Title of Invention | "HETEROCYCLIC INHIBITORS OF MEK AND METHODS OF USE THEREOF" |
---|---|
Abstract | Disclosed are compounds of the Formula (I) and pharmaceutically acceptable salts and prodrugs thereof, wherein Rl, R2, R7, R8 and R9, W, X and Y are as defined in the specification. Such compounds are MEK inhibitors and useful in the treatment of hyperproliferative diseases, such as cancer and inflammation, in mammals, and inflammatory conditions. Also disclosed are methods of using such compounds in the treatment of hyperproliferative diseases in mammals and pharmaceutical compositions containing such compounds. |
Full Text | HETEROCYCLIC INHIBITORS OF MEK AND METHODS OF USE THEREOF [0001] . This application claims benefit of U.S. Provisional Application Serial No. 60/523,270, filed November 19,2003, incorporated herein in its entirety by this reference. BACKGROUND OF THE INVENTION 1. Field of the Invention [0002] This invention relates to a series of novel heterocyclic compounds that are useful in the treatment of hyperproliferative diseases, such as cancer and inflammation, in mammals. This invention also relates to a method of using such compounds in the treatment of hyperproliferative diseases in mammals, especially humans, and to pharmaceutical compositions containing such compounds. 2. Description of the state of the art [0003] Cell signaling through growth factor receptors and protein kinases is an important regulator of cell growth, proliferation and differentiation, In normal cell growth, growth factors, through receptor activation (i.e. PDGF or EGF and others), activate MAP kinase pathways. One of the most important and most well understood MAP kinase pathways involved in normal and uncontrolled cell growth is the Ras/Raf Kinase pathway. Active GTP-bound Ras results in the activation and indirect phosphorylation of Raf kinase. Raf then phosphorylates MEK1 and 2 on two serine residues (S218 and S222 for MEK1 and S222and S226 for MEK2) (Ahn et al, Methods in Enzymology, 2001, 352, 417-431). Activated MEK then phosphorylates its only known substrates, the MAP kinases, ERK1 and 2. ERK phosphorylation by MEK occurs on Y204 and T202 for ERK1 and Y185 and T183 for ERK2 (Ahn et al, Methods in Enzymology, 2001, 332, 417-431). Phosphorylated ERK dimerizes and then translocates to the nucleus where it accumulates (Khokhlatchev et al, Cell, 1998, 93, 605-615). In the nucleus, ERK is involved in several important cellular functions, including but not limited to nuclear transport, signal transduction, DNA repair, nucleosome assembly and translocation, and mRNA processing and translation (Ahn et al, Molecular Cell, 2000, 6, 1343-1354). Overall, treatment of cells with growth factors leads to the activation of ERK1 and 2 which results in proliferation and, in some cases, differentiation (Lewis et al,Adv. Cancer Res., 1998, 74,49-139). [0004] In proliferative diseases, genetic mutations and/or overexpression of the grow factor receptors, downstream signaling proteins, or protein kinases involved in the ERK kinase pathway lead to uncontrolled cell proliferation and, eventually, tumor formation. For example, some cancers contain mutations which result in the continuous activation of this pathway due to continuous production of growth factors. Other mutations can lead to defects in the deactivation of the activated GTP-bound Ras complex, again resulting in activation of the MAP kinase pathway. Mutated, oncogenic forms of Ras are found in 50% of colon and >90% pancreatic cancers as well as many others types of cancers (Kohl et al, Science, 1993, 260, 1834-1837). Recently, bRaf mutations have been identified in more than 60% of malignant melanoma (Davies, H. et al. Nature, 2002, 417, 949-954). These mutations in bRaf result in a constitutively active MAP kinase cascade. Studies of primary tumor samples and cell lines have also shown constitutive or overactivation of the MAP kinase pathway in cancers of pancreas, colon, lung, ovary and kidney (Hoshino, R. et al., Oncogene, 1999,18, 813-822). Hence, there is a strong correlation between cancers and an overactive MAP kinase pathway resulting from genetic mutations. [0005] As constitutive or overactivation of MAP kinase cascade plays a pivotal role in cell proliferation and differentiation, inhibition of this pathway is believed to be beneficial in hyperproliferative diseases. MEK is a key player in this pathway as it is downstream of Ras and Raf. Additionally, it is an attractive therapeutic target because the only known substrates for MEK phosphorylation are the MAP kinases, ERK1 and 2. Inhibition of MEK has been shown to have potential therapeutic benefit in several studies. For example, small molecule MEK inhibitors have been shown to inhibit human tumor growth in nude mouse xenografts, (Sebolt-Leopold et al., Nature-Medicine, 1999, 5 (7), 810-816; Trachet et al., AACR April 6-10, 2O02, Poster #5426; Tecle, H., BBC 2nd International Conference of Protein Kinases, September 9-10, 2002), block static allodynia in animals (WO 01/05390 published January 25, 2001) and inhibit growth of acute myeloid leukemia cells (Milella et al., J. Clin. Invest., 2001,108 (6), 851-859). [0006] Small molecule inhibitors of MEK have been disclosed, including in U.S. Patent Publication Nos. 2003/0232869, 2004/0116710, and 2003/0216460, and U.S. Patent Application Serial Nos. 10/654,580 and 10/929,295, each of which is hereby incorporated by reference. At least fifteen additional patent applications have appeared in the last several years. See, for example: U.S. Patent No. 5,525,625; WO 98/43960; WO 99/8R21; WO 99/01426; WO 00/41505; WO 00/42002; WO 00/42003; WO 00/41994; WO 00/42022; WO 00/42029; WO 00/68201; WO 01/68619; WO 02/06213; WO 03/077914; and WO 03/077855. SUMMARY OF THE INVENTION [0007] This invention provides for novel heterocyclic compounds, and pharmaceutically acceptable salts and prodrugs thereof that are useful in the treatment of hyperproliferative diseases. Specifically, one embodiment of the present invention relates to compounds of Formulas I-V that act as MEIv inhibitors. [0008] Accordingly, the present invention provides compounds of the Formulas I- (Figure Removed) nd pharraaceutically accepted salts, prodrugs and solvates thereof, X is N or CR10; Y is NR3, O, S, S(O), S(O)2, C(O) or CH2; R1, R2, R8, and R9 are independently hydrogen, hydroxy, halogen, cyano, nitro, trifluoromethyl, difluoromethyl, fluoromethyl, fluoromethoxy, difluoromethoxy, trifluoromethoxy, azido, -SR11, -OR3, -C(O)R3, -C(O)OR3, -NR4C(O)OR6, -OC(O)R3, - NR4S02R6, -SO2NR3R4, -NR4C(O)R3, -C(O)NR3R4, -NR5C(O)NR3R4, - NR5C(NCN)NR3R4, -NR3R4, C1C10 alkyl, C2-C10 alkyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C3-C10 cycloalkylallcyl, -S(O)j(C1-C6 alkyl), -S(O)j(CR4R5)ra-aryl, aryl, arylalkyl, heteroaryl heteroarylalkyl, heterocyclyl, heterocyclylalkyl, -O(CR4R5)m-aryl, -NR4(CR4R5)m-aryl, -0(CR4R5)m-heteroaryl, -NR4(CR4R5)Tn-heteroaryl, -O(CR4R5)m-heterocyclyl or -NR4(CR4R5)m-heterocyclyl, wherein any of said alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl portions are optionally substituted with one or more groups independently selected from oxo (with the proviso that it is not substituted on an aryl or heteroaryl), halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NR4SO2R6, -SO2NR3R4, -C(O)R3, -C(O)OR3, -OC(O)R3, -NR4C(0)OR6, - NR4C(0)R3, -C(0)NR3R4, -NR3R4, -NR5C(O)NR3R4, -NR5C(NCN)NR3R4, -OR3, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl, and wherein said aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl rings may be further substituted with one or more groups selected from halogen, hydroxyl, cyano, nitro, azido, fluoromethyl, difluoromethyl, trifluoromethyl, C1-C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C3-C6 cycloalkyl, C3-C6 heterocycloalkyl, NR3R4 and OR3; [0013] R7 is hydrogen, trifluoromethyl, C1C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C3-C10 cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, or heterocyclylalkyl, wherein any of said alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl portions are optionally substituted with one or more groups independently selected from oxo (with the proviso that it is not substituted on an aryl or heteroaryl), halogen, cyano, nitro, trifluoromethyl, difluoromethyl, fluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NRUSO2R14, -SO2NRHR12, -C(O)RU, C(0)OR11, -OC(0)Rn, -NRUC(0)OR14, -NR1'C^R12, -C(O)NRUR12, -SRU, -S(O)R14, -S02R14, -NRUR12, -NRnC(0)NR12Ri3, -NRUC(NCN)NRI2RI3; -OR11, C1,-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl, and wherein said aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl rings may be further substituted with one or more groups selected from halogen, hydroxyl, cyano, nitro, azido, fluoromethyl, difluoromethyl, trifluoromethyl, Ci-C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C3-C6 cycloalkyl, C3-C6 heterocycloalkyl, NR3R4 and OR3; [0014] R3 is hydrogen, trifluoromethyl, C1-C10 alkyl, C2-C10 alkenyl, C2-C]0 alkynyl, C3-C10 cycloalkyl, C3-C10 cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, phosphate or an amino acid residue, wherein any of said alkyl, allcenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl portions are optionally substituted with one or more groups independently selected from oxo (with the proviso that it is not substituted on an aryl or heteroaryl), halogen, cyano, nitro, trifluoromethyl, difluo&methoxy, trifluoromethoxy, azido, -NRUSO2R14, -S02NRUR12, -C(O)Rn, C(O)ORU, -OC(0)Rn, -NRnC(O)OR14, -NRnC(O)R12, -C(0)NRUR12, -SR11, -S(O)R14, -SO2R14, -NRUR12, -NRUC(O)NR12R13, -NRUC(NCN)NR12R13S -OR11, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl, [0015] or R3 and R4 together with the atom to which they are attached form a 4 to 10 membered carbocyclic, heteroaryl or heterocyclic ring, wherein any of said carbocyclic, heteroaryl or heterocyclic rings are optionally substituted with one or more groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NRUSO2R14, -SO2NRUR12, -C(O)RU, C(O)ORU, -OC(O)RU, -NRnC(0)OR14, -NRHC(O)R12, -C(O)NRUR12, -SRU, -S(O)R14, -SO2R14, -NRUR12, -NRUC(O)NR12R13, -NRUC(NCN)NR12R13, -OR11, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; [0016] R4 and R5 independently are hydrogen or C1-C6 alkyl, or [0017] R4 and R5 together with the atom to which they are attached form a 4 to 10 membered carbocyclic, heteroaryl or heterocyclic ring, wherein said alkyl or any of said carbocyclic, heteroaryl and heterocyclic rings are optionally substituted with one or more groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NRUSO2R14, -SO2NRUR12, -C(O)RU, C(O)ORU, -OC(O)Rn, -NRUC(0)OR14, -NRHC(O)R12, -C(0)NR11R12, -SR11, -S(O)R14, -S02R14, -NRnR12, -NRUC(O)NR12R13, -NRUC(NCN)NR12R13, -OR11, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; [0018] R6 is trifluoromethyl, C1-C10 alkyl, C3~C10 cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl, wherein any of said alkyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl portions are optionally substituted with one or more groups independently selected from oxo (with the proviso that it is not substituted on an aryl or heteroaryl), halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NRUSO2R14, -SO2NRUR12, -C(0)Rn, C(0)ORn, -OC(O)RU, -NRUC(O)OR14, -NRUC(O)R12, -C(O)NRUR12, -SR11, -S(O)R14, -SO2R14, -NRHR12, -NRHC(O)NR12R13, -NRHC(NCN)MR12R13, -OR11, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; [0019] wherein in Formulae I and V, R10 is hydrogen, hydroxy, halogen, cyano, nitro**trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -SR11, -OR3, -C(O)R3, -C(O)OR3, -NR4C(O)OR6, -OC(0)R3, -NR4SO2R6, -S02NR3R4, -MR4C(O)R3, -C(O)NR3R4, -NR5C(O)NR3R4, -NR5C(NCN)NR3R4, -NR3R4, C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloaUcyl, C3-C10 cycloalkylalkyl, -S(O)j(d-C6 alkyl), -S(O)j(CR4R5)m-aryl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, -O(CR4R5)m-aryl, -NR4(CR4R5)m-aryl, -O(CR4R5)m-heteroaryl, -NR4(CR4R5)m-heteroaryl, -O(CR4R5)m-heterocyclyl or -NR4(CR4R5)m-heterocyclyl, wherein any of said alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl portions are optionally substituted with one or more groups independently selected from oxo (with the proviso that it is not substituted on an aryl or heteroaryl), halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NR4S02R6, -SO2NR3R4, -C(O)R3, -C(O)OR3, -OC(O)R3, -NR4C(O)OR6, -NR4C(O)R3, -C(0)NR3R4, -NR3R4, -NR5C(O)NR3R4, -NR5C(NCN)NR3R4, -OR3, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl, and wherein said aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl rings may be further substituted with one or more groups selected from halogen, hydroxyl, cyano, nitro, azido, fluoromethyl, difluoromethyl, trifluoromethyl, C1-C4 alkyl C2-C4 alkenyl, C2-C4 alkynyl, C3-C6 cycloalkyl, C3-C6 heterocycloalkyl, NR3R4 and OR3; [0020] and wherein in Formulae II and IV, each R10 is independently hydrogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -C(O)R3, -C(O)OR3, -SO2NR3R4T -C(O)NR3R4, d-C,0 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C3-C10 cycloalkylalkyl, -S(0)j(C1-C6 alkyl), -S(O)j(CR4R5)m-aryl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl, wherein any of said alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl portions are optionally substituted with one or more groups independently selected from oxo (with the proviso that it is not substituted on an aryl or heteroaryl), halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NR4SO2R6, -SO2NR3R4, -C(O)R3, -C(O)OR3, -OC(O)R3, -NR4C(O)OR6, -NR4C(O)R3, -C(0)NR3R4, -KR3R4, -NR5C(O)NR3R4, -NR5C(NCN)MR3R4, -OR3, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl, and wherein said aryl, Jheteroaryl, arylalkyl, heteroarylalkyl, heterocyelyl or heterocyclylalkyl rings may be further substituted with one or more groups selected from halogen, hydroxyl, cyano, nitro, azido, fmoromethyl, difluoromethyl, trifluoromethyl, C1-C4 alkyl, C2-C4 alkenyl, C2-C4 allcynyl, C3-C6 cycloalkyl, C3-C6 heterocycloalkyl, NR3R4 and OR3; [0021] R11, R12 and R13 independently are hydrogen, lower alkyl, lower alkenyl, aryl and arylalkyl, and RH is lower alkyl, lower alkenyl, aryl and arylalkyl; [0022] or any two of R11, R12, R13 or R14 together with the atom to which they are attached form a 4 to 10 membered carbocyclic, heteroaryl or heterocyclic ring, wherein any of said alkyl, alkenyl, aryl, arylalkyl carbocyclic rings, heteroaryl rings or heterocyclic rings are optionally substituted with one or more groups independently selected from halogen, cyano, nitro, trifluoromethyl, difiuoromethoxy, trifluoroniethoxy, azido, aryl, heteroaryl. arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; [0023] W is heteroaryl, heterocyclyl, -C(O)OR3, -C(O)NR3R4, -C(O)NR4OR3, -C(O)R4OR3, -C(0)NR4S02R3, -C(O)(C3-C10 cycloalkyl), -C(O)(CrCIO alkyl), -C(O)(aryl), -C(O)(heteroaryl), -C(O)(heterocyclyl) or CR3OR3 wherein any of said heteroaryl, heterocyclyl, -C(O)OR3, -C(O)NR3R*, -C(O)NR4OR3, -C(O)R4OR3, -C(O)NR4SO2R3, -C(O)(C3-Cio cycloalkyl), -C(O)(d-C10 alkyl), -C(O)(aryl), -C(O)(heteroaryl), -C(O)(heterocyclyl) and CR3OR3 are optionally substituted with one or more groups independently selected from halogen, cyano, nitro, azido, -NR3R4. -OR3, C\-Cio alkyl, C2-Cio alkenyl, C2-Cio alkynyl., cycloalJcyl and heterocycloalkyl, wherein any of said Ci-Cio alkyl, Cs-Cio alkenyl, Cj-Cio alkynyl, cycloalkyl and heterocycloalkyl are optionally substituted with 1 or more groups independently selected from -NR'"R4 and -OR3; [0024] m is 0, 1, 2,3, 4 or 5; and [0025] j is 0,1 or 2, [0026] hi a further aspect, the present invention provides compositions that inhibit MEK comprising one or more compounds of Formulas I-V. [0027] The invention is also directed to pharmaceutically acceptable prodrugs, pharmaceutically active metabolites, and pharmaceutically acceptable salts of compounds of Formula I-V. Methods of making the compounds of Formula I-V are also described. [0028] In a further aspect the present invention provides a method of using the compounds of this invention as a medicament to treat diseases or medical conditions vJ meocated by MEK. For example, this invention provides a method for treatment of a hyperproliferative disorder or an inflammatory condition in a mammal comprising administrating to said mammal one or more compounds of Formulas I-V or a pharmaceutically acceptable salt or prodrug thereof in an amount effective to treat said hyperproliferative disorder. [0029] In a further aspect the present invention provides treating or preventing an MEK-mediated condition, comprising administering to a human or animal in need thereof a pharmaceutical composition comprising a compound of Formula I-V or a pharmaceutically-acceptable salt or in vivo cleavable prodrug thereof in an amount effective to treat or prevent said MEK-mediated condition. [0030] The inventive compounds may further be used advantageously in combination with other known therapeutic agents. [0031] The invention also relates to pharmaceutical compositions that inhibit MEK, comprising an effective amount of a compound selected from compounds of Formulas I-V or pharmaceutically acceptable prodrugs, pharmaceutically active metabolites, or pharmaceutically acceptable salts thereof. [0032] An additional aspect of the invention is the use of a compound of Formula I, Formula II, Formula III, Formula IV or Formula V La the preparation of a medicament for the treatment or prevention of a disease or medical condition mediated by MEK in a warm-blooded animal, preferably a mammal, more preferably a human, suffering from such disorder. More particularly, the invention includes the use of a compound of the invention in the preparation of a medicament for the treatment or prevention of a hyperproliferative disorder or an inflammatory condition in a mammal. [0033] Additional advantages and novel features of this invention shall be set forth in part in the description that follows, and in part will become apparent to those skilled in the art upon examination of the following specification or may be learned by the practice of the invention. The advantages of the invention may be realized and attained by means of the instrumentalities, combinations, compositions, and methods particularly pointed out in the appended claims. BRIEF DESCRIPTION OF THE FIGURES [0034f* The accompanying drawings, which are incorporated herein and form a part of the specification, illustrate non-limiting embodiments of the present invention, and together with the description, serve to explain the principles of the invention. In the Figures: [0035] Figure 1 shows a reaction scheme for the synthesis of compounds 5-7. [0036] Figure 2 shows a reaction scheme for the synthesis of compounds 7 and 11. [0037] Figure 3 shows a reaction scheme for the synthesis of compounds 14 and 15. [0038] Figure 4 shows a reaction scheme for the synthesis of compound 16. [0039] Figure 5 shows a reaction scheme for the synthesis of compounds 18-23. [0040] Figure 6 shows a reaction scheme for the synthesis of compounds 25-27'. [0041] Figure 7 shows a reaction scheme for the synthesis of compound 3 3. [0042] Figure 8 shows a reaction scheme for the synthesis of compounds 34-36. [0043] Figure 9 shows a reaction scheme for the synthesis of compound 40. [0044] Figure 10 shows a reaction scheme for the synthesis of compounds 42-46. [0045] Figure 11 shows a reaction scheme for the synthesis of compound 47. [0046] Figure 12 shows a reaction scheme for the synthesis of compound 48. [0047] Figure 13 shows a reaction scheme for the synthesis of compound 49. [0048] Figure 14 shows a reaction scheme for the synthesis of compound 51. [0049] Figure 15 shows a reaction scheme for the synthesis of compounds 54-57. [0050] Figure 16 shows a reaction scheme for the synthesis of compounds 54 and 56. [0051] Figure 17 shows a reaction scheme for an alternate synthesis of compounds 54-57. [0052] Figure 18 shows a reaction scheme for the synthesis of compounds 54 and 60. [0053] Figure 19 shows a reaction scheme for the synthesis of compounds 62-64. [0054] Figure 20 shows a reaction scheme for the synthesis of compound 63. [0055] Figure 21 shows a reaction scheme for the synthesis of compounds 61 and 66. [0056] Figure 22 shows a reaction scheme for an alternate synthesis of compound 61. [0057] Figure 23 shows a reaction scheme for the synthesis of compound 65. [0058] Figure 24 shows a reaction scheme for the synthesis of compounds 65 and 70. [0059] Figure 25 shows a reaction scheme for an alternate synthesis of compound 65. [0060] Figure 26 shows a reaction scheme for an alternate synthesis of compound 65. [0061], Figure 27 shows a reaction scheme for an alternate synthesis of compound 65. (0062] Figure 28 shows a reaction scheme for an alternate synthesis of compound 61. [0063] Figure 29 shows a reaction scheme for the synthesis of compound 80. [0064] Figure 30 shows a reaction scheme for the synthesis of compounds 81 and 82. [0065] Figure 31 shows a reaction scheme for the synthesis of compounds 83 and 84. [0066] Figure 32 shows a reaction scheme for the synthesis of compound 85. [0067] Figure 33 shows a reaction scheme for the synthesis of compounds 86-91. [0068] Figure 34 shows a reaction scheme for the synthesis of compounds 92 and 93. DETAILED DESCRIPTION OF THE INVENTION [0069] The inventive compounds of the Formulas I-V and the pharmaceutically acceptable salts and prodrugs thereof of this invention are useful in the treatment of hyperproliferative diseases. Specifically, one aspect the present invention relates to compounds of Formula I-V that act as MEK inhibitors. In general, one aspect of the invention relates to compounds having the general Formula I: [0070] and pharmaceutically accepted salts, prodrugs and solvates thereof, where: [0071] X is N or CR10; [0072] Y is NR3, O, S, S(0), S(O)2, C(O) or CH2; [0073] R1, R:, Rs, R9 and R10 are independently hydrogen, hydroxy. halogen, cyano, nitro, trifluoromethyl, difluoromethyl, fluoromethyl, fluoromethoxy, difluoromethoxy, trifluoromethoxy, azido, -SR11, -OR3, -C(O)R3, -C(O)OR3, -NR4C(0)OR6, -OC(0)R3, -NR4S02R6, -SO2NR3R4, -NR4C(O)R3, -C(O)NR3R4, -NR5C(0)NR3R4, -NR5C(NCN)NR3R4, -NR3R4, Ci-Qo alkyl, C2-Ci0 alkenyl, C2-Cio alkynyl, C3-C10 cycloallcyl, C3-Cio cycloalkylalkyl, -S(0)j(Ci-C6 alkyl), -S(O),(CR4R5)m-aryl, aryl, arylalkyl. heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylaUcyl, -O(CR4R5)m-aryl, -NR4(CR4R5)m-aryl, -O(CR4R5)m-heteroaryl, -NR4(CR4R5)m-heteroaryl, -O(CR4R5)m-heterocyclyl or -NR4(CR4R5)m-heterocyclyl, wherein any of said alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and hetSkocyclylalkyl portions are optionally substituted with one or more groups independently selected from oxo (with the proviso that it is not substituted on. an aryl or heteroaryl), halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NR4S02R6, -SO2NR3R4, -C(0)R3, -C(O)OR3, -OC(O)R3, -NR4C(O)OR6J - NR4C(0)R3, -C(0)NR3R4, -NR3R4, -NR5C(0)NR3R4, -NR5C(NCN)NR3R4, -OR3, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl, and wherein said aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl rings may be further substituted with one or more groups selected from halogen, hydroxyl, cyano, nitro, azido, fluoromethyl, difluoromethyl, trifluoromethyl, Ci-C4 aLkyl, €2-04 alkenyl, C2-C4 alkynyl, G3-C6 cycloalkyl, C3-C6 heterocycloalkyl, NR3R4 and OR3; [0074] R7 is hydrogen, trifluoromethyl, Ci-Cio alkyl, C2-Ci0 alkerxyl, C2-Cio alkynyl, C3-Cio cycloalkyl, Cs-Cio cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, or heterocyclylalkyl, wherein any of said alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl portions are optionally substituted with one or more groups independently selected from oxo (with the proviso that it is not substituted on an aryl or