicic acid as additional binders.

A disadvantage of prior art vegetable-ash-based blanket materials lies in that their production requires a relatively complex process to impart to them the physical properties required for the intended purpose. In addition, a number of aggregate materials are required, which, in sum, makes the blanket material known from the prior art too expensive for use in the steel industry on a regular basis.
A further disadvantage involved in the use of conventional powdery blanket materials resides in their relatively low melting temperature of only 1100°C to 1200°C. Due to their specific physical properties, the powders applied to the surface of the molten metal combine over time with the slag layer that floats on the surface as well. On the one hand, this leads to an undesirably significant increase in the amount of slag; on the other hand, the continuously deteriorating heat insulation causes the slag to harden as it cools down, which may clog up the melting vessels, so that extensive cleaning is required. Still another disadvantage of prior art blanket materials is their tendency to cake together to form a continuous layer on the surface of the molten metal and with the walls of the metallurgical vessels. The low melting temperature of prior art blanket materials has also the disadvantage of high material consumption.
A specific problem involved in blanketing molten metal in metallurgical vessels lies in that the prior art materials often lead to undesirable dust formation. Due to the extreme air convection in the space above the hot melt, even the smallest amounts of dust are dispersed into the environment in an uncontrollable manner.
Furthermore, the use of prior art materials for blanketing molten metal has a disadvantage in that these materials are often difficult to distribute on the surface of the molten metal Blanketing the surface evenly often calls for the use of sophisticated and thus cost-intensive distribution devices.
Based on the above, the present invention provides a method for blanketing the surface of molten metal that avoids the afore-mentioned disadvantages. A specific requirement is that the application of the blanket material to the surface of the molten metal should cause as little dust formation as possible. Moreover,

the blanket material used should have good heat insulation properties and be convenient to spread over the surface of the molten metal.
The invention meets this objective by using a method of the type mentioned above and a blanket material that consists of a synthetic zeolite material containing essentially equal fractions of silicon oxide and aluminium oxide, which blanket material has a close grain-size distribution with less than 20% of the grains measuring less than 30 \irn or more than 125 \im in diameter.
Persons skilled in the art know that zeolites are microporous crystals which are made up of aluminium silicate matrices. Due to their high porosity, these materials have excellent heat insulation properties. Moreover, their low density makes sure that the fine-grained blanket material cannot sink down or combine with the slag floating on the molten metal, so that the formation of incrustations on the metallurgical vessels are effectively avoided. Furthermore, the low specific weight of the synthetic zeolite material makes sure that the blanket layer is safely separated from the liquid phase of the molten metal.
An essential aspect of the method according to the invention is that the finegrained blanket material has the above mentioned close grain-size distribution. Owing to that close grain-size distribution, the powdery blanket material applied to the surface of the molten metal forms particularly large voids between the individual grains. These voids make for a further improvement in the heat insulation properties. Furthermore, a particular advantage lies also in the fact that the blanket material according to the invention shows excellent flow properties on the surface of the molten metal. Thus the blanket material spreads quasi by itself on the surface of the metal, so that there is no need for any kind of distribution devices. While the prior art blanket materials, after being applied to the surface of the molten metal, Initially form cones on the surface, which then need to be spread with the aid of suitable distribution devices, the blanket material according to the invention starts to spread by itself to form an even layer on the entire surface of the molten metal. This behaviour, which is extremely advantageous for the process covered by the invention, is primarily based on the close grain-size distribution of the synthetic zeolite material. The

flow characteristics of the blanket material are further improved, if these grains are essentially sphere-shaped and if their surface is as smooth as possible.
A blanket material suitable for the purpose of the invention is synthetic zeolite material, which is also known as equilibrium catalyst. It arises in large quantities as waste material from petrochemical processes. This zeolite material, which is used in the production of petrol from crude oil, can be made available at low cost for use in the process covered by the invention after undergoing a suitable conditioning treatment, if necessary. Here, a particular advantage lies in that large quantities of a waste material that would otherwise need to be disposed of in a complex process can be put to good use. To obtain the grain-size distribution required for the process covered by the invention, it may be necessary to suitably blend and/or classify the spent zeolite materials that arise in the chemical industry in different grain-sizes fractions.
Typical zeolite materials used in petrochemical applications consist of roughly equal fractions of aluminium oxide and silicon oxide. The other components usually contained in these materials do not affect the letter's suitability as melt blanket materials for the purpose of the invention. On the contrary, they are even advantageous for the process covered by the invention. If the ratio of aluminium oxide to silicon oxide is larger than one, there is an advantage in that such a blanket material has a particularly high melting temperature of approx, 1500°C. Another advantage is that, in the case of aluminium-killed steel melts, the silicon oxide cannot act as an oxygen source.
Practice has shown that the blanket material according to the invention may contain up to 1% each of titanium oxide, iron oxide, magnesium oxide and calcium oxide. These percentages do not significantly affect the use of the blanket material for the purpose contemplated by the invention.
The process according to the invention is particularly suitable for blanketing molten metal contained in a steel distributor or a steel casting ladle. In the case of a steel distributor (also known as tundish) or a steel casting ladle, where the molten metal remains for a relatively long time, effective heat insulation is an important requirement. In addition, in these vessels, the molten metal has a