heteroaryl), halogen, cyano, nitro, trifluoromethyl, difluoromethyl, fluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NRUSO2R14, -SO2NRUR12, -C(O)Rn, C(O)ORU, -OC(0)R11, -NRHC(0)OR14, -NRHC(O)R12, -C(0)NRUR12, -SR11, -S(O)R14, -S02R14, -NRUR12, -NRUC(0)NR12R13, -NRUC(NCN)NR12R13, -OR11, Ci-Clo alkyl, C2-Cio alkenyl, C2-Ci0 alkynyl, C3-Ci0 cycloalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl, and wherein said aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl rings may be further substituted with one or more groups selected from halogen, hydroxyl, cyano, nitro, azido, fluoromethyl, difluoromethyl, trifluoromethyl, Ci-C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C3-Ce cycloalkyl, C3-C6 heterocycloalkyl, NR3R4 and OR3; [0075] R3 is hydrogen, trifluoromethyl, Ci-Cio alkyl, C2-Cio alkenyl, C2-Cio alkynyl, C3-Cio cycloalkyl, C3-Cio cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, phosphate or an amino acid residue, wherein any of said alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl portions are optionally substituted with one or more groups independently selected from oxo (with the proviso that it is not substituted on an aryl or heteroaryl), halogen, cyano, nitro, trifluoromethyl, difmoromethoxy, trifluoromethoxy, azido, -NR11S02R14) -SO2NRUR12, -C(O)RH, C(O)ORU, -OC(O)Rn, -NRUC(O)OR14, -NR11C(O)R12, -C(O)NR.nR12, -SR11, -S(0)R14, -SO2R14, -NRHR12, -NRHC(O)NR12R13, -NRUC(NCN)NR12R13, -OR11, aryl, heteroaryl, arylalkyl, heteroarylallcyl, heterocyclyl, and heterocyclylalkyl, [0076] or R3 and R4 togetlier with the atom to which they are attached form a 4 to 10 membered carbocyclic, heteroaryl or heterocyclic ring, wherein any of said carbocyclic, heteroaryl or heterocyclic rings are optionally substituted with one or more groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NR'^SC^R14, -SOoNR1^12, -C(O)RU, C(O)ORH, -OC(O)RU, -NRHC(O)ORM, -NRUC(O)R12, -C(0)NRUR12, -SR11, -S(O)R14, -SO2R14, -NRUR12, -NRUC(O)NR12R13, -NRUC(NCN)NRI2R13, -OR.11, aryl, heteroaryl, arylalkyl, heteroarylallcyl, heterocyclyl, and heterocyclylalkyl; [0077] R4 and R5 independently are hydrogen or Ci-Ce alkyl, or [0078] R4 and R5 together with the atom to which they are attached form a 4 to 10 membered carbocyclic, heteroaryl or heterocyclic ring, wherein said alkyl or any of said carbocyclic, heteroaryl and heterocyclic rings are optionally substituted with one or more groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NRUS02R:4, -SO2NR'R12, -C(O)Rn, C(0)OR", -OC(O)RU, -NRUC(0)OR14, -NRUC(O)R12, -C(O)NRHR12, -SR11, -S(O)R14, -S02R14, -NRUR12, -NRUC(0)NR12R13, -NRUC(NCN)NR12R13, -OR11, aryl, heteroaryl, arylalkyl, heteroarylallcyl, heterocyclyl, and heterocyclylalkyl; [0079] R6 is trifluoromethyl, Ci-Cio alkyl, C3-CJO cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl, wherein any of said alkyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl," heterocyclyl and heterocyclylalkyl portions are optionally substituted with one or more groups independently selected from oxo (with the proviso that it is not substituted on an aryl or heteroaryl), halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NRHSO2R14, -SO2NRUR12, -C(O)RU, C(O)ORn, -OC(O)RU, -NR:1C(O)OR14, -NRUC(O)R12, -C(0)NRHR12, -SR11, -S(0)R14, -SO2R14, -NRUR!2, -NRUC(O)NR12R13, -NRUC(NCN)NR12R13, -OR11, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; [OOfO] Rn, R12 and R13 independently are hydrogen, lower alkyl, lower alkenyl, aryl and arylalkyl, and R14 is lower alkyl, lower alkenyl, aryl and arylalkyl; [0081] or any two of R11, R12, R13 or R14 together with the atom to which they are attached form a 4 to 10 membered carbocyclic, heteroaryl or heterocyclic ring, wherein any of said alkyl, alkenyl, aryl, arylalkyl carbocyclic rings, heteroaryl rings or heterocyclic rings are optionally substituted with one or more groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; [0082] W is heteroaryl, heterocyclyl, -C(O)OR3, -C(O)NR3R4, -C(O)NR4OR3, -C(0)R4OR3, -C(0)NR4S02R3, -C(O)(C3-Ci0 cycloalkyl), -C(O)(CrC10 alkyl), - C(O)(aryl), -C(O)(heteroaryl), -C(O)(heterocyclyl) or CR3OR3 wherein any of said heteroaryl, heterocyclyl, -C(O)OR3, -C(O)NR3R4, -C(O)NR4OR3, -C(O)R4OR3, -C(0)NR4S02R3, -C(O)(C3-Cio cycloalkyl), -C(O)(CrC10 alkyl), -C(O)(aryl), - C(O)(heteroaryl), -C(O)(heterocyclyl) and CR3OR3 are optionally substituted with one or more groups independently selected from halogen, cyano, nitro, azido, -NR3R45 -OR3, Q- CIQ alkyl, C2-Qo alkenyl, Ca-Qo alkynyl, cycloalkyl and heterocycloalkyl, wherein any of said Ci-Cio alkyl, C2-Cio alkenyl, Ca-Cio alkynyl, cycloalkyl and heterocycloalkyl are optionally substituted with 1 or more groups independently selected from -NR3R4 and - OR3; [0083] m is 0, 1,2, 3, 4 or 5; and [0084] j is 0, 1 or 2. [0085] hi one embodiment, W is selected from (Figure Removed) [0086] Figures 1-3, 6, 7 and 10-14 show non- limiting examples of the synthesis of compounds of this invention having the general Formula I. [0087] hi addition to compounds of the general Formula I, this invention further includes compounds of the general Formula IT. (Figure Removed) [0088] and pharmaceutically accepted salts, prodrugs and solvates thereof, where: [0089] where R1, R2, R8 and R9 are independently hydrogen, halogen, cyano, nirro, trifluoromethyl, difluoromethyl, fluoromethyl, fluoromethoxy, difluoromethoxy, trifluorornethoxy, azido, -SR11, -OR3, -C(O)R3, -C(O)OR3, -NR4C(O)OR6, -OC(O)R3, - NR4SO2R6, -SO2NR3R4, -NR4C(O)R3, -C(O)NR3R4, -NR5C(0)NR3R4, NR5C(NCN)NR3R4, -NR3R4, C,-C10 alkyl, C2-C10 alkenyl, C2-Ci0 alkynyl, C3-C10 cycloalkyl, C3-Ci0 cycloalkylalkyl, -S(O),-(Ci-C6 alkyl), -S(O)j(CR4R5)m-aryl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, -O(CR4R:>)m-aryl, -NR4(CR4R5)m-aryl, -O(CR4R5)m-heteroaryl, -NR4(CR4R5)m-heteroaryl, -0(CR4R5)m-heterocyclyl or -NR4(CR4R5)m-heterocyclyl, wherein any of said alkyl, alkenyl, alkynyt, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl portions are optionally substituted with one or more groups independently selected from oxo (with the proviso that it is not substituted on an aryl or heteroaryl), halogen, cyano, nirro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NR4S02R6, -SO2NR3R4, -C(O)R3, -C(O)OR3, -OC(0)R3, -NR4C(O)OR6, - NR4C(0)R3, -C(0)NR3R4, -NR3R4, -NR5C(O)NR3R4, -NR5C(NCN)NR3R4, -OR3, aryl, heteroaryl, arylallcyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl, and wherein said aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl rings may be further substituted with one or more groups selected from halogen, hydroxyl, cyano, nitro, azido, fluoromethyl, difluoromethyl, trifluoromethyl, Ci-C4 alkyl, Ci-C* alkenyl, C2-C4 alkynyl, C3-C6 cycloalkyl, C3-C6 heterocycloalkyl, NR3R4 and OR3; [0090] R7 is hydrogen, trifluoromethyl, d-Cio alkyl, C2-Cio alkenyl, C2-C10 alkynyl, C3-Cio cycloalkyl, C3-Cio cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, or heterocyclylalkyl, wherein any of said alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl portions are optionally substituted with one or more groups independently selected from oxo (with the proviso that it is not substituted on an aryl or heteroaryl), halogen, cyano, nitro, trifluoromethyl, difluoromethyl, fluoromethyl, difiuoromethoxy, trifluoromethoxy, azido, -NRnSO2R14, -SO2NRUR12, -C(0)RU, C(0)ORH, -OC(0)RU, -NRHC(0)OR14, -NRnC(0)R12, -C(O)NRnR12, -SR11, -S(O)R14, -SO2R14, -NRHR12, -NRnC(0)NR12R13, -NRUC(NCN)NR12R13, -OR11, d-C10 alkyl, C2-C10 alkenyl, C2-Cio alkynyl, C3-Cio cycloalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl, and wherein said aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl rings may be further substituted with one or more groups selected from halogen, hydroxyl, cyano, nitro, azido, fluoromethyl, difluoromethyl, trifluoromethyl, Ci-C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C3-C6 cycloalkyl, C3-C6 heterocycloalkyl, NR3R4 and OR3; [0091] each R10 is independently hydrogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -C(O)R3, -C(O)OR3, -SO2NR3R4, -C(0)NR3R4, Ci-Cio alkyl, C2-Cio alkenyl, C2-Cio aUcynyl, C3-Cio cycloalkyl, C3-Cio cycloalkylalkyl, -S(O)j(Ci-C6 alkyl), -S(O)j(CR4R5)m-aryl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl, wherein any of said alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl portions are optionally substituted with one or more groups independently selected from oxo (with the proviso that it is not substituted on an aryl or heteroaryl), halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NR4S02R6, -SO2NR3R4, -C(O)R3, -C(O)OR3, -OC(O)R3, -NR4C(O)OR6, - NR4C(0)R3, -C(O)NR3R4, -NR3R4, -NR5C(O)NR3R4, -NR5C(NCN)NR3R4, -OR3, aryl, heteroaryl, arylalkyl, heteroarylallcyl, heterocyclyl, and heterocyclylalkyl, and wherein said aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl rings may be further substituted with one or more groups selected from halogen, hydroxyl, cyano, nitro, azido, fluoromethyl, difluoromethyl, trifluoromethyl, €[-€4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C3-C6 cycloalkyl, C3-C6 heterocycloalkyl, NR3R4 and OR3; [0092] R3 is hydrogen, trifluoromethyl, Cj-Cio alkyl, C2-Cio alkenyl, C2-Ci0 alkynyl, Ca-Cio cycloalkyl, C3-Cio cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, phosphate or an amino acid residue, wherein any of said alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, hetercwrylalkyl, heterocyclyl and heterocyclylalkyl portions are optionally substituted with one or more groups independently selected from oxo (with the proviso that it is not substituted on an aryl or heteroaryl), halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluorornethoxy, azido, -NRnSO2R14, -S02NRHR12, -C(0)RU, C(O)ORU, -OC(O)Rn, -NRUC(0)OR14, -NRUC(O)R12, -C(O)NRnR12, -SR11, -S(0)R14, -S02R14, -NRUR12, -NRnC(O)Ml12R13, -NRUC(NCN)NR12R13, -OR11, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl, [0093] or R3 and R4 together with the atom to which they are attached form a 4 to 10 membered carbocyclic, heteroaryl or heterocyclic ring, wherein any of said carbocyclic, heteroaryl or heterocyclic rings are optionally substituted with one or more groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluorornethoxy, azido, -NRUSO2R14, -SO2NRUR12, -C(0)Rn, C(0)ORn, -OC(0)Rn, -NRUC(0)OR14, -NRUC(O)R12, -C(O)NRUR12, -SR11, -S(0)R14, -SO2R14, -NRHR12, -NRUC(O)NR12R13, -NR11C(NCN)NR12R13, -OR11, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; [0094] R4 and R5 independently are hydrogen or Ci-C6 alkyl, or [0095] R4 and R3 together with the atom to which they are attached form a 4 to 10 ' > membered carbocyclic, heteroaryl or heterocyclic ring, wherein said alkyl or any of said carbocyclic, heteroaryl and heterocyclic rings are optionally substituted with one or more groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluorornethoxy, azido, -NRUSO2R14, -SO2NRUR12, -C(0)RU,. C(O)ORn, -OC(0)Rn, -NRHC(0)OR14, -NRUC(O)R12, -C(O)NRUR12, -SR11, -S(O)R14, -SO2R14, -NRnR12, -NRUC(O)NR12R13, -NRHC(NCN)NR12R13, -OR11, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; [0096] R6 is trifluoromethyl, Ci-Ci0 alkyl, C3-Cio cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl, wherein any of said alkyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl portions are optionally substituted with one or more groups independently selected from oxo (with the proviso that it is not substituted on an aryl or heteroaryl), halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluorornethoxy, azido, -NRUSO2R14, -S02NR11R12, -C(O)RU, C(O)ORn, -OC(O)RU, -NRUC(O)OR14, -NRnC(O)R12, -C(0)NR11R12, -SR11, -S(0)R14, -SO2R14, -NRUR12, -NRHC(O)NR12R13, - NRUC(NCN)NR12R13, -OR11, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, andlieterocyclylalkyl; [0097] R11, R12 and R13 independently are hydrogen, lower alkyl, lower alkenyl, aryl and arylalkyl, and R14 is lower alkyl, lower alkenyl, aryl and arylalkyl; [0098] or any two of R11, R12, R13 or R14 together with the atom to which they are attached form a 4 to 10 membered carbocyclic, heteroaryl or heterocyclic ring, wherein any of said alkyl, alkenyl, aryl, arylalkyl carbocyclic rings, heteroaryl rings or heterocyclic rings are optionally substituted with one or more groups independently selected from halogen, cyano, nitro, tnfluoromethyl, difluoromethoxy, trifluoromethoxy, azido, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; [0099] mis 0,1, 2, 3, 4 or 5; [00100] n is 1 or 2; and [00101] j is 0,1 or 2. [00102] Figure 5 shows non-limiting examples of the synthesis of compounds of this invention having the general Formula II. [00103] In another embodiment, this invention relates to compounds of the general Formula HI: Figure Removed) [00104] and pharmaceutically accepted salts, prodrugs and solvates thereof, where: [00105] R1, R2, R8 and each R9 are independently hydrogen, halogen, cyano, nitro, tnfluoromethyl, difiuoromethyl, fluoromethyl, fluoromethoxy, difluoromethoxy, trifluoromethoxy, azido, -SR11, -OR3, -C(O)R3, -C(O)OR3, -NR4C(O)OR6, -OC(O)R3, - NR4S02R6, -S02NR3R4, -NR4C(O)R3,-C(0)NR3R4, NR5C(NCN)NR3R4, -NR3R4, Ci-Qo alkyl, C2-Cio alkenyl, C2-Ci0 alkynvl, C3-C10 cycloalkyl, C3-Ci0 cycloalkylaUcyl, -S(O)j(Ci-C6 alkyl), -S(O)j(CR4R5)m-aryl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, -O(CR4R5)m-aryl, -NR4(CR4R5)m-arylJ -O(CR4R5)m-heteroaryl, -NR.4(CR4R5)m-heteroaryl, -0(dR4R5)m-heterocyclyl or -NR4(CR4R5)m-heterocyclyl, wherein any of said alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylallcyl portions are optionally substituted with one or more groups independently selected from oxo (with the proviso that it is not substituted on an aryl or heteroaryl), halogen, cyano, nitro, trifluoromethyl, difiuoromethoxy, trifluoromethoxy, azido, -NR4S02R6, -SO2NR3R4, -C(O)R3, -C(0)OR3, -OC(O)R3, -NR4C(O)OR6, - NR4C(O)R3, -C(O)NR3R4, -NR3R4, -NR5C(O)NR3R4, -NR5C(NCN)NR3R4, -OR3, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl, and wherein said aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl or heterocyclylallcyl rings may be further substituted with one or more groups selected from halogen, hydroxyl, cyano, nitro, azido, fluoromethyl, difluoromethyl, trifluoromethyl, Ci-C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C3-C6 cycloalkyl, C3-C6 heterocycloalkyl, NR3R4 and OR3; [00106] R7 is hydrogen, trifluoromethyl, Q-Cio alkyl, C2-Ci0 alkenyl, C2-Ci0 alkynyl, Cs-Cio cycloalkyl, Cs-Cio cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, or heterocyclylallcyl, wherein any of said alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl portions are optionally substituted with one or more groups independently selected from oxo (with the proviso that it is not substituted on an aryl or heteroaryl), halogen, cyano, nitro, trifluoromethyl, difluoromethyl, fluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NRUSO2R14, -SO2NRUR12, -C(O)RU, C(O)ORn, -OC(O)RU, -NRnC(O)OR14, -NRUC(O)R12, -C(O)NRUR12, -SR11, -S(O)R14, -S02R14, -NRUR12, -NRUC(O)NR12R13, -NRUC(NCN)NR12R13, -OR11, Ci-C10 alkyl, C2-Cio alkenyl, C2-Cio alkynyl, Ca-Cio cycloalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylallcyl, and wherein said aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl rings may be further substituted with one or more groups selected from halogen, hydroxyl, cyano, nitro, azido, fluoromethyl, difluoromethyl, trifluoromethyl, Ci-C4 allcyl, C2-C4 alkenyl, C2-C4 alkynyl, Ca-Ce cycloalkyl, C3-C6 heterocycloalkyl, NR3R4 and OR3; [00107] R3 is hydrogen, trifluoromethyl, Ci-Cio alkyl, C2-Ci0 alkenyl, C2-Ci0 alkynyl, Ca-Cio cycloalkyl, Cs-Cio cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, phosphate or an amino acid residue,wherein any of said alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl portions are optionally substituted with one or more groups independently selected from oxo (with the proviso that it is not substituted on an aryl or heteroaryl), halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NRnSO2R14, -S02NR11R12, -C(O)RU, C(0)ORU, -OC(0)RU, -NRUC(0)OR14, -NRnC(O)R12, -C(O)NRnR12, -SR11, -S(O)R14, -SO2R14, -NRUR12, -NRUC(O)NR12R13, -NRUC(NCN)NR12R13, -OR11, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl, [00108] or R3 and R4 together with the atom to which they are attached form a 4 to 10 membered carbocyclic, heteroaryl or heterocyclic ring, wherein any of said carbocyclic, heteroaryl or heterocyclic rings are optionally substituted with one or more groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NRUSO2R14, -S02NRUR12, -C(O)RU, C(O)ORU, -OC(O)R11, -NRUC(O)OR14, -NR11C(O)R12, -C(O)NRUR12, -SR11, -S(O)R14, -S02R14, -NRUR12, -NRUC(O)NRI2R13, -NRnC(NCK)NR12R13, -OR11, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; [00109] R4 and R5 independently are hydrogen or Ci-Ce alkyl, or [00110] R4 and R5 together with the atom to which they are attached form a 4 to 10 membered carbocyclic, heteroaryl or heterocyclic ring, wherein said alkyl or any of said carbocyclic, heteroaryl and heterocyclic rings are optionally substituted with one or more groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NRnSO2R14, -SO2NR11R12! -C(O)Rn, C(O)ORH, -OC(0)Rn, -NRUC(0)OR14, -NRUC(O)R12, -C(O)NRnR12, -SR11, -S(0)R14, -S02R14, -NRUR12, -NRUC(0)NR12R13, -NRUC(NCN)NR12R13, -OR11, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; [00111] R6 is trifluoromethyl, Q-Cio alkyl, C3-Cio cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl, wherein any of said alkyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl portions are optionally substituted with one or more groups independently selected from oxo (with the proviso that it is not substituted on an aryl or heteroaryl), halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NRHS02R14, -S02NRUR12, -C(0)RU, C(0)ORU, -OC(O)Rn, -NRnC(O)OR14, -NRUC(0)R12, -C(0)NRnR12, -SR11, -S(0)R14, -SO2R14, -NRUR12, -NRUC(O)NR12R13, - NR%(NCN)NR12R13, -OR11, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; [00112] R11, R12 and R13 independently are hydrogen, lower alkyl, lower alkenyl, aryl and arylalkyl, and [00113] R14 is lower alkyl, lower alkenyl, aryl and arylalkyl; [00114] or any two of Ru, R12, R13 or R14 together with the atom to which they are attached form a 4 to 10 membered carbocyclic, heteroaryl or heterocyclic ring, wherein any of said alkyl, alkenyl, aryl, arylalkyl carbocyclic rings, heteroaryl rings or heterocyclic rings are optionally substituted with one or more groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, aryl, heteroaryl, arylallcyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; [00115] mis 0,1, 2, 3,4 or 5; and [00116] j is 0,1 or 2. [00117] Figures 8 and 9 show non-limiting examples of the synthesis of compounds of this invention having the general Formula III. [00118] In another embodiment, this invention relates to compounds of the general Formula IV: (Figure Removed) 0119] and pharmaceutically accepted salts, prodrugs and solvates thereof, where: [00120] R1, R2, R8 and R9 are independently hydrogen, halogen, cyano, nitro, trifluoromethyl, difluoromethyl, fluoromethyl, fluoromethoxy, difluoromethoxy, trifluoromethoxy, azido, -SR11, -OR3, -C(O)R3, -C(O)OR3, -NR4C(O)OR6, -OC(O)R3, -NR4SO2R6, -SO:NR3R4, -NR4C(0)R3, -C(O)NR3R4, -NR5C(O)NR3R4, -NR5C(NCN)NR3R4, -NR3R4, Ci-Cio alkyl, C2-Cio alkenyl, C2-Cio alkynyl, C3-C10 cycBalkyl, C3-Cio cycloalkylalkyl, -S(0)j(Ci-C6 alkyl), -S(O)j(CR4R5)m-aryl, aryl, arylalkyl, heteroaryl heteroarylalkyl, heterocyclyl, heterocyclylalkyl, -O(CR4R5)m-aryl, -NR4(CR4R5)m-aryl, -0(CR4R5)m-heteroaryl, -NR4(CR4R5)m-heteroaryl, -O(CR4R5)m-heterocyclyl or -NR4(CR4R5)m-heterocyclyl, wherein any of said alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl portions are optionally substituted with one or more groups independently selected from oxo (with the proviso that it is not substituted on an aryl or heteroaryl), halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluorornethoxy, azido, -NR4SO2R6, -S02NR3R4, -C(O)R3, -C(O)OR3, -OC(O)R3, -NR4C(O)OR6, - NR4C(O)R3, -C(O)NR3R4, -NR3R4, -NR5C(O)NR3R4, -NR5C(NCN)NR3R4, -OR3, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl, and wherein said aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl rings may be further substituted with one or more groups selected from halogen, hydroxyl, cyano, nitro, azido, fluoromethyl, difluoromethyl, trifluoromethyl, Ci-C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C3-C6 cycloalkyl, C3-C6 heterocycloalkyl, NR3R4 and OR3; [00121] each R7 is hydrogen, trifluoromethyl, Ci-Ci0 alkyl, C2-Cio alkenyl, C2-Ci0 alkynyl, C3-Cio cycloalkyl, C3-Ci0 cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, or heterocyclylalkyl, wherein any of said alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl portions are optionally substituted with one or more groups independently selected from oxo (with the proviso that it is not substituted on an aryl or heteroaryl), halogen, cyano, nitro, trifluoromethyl, difluoromethyl, fluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NRHS02R14, -SO2NRUR12, -C(O)Rn, C(O)ORU, -OC(0)RU, -NRUC(0)OR14, -NRUC(O)R12, -C(O)NRUR12, -SR11. -S(O)R14, -SO2R14, -NRHR12, -NRUC(O)NR12R13, -NRnC(NCN)NR12R13, -OR11, C,-Ci0 alkyl, C2-CIQ alkenyl, C2-Cio alkynyl, C3-Cio cycloalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl, and wherein said aryl, heteroaryl. arylalkyl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl rings may be further substituted with one or more groups selected from halogen, hydroxyl, cyano, nitro, azido, fluoromethyl, difluoromethyl, trifluoromethyl, Ci-C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C3-Ce cycloalkyl, C3-C6 heterocycloalkyl, NR3R4 and OR3; [00122] each R10 is independently hydrogen, cyano, nitro, trifluoromethyl, difMbromethoxy, trifruoromethoxy, azido, -C(O)R3, -C(O)OR3, -SO2NR3R4, 10 -C(O)NR3R4, Ci-Cio alkyl, C2-d0 alkenyl, C2-Cio alkynyl, C3-do cycloalkyl, C3-C cycloalkylalkyl, -S(O)j(Ci-C6 alkyl), -S(O)j(CR4R5)m-aryl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl, wherein any of said alkyl, alkenyl, alkynyl, cycloallcyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl portions are optionally substituted with one or more groups independently selected from oxo (with the proviso that it is not substituted on an aryl or heteroaryl), halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NR4SO2R6, -SO2NR3R4, -C(O)R3, -C(O)OR3, -OC(O)R3, -NR4C(O)OR6, - NR4C(O)R3, -C(O)NR3R4, -NR3R4, -NR5C(O)NR3R4, -NR5C(NCN)NR3R4, -OR3, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl, and wherein said aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl rings may be further substituted with one or more groups selected from halogen, hydroxyl, cyano, nitro, azido, fluoromethyl, difluoromethyl, trifluoromethyl, Q-C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C3-C6 cycloalkyl, C3-C6 heterocycloalkyl, NR3R4 and OR3; [00123] R3 is hydrogen, trifluoromethyl, CpCio alkyl, C2-Ci0 alkenyl, C2-Cio alkynyl, C3-Cio cycloalkyl, C3-Cio cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, phosphate or an amino acid residue, wherein any of said alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl portions are optionally substituted with one or more groups independently selected from oxo (with the proviso that it is not substituted on an aryl or heteroaryl), halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NRnSO2R14, -SO2NRHR12, -C(O)RU, C(O)ORn, -OC(0)Rn, -NRUC(0)OR14, -NRUC(O)R12, -C(O)NRUR12, -SR11, -S(O)R14, -SO2R14, -NR11R12, -NRUC(0)NR12R13, -NRHC(NCN)NR12R13, -OR11, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl, [00124] or R3 and R4 together with the atom to which they are attached form a 4 to 10 membered carbocyclic, heteroaryl or heterocyclic ring, wherein any of said carbocyclic, heteroaryl or heterocyclic rings are optionally substituted with one or more groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NR11SO2R14, -SO2NRUR12, -C(O)Rn, C(0)OR11, -OC(0)RU, -NRUC(0)OR14, -NRUC(O)R12, -C(O)NRUR12, -SR11, -S(O)R14, -S02f^4, -NRUR12, -NRnC(0)NR12R13, -NR11C(NCN)NR12R13, -OR11, aryl, heteroaryl, arylallcyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; [00125] R4 and R5 independently are hydrogen or Ci-C6 alkyl, or [00126] R4 and R5 together with the atom to which they are attached form a 4 to 10 membered carbocyclic, heteroaryl or heterocyclic ring, wherein said allcyl or any of said carbocyclic, heteroaryl and heterocyclic rings are optionally substituted with one or more groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NR11SO2RU, -SO2NRUR12, -C(O)R11, C(O)ORU, -OC(0)RU, -NRnC(0)OR14, -NR11C(O)R12, -C(O)NRUR12, -SR11, -S(O)R14, -S02R14, -NRnR12, -NRUC(0)NR12R13, -NRUC(NCN)NR12R13, -OR11, aryl, heteroaryl, arylallcyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; [00127] R6 is trifluoromethyl, Q-Cio alkyl, C3-Ci0 cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylallcyl, heterocyclyl or heterocyclylalkyl, wherein any of said alkyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl portions are optionally substituted with one or more groups independently selected from oxo (with the proviso that it is not substituted on an aryl or heteroaryl), halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NRUSO2R14, -SO2NR11R12, -C(O)RU, C(O)ORn, -OC(O)Rn, -NRUC(O)OR14, -NRUC(O)R12, -C(O)NR11R12, -SR11, -S(O)R14, -SO2R14, -NRUR12, -NRUC(O)NR12R13, -NRnC(NCN)NR12R13, -OR11, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; [00128] R11, R12 and R13 independently are hydrogen, lower allcyl, lower alkenyl, aryl and arylalkyl, and [00129] R14 is lower allcyl, lower alkenyl, aryl and arylalkyl; [00130] or any two of R11, R12, R13 or R14 together with the atom to which they are attached form a 4 to 10 membered carbocyclic, heteroaryl or heterocyclic ring, wherein any of said alkyl, alkenyl, aryl, arylalkyl carbocyclic rings, heteroaryl rings or heterocyclic rings are optionally substituted with one or more groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; [00131] m is 0,1,2, 3,4 or 5; and [00132] j is 0,1 or 2. [00133] Figure 5 shows non-limiting examples of the synthesis of compounds of this invention having the general Formula IV. [00134] In another embodiment, this invention relates to compounds of the general Formula V: (Figure Removed) [00135] and pharmaceutically accepted salts, prodrugs and solvates thereof, where: [00136] X is N or CR10; [00137] R1, R2, R8, R9 and R10 are independently hydrogen, halogen, cyano, nitro, trifiuoromethyl, difluoromethyl, fluoromethyl, fluoromethoxy, difluoromethoxy, trifluoromethoxy, azido, -SR11, -OR3, -C(O)R3, -C(O)OR3, -NR4C(O)OR6, -OC(O)R3, - NR4SO2R6, -SO2NR3R4, -NR4C(0)R3, -C(O)NR3R4, -M15C(O)NR3R4, - NR5C(NCN)NR3R4, -NR3R4, d-C10 alkyl, C2-C10 alkenyl, C2-Ci0 alkynyl, C3-Ci0 cycloalkyl, C3-C10 cycloalkylalkyl, -S(O)j(C,-C6 alkyl), -S(O)j(CR4R5)ir.-aryl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, -O(CR4R5)m-aryl, -NR4(CR4R5)m-aryl, -O(CR4R5)m-heteroaryl, -NR4(CR4R5)ni-heteroaryl, -O(CR4R5)m-heterocyclyl or -NR4(CR4R5)m-heterocyclyl, wherein any of said alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl portions are optionally substituted with one or more groups independently selected from oxo (with the proviso that it is not substituted on an aryl or heteroaryl), halogen, cyano, nitro, trifiuoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NR4S02R6, -SO2NR3R4, -C(O)R3, -C(O)OR3, -OC(O)R3, -NR.4C(O)OR6, - NR4C(O)R3, -C(O)NR3R4, -NR3R4, -NR5C(O)NR3R4, -NR5C(NCN)NR3R4, -OR3, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl, and wherein said aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl rings may be further substituted with one or more groups selected from halogen, hydroxyl, cyano, nitro, azido, fluoromethyl, difluoromethyl, trifiuoromethyl, Ci-C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C3-C6 cycloalkyl, C3-C6 heterocycloalkyl, NR3R4 and OR3; [00138] R7 is hydrogen, trifiuoromethyl, Ci-Cio alkyl, C2-Cio alkenyl, C2-Cio alkynyl, C3-Cio cycloalkyl, Ca-Cio cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteifearylalkyl, heterocyclyl, or heterocyclylalkyl, wherein any of said alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl portions are optionally substituted with one or more groups independently selected from oxo (with the proviso that it is not substituted on an aryl or heteroaryl), halogen, cyano, nitro, trifluoromethyl, difluoromethyl, fluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NRHSO2R14, -SO2NR11R12, -C(O)RU, C(O)ORU, -OC(O)Rn, -NRnC(O)OR14, -NRnC(O)R12, -C(0)NRUR12, -SR11, -S(O)R14, -S02R14, -NRUR12, -NRUC(O)NR12R13, -NRUC(NCN)NR12R13, -OR11, CrCio alkyl, C2-Cio alkenyl, C2-Ci0 alkynyl, Cs-Cio cycloalkyl, aryl, heteroaryl, arylalkyl, heteroarylallcyl, heterocyclyl, and heterocyclylalkyl, and wherein said aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl rings may be further substituted with one or more groups selected from halogen, hydroxyl, cyano, nitro, azido, fluoromethyl, difluoromethyl, trifluoromethyl, Ci-C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C3-Ce cycloalkyl, C3-C6 heterocycloalkyl, NR3R4 and OR3; [00139] R3 is hydrogen, trifluoromethyl, Ci-Cio alkyl, C2-Ci0 alkenyl, C2-Cio alkynyl, Cs-Cio cycloalkyl, Cs-Cio cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, phosphate or an amino acid residue, wherein any of said alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl portions are optionally substituted with one or more groups independently selected from oxo (with the proviso that it is not substituted on an aryl or heteroaryl), halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NRUSO2R14, -SO2NRHR12, -C(O)Rn, C(0)ORH, -OC(0)Rn, -NRUC(0)OR14, -NR11C(O)R12, -C(O)NRUR12, -SR11, -S(O)R14, -SO2R14, -NRUR12, -NRUC(O)NR12R13, -NRUC(NCN)NR12R13, -OR11, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl, [00140] or R3 and R4 together with the atom to which they are attached form a 4 to 10 membered carbocyclic, heteroaryl or heterocyclic ring, wherein any of said carbocyclic, heteroaryl or heterocyclic rings are optionally substituted with one or more groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NRUSO2R14, -SO2NRUR12, -C(0)R11, C(0)ORn, -OC(0)Rn, -NRnC(0)OR14, -NRHC(O)R12, -C(0)NRnR12, -SR11, -S(O)R14, -S02R14, -NRUR12, -NRnC(0)NR12R13, -NRUC(NCN)NR12R13, -OR11, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; [00141] R4 and R5 independently are hydrogen or Ci-Ce alkyl, or [00142] R4 and R5 together with the atom to which they are attached form a 4 to 10 membered carbocyclic, heteroaryl or heterocyclic ring, wherein said alkyl or any of said carbocyclic, heteroaryl and heterocyclic rings are optionally substituted with one or more groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NRUS02R14, -SO2NR11R12, -C(0)Rn, C(O)ORn, -OC(O)RU, -NRUC(0)OR14, -NRUC(O)R12, -C(O)NRUR12, -SR1 \ -S(0)R14, -S02R14, -NRHR12, -NR11C(0)NR12R13, -NRHC(NCN)NR12R13, -OR11, aryl. heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; [00143] R6 is trifluoromethyl Ci-Cio alkyl, C3-Cio cycloalkyl, aryl. arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl, wherein any of said alkyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl portions are optionally substituted with one or more groups independently selected from oxo (with the proviso that it is not substituted on an aryl or heteroaryl), halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NRnS02R14, -SO2NRnR12, -C(O)RU, C(0)ORn, -OC(O)RH, -NRUC(O)OR14, -NH:1C(O)R12, -C(O)NRUR12, -SR11, -S(O)R14, -SO2R14, -NRUR12, -NRUC(O)NR12R13, -NRUC(NCN)NR12R13, -OR11, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; [00144] Ru, R12 and R13 independently are hydrogen, lower alkyl, lower alkenyl, aryl and arylalkyl, and R14 is lower alkyl, lower alkenyl, aryl and arylalkyl; [00145] or any two of R11, R12, R13 or R14 together with the atom to which they are attached form a 4 to 10 membered carbocyclic, heteroaryl or heterocyclic ring, wherein any of. said alkyl, alkenyl, aryl, arylalkyl carbocyclic rings, heteroaryl rings or heterocyclic rings are optionally substituted with one or more groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; [00146] W is heteroaryl, heterocyclyl, -C(O)OR3, -C(O)NR3R4, -C(O)NR4OR3, - C(0)R4OR3, -C(O)NR4S02R3, -C(O)(C3-C10 cycloalkyl), -C(O)(d-C.0 alkyl), -C(O)(aryl), -C(O)(heteroaryl), -C(O)(heterocyclyl) or CR3OR3, wherein any of said heteroaryl, heterocyclyl, -C(O)OR3, -C(O)NR3R4, -C(0)NR4OR3, -C(O)R4OR3, -C(dfciR4S02R3, -C(0)(C3-C10 cycloalkyl), -C(O)(Ci-C10 alkyl), -C(O)(aryl), - C(O)(heteroaryl), -C(O)(heterocyclyl) and CR3OR3 are optionally substituted with one or more groups independently selected from halogen, cyano, nitro, azido, -NR3R4, -OR3, Ci- Cio alkyl, C2-Cio alkenyl, C2-Cio alkynyl, cycloalkyl and heterocycloalkyl, wherein any of said Ci-Cio alkyl, C2-Cio alkenyl, C2-Cio alkynyl, cycloalkyl and heterocycloalkyl are optionally substituted with 1 or more groups independently selected from -NR3R4 and — OR3; [00147] provided that when X is CH, W cannot be C(O)aryl or C(O)heteroaryl; [00148] further provided that when X is CH, W is C(O)OR3 and R9 is F, R7 cannot beH; [00149] m is 0, 1,2, 3, 4 or 5; and [00150] j is 0, 1 or 2. [00151] Figures 15-34 show non-limiting examples of the synthesis of compounds of this invention having the general Formula V. [00152] The terms "Ci-Cio allcyl", "alky!" and "lower alkyl" as used herein refer to a saturated linear or branched-chain monovalent hydrocarbon radical having one to ten carbon atoms, wherein the alkyl radical may be optionally substituted independently with one or more substituents described below. Examples of alkyl groups include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, 2-hexyl, 3-hexyl, 3-methylpentyl, heptyl, octyl, and the like. [00153] The terms "C2-Cio alkenyl", "lower alkenyl" and "alkenyl" refer to linear or branched-chain monovalent hydrocarbon radical having two to 10 carbon atoms and at least one double bond, and include, but is not limited to, ethenyl, propenyl, l-but-3-enyl, l-pent-3-enyl, l-hex-5-enyl and the like, wherein the alkenyl radical may be optionally substituted independently with one or more substituents described herein, and includes radicals having "cis" and "trans" orientations, or alternatively, "E" and "Z" orientations. [00154] The terms "C2-Cio alkynyl," "lower alkynyl" and "alkynyl" refer to a linear or branched monovalent hydrocarbon radical of two to twelve carbon atoms containing at least one triple bond. Examples include, but are not limited to, ethynyl, propynyl, butynyl, pentyn-2-yl and the like, wherein the alkynyl radical may be optionally substituted independently with one or more substituents described herein. [dftlSS] The term "allyl" refers to a radical having the formula RC=CHCHR, wherein R is atkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, or any substituent as defined herein, wherein the allyl may be optionally substituted independently with one or more substituents described herein. [00156] The terms "carbocycle," "carbocyclyl," "cycloalkyl" or "C3-Ci0 cycloalkyl" refer to saturated or partially unsaturated cyclic hydrocarbon radical having from three to ten carbon atoms. The term "cycloalkyl" includes monocyclic and polycyclic (e.g., bicyclic and tricyclic) cycloalkyl structures, wherein the polycyclic structures optionally include a saturated or partially unsaturated cycloalkyl fused to a saturated or partially unsaturated cycloalkyl or heterocycloalkyl ring or an aryl or heteroaryl ring. Examples of cycloalkyl groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and the like. The cycloalkyl may be optionally substituted independently in one or more substitutable positions with various groups. For example, such cycloalkyl groups may be optionally substituted with, for example, Ci-C^ alkyl, Cr Ce alkoxy, halogen, hydroxy, cyano, nitro, amino, mono(Ci-C6)alkylamino, di(Ci-C6)alkylamino, Ci-Cealkenyl, C2-C6alkynyl, Ci-Ce haloalkyl, Q-Ce haloalkoxy, amino(Ci-C6)alkyl, mono(Ci-C6)aUcylatmno(Ci-C6)alkyl or di(Ci-C6)alkylamino(Ci-C6)alkyl. [00157] The term "heteroalkyl" refers to saturated linear or branched-chain monovalent hydrocarbon radical of one to twelve carbon atoms, wherein at least one of the carbon atoms is replaced with a heteroatom selected from N, O, or S, and wherein the radical may be a carbon radical or heteroatom radical (i.e., the heteroatom may appear in the middle or at the end of the radical). The heteroalkyl radical may be optionally substituted independently with one or more substituents described herein. The term "heteroalkyl" encompasses alkoxy and heteroalkoxy radicals. [00158] The terms "heterocycloalkyl," "heterocycle" or "hetercyclyl" refer to a saturated or partially unsaturated carbocyclic radical of 3 to 8 ring atoms in which at least one ring atom is a heteroatom selected from nitrogen, oxygen and sulfur, the remaining ring atoms being C, where one or more ring atoms may be optionally substituted independently with one or more substituent described below. The radical may be a carbon radical or heteroatom radical. The term further includes fused ring systems which include a heterocycle fused to one or more aromatic groups. "Heterocycloalkyl" also inclu^bs radicals where heterocycle radicals are fused with one or more carbocyclic and/or heterocyclic rings. Examples of heterocycloalkyl rings include, hut are not limited to, pyrrolidinyl, tetrahydrofuranyl, dihydrofuranyl, tetrahydrothienyl, tetrahydropyranyl, dihydropyranyl, tetrahydrothiopyranyl, piperidino, morpholino, thiomorpholino, thioxanyl, piperazinyl, homopiperazinyl, azetidinyl, oxetanyl, thietanyl, homopiperidinyl, oxepanyl, thiepanyl, oxazepinyl, diazepinyl, thiazepinyl, 1,2,3,6-tetrahydropyridinyl, 2- pyrrolinyl, 3-pyrrolinyl, indolinyl, 2H-pyranyl, 4H-pyranyl, dioxanyl, 1,3-dioxolanyl, pyrazolinyl, dithianyl, dithiolanyl, diliydropyranyl, dihydrothienyl, dihydrofuranyl, pyrazolidinylimidazolinyl, imidazolidinyl, 3-azabicyco[3.1.0]hexanyl, 3- azabicyclo[4.1.0]heptanyl, azabicyclo[2.2.2]hexanyl, 3H-indolyl and quinolizinyl. Spiro moieties are also included within the scope of this definition. The foregoing groups, as derived from the groups listed above, may be C-attached or N-attached where such is possible. For instance, a group derived from pyrrole may be pyrrol-1-yl (N-attached) or pyrrol-3-yl (C-attached). Further, a group derived from imidazole may be imidazol-1-yl (N-attached) or imidazol-3-yl (C-attached). An example of a heterocyclic group wherein 2 ring carbon atoms are substituted with oxo (=O) moieties is 1,1-dioxo-thiomorpholinyl. The heterocycle groups herein are unsubstituted or, as specified, substituted in one or more substitutable positions with various groups. For example, such heterocycle groups may be optionally substituted with, for example, Ci-Ce alkyl, Q-Ce alkoxy, halogen, hydroxy, cyano, nitro, amino, mono(Ci-C6)alkylamino, di(Ci-C6)alkylamino, Cj- C6alkenyl, C2-C6alkynyl, Ci-C6 haloalkyl, Ci-Ce haloalkoxy, amino(Ci-C6)alkyl, mono(Ci-C6)alkylamino(Ci-C6)alkylordi(Ci-C6)alkylamino(Ci-C6)alkyl. [00159] The term "aryl" refers to a monovalent aromatic carbocyclic radical having a single ring (e.g., phenyl), multiple rings (e.g., biphenyl), or multiple condensed rings in which at least one is aromatic, (e.g., 1,2,3,4-tetrahydronaphthyl, naphthyl), which is optionally mono-, di-, or trisubstituted with, e.g., halogen, lower alkyl, lower alkoxy, trifluoromethyl, aryl, heteroaryl, and hydroxy. [00160] The term "heteroaryl" refers to a monovalent aromatic radical of 5-, 6-, or 7-membered rings which includes fused ring systems (at least one of which is aromatic) of 5-10 atoms containing at least one and up to four heteroatoms selected from nitrogen, oxygen, or sulfur. Examples of heteroaryl groups are pyridinyl, imidazolyl, pyrimidmyl, pyrazolyl, triazolyl, pyrazinyl, tetrazolyl, furyl, thienyl, isoxazolyl, thiazolyl, oxazolyl, isotlSazolyl, pyrrolyl, quinolinyl, isoquinolinyl, indolyl, benzimidazolyl, benzofuranyl, cinnolinyl, indazolyl, indolizinyl, phthalazinyl, pyridazinyl, triazinyl, isoindolyl, pteridinyl, puriiiyl, oxadiazolyl, triazolyl, thiadiazolyl, thiadiazolyl, furazanyl, benzofurazanyl, benzothiophenyl, benzothiazolyl, benzoxazolyl, quinazolinyl, quinoxalinyl, naphthyridinyl, and fiiropyridinyl. Spiro moieties are also included within the scope of this definition. Heteroaryl groups are optionally mono-, di-, or trisubstituted with, e.g., halogen, lower alkyl, lower alkoxy, haloalkyl, aryl, heteroaryl, and hydroxy. [00161] The term "halogen" represents fluorine, bromine, chlorine, and iodine. [00162] The term "arylalkyl" means an alkyl moiety (as defined above) substituted with one or more aryl moiety (also as defined above). More preferred arylalkyl radicals are aryl-Ci-3-alkyls. Examples include benzyl, phenylethyl, and the like. [00163] The term "heteroarylalkyl" means an alkyl moiety (as defined above) substituted with a heteroaryl moiety (also as defined above). More preferred heteroarylalkyl radicals are 5- or 6-membered heteroaryl-Ci-3-alkyls. Examples include, oxazolylmethyl, pyridylethyl and the like. [00164] The term "heterocyclylalkyl" means an alkyl moiety (as defined above) substituted with a heterocyclyl moiety (also defined above). More preferred heterocyclylalkyl radicals are 5- or 6-membered heterocyclyl-Ci-a-alkyls. Examples include tetrahydropyranylmethyl. [00165] The term "cycloalkylallcyl" means an alkyl moiety (as defined above) substituted with a cycloalkyl moiety (also defined above). More preferred heterocyclyl radicals are 5- or 6-membered cycloalkyl-Ci-a-alkyls. Examples include cyclopropylmethyl. [00166] The term "Me" means methyl, "Et" means ethyl, "Bu" means butyl and "Ac" means acetyl. [00167] The term "amino acid residue" includes, but is not limited to, the 20 naturally occurring amino acids commonly designated by three letter symbols, and also includes 4-hydroxyproline, hydroxylysine, demosine, isodemosine, 3-methylhistidine, norvaline, beta-alanine, gamma-aminobutyric acid, cirtulline, homocysteine, homoserine, ornithine and methionine sulfone. [00168] In general, the various moieties or functional groups of the compounds of Formulas I-V may be optionally substituted by one or more substituents. Examples of sub&ituents suitable for purposes of this invention include, but are not limited to, oxo (with the proviso that it is not on an aryl or heteroaryl), halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NR4SO2Rb, -SO2NR3R4, -C(O)R3, -C(O)OR3, -OC(O)R3, -NR4C(O)OR6, -NR4C(O)R3, -C(O)NR3R4, -NR3R4, -NR5C(O)NR3R4, -NR5C(NC3S[)NR3R4, -OR3, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl, where R3, R4 and R5 are as defined herein. [00169] It is to be understood that in instances where two or more radicals are used in succession to define a substituent attached to a structure, the first named radical is considered to be terminal and the last named radical is considered to be attached to the structure in question. Thus, for example, the radical arylalkyl is attached to the structure in question by the alkyl group. [00170] In the compounds of the present invention, where a term such as (CR4R5)m is used, R4 and R5 may vary with each iteration of m above 1. For instance, where m is 2, the term (CR4R5)m may equal -CH2CH2- or -CH(CH3)C(CH2CH3)(CH2CH2CH3)- or any number of similar moieties falling within the scope of the definitions of R4 and R5. [00171] The compounds of this invention may possess one or more asymmetric centers; such compounds can therefore be produced as individual (R)- or (S)-stereoisomers or as mixtures thereof. Unless indicated otherwise, the description or naming of a particular compound in the specification and claims is intended to include both individual enanriomers, diastereomers mixtures, racemic or otherwise, thereof. Accordingly, this invention also includes all such isomers, including diastereomeric mixtures and resolved enantiomers of the Formulas I-V. Diastereomeric mixtures can be separated into their individual diastereomers on the basis of their physical chemical differences by methods known to those skilled in the art, for example, by chromatography or fractional crystallization. Enantiomers can be separated by converting the enantiomer mixture into a diastereomeric mixture by reaction with an appropriate optically active compound (e.g., alcohol), separating the diastereomers and converting (e.g., hydrolyzing) the individual diastereomers to the corresponding pure enantiomers. The methods for the determination of stereochemistry and the separation of stereoisomers are well known in the art (see discussion in Chapter 4 of "Advanced Organic Chemistry", 4th edition, J. March, John Wiley and Sons, New York, 1992). [00172] This invention also encompasses pharmaceutical compositions containing a compound of Formula I-V and methods of treating proliferative disorders, or abnormal cell growth, by administering compounds of the present invention. Compounds of the present invention having free amino, amido, hydroxy or carboxylic groups can be converted into pharmaceutically acceptable prodrugs. [00173] A "pharmaceutically acceptable prodrug" is a compound that may be converted under physiological conditions or by solvolysis to the specified compound or to a pharmaceutically acceptable salt of such compound. Prodrugs include compounds wherein an amino acid residue, or a polypeptide chain of two or more (e.g., two, three or four) ammo acid residues is covalently joined through an amide or ester bond to a free amino, hydroxy or carboxylic acid group of compounds of the present invention. The amino acid residues include but are not limited to the 20 naturally occurring amino acids commonly designated by three letter symbols and also includes 4-hydroxyproline, hydroxylysine, demosine, isodemosine, 3-methylhistidine, norvaline, beta-alanine, gamma-aniinobutyric acid, cirtulline, homocysteine, homoserine, omithine and methionine sulfone. One preferred prodrug of this invention is a compound of Formula I-V covalently joined to a valine residue. [00174] Additional types of prodrugs are also encompassed. For instance, free carboxyl groups can be derivatized as amides or alkyl esters. As another example, compounds of this invention comprising free hydroxy groups may be derivatized as prodrugs by converting the hydroxy group to a phosphate ester, hemisuccinates dimethylaminoacetate, or phosphoryloxymethyloxycarbonyl, as outlined in Advanced Drug Delivery Reviews, 1996, 19, 115. Carbamate prodrugs of hydroxy and amino groups are also included, as are carbonate prodrugs, sulfonate esters and sulfate esters of hydroxy groups. Derivatization of hydroxy groups as (acyloxy)methyl and (acyloxy)ethyl ethers wherein the acyl group may be an alkyl ester, optionally substituted with groups including but not limited to ether, amine and carboxylic acid functionalities, or where the acyl group is an amino acid ester as described above, are also encompassed. Prodrugs of this type are described in J. Med. Chem., 1996, 39, 10. More specific examples include replacement of the hydrogen atom of the alcohol group with a group such as (Ci -C6)alkanoyloxymethyl, l-((Ci -C6)allcanoyloxy)ethyl, 1-methyl-l-((Ci- C6)alkanoyloxy)ethyl, (Ci-C6)alkoxycarbonyloxymethyl, N-(Cp C6)alkoxycarbonylaminomethyl, succinoyl, (Ci-C6)alkanoyl, a-amino(Ci -C4)alkanoyl, aryUfcyl and a-aminoacyl, or a-aminoacyl-a-aminoacyl, where each cc-aminoacyl group is independently selected from the naturally occurring L-amino acids, P(O)(OH)2, -P(O)(0(Ci-C6)alkyl)2 or glycosyl (the radical resulting from the removal of a hydroxyl group of the hemiacetal form of a carbohydrate). [00175] Free amines can also be derivatized as amides, sulfonamides or phosphonamides. For example, a prodrug can be formed by the replacement of a hydrogen atom in the amine group with a group such as R-carbonyl, RO-carbonyl, NRR'-carbonyl where R and R' are each independently (d -Cio)alkyl, (C3-C7)cycloalkyl, benzyl, or R-carbonyl is a natural a-aminoacyl or natural .alpha.