large surface that needs to blanketed. For this reason, the zeolite material according to the invention is particularly suitable given fts excellent flow properties.
A further useful embodiment of the process according to the invention consists in applying the blanket powder to an intermediate layer of reactive calcium aluminate slag floating directly on the surface of the melt. In this two-layer blanket system, the reactive calcium aluminate slag serves to effectively protect the molten metal from being exposed to atmospheric gases. A further advantage of the calcium aluminate slag lies in that it plays a vital role in the pickup of undesirable non-metallic inclusions by the blanket layer from the melt. The synthetic zeolite material applied to the reactive slag ensures effective heat insulation.
According to the invention, a carbon source material, e.g. petroleum coke, may, where expedient, be added to the material used to blanket the molten metal in order to vary the melting properties of the blanket material. In this manner, petroleum coke, which is also a waste material from petrochemical processes, can be put to good use.
In practice, the blanket material can be applied particularly conveniently to the surface of the molten metal in plastic polymer bag portion packs. Due to the high temperatures in the area above the molten metal, which are well over 1000°Ct the plastic polymer bags burn instantly. Subsequently the blanket material spreads by itself over the surface of the molten metal owing to its good flow properties. In this process, dust formation is effectively prevented, due to the fact that the grains of the blanket material according to the invention has a grain-size of at least 30 (jm in diameter.
According to a useful further embodiment of the process according to the invention, the blanket material consists of up to 40% w/w of vegetable ash. A particularly suitable type of vegetable ash is the aforementioned rice chaff ash. The addition of vegetable ash has an advantage in that it further improves the insulating properties of the blanket powder. Moreover, vegetable ash is an

carbon source material, which has a positive effect on the melting properties of the slag.
A significant disadvantage of using pure vegetable ash lies in that the ash changes into a fibrous crystal phase (crystobalite) at high temperatures. These crystal fibres are respirable and may cause cancer. This disadvantage can be reliably avoided through the use of the blend of vegetable ash and synthetic zeolite material as covered by the invention. With that blend, the formation of crystobalite is significantly reduced.
In practice, the use of a blend containing at least 60% w/w of zeolite material and up to 40% w/w of vegetable ash has proved particularly suitable for blanketing molten metal, the preferred blend being approx. 80% w/w of zeolite material and approx. 20% w/w of rice chaff ash. Such a blend has the advantage of being almost neutral, while conventional blanket materials are acidic and tend to attack the linings of the metallurgical vessels overtime.
What is important in adding vegetable ash within the ranges mentioned above, is the fact that the excellent flow properties of the blanket material are ensured only if the grain-size distribution requirements according to the invention are observed.
An embodiment of the invention is discussed below:
The attached drawing shows a diagram of the grain-size distribution of a synthetic zeolite material that qualifies as a suitable blanket material according to the invention. In the diagram, the sum distribution (in %) is plotted against the grain diameters (in pm). It can be seen from the diagram that approximately 80% of the grains measure between 35 and 125 pm in diameter. The close grain-size distribution resulting from the diagram is responsible for the aforementioned beneficial properties of the blanket material according to the invention.

The following table shows the grain-size distribution of the zeolite material in terms of numbers:

As for the chemical composition, the blanket material of the above grain-size distribution has a silicon oxide content of approx. 45% and a marginally higher aluminium oxide content The specific weight of the material ranges from 0.8 and 0.9 g/cm3.





1. A method for treating molten metal contained in a metallurgical
vessel, according to which a fine-grained blanket material containing silicon
oxide and aluminium oxide is spread over the surface of the molten metal,
c h a racterized in that the blanket material is a synthetic zeolite
material which contains essentially equal fractions of silicon oxide and
aluminium oxide and which has a close grain-size distribution with less than
20% of the grains measuring less than 30 pm or more than 125 jjm in diameter
2. A method according to claim 1, characterized in that the grains of
the blanket material are essentially sphere-shaped.
3. A method according to claim 1 or 2, characterized in that the
blanket material, prior to being spread over the surface of the molten metal, is
blended and/or classified to obtain the desired grain-size distribution.
4. A method according to any of claims 1 through 3, characterized in
that the ratio of aluminium oxide to silicon oxide contained in the blanket
material is larger than or equal to one.
5. A method according to any of claims 1 through 4, characterized in
that the blanket material contains up to 1% each of titanium oxide, iron oxide,
magnesium oxide and calcium oxide.
6. A method according to any of claims 1 through 5, characterized in
that the molten metal is contained in a steel distributor or a steel casting ladle.