-aminoacyl-natural a-aminoacyl, -C(OH)C(O)OY wherein Y is H, (d -C6)alkyl or benzyl, -C(OY0)Y! wherein YO is (Ci -C4) alkyl and YI is (Ct -C6)aUcyl, carboxy(Ci -C6)allcyl, amino(Ci-C4)alkyl or mono-N- or di-N,N- (Ci -C6)alkylaminoalkyl, -C(Y2)Y3 wherein Y2 is H or methyl and Ya is mono-N- or di-N,N-(Ci -C6)alkylamino, morpholino, piperidin-1-yl or pyrrolidin-1- yi. [00176] - All of these prodrug moieties may incorporate groups including but not limited to ether, amine and carboxylic acid functionalities. [00177] In addition, the invention also includes solvates, pharmaceutically active metabolites, and pharmaceutically acceptable salts of compounds of Formulas I-V. [00178] The term "solvate" refers to an aggregate of a molecule with one or more solvent molecules. [00179] A "pharmaceutically active metabolite" is a pharmacologically active product produced through metabolism in the body of a specified compound or salt thereof. Metabolites of a compound may be identified using routine techniques known in the art and their activities determined using tests such as those described herein. [00180] Prodrugs and active metabolites of a compound may be identified using routine techniques known in the art. Various forms of prodrugs are known in the art. For examples of such prodrug derivatives, see, for example, a) Design ofProdnigs, edited by H. Bundgaard, (Elsevier, 1985) and Methods in Enzymology, Vol. 42, p. 309-396, edited by K. Widder, et al. (Academic Press, 1985); b) A Textbook of Drug Design and Development, edited by Krogsgaard-Larsen and H. Bundgaard, Chapter 5 "Design and Application of Prodrugs," by H. Bundgaard p. 113-191 (1991); c) H. Bundgaard, Advanced Drug Delivery Reviews, 8, 1-38 (1992); d) H. Bimdgaard, et al., Journal of Pharmaceutical Sciences, 77:285 (1988); and e) N. Kakeya, et al., Chem. Pharm. Bull., 32: 692 (1984), each of which is specifically incorporated herein by reference. [00181] A "pharmaceutically acceptable salt" as used herein, unless otherwise indicated, includes salts that retain the biological effectiveness of the free acids and bases of the specified compound and that are not biologically or otherwise undesirable. A compound of the invention may possess a sufficiently acidic, a sufficiently basic, or both functional groups, and accordingly react with any of a number of inorganic or organic bases, and inorganic and organic acids, to form a pharmaceutically acceptable sale. Examples of pharmaceutically acceptable salts include those salts prepared by reaction of the compounds of the present invention with a mineral or organic acid or an inorganic base, such salts including sulfates, pyrosulfates, bisulfates, sulfites, bisulfites. phosphates, monohydrogenphosphates, dihydrogenphosphates, metaphosphates, pyrophosphates, chlorides, bromides, iodides, acetates, propionates, decanoates, caprylates, acrylates, formates, isobutyrates, caproates, heptanoates, propiolates, oxalates, malonates, succinates, suberates, sebacates, fumarates, maleates, butyn-l,4-dioates, hexyne-1,6- dioates, benzoates, chlorobenzoates, methylbenzoates, dinitromenzoates, hydroxybenzoates, methoxybenzoates, phthalates, sulfonates, xylenesulfonates, pheylacetates, phenylpropionates, phenylbutyrates, citrates, lactates, y-hydroxybutyrates, glycollates, tartrates, methanesulfonates, propanesulfonates, naphthalene-1-sulfonates, naphthalene-2-sulfonates, and mandelates. Since a single compound of the present invention may include more than one acidic or basic moieties, the compounds of the present invention may include mono, di or tri-salts in a single compound. [00182] If the inventive compound is a base, the desired pharmaceutically acceptable salt may be prepared by any suitable method available in the art, for example, treatment of the free base with an acidic compound, particularly an inorganic acid, such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, or with an organic acid, such as acetic acid, maleic acid, succinic acid, mandelic acid, fumaric acid, malonic acid, pyruvic acid, oxalic acid, glycolic acid, salicylic acid, a pyranosidyl acid, such as glucuronic acid or galacturonic acid, an alphahydroxy acid, such as citric acid or tartaric acid, an amino acid, such as aspartic acid or glutamic acid, an aromatic acid, such as benzoic acid or cinnamic acid, a sulfonic acid, such as p- toluenesulfonic acid or ethanesulfonic acid, or the like. [001&] If the inventive compound is an acid, the desired pharmaceutically acceptable salt may be prepared by any suitable method, for example, treatment of the free acid with an inorganic or organic base. Preferred inorganic salts are those formed with alkali and alkaline earth metals such as lithium, sodium, potassium, barium and calcium. Preferred organic base salts include, for example, ammonium, dibenzylammonium, benzylammonium, 2-hydroxyethylammonium, bis(2- hydroxyethyl)ammoniurn, phenylethylbenzylamme, dibenzyl-ethylenediamine, and the like salts. Other salts of acidic moieties may include, for example, those salts formed with procaine, quinine and N-methylglusoamme, plus salts formed with basic amino acids such as glycine, omithine, histidine, phenylglycine, lysine and arginine. [00184] Processes for the manufacture of the compounds of Formula I, Formula II, Formula HI, Formula IV and Formula V are provided as further features of the invention. The inventive compounds may be prepared using the reaction routes and synthesis schemes as described below, employing the techniques available in the art using starting materials that are readily available or can be synthesized using methods known in the art. [00185] Illustrations of the preparation of compounds of the present invention are shown in Figures 1-34. [00186] Figure 1 illustrates synthesis of compounds of Formula I. Pyridone ester 2 can be prepared in a two step one-pot procedure. Treatment of 3-oxo-pentanedioic acid diethyl ester 1 with triethyl orthoformate and acetic acid at elevated temperatures (120 to 150 °C) gives the intermediate enol ether. Cyclization of the enol ether intermediate can then be accomplished by cooling the concentrated reaction residue and treating with the appropriate amine at low temperature (about 0 °C). Halogenation of the pyridone ester 2 can be accomplished with POC13, thionyl chloride, oxalyl chloride, PCls, PBr3, or Ph3P and Br2. Preferably this transformation is achieved with POCls neat or in the presence of an amine like triethylamine at room temperature. If R9 is Cl or F, it can be incorporated at this stage. Chlorination of pyridone ester 3 can be accomplished with NCS in a suitable organic solvent such as DMF, MeCN or mixed solvent systems at room temperature. Preferably the reaction is carried out in DMF. Fluorination is achieved by treating pyridone ester 3 with [l-(chloromethyl)-4-fluoro-l,4- diazoniabicyclo[2.2.2]octane-bis(tetrafluoroborate) in the presence of base in a suitable organic solvent at the appropriate temperature. Most preferable is the use of LiOH as baseWi MeCN as solvent at approximately 85 °C. [00187] With continued reference to Figure 1, regardless of the identity of R , pyridone acid 4 can be prepared by basic hydrolysis under standard conditions using either LiOH or NaOH in standard mixed aqueous/organic solvent systems. Incorporation of the aniline moiety is accomplished by SuAr reaction. This can be done in a suitable organic solvent such as THF using an amide base such as LDA, LiHMDS, NaHMDS or KHMDS at appropriate temperatures (-78 °C to room temperature). Preferably, the aniline is added to LDA or LiHMDS in THF at low temperature (-20 to -80 °C). The pyridone 4 is then added and the reaction mixture is warmed to room temperature to generate carboxylic acid 5. Amides 6 and hydroxamates 7 can be prepared using standard coupling procedures, including but not limited to EDCI, HOBt, or PyBOP and the appropriate amine or hydroxylamine in suitable organic solvents such as DMF, THF or methylene chloride. In some instances, the amine or hydroxylamine used in the coupling reaction contains a standard protecting group. In those cases, the protecting group can be removed by standard conditions known in the art. [00188] Figure 2 outlines the synthesis of compounds of Formula I wherein the R9 group is incorporated into the starting 3-oxopentanedioic acid diethyl ester 8. This route is particularly useful for analogs where R9 is alkyl. The preparation of analog 10 is outlined in Figure 2 and can be carried out as described above for Figure 1 with the addition that activation of pyridone 9 can be accomplished by conversion to a triflate ester. This can be done by treating pyridone 9 with triflic anhydride or N-phenyltrifluoromethanesulfoniniide and amine base in THF or methylene chloride. When Z is Cl or Br, pyridone 10 can be converted to amide 6 or hydroxmate 7 as described in Figure 1. Alternatively, pyridone 10 can be converted to hydroxamate 7 in the route outlined in Figure 2 in which the aniline moiety is incorporated utilizing palladium mediated cross coupling chemistry. The palladium mediated cross coupling chemistry can be accomplished by treatment of a mixture of the appropriate aniline and pyridone 10 with a Pd catalyst such as Pd(OAc)2, PdCl2(dppf), Pd(Ph3P)4, Pd2dba3, a phosphine ligand and base in a suitable organic solvent such as THF, DMF, PhMe, DME or MeCN at elevated temperature. Most preferably, Pd(OAc)2, rac-2,2-bis(diphenyIphosphino)-l,l'-binaphthyl and Cs2CO3 are used in PhMe at 70 to 100 °C. Hydroxamate 7 can be prepared by treating pyridone ester 11 with the appropriate hydroxylamine and amide bas% such as LDA, LiHMDS or NaHMDS in a suitable organic solvent such as THF at low temperature. Preferably, a LiHMDS solution is added to a solution of pyridone ester 11 and hydroxylamine in THF at 0 °C. The reaction mixture is then warmed to room temperature to yield the desired hydroxamate 7. In some instances, the hydroxylamine used in the coupling reaction contains a standard protecting group. In those cases, the protecting group can be removed by standard conditions known in the art. [00189] In Figure 3 preparation of compounds of the Formula I is shown in which 4,6-dichloro-5-fluoronicotinic acid 12 (Sanchez et al J Heterocylc. Chem. 1993, 30 (4), 855-9) is used as the starting material. Ester 13 can be prepared in a two-step procedure. The first step is S>jAr addition of the properly substituted aniline in a suitable organic solvent such as THF using an amide base such as LDA, LiHMDS, NaHMDS or KHMDS at appropriate temperatures (-78 °C to room temperature). Preferably, the aniline is added to LDA or LiHMDS hi THF at low temperature (-20 to -80 °C). The nicotinic acid 12 is then added and the reaction mixture wanned to room temperature to generate the corresponding carboxylic acid. The methyl ester 13 can then be prepared by standard conditions including but not limited to TMSC1 in MeOH or TMSCHN: in suitable organic solvents such as PhMe/MeOH. Pyridone 14 can be made in a two-step sequence. In the first step, methyl ester 13 is treated with sodium methoxide in a suitable organic solvent such as MeOH or THF or MeOH/THF mixtures at temperatures ranging from 0 °C to 40 °C. Preferably, sodium methoxide is added to a solution of methyl ester 13 in MeOH/THF at 0 °C. This mixture is then warmed to room temperature and then to 40 °C to generate the desired methoxy pyridine. Demethylation can then be accomplished by standard conditions including but not limited to aqueous HC1 at elevated temperature, pTsOH in acetic acid at elevated temperature and aqueous HBr in MeOH at elevated temperature. Preferably demethylation to give pyridone 14 is achieved by treatment of the methoxy pyridine with HBr in acetic acid at elevated temperature (80 to 120 °C). If desired, alkylation of pyridone 14 to give substituted pyridone 15 can be achieved by standard basic alkylation conditions incorporating alkyl halides. These conditions include but are not limited to K2CO3 in acetone or DMF, NaH in THF or, NaOMe in MeOH/PhMe or, phase transfer conditions using for example NaOH and BmNI. Preferably, the alkylation is accomplished by treatment of pyridone 14 with LiH at 0 °C in DMF followed by addition of alkyl bromide and warming to room temperature. S&boxylic acid 15 can then be prepared using standard saponification conditions such as LiOH or NaOH in standard mixed aqueous/organic solvent systems. Pyridone 15 can be converted to amide 6 or hydroxmate 7 as described in Figure 1. [00190] Figure 4 describes the initial steps in the preparation of analogs of compounds of the Formula I. Treatment of 3-oxopentanedioic acid diethyl ester 8 with a ketene acetal and acetic acid at elevated temperatures (120 to 150 °C) gives the intermediate enol ether. Cyclization of the enol ether intermediate can then be accomplished by cooling the concentrated reaction residue and treating with the appropriate amine at low temperature (about 0 °C) to give pyridone 16. If R9 is Cl or F is desired, then a chlorination or fluorination step as described in Figure 1 can be incorporated at this tune. Furthermore, pyridone 16 can be converted to amide 6 or hydroxamate 7 through the S^Ai chemistry as described in Figure 1 or through palladium mediated cross-coupling chemistry as described in Figure 2. [00191] hi Figure 5 syntheses of compounds of Formula II and IV are depicted. Bromination of pyridone 17 (prepared as described in Figures 2 and 4) to give pyridone 18 can be accomplished using standard conditions such as NBS in a suitable organic solvent. Cyclization to form lactam 19 can be achieved by treatment with ammonia or a primary amine in a suitable organic solvent at temperatures ranging from ambient to slightly elevated. Preferably, this Cyclization is accomplished in an alcoholic solvent such as MeOH or EtOH. Pyridone 18 can also be converted to pyridazinones 20 and 21 by treatment with substituted or unsubstituted hydraziiies or t-butyl carbazate in a suitable organic solvent such as DMF, THF, MeOH or EtOH. Pyridazinones 20 and 21 can then be substituted further by standard basic alkylation conditions with alkyl halides. These conditions include but are not limited to K^COa in acetone or DMF at room or elevated temperature, NaH hi THF or DMF at ambient or elevated temperature, and NaOMe in MeOH/PhMe at elevated temperature. Pyridazinone 21 can be then be deprotected under standard conditions including, but not limited to, TFA in methylene chloride or HC1 in a suitable organic solvent such as dioxane. [00192] Figure 6 depicts the preparation of compounds of the Formula I where X is N. hi Figure 6, 4-hydroxy-6-oxo-l-phenyl-l,6-dihydropyridazine-3-carboxylic acid methyl ester 24 (Schober et alJ. Heterocyclc. Chem. 1989, 26,169-176) can be converted to dihydropyridazine 25 in one of two procedures. The first method involves halo|enation followed by SnAr reaction and in situ saponification. Halogenation of the pyridazine ester 24 can be accomplished with POC13, thionyl chloride, oxalyl chloride, PCls, PBr3, or Ph3P and Br2. Preferably this transformation is achieved with POCls neat at elevated temperature (about 85 °C). If R9 is Cl or F is desired, then chlorination or fluorination as described in Figure 1 can be incorporated at this tune, hi the second step, aniline addition and saponification can be carried out in the same pot. The SnAr reaction can be done in a suitable organic solvent such as 1,2-dichlorobenzene, xylenes, or toluene in the presence of a base such as Cs^COa or KaCOs at elevated temperature (SO to 200 °C). Preferably the S>jAr reaction is accomplished by treating the halogenated pyridazine with aniline and Cs2CO3 in 1,2-dichlorobenzene and heating to 180 °C for 24 hours. Saponification to generate dihydropyridazine 25 is accomplished by the addition of water to the crude reaction mixture stirring at room temperature. The second method involves halogenation or activation of pyridazine ester 24 followed by palladium mediated cross- coupling. Halogenation is accomplished as described above. Activation can be done by treating pyridazine ester 24 with triflic anhydride or N- phenyltrifluoromethanesulfonimide and amine base in THF or methylene chloride, hi the case where halogenation is used, if R9 is Cl or F is desired, then a chlorination or fluorination step as described in Figure 1 can be incorporated at this tune. The palladium mediated cross-coupling reaction can be achieved by standard methods including but not limited to treating the halogenated or activated pyridazine with aniline, Pd catalyst such as Pd(OAc)2, PdCl:(dppf), Pd(Ph3P)4, Pd2dba3, a phosphine ligand and base in a suitable organic solvent such as THF, DMF, PhMe, DME or MeCN at elevated temperature. Saponification to generated dihydropyridazine 25 can be achieved as described above by the addition of water to the crude reaction mixture stirring at room temperature or by basic hydrolysis under standard conditions using either LiOH or NaOH in standard mixed aqueous/organic solvent systems. Dihydropyridazine 25 can be converted to amide 26 or hydroxmate 27 by the standard methods described in Figure 1 or Figure 2. [00193] The preparation of compounds of the Formula I where X = N is depicted in Figure 7. Substituted hydrazine 28 can be converted to hydrazono-propionic acid ethyl ester 29 by a two-step procedure. In the first step, hydrazine 28 is condensed with ethyl pyruvate under standard dehydrating conditions such as in the presence of MgSCU in a suitable organic solvent such as chloroform or methylene chloride at temperatures raS^ing from 0 °C to ambient temperature. In the second step, acylation is achieved by treatment with base at low temperature in a suitable organic solvent such as THF, DMF, dioxane or MeCN followed by the addition of methyl malonyl chloride. Preferably, the hydrazone is treated with LiH in THF at 0 °C followed by the addition of methyl malonyl chloride and warming to room temperature. 5-Hydroxy-2H-pyridazin-3-one 31 is prepared from hydrazono-propionic acid ethyl ester 29 by cyclization under strongly basic conditions followed by saponification and decarboxylation. The cyclization can be accomplished by treatment of hydrazono-propionic acid ethyl ester 29 with a strong base such as DBU, LDA or NaH in a suitable organic solvent such as THF or MeCN at room temperature. Preferably, cyclization is achieved with DBU hi MeCN at room temperature. Decarboxylation to form 5-hydroxy-2H-pyridazin-3-one 31 can be achieved by heating 5-hydroxy-3-oxo-2,3-dihydropyridazine-4-carboxylic acid methyl ester 30 in a suitable organic solvent such as dioxane or decalin or dioxane/decalin mixture to high temperatures in the presence of concentrated HC1. 5-Chloro-2H-pyridazin-3-one 32 can be prepared from 5-hydroxy-2H-pyridazin-3-one 31 by treatment with POCla, thionyl chloride, oxalyl chloride or PClj. Preferably this transformation is achieved with POCLj neat at elevated temperature (~85 °C). If R9 is Cl or F is desired, then a chlorination or fluorination step as described in Figure 1 can be incorporated either after decarboxylation or after chlorination. Carboxylic acid 33 can be prepared by oxidation under standard conditions including but not limited to KMnO4 in water, SeO2 in organic solvent like dioxane, xylene, or pyridine, NaOCl/RuCl3, CrOs in aqueous H2S04, K2Cr2O7, and Na2Cr2O7 in water. Preferably this transformation is achieved with K:Cr2C>7-H2S04. Carboxylic acid 33 can be converted to amide 26 or hydroxmate 27 by the standard methods such as those described in Figures 1,2 and 6. [00194] Figure 8 illustrates the preparation of compounds 'of Formula TTT Pyridone 11 can be converted to bromide 34 by standard conditions including but not limited to NBS or bromine with or without a variety of additives such as AcOH, H2O2, silica, AlCls and t-BuNHz, in a suitable solvent such as CCU or water. Synthesis of ketone 35 can be accomplished in a two-step procedure. In the first step, palladium mediated alkyne cross coupling reaction is used to generate the corresponding alkyne intermediate. This palladium mediated cross-coupling reaction can be achieved by standard methods including but not limited to treating bromide 34 with desired alkyne, Pd catalyst such as Pd(OAc)2 and PhsP, PdCl2(dppf), Pd(Ph3P)2Cl2, Pd(Ph3P)4, Pd2dba3 and Ph3P, Cul, and amine base such as Et3N, Et2NH, or iPr2NH, in a suitable organic solvent such as THF, DMF, PhMe, DME or MeCN at elevated temperature. More preferably, the bromide 34 and alkyne are treated with Pd(Ph3P)2Cl2, Cul and amine base in THF or DMF at 50 to 100 °C. In the second step, the intermediate alkyne is hydrolysized to the ketone 35 by standard methods including but not limited to H2SO4, TFA, trifluorosulfonamide, FeCl3 or HgS(VH2SO4. Cyclization to form pyrido-pyridazine-dione 36 can be accomplished by treating ketone 35 with substituted or unsubstituted hydrazine in a suitable organic solvent such as EtOH, iPrOH, DMF, DME or mixtures thereof at temperatures ranging from ambient to about 100 °C. [00195] Compounds of Formula III can be prepared as outlined in Figure 9. Bromide 37 can be synthesized from pyridone 9 by chlorination followed by aromatic bromination. The chlorination can be accomplished with POC13, thionyl chloride, oxalyl chloride, PCls, PBr3, or Ph3P and Br2. Preferably this transformation is achieved with POC13 neat at elevated temperature (about 85 °C). If R9 is Cl or F, then a chlorination or fluorination step as described in Figure 1 can be incorporated at this time. Aromatic bromination can be achieved by standard conditions including but not limited to NBS or bromine with or without a variety of additives such as AcOH, H2O2, silica, A1C13 and t-BuNtL, in a suitable solvent such as CCU or water. Ketone 38 and pyrido-pyridazine-dione 39 can be prepared as described in Figure 8. Pyridopyridazine-dione 40 can be made from pyridopyridazine-dione 39 by palladium mediated cross coupling chemistry. The palladium mediated cross-coupling reaction can be achieved by standard methods including but not limited to treating pyridopyridazine-dione 39 with the appropriate aniline, Pd catalyst such as Pd(OAc)2, PdCl2(dppf), Pd(Ph3P)4, Pd2dba3, a phosphine ligand and base in a suitable organic solvent such as THF, DMF, PhMe, DME or MeCN at elevated temperature. [00196] Figures 10-12 illustrate the preparation of compounds of Formula I of the present invention where W is heterocyclic or heteroaromatic. Hydrazide 42 can be prepared from carboxylic acid 41 by standard coupling procedures including but not limited to EDCI, HOBt, or PyBOP and hydrazine in suitable organic solvents such as DMF, THF or dichloromethane. Amino oxadiazole 43 is prepared from hydrazide 42 by treatment with BrCN and a base such as NaHCO3, in a suitable biphasic solvent system such as^oxane and water at room temperature. Oxadiazolone 44 can be prepared from hydrazide 42 using either GDI, phosgene or a phosgene equivalent in a suitable organic solvent such as DMF, PhMe, methylene chloride or mixtures thereof. Preferably, cyclization to form oxadiazolone 44 is accomplished by treating hydrazide 42 with GDI in DMP at room temperature. Amino triazole 45 can be prepared by treatment of the hydrazide 42 with cyanamide, followed by cyclization using PPha, TEA, and CCL| in dichloromethane. Similarly, triazole 46 can be prepared by treatment of the hydrazide 42 with ethyl acetimidate, followed by cyclization using PPhs, TEA, and CCU in dichloromethane. Substituted amino oxadiazole 47 can be prepared in a two-step procedure from oxadiazolone 44 as outlined in Figure 11. Oxadiazolone 44 is treated with a primary or secondary amine at elevated temperature in alcoholic solvents such as MeOH, EtOH or iPrOH. Preferably, a primary or secondary amine is stirred with oxadiazolone 44 in EtOH at approximately 90 °C. The ring-opened intermediate is then cyclized by treatment with PPha, TEA, and CCU in dichloromethane to give substituted amino oxadiazole 47. In some cases the primary or secondary amine used in the addition step contains a functionality that requires protection with a standard protecting group. In these cases, the protecting group can be removed under standard conditions to yield the desired substituted amino oxadiazole 47. The thiazole 48 can be prepared from the carboxylic acid 41 with thiosemicarbazide using standard EDCI coupling conditions followed by cyclization of the intermediate obtained employing PPhs, TEA, and CC14 in dichloromethane as outlined in Figure 12. [00197] Figure 13 illustrates the preparation of compounds of Formula I. Acyl sulfonamide 49 can be prepared from carboxylic acid 41 using standard coupling procedures including but not limited to GDI or EDCI, HOBt, or PyBOP and the appropriate sulfonamide in suitable organic solvents such as DMF, THF or dichloromethane in the presence of base. Preferably, carboxylic acid 41 is treated with GDI in DMF at room temperature followed, a few hours later, by the addition of the appropriate sulfonamide and DBU. [00198] Figure 14 illustrates the synthesis of compounds of Formula I where W is a ketone. Ketone 51 can be prepared either by treating methyl ester 50 with Tebbe's reagent followed by aqueous acid or in a four-step oxidative reduction protocol which utilizes alkyllithium or Grignard reagent addition to the corresponding aldehyde. The four^tep protocol can be accomplished as follows. The methyl ester 50 is reduced with NaBH4 in EtOH at room temperature followed by oxidation with MnCb in THF:acetone at 50 °C to give the corresponding aldehyde. The secondary alcohol is then prepared by addition of either a Grignard reagent or an alkyllithium to the aldehyde at -78 °C. The ketone 51 is then prepared by MnC^ oxidation of the corresponding secondary alcohol in THF:acetone at 50 °C. [00199] In Figure 15, synthesis of compounds of Formula V where X is CH and R9 is H or F is depicted, in which 2,6-dichloronicotinic acid or 2,6-dichloro-5-fluoronicotinic acid is used as the starting material. The nicotinic acid 52 is converted to the monochloro acid 53 by refluxing in 2N aqueous NaOH following the procedure described in U.S. Patent No. 3,682,932. Alkylation of 53 can be achieved by standard basic alkylation conditions incorporating alkyl halides, with two equivalents of the appropriate alkyl halide and base to give a mixture of the N-alkyl pyridone ester and the regioisomeric O-alkyl pyridine ester, which are easily separated by column chromatography. These conditions include but are not limited to KaCOs in acetone or DMF at room or elevated temperature or NaH in THF at ambient or elevated temperature and then addition of the allcyl halide. Preferably this alkylation is achieved with LiH in DMF at 0 °C, followed by addition of alkyl bromide or alkyl iodide and warming to room temperature. Incorporation of the properly substituted aniline moiety is accomplished by SnAR reaction. This can be done in a suitable organic solvent such as THF using an amide base such as LDA, LiHMDS, NaHMDS, or KHMDS at appropriate temperatures (-78 °C to room temperature. Preferably the aniline is added to LDA or LiHMDS in THF at low temperature (-20 to -80 °C). The pyridone is then added and the mixture is stirred at low temperature to generate ester 54. Carboxylic acid 55 can then be prepared using standard saponification conditions such as LiOH or NaOH in standard mixed aqueous/organic solvent systems. Hydroxamate 56 and amide 57 can be prepared using standard coupling procedures, including but not limited to EDCI, HOBt, or PyBOP and the appropriate amine or hydroxylamine in suitable organic solvents such as DMF, THF, or methylene chloride. Preferably, the coupling is accomplished with HOBt and EDCI in DMF. In some instances, the amine or hydroxylamine used in the coupling reaction contains a standard protecting group. In those cases, the protecting group can be removed by standard conditions known in the art. :^^ [OOZ&O] In Figure 16, an alternative synthesis of compounds of Formula V where X is CH and R9 is H or F is depicted, in which 2,6-dichloronicotinic acid or 2,6-dichloro-5-fluoronicotinic acid is used as the starting material. This route is particularly useful for analogs where R7 is not Me or Et. Nicotinic acid 52 can be converted to the N-alkyl pyridone methyl ester 54 following a five step procedure, where 2,6-dichloronicotinic acid 52 is first converted to the methoxy pyridine acid, which is esterified to give the methyl ester and then deprotected to yield the monochloro ester 58. The conversion to the methoxy pyridine acid is preferably carried out by adding potassium t-butoxide to a solution of the acid 52 in MeOH and this mixture is then heated to reflux for several days. Esterification to give the methyl ester can be carried out under standard conditions, including but not limited to Fisher esterification (MeOH, H2SC>4), TMSC1 in MeOH or TMSCHN2 in suitable organic solvents such as PhMe/MeOH. Demethylation of the methoxy pyridine can then be accomplished by standard conditions including but not limited to HCI at elevated temperature, pTsOH in acetic acid at elevated temperature and aqueous HBr in MeOH at elevated temperature. Preferable demethylation to give pyridone 58 is achieved by treatment of the methoxy pyridine with aqueous HBr in acetic acid at elevated temperature (80 to 120 °C). Alkylation of 58 can be achieved by standard basic alkylation conditions incorporating alkyl halides, with one equivalent of the appropriate alkyl halide and base to give a mixture of the N-alkyl pyridone ester and the regioisomeric O-alkyl pyridine ester, which are easily separated by column chromatography. These conditions include but are not limited to K^COs in acetone or DMF at room or elevated temperature or NaH in THF at ambient or elevated temperature and then addition of the alkyl halide. Preferably this alkylation is achieved with LiH in DMF at 0 °C, followed by addition of alkyl bromide or alkyl iodide and warming to room temperature. Incorporation of the properly substituted aniline moiety is accomplished by SflAR reaction. This can be done in a suitable organic solvent such as THF using an amide base such as LDA, LiHMDS, NaHMDS, or KHMDS at appropriate temperatures (-78 °C to room temperature. Preferably the aniline is added to LDA or LiHMDS in THF at low temperature (-20 to -80 °C). The pyridone is then added and the mixture is stirred at low temperature to generate ester 54. Hydroxamate 56 can be prepared directly from methyl ester 54 in a suitable organic solvent such as THF using the appropriate hydroxylamine and amide base such as LDA, LiHMDS, NaHMDS, or KHMDS at appropriate temperatures (-78 °C to room temperature). Preferably, a solution of LiHMDS is added to a solution of the methyl ester 54 and the hydroxylamine in THF at 0 °C. The reaction mixture is then warmed to room temperature to yield the desired hydroxamate 56. In some instances, the hydroxylamine used in the coupling reaction contains a standard protecting group. In those cases, the protecting group can be removed by standard conditions known in the art. [00201] In Figure 17, another alternative synthesis of compounds of Formula V where X is CH and R9 is H or F and R7 is H is depicted, hi which 2,6-dichloronicotinic acid or 2,6-dichloro-5-fluoronicotinic acid is used as the starting material. Formation of 59 can be accomplished by incorporation of the properly substituted aniline moiety into nicotinic acid 52 by SwAR reaction. This can be done in a suitable organic solvent such as THF using an amide base such as LDA, LiHMDS, NaHMDS, or KHMDS at appropriate temperatures (-78 °C to room temperature. Preferably the aniline is added to LDA or LiHMDS in THF at low temperature (-20 to -80 °C). Nicotinic acid 52 is then added and the mixture is stirred at low temperature to generate the coupled product. Esterification to give the methyl ester can be carried out under standard conditions, including but not limited to Fisher esterification (MeOH, H2SO4), TMSC1 in MeOH or TMSCHN2 in suitable organic solvents such as PhMe/MeOH. Pyridone 54 can be made in a two step sequence. In the first step, methyl ester 59 is treated with sodium methoxide in a suitable organic solvent such as MeOH or THF or MeOH/THF mixtures at temperatures ranging from 0 °C to reflux. Preferably, sodium methoxide is added to a solution of methyl ester 59 in MeOH at room temperature. This mixture is then refluxed for 4 days to generate the desired methoxy pyridine. Demethylation of the methoxy pyridine can then be accomplished by standard conditions including but not limited to HC1 at elevated temperature, pTsOH in acetic acid at elevated temperature and aqueous HBr in MeOH at elevated temperature. Preferable demethylation to give pyridone 54 is achieved by treatment of the methoxy pyridine with aqueous HBr in acetic acid at elevated temperature (80 to 120 °C). Carboxylic acid 55, as well as hydroxamate 56 and amide 57 can then be prepared as described for Figure 15. [00202] hi Figure 18, the synthesis of compounds of Formula V where X is CH and R8 is not H is depicted, in which 2,6-dichloronicotinic acid is used as the starting malbial. Bromination of pyridone ester 54 can be accomplished with either Bra and acetic acid or NBS in a suitable organic solvent such as DMF. Preferably NBS is added to a solution of pyridone ester 54 in DMF to yield 60. Conversion of 60 to carboxylic acid 55, as well as hydroxamate 56 and amide 57 (where R9 is Br) can be accomplished as described for Figures 15 and/or 16. Conversion of bromide 60 to compounds of Formula V where R9 is aryl, heteroaryl, alkyl, cycloalkyl, alkenyl, alkynyl, amino and anilino can be achieved using Pd mediated cross-coupling conditions. When R9 is alkenyl or alkynyl, these can be further reduced using the appropriate reducing agent to provide alkyl substituents at R9. In general, this chemistry can be accomplished using a wide variety of Pd catalysts and ligands, with or without added base, in a suitable organic solvent such as DMF, PhMe, DME, THF, CH3CN at elevated temperature. The coupling partner will depend on the nature of R . These Pd mediated cross-couplings are well documented in the literature and are known by anyone skilled in the art. Conversion of 54 to carboxylic acid 55, as well as hydroxamate 56 and amide 57 can be accomplished as described for Figures 15 and/or 16. [00203] hi Figure 19, the synthesis of compounds of Formula V is depicted, where X is N. Pyrazinone ester 61, which can be synthesized as shown in Figure 21 or 22, can be converted to carboxylic acid 62, using standard saponification conditions such as LiOH or NaOH in standard mixed aqueous/organic solvent systems. Hydroxamate 63 and amide 64 can be prepared using standard coupling procedures, including but not limited to EDCI, HOBt, or PyBOP and the appropriate amine or hydroxylamine in suitable organic solvents such as DMF, THF, or methylene chloride. In some instances, the amine or hydroxylamine used in the coupling reaction contains a standard protecting group, hi those cases, the protecting group can be removed by standard conditions known in the art. [00204] In Figure 20, the synthesis of compounds of Formula V is depicted, where X is N. Pyrazinone ester 61, which can be synthesized as shown in Figure 21 or 22, can be directly converted to hydroxamate 63 in a suitable organic solvent such as THF using the appropriate hydroxylamine and an amide base such as LDA, LiHMDS, NaHMDS, or KHMDS at appropriate temperatures (-78 °C to room temperature). Li some instances, the hydroxylamine used in the coupling reaction contains a standard protecting group, hi those cases, the protecting group can be removed by standard conditions known in the art. [0(!5t6] In Figure 21, the synthesis of pyrazinone ester 61, which is utilized as starting material in Figures 19 and 20, is depicted. The aniline moiety is incorporated into aminopyrazinone 65 utilizing palladium mediated cross-coupling chemistry. The palladium mediated cross coupling chemistry can be accomplished by treatment of a mixture of aniline and aminopyrazinone 65 with a Pd catalyst such as Pd(OAc)2, PdClaCdppf), Pd(PlijP)4, Pdadbaa, a phosphine ligand and base in a suitable organic solvent such as THF, DMF, PhMe, DME or MeCN at elevated temperature. If Rs is Br or I, then a bromination or iodination step can be incorporated after the cross-coupling reaction. Thus, halogenation of 66 can be accomplished with either NIS or NBS in a suitable organic solvent such as DMF, MeCN or mixed solvent systems at room temperature to provide 61. [00206] In Figure 22, an alternative synthesis of pyrazinone ester 61, which is utilized as starting material in Figures 19 and 20, is depicted. Diazotization of 61 with nitrous acid in the presence of sulfuric acid yields the dizaonium salt, which can be further reacted with HBr and CiaBr to yield bromide 67. Formation of 61 can then be accomplished by incorporation of the properly substituted aniline moiety into bromide 67 by SNAR reaction. This can be done in a suitable organic solvent such as THF using an amide base such as LDA, LiHMDS, NaHMDS, or KHMDS at appropriate temperatures (-78 °C to room temperature. Preferably the aniline is added to LDA or LiHMDS in THF at low temperature (-20 to -80 °C). Bromide 67 is then added and the mixture is stirred at low temperature to generate the coupled product 61. [00207] In Figures 23-27, several syntheses of aminopyrazinone 65, which is used as the starting material in Figures 21 and 22, are depicted, depending on the identity of R9. Figure 23 depicts the synthesis of the aminopyrazinone core where R9 is H. 3-Amino-5-oxo-4,5-dihydropyrazine-2-carboxylic acid ethyl ester 68 can be synthesized as described in the literature (Journal of Organic Chemistry 1975, 40, 2341-2346). Alkylation of 68 can be achieved by standard basic allcylation conditions incorporating alkyl halides, with one equivalent of the appropriate alkyl halide and base to give a mixture of the N-alkyl pyrazinone 65 (R9 is H) and the regioisomeric O-alkyl pyrazine, which can be separated by column chromatography. These conditions include but are not limited to K^CCh in acetone or DMF at room or elevated temperature or NaH in THF at ambient or elevated temperature and then addition of the alkyl halide. [00|08] Figure 24 depicts the synthesis of the aminopyrazinone core where R9 is Me. 3-Amino-6-methylpyrazine-2-carboxylic acid ethyl ester N-oxide 69 can be synthesized as described in the literature (/. Heterocyclic Chemistry 1987, 24, 1621-1628). Rearrangement of N-oxide 69 can be achieved with either acetic anhydride and acetic acid or trifluoroacetic anhydride and trifmoroacetic acid, which is then followed by deprotection with MeOH or EtOH to provide 70. Alkylation of 70 can be achieved by standard basic alkylation conditions incorporating alkyl halides, with one equivalent of the appropriate alkyl halide and base to give a mixture of the N-alkyl pyrazinone 65 (R9 is Me) and the regioisomeric O-alkyI pyrazine, which can be separated by column chromatography. These conditions include but are not limited to K^CCh in acetone or DMF at room or elevated temperature or NaH in THF at ambient or elevated temperature and then addition of the alkyl halide. [00209] Figure 25 also depicts the synthesis of the aminopyrazinone core where R9 = Me. 3-Amino-5-chloro-6-methylpyrazine-2-carbonitrile 71 can be synthesized as described in the literature (J. Heterocyclic Chemistiy 1987, 24, 1621-162S). Pyrazinone 72 can be made in a two step sequence, hi the first step, pyrazine 71 is treated with sodium methoxide in a suitable organic solvent such as MeOH or THF or MeOH/THF mixtures at temperatures ranging from 0 °C to reflux. Demethylation of the methoxy pyrazine to provide 72 can then be accomplished by standard conditions including but not limited to pTsOH in acetic acid at elevated temperature or aqueous HBr in MeOH at elevated temperature. Alkylation of 72 can be achieved by standard basic alkylation conditions incorporating alkyl halides, with one equivalent of the appropriate alkyl halide and base to give a mixture of the N-alkyl pyrazinone 73 and the regioisomeric O-alkyl pyrazine, which can be separated by column chromatography. These conditions include but are not limited to K/zCOs in acetone or DMF at room or elevated temperature or NaH in THF at ambient or elevated temperature and then addition of the alkyl halide. Hydrolysis of nitrile 73 is followed by esterification to give ester 65 (R9 = Me). Hydrolysis of the nitrile can be achieved with either an acidic or basic aqueous solution, including but not limited to aqueous HC1, KOH, or NaOH. Esterification to give the methyl ester 65 (R9 is Me) can be carried out under standard conditions, including but not limited to Fisher esterification (MeOH, H2SO4), TMSC1 hi MeOH or TMSCHN2 in suitable organic solvents such as PhMe/MeOH. [0021 [00211] Figure 27 depicts the synthesis of the aminopyrazinone core where R9 is Cl. 3-Amino-6-chloro-5-oxo-4,5-dihydropyrazine-2-carboxylic acid methyl ester 78 can be synthesized as described in the literature (J. Medicinal Chemistry 1967, 10, 66-75). Alkylation of 78 can be achieved by standard basic alkylation conditions incorporating alkyi halides, with one equivalent of the appropriate alkyi halide and base to give a mixture of the N-alkyl pyrazinone 65 (R9 = Cl) and the regioisomeric O-alkyl pyrazine, which can be separated by column chromatography. These conditions include but are not limited to K^COs in acetone or DMF at room or elevated temperature or NaH in THF at ambient or elevated temperature and then addition of the alkyi halide. [00212] In Figure 28, the synthesis of compounds of Formula V is depicted, where X is NT The conversion of chloride 79 to compounds 61 where R9 can be aryl, heteroaryl, alkyl, cycloalkyl, alkenyl, alkynyl, arnino or anilino can be achieved using Pd mediated cross-coupling conditions. In general, this chemistry can be accomplished using a wide variety of Pd catalysts and ligands, with or without added base, in a suitable organic solvent such as DMF, PhMe, DME, THF, CH3CN at elevated temperature. The coupling partner will depend on the nature of R9. These Pd mediated cross couplings are well documented in the literature and are known by anyone skilled in the art. When R9 is alkenyl or alkynyl, these can be further reduced using the appropriate reducing agent to provide alkyl substituents at R9. [00213] Figures 29-32 depict the synthesis of compounds of Formula V, where X is N. In these syntheses, aldehyde 61 (R9 = C(O)H) is converted to various other functionalities. Figure 29 depicts the conversion of aldehyde 61 to amine 80. This can be accomplished by reductive amination, which involves the reaction of the aldehyde with the desired amine and AcOH, followed by reduction with a suitable reducing agent, including but not limited to Me4NBH(OAc)3, in a suitable organic solvent such as CHsCN at ambient temperature. Carboxylic acid 62, as well as hydroxamate 63 and amide 64, where R9 is equal to CH2NR3R4, can then be prepared from 80 as described in Figures 19 and 20. [00214] Figure 30 depicts the conversion of aldehyde 61 (R9 = C(O)H) to alcohol 81 and ether 82. Reduction of aldehyde 61 (R9 = C(O)H) with a suitable reducing agent, including but not limited to NaBH4, provides alcohol 81. Alcohol 81 can be converted to ether 82 by reaction with a suitable base and the desired alkyl halide, including but not limited to addition of NaH to alcohol 81 and the then addition of an alkyl bromide or alkyl iodide. Alcohol 81 can also be converted to ether 82 by halogenation or activation followed by addition of a desired alcohol. Halogenation can be accomplished with POCb, thionyl chloride, oxalyl chloride, PCls, PBra, or PhsP and Bra, and activation can be achieved by reaction of aldehyde 61 (R9 = C(O)H) with, including but not limited to, MsCl or TsCl. Both halogenation and activation steps are followed by addition of a desired alcohol to yield 82. Carboxylic acid 62, as well as hydroxamate 63 and amide 64, where R9 is CH2OH or CH2OR, can then be prepared from 81 or 82 as described in Figures 19 and 20. [00215] Figure 31 depicts the conversion of aldehyde 61 (R9 = C(O)H) to amide 84. Oxidation of aldehyde 61 (R9 = C(O)H) with a suitable oxidizing agent, including but not limited to KMnO4, CrO3 or Na2Cr2O7, can provide carboxylic acid 83. Conversion of acid 83 to amide 84 can be accomplished using standard coupling procedures, including but not limited to EDCI, HOBt, or PyBOP and the appropriate amine in suitable organic solvents such as DMF, THF, or methylene chloride. In some instances, the amine used in the coupling reaction contains a standard protecting group. In those cases, the protecting group can be removed by standard conditions known in the art. Carboxylic acid 62, as well as hydroxamate 63 and amide 64, where R9 is equal to C(O)NR3R4, can then be prepared from 84 as described in Figures 19 and 20. [00216] Figure 32 depicts the conversion of aldehyde 61 (R9 = C(O)H) to alkyl 85. Reaction of aldehyde 61 (R9 = C(O)H) under standard Wittig reaction conditions, followed by reduction of the resulting alkene can provide alkyl 85. The Wittig reaction involves the addition of a desired phosphorous ylide, RaC-PCCeHs^, to the aldehyde in a suitable organic solvent such as THF. The conditions for formation of the desired phosphorous ylide are well documented in the literature and are known by anyone skilled in the art. Reduction of the alkene to provide 85 can be accomplished under a hydrogen atmosphere with a suitable catalyst, such as PtC>2 or Pd/C. Carboxylic acid 62, as well as hydroxamate 63 and amide 64, where R9 is equal to CEkCRa, can then be prepared from 85 as described in Figures 19 and 20. [00217] hi Figure 33, the synthesis of compounds of Formula V is depicted where W is heterocyclic. Carboxylic acid 55 or 62 can be converted to hydrazide 86 using standard coupling procedures, including but not limited to EDCI, HOBt, or PyBOP and hydrazine in suitable organic solvents such as DMF, THF, or methylene chloride. Hydrazide 86 can then be converted to several desired heterocyclic analogs by cyclization with an appropriate reagent. Conversion of 86 to amino oxadiazole 87 can be accomplished using cyanogen bromide and a base such as NaHCOs, in a suitable biphasic solvent system such as dioxane and water at room temperature. Conversion of 86 to the oxadiazolone 88 can be accomplished by reaction with phosgene, GDI, or a phosgene equivalent. Conversion of 86 to the amino triazole 89 can be accomplished in a two step procedure, first by reaction with NH3CN and aqueous HC1, followed by cyclization with triphenylphosphine, triethylatnine and carbon tetrachloride. Conversion of 86 to the methyl trizole 90 can be accomplished in a two step procedure, first by reaction with an appropriate coupling agent, such as cyanamide or ethyl acetimidate, followed by cyclization with triphenylphosphine, triethylamine and carbon tetrachloride in dichloromethane. Finally, conversion of carboxylic acid 55 or 62 to the aminothiazole 91 can be accomplished with thiosemicarbazide using standard coupling conditions, such as EDCI, followed by cyclization with triphenylphosphine, triethylamine and carbon tetrachloride in dichloromethane. [00218] In Figure 34, the synthesis of compounds of Formula V is depicted where W is heterocyclic. Ring opening of oxadiazolone 88 with a desired amine can be accomplished in EtOH under refluxing conditions to yield 92, which can be recyclized to 93 with