7. A method according to any of claims 1 through 6, characterized in
that the blanket powder is applied to an intermediate layer of reactive calcium
aluminate slag, which is in direct contact with the molten metal.
8. A method according to any of claims 1 through 7, characterized in
that a carbon source material, e.g. petroleum coke, is added to the blanket
material,
9. A method according to any of claims 1 through 8, characterized in
that the blanket material is applied to the surface of the molten metal in plastic
polymer bag portion packs.
10. A method according to any of claims 1 through 9f characterized in
that vegetable ash is added to the blanket material.
11. A method according to claim 10, characterized in that the blanket
material has a vegetable ash content of up to 40% w/w, preferably 20% w/w*
12. Use of a fine-grained material containing silicon oxide and
aluminium oxide for blanketing molten metal contained in a metallurgical vessel,
characterized in that the blanket material is a synthetic zeolite material which
contains essentially equal fractions of silicon oxide and aluminium oxide and
which has a close grain-size distribution with less than 20% of the grains
measuring less than 30 ym or more than 125 \m\ in diameter, the grains of the
blanket material being essentially sphere-shaped.
13. Use of a fine-grained material containing silicon oxide and
aluminium oxide for blanketing molten metal contained in a metallurgical vessel,
characterized in that the blanket material is a blend of
at least 60% w/w of synthetic zeolite material containing essentially equal fractions of silicon oxide and aluminium oxide, said zeolite having a close grain-size distribution with less than 20% of the grains measuring less than 30 |jm or more than 125 ^im in diameter, and
up to 40% w/w of vegetable ash.

14. Use according to claim 13, characterized in that the vegetable ash is rice chaff ash.
- Abstract -
Dated this 17 day of November 2006
(ARINDAM PAUL) Of De PENNING & De PENNING AGENT FOR THE APPLICANTS
Dated this 17 day of November 2006
(ARINDAM PAUL) Of De PENNING & De PENNING AGENT FOR THE APPLICANTS

Documents:

4242-CHENP-2006 AMENDED PAGES OF SPECIFICATION 13-09-2011.pdf

4242-CHENP-2006 AMENDED CLAIMS 13-09-2011.pdf

4242-CHENP-2006 EXAMINATION REPORT REPLY RECEIVED 13-09-2011.pdf

4242-CHENP-2006 FORM-3 02-11-2011.pdf

4242-CHENP-2006 FORM-3 13-09-2011.pdf

4242-CHENP-2006 POWER OF ATTORNEY 13-09-2011.pdf

4242-CHENP-2006 CORRESPONDENCE .OTHERS 02-11-2011.pdf

4242-CHENP-2006 CORRESPONDENCE OTHERS 08-04-2011.pdf

4242-CHENP-2006 CORRESPONDENCE OTHERS.pdf

4242-CHENP-2006 CORRESPONDENCE PO.pdf

4242-CHENP-2006 ENGLISH TRANSLATION 02-11-2011.pdf

4242-CHENP-2006 FORM-18.pdf

4242-chenp-2006-abstract.pdf

4242-chenp-2006-claims.pdf

4242-chenp-2006-correspondnece-others.pdf

4242-chenp-2006-description(complete).pdf

4242-chenp-2006-drawings.pdf

4242-chenp-2006-form 1.pdf

4242-chenp-2006-form 3.pdf

4242-chenp-2006-form 5.pdf

4242-chenp-2006-pct.pdf


Patent Number 249888
Indian Patent Application Number 4242/CHENP/2006
PG Journal Number 47/2011
Publication Date 25-Nov-2011
Grant Date 21-Nov-2011
Date of Filing 17-Nov-2006
Name of Patentee METAKON GMBH
Applicant Address KORNERSTRASSE 1, 44701 BOCHUM, GERMANY
Inventors:
# Inventor's Name Inventor's Address
1 NOACK, HANS-PETER LOWENZAHNWEG 42B, 44797 BOCHUM, GERMANY
PCT International Classification Number B22D 11/10
PCT International Application Number PCT/EP05/04948
PCT International Filing date 2005-05-06
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 PCT/EP04/05417 2004-05-19 Germany