triphenylphosphine, triethylamine and carbon tetrachloride in dichloromethane. hi some instances, the amine used in the ring-opening reaction can contain a standard protecting group, hi those cases, the protecting group can be removed by standard conditions known in the art. [00219] The invention also relates to a pharmaceutical composition for the treatment of a hyperproliferative disorder in a mammal which comprises a therapeutically effective amount of a compound of the present invention, or a pharmaceutically acceptable salt, prodrug or hydrate thereof, and a pharmaceutically acceptable carrier. In one embodiment, said pharmaceutical composition is for the treatment of cancer such as brain, lung, squamous cell, bladder, gastic, pancreatic, breast, head, neck, renal, kidney, ovarian, prostate, colorectal, esophageal, testicular, gynecological or thyroid cancer. In another embodiment, said pharmaceutical composition is for the treatment of a non- cancerous hyperproliferative disorder such as benign hyperplasia of the skin (e.g., psoriasis), restenosis, or prostate (e.g., benign prostatic hypertrophy (BPH)). [00220] The invention also relates to a pharmaceutical composition for the treatment of pancreatitis or kidney disease (including proliferative glomerulonephritis and diabetes-induced renal disease) or the treatment of pain in a mammal which comprises a therapeutically effective amount of a compound of the present invention, or a pharmaceutically acceptable salt, prodrug or hydrate thereof, and a pharmaceutically acceptable carrier. [00221] The invention also relates to a pharmaceutical composition for the prevention of blastocyte implantation in a mammal which comprises a therapeutically effective amount of a compound of the present invention, or a pharmaceutically acceptable salt, prodrug or hydrate thereof, and a pharmaceutically acceptable carrier. [00222] The invention also relates to a pharmaceutical composition for treating a disease related to vasculogenesis or angiogenesis in a mammal which comprises a therapeutically effective amount of a compound of the present invention, or a pharmaceutically acceptable salt, prodrug or hydrate thereof, and a pharmaceutically acceptable carrier, hi one embodiment, said pharmaceutical composition is for treating a disease selected from the group consisting of tumor angiogenesis, chronic inflammatory disease or other inflammatory condition such as rheumatoid arthritis, atherosclerosis, inflammatory bowel disease, skin diseases such as psoriasis, eczema, and scleroderma, diabetes, diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, hemangioma, glioma, melanoma, Kaposi's sarcoma and ovarian, breast, lung, pancreatic, prostate, colon and epidermoid cancer. [00223] The invention also relates to a method of treating a hyperproliferative disorder in a mammal that comprises administering to said mammal a therapeutically effective amount of a compound of the present invention, or a pharmaceutically acceptable salt, prodrug or hydrate thereof, m one embodiment, said method relates to the treatment of cancer such as brain, lung, squamous cell, bladder, gastic, pancreatic, breast, head, neck, renal, kidney, ovarian, prostate, colorectal, esophageal, testicular, gynecological or thyroid cancer, hi another embodiment, said method relates to the treatment of a non-cancerous hyperproliferative disorder such as benign hyperplasia of the skin (e.g., psoriasis), restenosis, or prostate (e.g., benign prostatic hypertrophy (BPH)). [00224] The invention also relates to a method for the treatment of a hyperproliferative disorder in a mammal that comprises administering to said mammal a therapeutically effective amount of a compound of the present invention, or a pharmaceutically acceptable salt, prodrug or hydrate thereof, in combination with an anti- tumor agent selected from the group consisting of mitotic inhibitors, alkylating agents, anti-metabolites, intercalating antibiotics, growth factor inhibitors, cell cycle inhibitors, enzyme inhibitors, topoisomerase inhibitors, biological response modifiers, anti- hormones, angiogenesis inhibitors, and anti-androgens. [00225] The invention also relates to a method of treating pancreatitis or kidney disease in a mammal that comprises administering to said mammal a therapeutically effective amount of a compound of the present invention, or a pharmaceutically acceptable salt, prodrug or hydrate thereof. [00226] The invention also relates to a method of preventing blastocyte implantation in a mammal that comprises administering to said mammal a therapeutically effective amount of a compound of the present invention, or a pharmaceutically acceptable salt, prodrug or hydrate thereof. [00227] The invention also relates to a metliod of treating diseases related to vasculogenesis or angiogenesis hi a mammal that comprises administering to said mammal a therapeutically effective amount of a compound of the present invention, or a phannaceutically acceptable salt, prodmg or hydrate thereof. In one embodiment, said method is for treating a disease selected from the group consisting of tumor angiogenesis, chronic inflammatory disease such as rheumatoid arthritis, atherosclerosis, inflammatory bowel disease, skin diseases such as psoriasis, eczema, and scleroderma, diabetes, diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, hemangioma, glioma, melanoma, Kaposi's sarcoma and ovarian, breast, lung, pancreatic, prostate, colon and epidermoid cancer. [00228] The invention also relates to a pharmaceutical composition for treating a disease or condition related to inflammatory disease, autoimmune disease, destructive bone disorders, proliferative disorders, infectious disease, viral disease, fibrotic disease or neurodegenerative disease in a mammal which comprises a therapeutically effective amount of a compound of the present invention, or a pharmaceutically acceptable salt, prodrug or hydrate thereof, and a pharmaceutically acceptable carrier. Examples of the above diseases and/or conditions include but is not limited to rheumatoid arthritis, atherosclerosis, inflammatory bowel disease, skin diseases such as psoriasis, eczema, and scleroderma, diabetes and diabetic complications, diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, hemangioma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, allergic responses including asthma allergic rhinitis and atopic dermatitis, renal disease and renal failure, polycystic kidney disease, acute coronary syndrome, congestive heart failure, osteoarthritis, neurofibromatosis, organ transplant rejection, cachexia and pain. [00229] Further provided is a compound of Formula I, Formula II, Formula III, Formula IV or Formula V for use as a medicament in the treatment of the diseases and conditiobs described above in a warm-blooded animal, preferably a mammal, more preferably a human, suffering from such disorder. Also provided is the use of a compound of Formula I, Formula II, Formula III, Formula IV or Formula V in the preparation of a medicament for the treatment of the diseases and conditions described above in a warm-blooded animal, preferably a mammal, more preferably a human, suffering from such disorder. [00230] Patients that can be treated with compounds of the present invention, or pharmaceutically acceptable salts, prodrugs and hydrates of said compounds, according to the methods of this invention include, for example, patients that have been diagnosed as having psoriasis, restenosis, atherosclerosis, BPH, lung cancer, bone cancer. CMML, pancreatic cancer, skin cancer, cancer of the head and neck, cutaneous or intraocular melanoma, uterine cancer, ovarian cancer, rectal cancer, cancer of the anal region, stomach cancer, colon cancer, breast cancer, testicular, gynecologic tumors (e.g., uterine sarcomas, carcinoma of the fallopian tubes, carcinoma of the endometrium, carcinoma of the cervix, carcinoma of the vagina or carcinoma of the vulva), Hodgkin's disease, cancer of the esophagus, cancer of the small intestine, cancer of the endocrine system (e.g., cancer of the thyroid, parathyroid or adrenal glands), sarcomas of soft tissues, cancer of the urethra, cancer of the penis, prostate cancer, chronic or acute leukemia, solid tumors of childhood, lymphocytic lymphomas, cancer of the bladder, cancer of the kidney or ureter (e.g., renal cell carcinoma, carcinoma of the renal pelvis), or neoplasms of the central nervous system (e.g., primary CNS lymphoma, spinal axis tumors, brain stem gliomas or pituitary adenomas). [00231] This invention also relates to a pharmaceutical composition for inhibiting abnormal cell growth in a mammal which comprises an amount of a compound of the present invention, or a pharmaceutically acceptable salt or solvate or prodrug thereof, in combination with an amount of a chemotherapeutic, wherein the amounts of the compound, salt, solvate. or prodrug, and of the chemotherapeutic are together effective in inhibiting abnormal cell growth. Many chemotherapeutics are presently known in the art. hi one embodiment, the chemotherapeutic is selected from the group consisting of mitotic inhibitors, alkylating agents, anti-metabolites, intercalating antibiotics, growth factor inhibitors, cell cycle inhibitors, enzymes, topoisomerase inhibitors, biological response modifiers, anti-hormones, angiogenesis inhibitors, and anti-androgens. (tp232] This invention further relates to a method for inhibiting abnormal cell growth hi a mammal or treating a hyperproliferative disorder which method comprises administering to the mammal an amount of a compound of the present invention, or a pharmaceutically acceptable salt or solvate or prodrug thereof, in combination with radiation therapy, wherein the amounts of the compound, salt, solvate, or prodrug, is in combination with the radiation therapy effective in inhibiting abnormal cell growth or treating the hyperproliferative disorder in the mammal. Techniques for administering radiation therapy are known hi the art, and these techniques can be used in the combination therapy described herein. The administration of the compound of the invention in this combination therapy can be determined as described herein. [00233] It is believed that the compounds of the present invention can render abnormal cells more sensitive to treatment with radiation for purposes of killing and/or inhibiting the growth of such cells. Accordingly, this invention further relates to a method for sensitizing abnormal cells in a mammal to treatment with radiation which comprises administering to the mammal an amount of a compound of the present invention or pharmaceutically acceptable salt or solvate or prodrug thereof, which amount is effective is sensitizing abnormal cells to treatment with radiation. The amount of the compound, salt, or solvate in this method can be determined according to the means for ascertaining effective amounts of such compounds described herein. [00234] The invention also relates to a method of and to a pharmaceutical composition of inhibiting abnormal cell growth in a mammal which comprises an amount of a compound of the present invention, or a pharmaceutically acceptable salt or solvate thereof, a prodrug thereof, or an isotopically-labeled derivative thereof, and an amount of one or more substances selected from anti-angiogenesis agents, signal transduction inhibitors, and antiproliferative agents. [00235] Anti-angiogenesis agents, such as MMP-2 (matrix-metalloprorienase 2) inhibitors, MMP-9 (matrix-metalloprotienase 9) inhibitors, and COX-II (cyclooxygenase II) inhibitors, can be used in conjunction with a compound of the present invention and pharmaceutical compositions described herein. Examples of useful COX-II inhibitors include CELEBREX™ (alecoxib), valdecoxib, and rofecoxib. Examples of useful matrix metalloprotienase inhibitors are described in WO 96/33172, WO 96/27583, EP S18442, EP 1004578, WO 98/07697, WO 98/03516, WO 98/34918, WO 98/34915, WO 98/3$768, WO 98/30566, EP 606,046, EP 931,788, WO 90/05719, WO 99/52910, WO 99/52889, WO 99/29667, WO 99/07675, EP 945864, U.S. Patent No. 5,863,949, U.S. Patent No. 5,861,510, and EP 780,386, all of which are incorporated herein in their entireties by reference. Preferred MMP-2 and MMP-9 inhibitors are those that have little or no activity inhibiting MMP-1. More preferred, are those that selectively inhibit MMP-2 and/or MMP-9 relative to the other matrix-metalloproteinases (i.e., MMP-1, MMP-3, MMP-4, MMP-5, MMP-6, MMP-7, MMP-8, MMP-10, MMP-11, MMP-12, and MMP-13). [00236] The terms "abnormal cell growth" and "hyperproliferative disorder" are used interchangeably in this application. [00237] "Abnormal cell growth," as used herein, unless otherwise indicated, refers to cell growth that is independent of normal regulatory mechanisms (e.g., loss of contact inhibition). This includes, for example, the abnormal growth of: (1) tumor cells (tumors) that proliferate by expressing a mutated tyrosine kinase or over-expression of a receptor tyrosine kinase; (2) benign and malignant cells of other proliferative diseases in which aberrant tyrosine kinase activation occurs; (3) any tumors that proliferate by receptor tyrosine kinases; (4) any tumors that proliferate by aberrant serine/threonine kinase activation; and (5) benign and malignant cells of other proliferative diseases in which aberrant serine/theroine kinase activation occurs. [00238] The term "treating," as used herein, unless otherwise indicated, means reversing, alleviating, inhibiting the progress of, or preventing the disorder or condition to which such term applies, or one or more symptoms of such disorder or condition. The term "treatment," as used herein, unless otherwise indicated, refers to the act of treating as "treating" is defined immediately above. [00239] ' The amount of a given agent that will correspond to such an amount will vary depending upon factors such as the particular compound, disease condition and its severity, the identity (e. g., weight) of the mammal in need of treatment, but can nevertheless be routinely determined by one skilled in the art. "Treating" is intended to mean at least the mitigation of a disease condition in a mammal, such as a human, that is affected, at least in part, by the activity of MEK, and includes, but is not limited to, preventing the disease condition from occurring in a mammal, particularly when the mammal is found to be predisposed to having the disease condition but has not yet been Diagnosed as having it; modulating and/or inhibiting the disease condition; and/or alleviating the disease condition. [00240] In order to use a compound of the Formula I-V or a pharmaceutically acceptable salt or prodrug thereof, for the therapeutic treatment (including prophylactic treatment) of mammals including humans, it is normally formulated in accordance with standard pharmaceutical practice as a pharmaceutical composition. According to this aspect of the invention there is provided a pharmaceutical composition that comprises a compound of the Formula I-V, or a pharmaceutically acceptable salt or prodrug thereof, as defined hereinbefore in association with a pharmaceutically acceptable diluent or carrier. [00241] To prepare the pharmaceutical compositions according to this invention, a therapeutically or prophylactically effective amount of a compound of Formula I-V or a pharmaceutically acceptable salt, solvate, metabolite or prodrug thereof (alone or together with an additional therapeutic agent) is preferably intimately admixed with a pharmaceutically acceptable carrier according to conventional pharmaceutical compounding techniques to produce a dose. A carrier may take a wide variety of forms depending on the form of preparation desired for administration, e.g., oral or parenteral. Examples of suitable carriers include any and all solvents, dispersion media, adjuvants, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, sweeteners, stabilizers (to promote long term storage), emulsifiers, binding agents, thickening agents, salts, preservatives, solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, flavoring agents, and miscellaneous materials such as buffers and absorbents that may be needed in order to prepare a particular therapeutic composition. The use of such media and agents with pharmaceutically active substances is well known in the art. Except Insofar as any conventional media or agent is incompatible with a compound of Formula I-V, its use in the therapeutic compositions and preparations is contemplated. Supplementary active ingredients can also be incorporated into the compositions and preparations as described herein. [00242] The compositions of the invention may be in a form suitable for oral use (for example as tablets, lozenges, hard or soft capsules, aqueous or oily suspensions, emulsions, dispersible powders or granules, syrups or elixirs), for topical use (for ^example as creams, ointments, gels, or aqueous or oily solutions or suspensions), for administration by inhalation (for example as a finely divided powder or a liquid aerosol), for administration by insufflation (for example as a finely divided powder) or for parenteral administration (for example as a sterile aqueous or oily solution for intravenous, subcutaneous, or intramuscular dosing or as a suppository for rectal dosing). For example, compositions intended for oral use may contain, for example, one or more coloring, sweetening, flavoring and/or preservative agents. [00243] Suitable pharmaceutically-acceptable excipients for a tablet formulation include, for example, inert diluents such as lactose, sodium carbonate, calcium phosphate or calcium carbonate, granulating and disintegrating agents such as corn starch or algenic acid; binding agents such as starch; lubricating agents such as magnesium stearate, stearic acid or talc; preservative agents such as ethyl or propyl p-hydroxybenzoate. and anti- oxidants, such as ascorbic acid. Tablet formulations may be uncoated or coated either to modify their disintegration and the subsequent absorption of the active ingredient within the gastrointestinal tract, or to improve their stability and/or appearance, in either case, using conventional coating agents and procedures well known in the art. [00244] Compositions for oral use may be in the form of hard gelatin capsules in which the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules in which the active ingredient is mixed with water or an oil such as peanut oil, liquid paraffin, or olive oil. [00245] Aqueous suspensions generally contain the active ingredient in finely powdered form together with one or more suspending agents, such as sodium carboxymethylcellulose. methylcellulose, hydroxypropylmethylcellulose, sodium alginate, polyvinyl-pyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents such as lecithin or condensation products of an alkylene oxide with fatty acids (for example polyoxethylene stearate), or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan monooleate. The aqueous suspensions may also contain one or more preservatives (such as ethyl or propyl p-hydroxybenzoate, anti-oxidants (such as ascorbic acid), coloring agents, flavoring agents, and/or sweetening agents (such as sucrose, saccharine or aspartame). [00246] Oily suspensions may be formulated by suspending the active ingredient in a vegetable oil (such as arachis oil, olive oil, sesame oil or coconut oil) or in a mineral oil (such as liquid paraffin). The oily suspensions may also contain a thickening agent such as beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those set out above, and flavoring agents may be added to provide a palatable oral preparation. These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid. [00247] Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water generally contain the active ingredient together with a dispersing or wetting agent, suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those already mentioned above. Additional excipients such as sweetening, flavoring and coloring agents, may also be present. [00248] The pharmaceutical compositions of the invention may also be in the form of oil-in-water emulsions. The oily phase may be a vegetable oil, such as olive oil or arachis oil, or a mineral oil, such as for example liquid paraffin or a mixture of any of these. Suitable emulsifying agents may be, for example, naturally-occurring gums such as gum acacia or gum tragacanth, naturally-occurring phosphatides such as soya bean, lecithin, an esters or partial esters derived from fatty acids and hexitol anhydrides (for example sorbitan monooleate) and condensation products of the said partial esters with ethylene oxide such as polyoxyethylene sorbitan monooleate. The emulsions may also contain sweetening, flavoring and preservative agents. [00249] Syrups and elixirs may be formulated with sweetening agents such as glycerol, propylene glycol, sorbitol, aspartame or sucrose, and may also contain a demulcent, preservative, flavoring and/or coloring agent. [00250] The pharmaceutical compositions may also be in the form of a sterile injectable aqueous or oily suspension, which may be formulated according to known procedures using one or more of the appropriate dispersing or wetting agents and suspending agents, which have been mentioned above. A sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally- acceptable diluent or solvent, for example a solution in 1,3-butanediol. UP0251] Suppository formulations may be prepared by mixing the active ingredient with a suitable non-irritating excipient which is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug. Suitable excipients include, for example, cocoa butter and polyethylene glycols. [00252] Topical formulations, such as creams, ointments, gels and aqueous or oily solutions or suspensions, may generally be obtained by formulating an active ingredient with a conventional, topically acceptable, vehicle or diluent using conventional procedures well known in the art. [00253] Compositions for administration by insufflation may be in the form of a finely divided powder containing particles of average diameter of, for example, 30 fim or much less, the powder itself comprising either active ingredient alone or dilated with one or more physiologically acceptable earners such as lactose. The powder for insufflation is then conveniently retained in a capsule containing, for example, 1 to 50 nig of active ingredient for use with a turbo-inhaler device, such as is used for insufflation of the known agent sodium cromoglycate. [00254] Compositions for administration by inhalation may be in tlie form of a conventional pressurized aerosol arranged to dispense the active ingredient either as an aerosol containing finely divided solid or liquid droplets. Conventional aerosol propellants such as volatile fiuorinated hydrocarbons or hydrocarbons may be used and the aerosol device is conveniently arranged to dispense a metered quantity of active ingredient. [00255] For further information on formulations, see Chapter 25.2 in Volume 5 of Comprehensive Medicinal Chemistry (Corwin Hansch; Chairman of Editorial Board), Pergamon Press 1990, which is specifically incorporated herein by reference. [00256] The amount of a compound of this invention that is combined with one or more excipients to produce a single dosage form will necessarily vary depending upon the subject treated, the severity of the disorder or condition, the rate of administration, the disposition of the compound and the discretion of the prescribing physician. However, an effective dosage is in the range of about 0.001 to about 100 mg per kg body weight per day, preferably about 1 to about 35 mg/kg/day, in single or divided doses. For a 70 kg human, this would amount to about 0.05 to 7 g/day, preferably about 0.05 to about 2.5 g/day. In some instances, dosage levels below the lower limit of the aforesaid range may $s more than adequate, while in other cases still larger doses may be employed without causing any harmful side effect, provided that such larger doses are first divided into several small doses for administration throughout the day. For further information on routes of administration and dosage regimes, see Chapter 25.3 in Volume 5 of Comprehensive Medicinal Chemistry} (Corwin Hansch; Chairman of Editorial Board), Pergamon Press 1990, which is specifically incorporated herein by reference. [00257] The size of the dose for therapeutic or prophylactic purposes of a compound of Formula I-V will naturally vary according to the nature and severity of the conditions, the age and sex of the animal or patient and the route of administration, according to well known principles of medicine. [00258] The compounds of this invention may be used alone in combination with other drugs and therapies used in the treatment of disease states which would benefit from the inhibition of MEK. Such treatment may involve, in addition to the compounds of the invention, conventional surgery or radiotherapy or chemotherapy. Such chemotherapy may include one or more of the following categories of anti-tumor agents: [00259] (i) antiproliferative/anti-neoplastic drugs and combinations thereof, as used in medical oncology, such as alkylating agents (for example, cis-platin, carboplatin, cyclophosphamide, nitorgen mustard, melphalan, chlorambucil, busulpnan and nitorsoureas); anti-metabolites (for example, antifolates such as such as fluoropyrimidines like 5-fluorouracil and tegafur, raltitrexed, methotrexate, cytosine arabinside, hydroxyurea, or, one of the preferred anti-metabolites disclosed in European Patent Application No. 239362 such as N-(5-[N-(3,4-dihydro-2-methyl-4-oxoquinazolin-6-ylmethyl)-N-methylamino]-2-thenoyl)-L-glutamic acid); antitumor antibiotics (for example, anthracyclines like adriamycin, bleomycin, doxorubicin, daunomycin, epirubicin, idarubicin, mitomycin-C, dactinomycin and mithramycin); antimitotic agents (for example, vinca alkaloids like vincristine, vinblastine, vindesine and vinorelbine and taxoids like taxol and taxotere); and topoisomerase inhibitors (for example epipodophyllotoxins like eptoposide and teniposide, amsacrine, topotecan and campothecin): [00260] (ii) cytostatic agents such as antiestrogens (for example, tarnoxifen, toremifene, raloxifene, droloxifene and iodoxyfene), estrogen receptor down regulators (for example, fulvestratrant) antiandrogens (for example, bicalutamide, flutamide, 4»ilutamide, cyproxerone acetate and Casodex™ (4'-cyano-3-(4-fluorophenylsulphonyl)- 2-hydroxy-2-methyl-3'-(trifluoromethyl)propionanilide)), LHRH antagonists or LHRH agonists (for example, goserelin, leuporelin and buserelin), progestogens (for example, megestrol acetate), aromatase inhibitors (for example, asanastrozole, letrozole, vorazole and exemestane) and inhibitors of 5oc-reductase such as finasteride; [00261] (iii) agents which inhibit cancer cell invasion (for examples metalloproteinase inhibitors like marimastat and inhibitors of urokinase plasroinogne activator receptor function); [00262] (iv) inhibitors of growth factor function like growth factor antibodies, growth factor receptor antibodies (for example, the anti-erbB2 antibody trastumuzab [Herceptin™] and the anti-erbBl antibody cetuximab [C225]), farnesyl transferase inhibitors, tyrosine kinase inhibitors and serine-threonine kinase inhibitors (for example, inhibitors of the epidermal growth factor family tyrosine kinases such as N-(3-chloro-4- fluorophenyl)-7-methoxy-6-(3-niorpholinopropoxy)quinazoun-4-amme (gefitinib, AZD1839), N-(3-ethynylphenyl)-6,7-bis(2-methoxyethoxy)quinazoUn-4-amine (erlotinib, OSI-774) and 6-acrylamido-N-(3-chloro-4-fluorophenyl)-7-(3- morpholinopropoxy)quinazolin-4-amine (CI 1033)), inhibitors of the platelet-derived growth factor family and inhibitors of the hepatocyte growth factor family; [00263] (v) antiangiogenic agents such as those which inhibit the effects of vascular endothelial growth factor (for example, the anti-vascular endothelial cell growth TTuf factor antibody bevacizumab [Avastin ], compounds such as those disclosed in PCT Publication Nos. WO 97/22596, WO 97/30035, WO 97/32856, and WO 98/13354) and compounds that work by other mechanisms (for example, linomide, inhibitors of integral av|33 function, MMP inhibitors, COX-2 inhibitors and angiostatin); [00264] (vi) vascular damaging agents such as Combretastatin A4 and compounds disclosed in PCT Publication Nos. WO 99/02166, WO 0/40529, WO 00/41669, WO 01/92224, WO 02/04434, and WO 02/08213; [00265] (vii) antisense therapies (for example, those which are directed to the targets listed above such as ISIS 2503, and anti-ras antisense); [00266] (viii) gene therapy approaches, including for example GVAX™, approaches to replace aberrant genes such as aberrant p53 or aberrant BRCA1 or BRCA2, GDEPT (gene-directed enzyme pro-drug therapy) approaches such as those using c^tosine deaminase, thymidine kinase or a bacterial nitroreductase enzyme and approaches to increase patient tolerance to chemotherapy or radiotherapy such as multi- drug resistance gene therapy; and [00267] (ix) interferon; [00268] (x) immunotherapy approaches, including for example ex-vivo and in- vivo approaches to increase the immunogenicity of patient tumor cells, such as , transfection with cytokines such as interleukin 2, interleukin 4 or granulocyte-macrophage colony stimulating factor, approaches to decrease T-cell anergy, approaches to using transfected immune cells such as cytokine-transfected dendritic cells, approaches using cytokine-transfected tumor cell lines and approaches using anti-idiotypic antibodies. [00269] Such conjoint treatment may be achieved by way of the simultaneous, sequential or separate dosing of the individual components of treatment. Such combination products employ the compounds of this invention within the dose range described hereinbefore and the other pharmaceutically active agent within its approved dose range. [00270] According to this aspect of the invention there is provided a pharmaceutical product comprising a compound of Formula I-V as defined hereinbefore and an additional anti-tumor agent as defined hereinbefore for the conjoint treatment of cancer. [00271] Although the compounds of Formula I-V are primarily of value as therapeutic agents for use in warm-blooded animals (including man), they are also useful whenever it is required to inhibit the effects of MEK. Thus, they are useful as pharmacological standards for use in the development of new biological tests and in the search for new pharmacological agents. [00272] The activity of the compounds of the present invention may be determined by the following procedure. N-terminal 6 His-tagged, constitutively active MEK-1 (2-393) is expressed in E. coli and protein is purified by conventional methods (Ahn et al, Science 1994, 265, 966-970). The activity of MEK1 is assessed by measuring the incorporation of y-33P-phosphate from y-33P-ATP onto N-terminal His tagged ERK2, which is expressed in E. coli and is purified by conventional methods, in the presence of MEK-1. The assay is carried out in 96-well polypropylene plate. The incubation mixture $00 uL) comprises of 25 mMHepes, pH 7.4,10 mM MgCl2,5 mM p-glycerolphosphate, 100 |jM Na-orthovanadate, 5 mM DTT, 5 nM MEK1, and 1 |iM ERK2. Inhibitors are suspended in DMSO, and all reactions, including controls are performed at a final concentration of 1% DMSO. Reactions are initiated by the addition of 10 aM ATP (with 0.5 uCi y-33P-ATP/well) and incubated at ambient temperature for 45 minutes. Equal volume of 25% TCA is added to stop the reaction and precipitate the proteins. Precipitated proteins are trapped onto glass fiber B filterplates, and excess labeled ATP washed off using a Tomtec MACH HI harvester. Plates are allowed to air-dry prior to adding 30 uL/well of Packard Microscint 20, and plates are counted using a Packard TopCount. hi this assay, compounds of the invention exhibited an ICso of less than 50 micromolar. [00273] Representative compounds of the present invention, which are encompassed by'the present invention include, but are not limited to the compounds of the examples and their pharmaceutically acceptable acid or base addition salts or prodrugs thereof. The examples presented below are intended to illustrate particular embodiments of the invention, and are not intended to limit the scope of the specification or the claims in any way. [00274] The disclosures in this application of all articles and references, including patents, are incorporated herein by reference. EXAMPLES [00275] In order to illustrate the invention, the following examples are included. However, it is to be understood that these examples do not lunit the invention and are only meant to suggest a method of practicing the invention. Persons skilled in the art will recognize that the chemical reactions described may be readily adapted to prepare a number of other MEK inhibitors of the invention, and alternative methods for preparing the compounds of this invention are deemed to be within the scope of this invention. For example, the synthesis of non-exemplified compounds according to the invention may "be successfully performed by modifications apparent to those skilled in the art, e.g., by appropriately protecting interfering groups, by utilizing other suitable reagents known in the art other than those described, and/or by making routine modifications of reaction conditions. Alternatively, other reactions disclosed herein or known in the art will be recognized as having applicability for preparing other compounds of the invention. f§0276] In the examples described below, unless otherwise indicated all temperatures are set forth in degrees Celsius. Reagents were purchased from commercial suppliers such as Aldrich Chemical Company, Lancaster, TCI or Maybridge, and were used without further purification unless otherwise indicated. Tetrahydrofuran (THF), N,N-dimethylforrnarnide (DMF), dichloromethane, toluene, dioxane and 1,2- difluoroethane were purchased from Aldrich in Sure seal bottles and used as received. [00277] The reactions set forth below were done generally under a positive pressure of nitrogen or argon or with a drying tube (unless otherwise stated) in anhydrous solvents, and the reaction flasks were typically fitted with rubber septa for the introduction of substrates and reagents via syringe. Glassware was oven dried and/or heat dried. [00278] Column chromatography was done on a Biotage system (Manufacturer: Dyax Corporation) having a silica gel column or on a silica SepPak cartridge (Waters). [00279] 'H-NMR spectra were recorded on a Varian instrument operating at 400 MHz. 1H-NMR spectra were obtained as CDCls solutions (reported in ppm), using chloroform as the reference standard (7.25 ppm). Other NMR solvents were used as needed. When peak multiplicities are reported, the following abbreviations are used: s (singlet), d (doublet), t (triplet), m (multiplet), br (broadened), dd (doublet of doublets), dt (doublet of triplets). Coupling constants, when given, are reported in Hertz (Hz). Example 1 (Figure Removed) 4-(4-Bromo-2-fluorophenylamino)-l-methyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid [00280] Step A: Preparation of 4-hvdroxv-l-methyl-6-oxo-l,6-dihvdropvridine-3- carboxylic acid ethyl ester: Triethyl orthoformate (45.82 mL, 275.5 mmol) and acetic anhydride (52.08 mL, 550.9 mmol) were added to diethyl acetone dicarboxylate (50 mL, 275.5 mmol) and heated to 135 °C. After 1 hour, the reaction mixture was cooled to room temperature and concentrated. The resulting residue was cooled to 0 °C and methylamine (40% in water) was added with stirring. After the addition of water (200 mL) the reaction ^lixture was stirred at room temperature for 16 hours. The reaction mixture was diluted with EtOAc (300 mL), and the resulting layers separated. The aqueous phase was neutralized with 10% HC1 solution to produce the desired product as a white precipitate, which was filtered and washed with water. The filtrate was extracted with EtOAc, and the combined organic extracts dried (MgSC^), and concentrated to give a white solid. This second crop of product was rinsed with Et2O and combined with the first crop to yield 29 g (54%) desired product after drying. [00281] Step B: Preparation of 4-chloro-1 -methyl-6-oxo-1.6-dihvdropyridine-3- carboxvlic acid ethyl ester: Triethyl amine (7.07 mL, 50.7 mmol) was added to a suspension of 4-hydroxy-l-methyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid ethyl ester (10.0 g, 50.7 mmol) and POC13 (27.85 mL, 304.3 mmol). After stirring 16 hours, the reaction mixture was concentrated under reduced pressure. The resulting residue was poured onto ice, carefully neutralized with saturated K^COs solution, and diluted with EtOAc. The layers were separated and the aqueous phase further extracted with EtOAc. The combined organic extracts were dried (MgSO-O and concentrated under reduced pressure to yield 7.3 g (67%) clean desired product. [002821 Step C: Preparation of 4-chloro-l-memyl-6-oxo-l,6-dmvdropvridine-3- carboxylic acid: To a solution of 4-chloro-l-methyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid ethyl ester (0.925 g, 4.29 mmol) in a 4:1 mixture of THFMeOH (20 mL) was added a 1 M solution of LiOH (8.6 mL). After stirring for 30 minutes, the reaction mixture was acidified to pH 1 with 10% HC1 and extracted with EtOAc. The combined organic extracts were washed with brine, dried (MgSO4) and concentrated under reduced pressure to give 0.732 g (91%) clean desired product. [00283] Step D: Preparation of 4-(4-bromo-2-fluorophenylamino)-l-methvl-6-oxo- 1,6-dihvdropyridine-3-carboxylic acid: To a solution of i-Pr2TSIH (0.39 mL, 2.80 mmol) in THF (4 mL) at 0 °C was added n-BuLi (1.1 mL, 2.80 mmol, 2.5 M solution in hexanes). After stirring 15 minutes, the mixture was cooled to -78 °C. 4-Bromo-2-fluorophenylamine (0.38 g, 2.0 mmol) was added. After vigorous stirring for 10 minutes, a mixture of the 4-chloro-l-methyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid (0.15 g, 0.80 mmol) in THF (5 mL) was added. The dry-ice bath was removed after 30 minutes, and the reaction mixture was stirred for 17 hours at room temperature. The reaction mixture was treated with a 10% aqueous HC1 solution (15 mL), extracted with EtOAc, drkd (MgSO4), and concentrated. Trituration with methylene chloride gave 0.21 g (77%) desired product. MS APCI (-) mfz 339, 341 (M-, Br pattern) detected; *H NMR (400 rnHz, DMSO-de) 5 9.61 (s, 1H), 8.53 (s, 1H), 7.69 (dd, 1H), 7.46 (m, 2H), 3.41 (s, 3H). [00284] In the foregoing examples a variety of anilines can be used in replace of 4- bromo-2-fluorophenylamine in Step D of Example 1. (Figure Removed) 4-(4-Bromo-2-fluorophenyIamino)-l-methyI-6-oxo-l,6-dihydropyridine-3-carboxylic acid cyclopropylmethoxy-amide [00286] Preparation of 4-(4-bromo-2-fluorophenylamino)-l-methvl-6-oxo-1.6- dihydropyridine-3-carboxvlic acid cyclopropvlmethoxv-amide: A mixture of 4-(4-bromo-2-fluorophenylamino)-l-methyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid (0.078 g, 0.229 mmol), EDCI (0.13 g, 0.69 mmol), and HOBt (0.093 g, 0.69 mmol) in DMF (5 mL) was stirred for 30 minutes. 0-Cyclopropylmethyl-hydroxylamine (0.060 g, 0.69 mmol) was added followed by Et3N (0.096 mL, 0.69 mmol). After 1 hour, the reaction mixture was diluted with EtOAc and washed with saturated NEUCl solution, saturated NaHCOs solution and brine. The organic layer was dried (MgSO4) and concentrated to yield 83 mg (89%) clean desired product. MS APCI (+) m/z 410, 412 (M+, Br pattern) detected; 1H NMR (400 mHz, DMSO-d6) 6 11.57 (s, 1H), 9.42 (s, 1H), 8.10 (s, 1H), 7.67 (d, 1H), 7.43 (m, 2H), 3.70 (d, 2H), 3.35 (s, 3H), 1.11 (m, 1H), 0.54 (m, 2H), 0.27 (m, 2H). [00287] Any of the hydroxylamines used in the foregoing examples can be coupled as described in Example 2. In some instances, a final deprotection step may be required. These deprotections can be accomplished by standard literature methods. Example 3 is one such example in which a final deprotection step is required. H (Figure Removed) -(4-Bromo-2-fluorophenylamino)-l-methyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid (2-hydroxyethoxy)-amide [00288] Step A: Preparation of 4-(4-bromo-2-fluorophenylamino>-l-methvl-6- oxo-1,6-dihydropvridine-3-carboxvlic acid (2-vinyloxvethoxvVamide: A mixture of 4- (4-bromo-2-fluorophenylamino)-l-methyl-6-oxo-l,6-dihydropyridme-3-carboxylic acid (0.120 g, 0.352 mmol), EDCI (0.10 g, 0.53 mmol), and HOBt (0.071 g, 0.53 mmol) in DMF (5 mL) was stirred for 3 hours. O-(2-Vinyloxy-ethyl)-hydroxylamine (0.071 mL, 0.70 mmol) was added followed by Et3N (0.098 mL, 0.70 mmol). After 2 hours, the reaction mixture was diluted with EtOAc and washed with saturated NIL;C1 solution, saturated NaHCOs solution and brine. The organic layer was dried (MgSO4) and concentrated under reduced pressure. Purification by flash column chromatography (3% MeOH in methylene chloride) gave 0.078 g (52%) clean desired product. [00289] Step B: Preparation of 4-(4-bromo-2-fluoroplienylammoM-nieihvl-6- oxo-l,6-dihvdropvridine-3-carboxylic acid (2-hydroxvethoxv)-amide: 1 N HC1 solution (0.36 mL) was added to a stirred solution of 4-(4-bromo-2-fluorophenylammo)-l-methyl-6-oxo-l,6rdihydropyridine-3-carboxylic acid (2-vinyloxyethoxy)-amide (0.077 g, 0.181 mmol) in a 1:1 mixture of EtOH:THF (6 mL). After 1 hour, the pH of the reaction mixture was adjusted to 5 to 7 with 2 N NaOH solution. The reaction mixture was diluted with EtOAc, washed with water, dried (MgSO4) and concentrated. Trituration with diethyl ether yielded 55 mg (76%) clean desired product as a white solid. MS APCI (-) m/z 398, 400 (M-, Br pattern) detected; *H NMR (400 mHz, DMSO-d6) 5 11.65 (s, 1H), 9.41 (s, 1H), 8.13 (s, 1H), 7.68 (d, 1H), 7.43 (m, 3H), 4.74 (t, 1H), 3.91 (t, 2H), 3.62 (m, 2H), 3.36 (s, 3H). (Figure Removed) 4-(4-Bromo-2-fluorophenylamino)-l-methyI-6-oxo-l,6-dihydropyridine-3-carboxylic acid amide [00290] Preparation of 4-(4-bromo-2-fluorophenylamino)-l-methyl-6-oxo-l,6- dihydropyridine-3-carboxylic acid amide: A mixture of 4-(4-bromo-2-fluorophenylamino)-l-methyl-6-oxo-l,6-dihydropyridme-3-carboxylic acid (0.069 g, 0.202 mmol), EDCI (0.12 g, 0.61 mmol), and HOBt (0.082 g, 0.61 mmol) in DMF (5 mL) was stirred for 30 minutes. NEUCl (0.033 g, 0.61 mmol) was added followed by Et3N (0.085 mL, 0.61 mmol). After 1 hour, the reaction mixture was diluted with EtOAc and washed with saturated NBUCl solution, saturated NaHCOa solution and brine. The organic layer was dried (MgSCu) and concentrated to yield 52 mg (76%) clean desired product as an off-white solid. MS APCI (+) m/z 340, 342 (M+, Br pattern) detected; *H NMR (400 mHz, DMSO-d6) 5 10.39 (s, IH), 8.34 (s, IH), 7.67 (dd, IH), 7.43 (m, 2H), 3.36 (s, 3H). [00291] The following compounds were prepared as described in Examples 1, 2 and 3 using benzyl amine in place of methylamine in Step A of Example 1 and no Et^N in Step B of Example 1. Example 5 (Figure Removed) fluorophenylamino)-6-oxo-l,6-dihydropyridine-3-carboxylic acid [00292] MS APCI (-) m/z 415, 417 (M-, Br pattern) detected; 1H NMR (400 mHz, DMSO-d6) 5 9.62 (s, IH), 8.60 (s, IH), 7.65 (dd, IH), 7.48 (m, 2H), 7.32 (m, 5H), 5.49 (s, lH),5.12(s,2H). l-Benzyl-4-(4-bromo-2-fluorophenylamino)-6-oxo-l,6-dihydropyridine-3-carboxyIic acid cyclopropylmethoxy amide [00293] MS APCI (-) m/z 484, 486 (M-, Br pattern) detected; !H NMR (400 mHz, CD3OD) 5 8.04 (s, IH), 7.49 (d, IH), 7.40 (m, 2H), 7.32 (m, 6H), 5.12 (s, 2H), 3.75 (d, 2H), 1.14 (m, IH), 0.57 (m, 2H), 0.28 (m, 2H). Example 7 (Figure Removed) O l-Benzyl-4-(4-bromo-2-fluorophenylamino)-6-oxo-l,6-dihydropyridine-3-carboxylic acid (2-hydroxyethoxy) amide [00294] MS APCI (-) m/z 474, 476 (M-, Br pattern) detected; 'H NMR (400 mHz, CD3OD) 5 8.10 (s, IH), 7.49 (d, IH), 7.40 (m, 2H), 7.33 (m, 6H), 5.12 (s, 2H), 4.03 (t, 2H),3.77(t,2H). [00295] The following compounds were prepared as previously described with the addition of a chlorination step. An example of such a chlorination is described below. (Figure Removed) [00296] A mixture of 4-chloro-l-methyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid ethyl ester (1.00 g, 4.64 mmol) and NCS (0.68 g, 5.10 mmol) in DMF (30 mL) was stirred for 1 hour. The reaction mixture was diluted with EtOAc and washed with 0.1 N HC1 solution. The organic layer was dried (MgSCu) and concentrated under reduced Example 8 (Figure Removed) 4-(4_Bromo-2-fluorophenylamino)-5-chloro-l-methyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid cyclopropylmethoxy amide [00297] MS APCI (+) m/z 444, 446 (M+, Cl, Br pattern) detected; *H NMR (400 mHz, DMSO-de) 6 11.52 (s, IH), 8.78 (s, IH), 7.98 (s, IH), 7.52 (dd, IH), 7.29 (dd, IH), 6.93 (t, IH), 3.47 (s, 3H), 3.40 (d, 2H), 1.01 (m, IH), 0.50 (m, 2H), 0.20 (m, 2H). Example 9 (Figure Removed) 4-(4-Bromo-2-fluorophenylamino)-5-chloro-l-methyl-6-oxo-l,6-dihydropyridine-3- carboxylic acid amide [00298] MS APCI (+) m/z 374, 376 (M+, Cl, Br pattern) detected; *H NMR (400 mHz, DMSO-d6) d 10.16 (s, IH), 8.33 (s,, IH), 7.99 (br. s, IH), 7.64 (br. s, IH), 7.55 (dd, IH), 7.30 (dd, IH), 6.90 (m, IH), 3.48 (s, 3H). Example 10 (Figure Removed) 4-(4-Bromo-2-fluorophenylamino)-5-chloro-l-methyl-6-oxo-l,6-dihydropyridine-3- carboxylic acid (2-hydroxyethoxy)-amide [00299] MS APCI (+) m/z 434, 436 (M+, Cl, Br pattern) detected; !H NMR (400 mHz, DMSO-ds) 5 11.60 (s, IH), 8.82 (s, IH), 8.03 (s, IH), 7.52 (dd, IH), 7.28 (d, IH), example 11 (Figure Removed) 4-(4-Bromo-2-fluorophenylamino)-5-chloro-l-methyl-6-oxo-l,6-dihydropyridine-3- carboxylic acid [00300] MS APCI (+) m/z 375, 377 (M+, Cl, Br pattern) detected; !H NMR (400 mHz, DMSO) 5 9.58 (s, IH), 8.58 (s, IH), 7.57 (dd, IH), 7.33 (d, IH), 7.0 (t IH), 3.53 (s, 3H). Example 12 (Figure Removed) 4_(4_Bromo-2-fluorophenylamino)-5-chloro-l-methyl-6-oxo-l,6-dihydropyridine-3- carboxylic acid ethoxy-amide [00301] MS APCI (+) m/z 418, 420 (M+, Cl, Br pattern) detected; 1H NMR (400 mHz, CD3OD) 6 7.85 (s, IH), 7.34 (dd, IH), 7.26 (dd, IH), 6.97 (t, IH), 3.69 (q, 2H), 3.58 (s, 3H), 1.20 (t, 3H). Example 13 (Figure Removed) l-Benzyl-4-(4-bromo-2-fluorophenylamino)-5-chloro-6-oxo-l,6-dihydropyridine-3- carboxylic acid [00302] MS APCI (-) m/z 449, 451 (M-, Cl, Br pattern) detected; *H NMR (400 mHz, DMSO-d6) 5 9.66 (s, IH), 8.67 (s, IH), 7.56 (d, IH), 7.34 (m, 6H), 7.03 (t, IH), 5.23 (s, 2H). Cl o l-Benzyl-4-(4-bromo-2-fluorophenylammo)-5-chloro-6-oxo-l,6-diliydropyridine-3- carboxylic acid amide [00303] MS APCI (-) m/z 448, 450 (M-, Cl, Br pattern) detected; >H NMR (400 mHz, DMSO-Dfi) 5 10.21 (s, IH), 8.45 (s, IH), 8,07 (br. s, IH), 7.65 (br. s, IH), 7.53 (dd, IH), 7.33 (m, 6H), 6.94 (t, IH), 5.12 (s, 2H). Example 15 (Figure Removed) fluorophenylamino)-5-chloro-6-oxo-l,6- - carboxylic acid cyclopropylmethoxy-amide [00304] MS APCI (-) m/z 518, 520 (M-, Cl, Br pattern) detected; *H NMR (400 mHz, DMSO-de) 6 8076 (s, IH), 8.08 (s, IH), 7.51 (d, IH), 7.35 (m, 6H), 6.96 (t, IH), 5.11 (s, 2H), 3.36 (d, 2H), 0.99 (m, IH), 0.49 (m, 2H), 0.19 (m, 2H). Example 16 (Figure Removed) ,N, O l-Benzyl-4-(4-bromo-2-fluorophenylamino)-5-chloro-6-oxo-l,6-dihydropyridine-3- carboxylic acid (2-hydroxyethoxy)-amide [00305] MS APCI (-) m/z 508, 510 (M-, Cl, Br pattern) detected; *H NMR (400 mHz, DMSO-de) d 8.80 (s, IH), 8.13 (s, IH), 7.51 (dd, IH), 7.35 (m, 6H), 7.27 (d, IH), 6.95 (t, IH), 5.12 (s, 2H), 4.67 (t, IH), 3.65 (m, 2H), 3.51 (m, 2H). [00306] The following compounds were prepared as previously described with theddition of a fluorination step. An example of such a fluorination is described below. EtCk/0 O O [00307] A mixture of 4-chloro-l-methyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid ethyl ester (1.00 g, 4.64 mmol), LiOH (0.22 g, 9.30 mmol) and [l-(chloromethyl)-4-fluoro-l,4-diazoniabicyclo[2.2.2]octane-bis(tetrafluoroborate) (3.30 g, 9.30 mmol) in MeCN (50 mL) was stirred at 85 °C for 1 hour. The reaction was cooled to room temperature and concentrated under reduced pressure. The residue was dissolved in water and extracted with EtOAc. The combined organic extracts were dried (MgSO4) and concentrated under reduced pressure. Flash column chromatography (60:40 hexanes:EtOAc) removed starting material. The partially purified ethyl ester was then hydrolyzed by dissolving in 4:1 THF:MeOH (10 mL) followed by treatment with 1 M LiOH solution (2.8 ml.). After 1 hour, the reaction mixture was acidified to pH 1 with 10% HC1 solution and extracted with EtOAc. The combined organic extracts were washed with brine, dried (MgS04) and concentrated to yield 0.25 g (26% for two steps) 4-chloro-5-fluoro-l-methyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid, which could be further purified by trituration with diethyl ether. Example 17 (Figure Removed) 4-(4-Bromo-2-fluorophenylamino)-5-fluoro-l-methyl-6-oxo-l,6-dihydropyridine-3- carboxylic acid cyclopropylmethoxy-amide [00308] MS APCI (+) m/z 428, 430 (M+, Br pattern) detected; !H NMR (400 mHz, CD3OD) d 7.85 (s, 1H), 7.36 (dd, 1H), 7.28 (d, 1H), 7.01 (m, 1H), 3.69 (d, 2H), 3.57 (s, 3H), 0.89 (m, 1H), 0.5S (m, 2H), 0.30 (m, 2H). Figure Removed) 4-(4-Bromo-2-fluorophenylamino)-5-fluoro-l-methyI-6-oxo-l,6-dihydropyridine-3- carboxylic acid (2-hydroxyethoxy)-amide [00309] MS APCI (+) m/z 418,420 (M+, Br pattern) detected; !H NMR (400 mHz, CD3OD) 5 7.90 (s, IH), 7.36 (dd, IH), 7.28 (dd, IH), 7.01 (m, IH), 3.98 (m, 2H), 3.75 (m, 2H), 3.58 (s, 3H). Example 19 (Figure Removed) 4_(4_Bronio-2-fluorophenylamino)-5-fluoro-l-niethyl-6-oxo-l,6-dihydropyridme-3- carboxylic acid [00310] MS APCI (-) m/z 357, 359 (M-l, Br pattern) detected; *H NMR (400 mHz, CD3OD) 8 8.33 (s, IH), 7.30 (d, IH), 7.26 (d, IH), 7.03 (td, IH), 3.62 (s, 3H). Example 20 (Figure Removed) 0 4-(4-Bromo-2-fluorophenylamino)-5-fluoro-l-methyl-6-oxo-l,6-dihydropyridine-3- carboxylic acid amide [00311] MS (+) m/z 358, 360 (M+, Br pattern) detected; ltt NMR (400 mHz, CD3OD) d 8.11 (s, IH), 7.36 (dd, IH), 7.28 (dd, IH), 7.0 (m, IH), 3.58 (s, 3H). -(4-Bromo-2-fluorophenyIamino)-5-fluoro-l-methyl-6-oxo-l,6-dihydropyridine-3- carboxylic acid ethoxy-amide [00312] MS APCI (+) m/z 402,404 (M+, Br pattern) detected; *H NMR (400 mHz, CD3OD) 8 7.87 (s, IH), 7.35 (dd, IH), 7.27 (d, IH), 7.01 (td, IH), 3.94 (q, 2H), 3.58 (s, 3H), 1.27 (t, 3H). Example 22 (Figure Removed) 4-(4-Bromo-2-fluorophenylamino)-5-fluoro-l-methyl-6-oxo-l,6-dihydropyridine-3- carboxylic acid methoxy-amide [00313] MS APCI (+) m/z 388, 390 (M+, Br pattern) detected; 1H NMR (400 mHz, CD3OD) 8 7.87 (s, IH), 7.35 (dd, IH), 7.27 (d, IH), 7.01 (td, IH), 3.75 (s, 3H), 3.58 (s, 3H). Example 23 (Figure Removed) 4-(4-Chloro-2-fluorophenylamino)-5-fluoro-l-methyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid cyclopropylmethoxy-amide [00314] MS APCI (+) m/z 384, 386 Example 24 (Figure Removed) 00315] MS APCI (+) m/z 358, 360 (M+, Cl pattern) detected; !H NMR (400 mHz, CD3OD) 5 7.S8 (s, IH), 7.22 (d, IH), 7.14 (d, IH), 7.08 (td, IH), 3.95 (q, 2H), 3.58 (s, 3H), 1.28(t,3H). Example 25 (Figure Removed) 4-(4-Chloro-2-fluorophenyIamino)-5-fluoro-l-methyl-6-oxo-l,6-dihydropyridine-3- carboxylic acid amide [00316] MS APCI (+) m/z 314, 316 (M+, Cl pattern) detected; !H NMR (400 mHz, DMSO) 6 9.96 (s, IH), 8.23 (s, IH), 7.99 (bs, IH), 7.64 (bs, IH), 7.45 (dd, IH), 7.21 (d, IH), 7.09 (td, IH), 3.46 (s, 3H). Example 26 /(Figure Removed) 5-FIuoro-4-(2-fluoro-4-methylphenylamino)-l-methyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid cyclopropylmethoxy-amide [00317] MS APCI (+) m/z 364 (M+l) detected; !H NMR (400 mHz, CD3OD) 5 7.82 (s, IH), 7.0 (td, IH), 6.94 (d, IH), 6.93 (s, IH), 3.69 (d, 2H), 3.56 (s, 3H), 2.32 (s, 3H), 1.16 (m, IH), 0.58 (q, 2H), 0.30 (q, 2H). methyl-6-oxo-l,6-dihydropyridme-3- carboxylic acid ethoxy-amide [00318] MS APCI (+) m/z 338 (M+l) detected; *H NMR (400 mHz, CD3OD) 5 7.85 (s, IH), 7.0 (td, IH), 6.94 (d, IH), 6.93 (s, IH), 3.93 (q, 2H), 3.56 (s, 3H), 2.32 (s, 3H), 1.27(t,3H). Example 28 (Figure Removed) 4_(4_BrOmo-2-methylphenylamino)-5-fluoro-l-methyl-6-oxo-l,6-dihydropyridine-3- carboxylic acid ethoxy-amide [00319] MS APCI (+) m/z 398,400 (M+, Br pattern) detected; !H NMR (400 mHz, CD3OD) 5 7.84 (s, IH), 7.35 (s, IH), 7.25 (dd, IH), 6.85 (dd, IH), 3.92 (q, 2H), 3.57 (s, 3H), 2.30 (s,3H), 1.28 (t,3H). Example 29 4-(4-Bromo-2-methylphenylamino)-5-fluoro-l-methyl-6-oxo-l,6-dihydropyridine-3- carboxylic acid cyclopropylmethoxy-amide [00320] MS APCI (+) m/z 424, 426 (M+, Br pattern) detected; *H NMR (400 mHz, CD3OD) 8 7.82 (s, IH), 7.35 (s, IH), 7.25 (dd, IH), 6.85 (dd, IH), 3.67 (d, 2H), 3.57 (s, 3H), 2.29 (s, 3H), 1.16 (m, IH), 0.59 (q, 2H), 0.31 (q, 2H). )-5-fluoro-l-methyl-6-oxo-l,6-dihydropyridine-3- carboxylic acid tert-butoxy-amide [00321] MS APCI (+) m/z 430, 432 (M+, Br pattern) detected; ;H NMR (400 mHz, CD3OD) 8 7.94 (s, IH), 7.36 (dd, IH), 7.28 (d, IH), 7.01 (td, IH), 3.60 (s, 3H), 1.30 (s, 9H). Example 31(Figure Removed) 4-(4-Bromo-2-fluorophenylamino)-5-fluoro-l-methyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid cyclopropylmethyl-amide [00322] MS APCI (+) m/z 412, 414 (M+, Br pattern) detected; *H NMR (400 mHz, CD3OD) 6 7.97 (s, IH), 7.32 (dd, IH), 7.25 (d, IH), 6.98 (td, IH), 3.60 (s, 3H), 3.15 (d, 2H), 1.04 (m, IH), 0.54 (q, 2H), 0.26 (q, 2H). Example 32 (Figure Removed) 4-(4-Bromo-2-fluorophenylamino)-5-fluoro-l-methyl-6-oxo-l,6-dihydropyridine-3- car boxy lie acid methylamide [00323] MS APCI (+) m/z 372, 374 (M+, Br pattern) detected; 1H NMR (400 mHz, CD3OD) 5 7.93 (s, IH), 7.35 (dd, IH), 7.27 (d, IH), 7.0 (td, IH), 3.57 (s, 3H), 2.83 (s, 3H). • ^ SMe O 5-Fluoro-4-(2-fluoro-4-methylsulfanyl-phenylamino)-l-methyl-6-oxo-l,6- dihydropyridine-3-carboxyIic acid ethoxy-amide [00324] Prepared as described previously using 2-fluoro-4-methylsulfanyl- phenylamine, which was prepared according to WO 03/062191. [00325] MS APCI (+) m/z 370 (M+l) detected; 1R NMR (400 mHz, CD3OD) 8 7.83 (s, IH), 7.03 (m, 3H), 3.96 (q, 2H), 3.58 (s, 3H), 2.48 (s, 3H), 1.29 (t 3H). Example 34 (Figure Removed) 5-Fluoro-4-(2-fluoro-4-methyIsulfanyl-phenylamino)-l-methyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid methoxy-amide [00326] MS APCI (+) m/z 370 (M+l) detected; !H NMR (400 mHz, CD3OD) 5 7.83 (s, IH), 7.03 (m, 3H), 3.96 (q, 2H), 3.58 (s, 3H), 2.48 (s, 3H), 1.29 (t, 3H). Example 35 (Figure Removed) 5-Fluoro-4-(2-fluoro-4-iodophenylamino)-l-methyl-6-oxo-l,6-dihydropyridine-3- carboxylic acid ethoxy-amide [00327] MS APCI (+) m/z 450 (M+l) detected; !H NMR (400 mHz, CD3OD) 5 7.86 (s, IH), 7.48 (dd, IH), 7.44 (d, IH), 6.84 (td, IH), 3.95 (q, 2H), 3.58 (s, 3H), 1.28 (t, 3H). Example 36 ^F ^ I O 5-Fluoro-4-(2-fluoro-4-iodophenylamino)-l-methyl-6-oxo-l,6-dihydropyridine-3- carboxylic acid methoxy-amide [00328] MS APCI (+) m/z 436 (M+l) detected; TH NMR (400 mHz, CD3OD) 8 7.84 (s, 1H), 7.47 (dd, 1H), 7.44 (d, 1H), 6.83 (td, 1H), 3.77 (s, 3H), 3.59 (s, 3H). Example 37 (Figure Removed) 4_(4-Bromo-2-fluorophenylamino)-5-fluoro-l-methyl-6-oxo-l,6-dihydropyridine-3- carboxylic acid hydroxyamide [00329] 4-(4-Bromo-2-fluorophenylamino)-5-fluoro-l-methyl-6-oxo-l,6- dihydropyridine-3-carboxylic acid hydroxyamide was prepared from 4-(4-bromo-2-fluorophenylarnino)-5-fluoro-l-methyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid tert-butoxy-amide by TFA mediated deprotection. 4-(4-Bromo-2-fluorophenylarnino)-5-fluoro-l-methyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid tert-butoxy-amide (35 mg, 0.081 mmol) was treated with TFA (0.63 mL). After 4 days stirring, the reaction mixture was concentrated under reduced pressure. Purification by flash column chromatography (10% MeOH in methylene chloride) followed by saturated NaHCO3 solution wash of an ethyl acetate solution of the product gave clean desired product (10 mg, 33%); MS APCI (+) m/z 356, 358 (M-OH, Br pattern) detected; !H NMR (400 mHz, CD3OD) 5 7.84 (s, 1H), 7.35 (dd, 1H), 7.28 (d, 1H), 7.01 (td, 1H), 3.57 (s, 3H).Example 38 (Figure Removed) 4-(4-Bromo-2-fluorophenyIamino)-l-cyclopropylmethyl-5-methyl-6-oxo-l,6- dihydropyridine-3-carboxylic acid [00330] MS APCI (-) m/z 393, 395 (M-, Br pattern) detected; *H NMR (400 MHz, DMSO-d6) 5 9.12 (s, IH), 8.51 (s, IH), 7.56 (d, IH), 7.28 (d, IH), 6.69 (t, IH), 3.84 (d, 2H), 1.61 (s, 3H), 1.25 (m, IH), 0.50 (q, 2H), 0.39 (q, 2H). Example 39 (Figure Removed) 4-(4-Bromo-2-fluorophenylamino)-l-cyclopropylmethyI-5-methyl-6-oxo-l,6- dihydropyridine-3-carboxyIic acid amide [00331] MS APCI (-) m/z 392, 394 (M-, Br pattern) detected; !H NMR (400 MHz, CD3OD) d 8.14 (s, IH), 7.33 (d, IH), 7.21 (d, IH), 6.63 (t, IH), 3.87 (d, 2H), 1.76 (s, 3H), 1.35 (m, IH), 0.60 (q, 2H), 0.46 (q, 2H). Example 40 (Figure Removed) 4-(4-Bromo-2-fluorophenyIamino)-l-cyclopropyImethyl-5-methyl-6-oxo-l,6- dihydropyridine-3-carboxylicacid(2-hydroxy-l,l-dimethylethoxy)-amide [00332] MS APCI (-) m/z 480, 482 (M-, Br pattern) detected; !H NMR (400 MHz, DMSO-de) d 11.06 (s, IH), 8.36 (s, IH), 8.02 (s, IH), 7.50 (d, IH), 7.22 (d, IH), 6.57 (t, IH), 4.60 (t, IH), 3.78 (d, 2H), 3.16 (m, 2H), 1.71 (s, 3H), 1.29 (m, IH), 1.11 (s, 6H), 0.51 (q,2H), 0.43 (q,2H). Example 41 (Figure Removed) (S)-4-(4-Bromo-2-fluorophenylamino)-l-cyclopropylmethyl-5-metliyl-6-oxo-l,6- dihydropyridine-3-carboxylic acid (2-hydroxy-propoxy)-amide [00333] MS APCI (-) m/z 466, 468 (M-, Br pattern) detected; 'H NMR (400 MHz, CD3OD) d 7.93 (s, IH), 7.34 (dd, IH), 7.20 (d, IH), 6.66 (t, IH), 3.88 (m, IH), 3.86 (d, 2H), 3.71 (dd, IH), 3.59 (dd, IH), 1.86 (s, 3H), 1.33 (m, IH), 1.12 (d, 3H), 0.91 (q, 2H), 0.46 (q, 2H). Example 42 'JO (Figure Removed) 4_(4_Bromo-2-chlorophenylamino)-5-fluoro-l-methyl-6-oxo-l,6-dihydropyridine-3- carboxylic acid [00334] MS APCI (-) m/z 373, 375 (M-, Cl, Br pattern) detected; *H NMR (400 mHz, CD3OD) 8 8.43 (s, IH), 7.62 (s, IH), 7.42 (dd, IH), 7.01 (m, IH), 3.61 (s, 3H). Example 43 (Figure Removed) 4-(4-Bromo-2-chlorophenylammo)-5-fluoro-l-methyl-6-oxo-l,6-dihydropyridine-3- carboxylic acid cyclopropylmethoxy-amide [00335] MS APCI (+) m/z 444, 446 (M+, Cl, Br pattern) detected; 1H NMR (400 mHz, CD3OD) d 7.89 (s, IH), 7.60 (d, IH), 7.39 (dd, IH), 6.92 (dd, IH), 3.73 (d, 2H), 3.59 (s, 3H), 1.17 (m, IH), 0.58 (m, 2H), 0.30 (m, 2H). (4-Bromo-2-chlorophenylamino)-5-fluoro-l-methyl-6-oxo carboxylic acid amide [00336] MS APCI (+) m/z 374, 376 (M+, Cl, Br pattern) detected; lfL NMR (400 mHz, CD3OD) 6 8.13 (s, IH), 7.59 (d, IH), 7.39 (dd, IH), 6.92 (dd, IH), 3.60 (s, 3H). Example 45 (Figure Removed) 4_(4_Bromo-2-chlorophenylamino)-5-fluoro-l-methyl-6-oxo-l,6-dihydropyridine-3- carboxylic acid (2-hydroxyetkoxy)-amide [00337] MS APCI (+) m/z 434, 436 (M+, Cl, Br pattern) detected; *H NMR (400 mHz, CD3OD) 6 7.94 (s, IH), 7.60 (d, IH), 7.40 (dd, IH), 6.92 (dd, IH), 4.01 (m, 2H), 3.76 (m, 2H), 3.59 (s, 3H). Example 46 (Figure Removed) 4-(4-Bromo-2-fluoropheQylamino)-5-fluoro-l-methyl-6-oxo-l,6-dihydropyridine-3- carboxylic acid (2-hydroxy-l,l-dimethylethoxy)-amide [00338] MS APCI (+) m/z 446, 448 (M+, Br pattern) detected; *H NMR (400 mHz, CD3OD) 8 7.94 (s, IH), 7.36 (d, IH), 7.28 (d, IH), 7.02 (td, IH), 3.59 (s, 3H), 3.41 (s, 2H), 1.27(s,6H). F ^^ Br O (S)-4-(4-Bromo-2-fluorophenyIamino)-5-fluoro-l-methyI-6-oxo-l,6-dihydropyridine- 3-carboxylic acid (2-hydroxy-propoxy)-amide [00339] MS APCI (+) m/z 432, 434 (M+, Br pattern) detected; 1E NMR (400 mHz, CD3OD) 8 7.89 (s, IH), 7.36 (d, IH), 7.28 (d, IH), 7.02 (td, IH), 3.99 (m, IH), 3.83 (dd, IH), 3.72 (dd, IH), 3.58 (s, 3H), 1.16 (d, 3H). [00340] The following compounds were prepared as previously described by using the appropriate amine in place of methylamine in Step A of Example 1. Example 48 (Figure Removed) F 4-(4-Bromo-2-fluorophenylamino)-l-cyclopropyI-5-fluoro-6-oxo-l,6- dihydropyridine-3-carboxylic acid [00341] MS APCI (+) m/z 385, 387 (M+, Br pattern) detected; 'H NMR (400 mHz, DMSO-D6) 5 9.29 (s, IH), 8.08 (s, IH), 7.58 (dd, IH), 7.36 (d, IH), 7.12 (m, IH), 3.35 (m, IH), 1.02 (m, 2H), 0.90 (m, 2H). Example 49 (Figure Removed) 4-(4-Brorao-2-fluorophenylamino)-l-cyclopropyl-5-fluoro-6-oxo-l,6-dihydropyridine-3-carboxylic acid cyclopropylmethoxy-amide [00342] MS APCI (+) m/z 454, 456 (M+, Br pattern) detected; !H NMR (400 mHz, DMSO-Dg) 5 11.78 (s, IH), 9.07 (s, IH), 7.70 (s, IH), 7.55 (dd, IH), 7.32 (dd. IH), 7.03 (m, IH), 3.66 (d, 2H), 3.35 (m, IH), 1.07 (m, IH), 0.98 (m, 4H), 0.53 (m, 2H), 0.25 (m,4-(4-Bromo-2-fluorophenylamino)-l-cyclopropyI-5-fluoro-6-oxo-l,6-ihydropyridine-3-carboxylic acid amide [00343] MS APCI (+) m/z 384, 386 (M+, Br pattern) detected; *H NMR (400 mHz, DMSO-D6) 5 10.03 (s, IH), 8.24 (br. s, IH), 7.95 (s, IH), 7.63 (br. s, IH), 7.56 (dd, IH), 7.33 (d, IH), 7.00 (m, IH), 3.35 (m, IH), 0.99 (m, 4H). Example 51 H (Figure Removed)4_(4_Bromo-2-fluorophenylamino)-l-cyclopropyl-5-fluoro-6-oxo-l,6- dihydropyridine-3-carboxylic acid (2-hydroxyethoxy)-amide [00344] MS APCI (+) m/z 444, 446 (M+, Br pattern) detected; JH NMR (400 mHz, DMSO-D6) 5 11.87 (s, IH), 9.09 (s, IH), 7.74 (s, IH), 7.56 (dd, IH), 7.32 (d, IH), 7.02 (m, IH), 3.89 (m, 2H)r 3.59 (m, 2H), 3.38 (m, IH), 0.99 (m, 4H). Example 52 4-(4-Bromo-2-fluorophenylamino)-l-ethyI-5-fluoro-6-oxo-l,6-dihydropyridine-3-carboxylic acid cyclopropylmethoxy-amide [00345] MS APCI (+) m/z 442, 444 (M+, Br pattern) detected; !H NMR (400 mHz, CD3OD) 6 7.85 (s, IH), 7.36 (dd, IH), 7.28 (d, IH), 7.02 (td, IH), 4.05 (q, 2H), 3.70 (d, 2H). 1.36 (t, 3H), 1.17 (m, IH), 0.58 (q, 2H), 0.31 (q, 2H). Example 53 (Figure Removed) 4-(4-Bromo-2-fluorophenylamino)-l-ethyI-5-fluoro-6-oxo-l,6-dihydropyridine-3- carboxylic acid amide [00346] MS APCI (+) m/z 372, 374 (M+, Br pattern) detected; JH NMR (400 mHz, CD3OD) 5 8.10 (s, IH), 7.35 (dd, IH), 7.28 (d, IH), 7.02 (td, IH), 4.05 (q, 2H), 1.37 (t, 3H). Example 5-(4-Bromo-2-fluorophenylamino)-l-ethyl-5-fluoro-6-oxo-l,6-dihydropyridine-3- carboxylic acid (2-hydroxy-l,l-dimethylethoxy)-amide [00347J MS APCI (+) m/z 460,462 (M+, Br pattern) detected; *H NMR (400 mHz, DMSO) 5 11.20 (bs, IH), 8.80 (bs, IH), 8.01 (s, IH), 7.55 (d, IH), 7.32 (d, IH), 7.03 (td, IH), 4.40 (q, 2H), 3.28 (s, 2H), 1.27 (t, 3H), 1.17 (s, 6H). Example 55 (Figure Removed) 4-(4-Bromo-2-fluorophenylamino)-l-ethyl-5-fluoro-6-oxo-l,6-dihydropyridine-3- carboxylic acid (2-methoxy-ethoxy)-amide [00348] MS APCI (+) m/z 446, 448 (M+, Br pattern) detected; 1U NMR (400 mHz, CD3OD) 5 7.88 (s, IH), 7.36 (dd, IH), 7.28 (d, IH), 7.02 (td, IH), 4.05 (m, 4H), 3.64 (m, 2H), 3.37 (s, 3H), 1.37 (t, 3H). Example 56 ure Removed) 4-(4-Bromo-2-fluorophenylamino)-l-ethyl-5-fluoro-6-oxo-l,6-dihydropyridine-3- carboxylic acid methoxy-amide [00349] MS APCI (+) m/z 402, 404 (M+, Br pattern) detected; 'H NMR (400 mHz, CD3OD) 5 7.87 (s, IH), 7.36 (d, IH), 7.29 (d, IH), 7.02 (td, IH), 4.02 (q, 2H), 3.75 (s, 3H), 1.36(t,3H). Example 57 (Figure Removed) fluoro-6-oxo-l,6-dihydropyridine-3- carboxylic acid methylamide [00350] MS APCI (4-) m/z 386, 388 (M+, Br pattern) detected; 1H NMR (400 mHz, CD3OD) 5 7.93 (s, IH), 7.35 (dd, IH), 7.27 (d, IH), 7.0 (td, IH), 4.04 (q, 2H), 2.83 (s, 3H), 1.37(t,3H). Example 58 (Figure Removed) 4-(4-Bromo-2-fluorophenylamino)-l-ethyl-5-fluoro-6-oxo-l,6-dihydropyridine-3- carboxylic acid [00351] MS APCI (-) m/z 371, 373 (M-, Br pattern) detected; !H NMR (400 mHz, CD3OD) 5 8.41 (s, IH), 7.38 (d, IH), 7.30 (d, IH), 7.10 (td, IH), 4.08 (q, 2H), 1.36 (t, 3H). (Figure Removed) 4-(4-Bromo-2-fluorophenyIamino)-l-ethyl-5-fluoro-6-oxo-l,6-dihydropyridine-3- carboxylic acid (2-hydroxyethoxy)-amide [00352] MS APCI (+) m/z 432, 434 (M+, Br pattern) detected; :H NMR (400 mHz, CD3OD) 6 7.90 (s, IH), 7.36 (dd, IH), 7.28 (d, IH), 7.02 (td, IH), 4.05 (q, 2H), 3.99 (t, 2H), 3.75 (t,2H), 1.37 (t,3H). Example 60(Figure Removed) (R)_4_(4-Bromo-2-fluorophenylamino)-l-ethyl-5-fluoro-6-oxo-l,6-dihydropyridine- 3-carboxylic acid (2-hydroxy-propoxy)-amide [00353] MS .APCI (+) m/z 446, 448 (M+, Br pattern) detected; !H NMR (400 mHz, CD3OD) 5 7.90 (s, IH), 7.36 (dd, IH), 7.28 (d, IH), 7.02 (td, IH), 4.05 (q, 2H), 3.99 (m, IH), 3.83 (dd, IH), 3.73 (dd, IH), 1.36 (t, 3H), 1.16 (d, 3H). Example 61 (Figure Removed) (S)-4-(4-Bromo-2-fluorophenylamino)-l-ethyl-5-fluoro-6-oxo-l,6-dihydropyridine-3- carboxylic acid (2-hydroxy-propoxy)-amide [00354] MS APCI (+) m/z 446, 448 (M+, Br pattern) detected; 'H NMR (400 mHz, CD3OD) 5 7.90 (s, IH), 7.36 (d, IH), 7.28 (d, IH), 7.02 (td, IH), 4.04 (q, 2H), 3.99 (m, IH), 3.83 (dd, IH), 3.72 (dd, IH), 1.36 (t, 3H), 1.16 (d, 3H). Example 62 (Figure Removed) 4-(4-Bromo-2-fluorophenylamino)-l-ethyl-5-fluoro-6-oxo-l,6-dihydropyridine-3-carboxylic acid (2-hydroxybutoxy)-amide [00355] MS APCI (+) m/z 460, 462 (M+, Br pattern) detected; *H NMR (400 raHz, CD3OD) 6 7.90 (s, 1H), 7.36 (dd, 1H), 7.28 (d, 1H), 7.02 (td, 1H), 4.05 (q, 2H), 3.89 (d, 1H), 3.75 (m, 2H), 1.54 (m, 1H), 1.45 (m, 1H),1.36 (t, 3H), 0.98 (t, 3H). Example 63 (Figure Removed) 4-(4-Bromo-2-fluorophenylammo)-l,5-diniethyl-6-oxo-l,6-dihydropyridine-3- carboxylic acid [00356] Preparation of 4-hvdroxv-1.5-dimethyl-6-oxo-1.6-dihvdropvridine-3- carboxylic acid ethyl ester: Triethyl orthoformate (3.85 mL, 23.12 mmol) and acetic anhydride (4.37 mL, 46.25 mmol) were added to 2-methyl-3-oxo-pentanedioic acid diethyl ester (Caliskan et al Aiist. J. Chem. 1999, 52 (11), 1013-1020) (5.0 g, 23.1 mmol) and the reaction mixture heated to 135 °C. After 1 hour, the reaction mixture was cooled to room temperature and concentrated under reduced pressure. The residue was cooled to 0 °C and methylamine (40% in water, 5.0 mL, 57.81 mmol) was added with stirring. Water (20 mL) was added and the reaction mixture stirred for 16 hours. The reaction mixture was extracted with ethyl acetate and the aqueous layer acidified to pH 2 with 10% aqueous HC1. The acidified aqueous layer was extracted with ethyl acetate. The combined organic extracts were dried (MgSCU) and concentrated to give a solid. Trituration with diethyl ether yielded 4.88 g (55%) clean desired product. 4-Hydroxy-l,5-dimethyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid ethyl ester was carried forward as described in Example 1, Steps B - D. MS APCI (-) m/z 353, 355 (M-, Br pattern) detected; !H NMR (400 mHz, CD3OD) 8 8.49 (s, 1H), 7.36 (dd, 1H), 7.24 (dd, 1H), 6.71 (m, IH), 3.60 (s, 3H), 1.68 (s, 3H). [00357] The following compounds were prepared as described in Examples 1 (Steps B-D), 2, 3 and 63. Example 64 (Figure Removed) O 4_(4_Bromo-2-fluorophenylamino)-l,5-dimethyl-6-oxo-l,6-dihydropyridine-3- carboxylic acid cyclopropylmethoxy-amide [00358] MS APCI (+) m/z 424, 426 (M+, Br pattern) detected; !H NMR (400 mHz, CD3OD) d 7.88 (s, IH), 7.33 (dd, IH), 7.20 (dd, IH), 6.65 (m, IH), 3.59 (d, 2H), 3.57 (s, 3H), 1.83 (s, 3H), 1.10 (m, IH), 0.54 (m, 2H), 0.25 (m, 2H). Example 65 (Figure Removed) O 4-(4-Bromo-2-fluorophenylamino)-l,5-dimethyl-6-oxo-l,6-dmydropyridine-3- carboxylic acid amide [00359] MS APCI (+) m/z 354, 356 (M+, Br pattern) detected; *H NMR (400 mHz, CD3OD) d 8.14 (s, IH), 7.33 (dd, IH), 7.20 (d, IH), 6.63 (m, IH), 3.58 (s, 3H), 1.75 (s, 3H). Example 66 (Figure Removed) o 4-(4-Bromo-2-fluorophenylamino)-l,5-dimethyl-6-oxo-l,6-dihydropyridine-3- carboxylic acid (2->hydroxyethoxy)-amide [00360] MS APCI (+) m/z 414, 416 (M+, Br pattern) detected; 1U NMR (400 mHz, CD3OD) 8 7.93 (s, IH), 7.33 (dd, IH), 7.20 (d, IH), 6.65 (m, IH), 3.88 (m, 2H), 3.68 (m, ,3.57 (s,3H), 1.83(s,3H). Example 67 (Figure Removed) ydropyridine-3-carboxylic acid (2-hydroxy-l,l-dimethylethoxy)-amide [00361] MS APCI (+) m/z 442, 444 (M+, Br pattern) detected; ]H NMR (400 niHz, CD3OD) 5 7.98 (s, IH), 7.33 (dd, IH), 7.20 (d, IH), 6.62 (t, IH), 3.59 (s, 3H), 1.82 (s, 3H), 1.21 (s,6H). Example 68 (Figure Removed) 4-(4-Bromo-2-chlorophenylamino)-l,5-dimethyl-6-oxo-l,6-dihydropyridine-3- carboxylic acid (2-hydroxy-l,l-dimethylethoxy)-amide [00362] MS APCI (-) m/z 456, 458 (M-, Cl, Br pattern) detected; *H NMR (400 MHz, CD3OD) d 8.01 (s, IH), 7.57 (d, IH), 7.32 (dd, IH), 6.52 (d, IH), 3.60 (s, 3H), 3.34 (s, 2H), 1.76 (s, 3H), 1.22 (s, 6H). Example 69(Figure Removed) 4_(4-Bromo-2-chlorophenylamino)-l,5-dimethyl-6-oxo-l,6-dihydropyridine-3- carboxylic acid (2-hydroxyethoxy)-amide [00363] MS APCI (-) m/z 428, 430 (M-, Cl, Br pattern) detected; 1H NMR (400 MHz, CD3OD) 5 7.98 (s, IH), 7.57 (d, IH), 7.32 (dd, IH), 6.53 (d, IH), 3.94 (t, 2H), 3.72H), 3.58 (s, 3H), 1.76 (s, 3H). 4.(4.Bromo-2-methylphenylamino)-l,5-dimethyl-6-oxo-l,6-dihydropyridine-3- carboxylic acid [00364] MS APCI (-) m/z 349, 351 (M-, Br pattern) detected; :H NMR (400 MHz, DMSO-d6) 5 9.04 (s, IH), 8.50 (s, IH), 7.41 (s, IH), 7.26 (d, IH), 6.51 (d, IH), 3.49 (s, 3H), 2.26 (s, 3H), 1.50(s,3H). Example 71 4_(4_Bromo-2-methyIphenylammo)-l,5-dimethyI-6-oxo-l,6-dihydropyridine-3- carboxylic acid (2-hydroxy-l,l-dimethylethoxy)-amide [00365] MS APCI (-) m/z 436, 438 (M-, Br pattern) detected; 1H NMR (400 MHz, CD3OD) 8 7.96 (s, IH), 7.34 (s, IH), 7.20 (d, IH), 6.50 (d, IH), 3.58 (s, 3H), 3.28 (s, 2H), 2.29 (s, 3H), 1.72 (s, 3H), 1.21 (s, 6H). Example 72 (Figure Removed) 4-(4-Bromo-2-methylphenylamino)-l,5-dimethyI-6-oxo-l,6-dihydropyridine-3- carboxylic acid cyclopropylmethoxy-amide [00366] MS APCI (-) m/z 418, 420 (M-, Br pattern) detected; !H NMR (400 MHz, CD3OD) 6 7.86 (s, IH), 7.34 (d, IH), 7.20 (dd, IH), 6.52 (d, IH), 3.57 (d, 2H), 3.56 (s, 3H), 2.29 (s, 3H), 1.74 (s, 3H), 1.10 (m, IH), 0.54 (q, 2H), 0.26 (q, 2H). Example 73 (Figure Removed) O 4-(4-Bromo-2-methylphenyIamino)-l,5-dimethyl-6-oxo-l,6-diIiydropyridine-3-carboxylic acid (2-hydroxyethoxy)~amide [00367] MS APCI (-) m/z 408, 410 (M-, Br pattern) detected; 1H NMR (400 MHz, CD3OD) d 7.91 (s, IH), 7.34 (d, IH), 7.20 (dd, IH), 6.52 (d, IH), 3.87 (t, 2H), 3.68 (t, 2H), 3.56 (s, 3H), 2.30 (s, 3H), 1.74 (s, 3H). Example 74 O 4-(4-Bromo-2-chlorophenylammo)-l,5-dimethyI-6-oxo-l,6-dihydropyridine-3- carboxylic acid amide [00368] MS APCI (-) m/z 368, 370 (M-, Cl, Br pattern) detected; *H NMR (400 MHz, CD3OD) 3 8.16 (s, IH), 7.57 (d, IH), 7.32 (dd, IH), 6.53 (d, IH), 3.59 (s, 3H), 1.70 (s, 3H). Example 75 (Figure Removed) 4-(2,4-Dichlorophenylamino)-l,5-dimethyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid [00369] MS APCI (-) m/z 325, 327 (M-, Cl pattern) detected; JH NMR (400 MHz, DMSO-d6) 5 9.27 (s, IH), 8.52 (s, IH), 7.62 (d, IH), 7.29 (dd, IH), 6.66 (d, IH), 3.51 (s, 3H), 1.56(s,3H). (4-Chloro-2-fluorophenylamino)-l,5-dimethyl-6-oxo-l,6-dihydropyridine-3- carboxylic acid [00370] MS APCI (-) m/z 309, 311 (M-, Cl pattern) detected; 1H NMR (400 MHz, DMSO-d6) 5 9.14 (s, IH), 8.50 (s, IH), 7.45 (dd, IH), 7.16 (d, IH), 6.74 (t, IH), 3.50 (s, 3H), 1.60(s, 3H). Example 77 (Figure Removed) 4-(2,4-Dichlorophenylamino)-l,5-dimethyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid (2-hydroxyethoxy)-amide [00371] MS APCI (-) m/z 384, 386 (M-, Cl pattern) detected; !H NMR (400 MHz, CD3OD) 5 7.98 (s, IH), 7.45 (d, IH), 7.19 (dd, IH), 6.60 (d, IH), 3.94 (t, 2H), 3.71 (t, 2H), 3.58 (s,3H), 1.76 (s, 3H). Example 78 (Figure Removed) 4-(4-Chloro-2-fluorophenylamino)-l,5-dimethyl-6-oxo-l,6-dihydropyridine-3- carboxylic acid (2-hydroxyethoxy)-amide [00372] MS APCI (-) m/z 368, 370 (M-, Cl pattern) detected; !H NMR (400 MHz, CD3OD) 5 7.93 (s, IH), 7.20 (dd, IH), 7.07 (d, IH), 6.71 (t, IH), 3.88 (t, 2H), 3.68 (t, 2H), 3.57 (s, 3H), 1.82 (s, 3H). (Figure Removed) 4.(4_Bromo-2-fluorophenylamino)-l,5-dimethyl-6-oxo-l,6-dihydropyridine-3- carboxylic acid methoxy-amide [00373] MS APCI (-) m/z 382, 384 (M-, Br pattern) detected; *H NMR (400 MHz, CD3OD) d 7.90 (s, IH), 7.33 (m, IH), 7.20 (m, IH), 6.66 (t, IH), 3.65 (s, 3H), 3.57 (s, 3H),1.83(s,3H). Example 80 (Figure Removed) 4-(4-Bromo-2-fluorophenylamino)-l,5-dimethyl-6-oxo-l,6-dihydropyridine-3- carboxylic acid ethoxy-amide [00374] MS APCI (-) m/z 396, 398 (M-, Br pattern) detected; 1H NMR (400 MHz, CD3OD) d 7.90 (s, IH), 7.33 (dd, IH), 7.20 (m, IH), 6.65 (t, IH), 3.83 (q, 2H), 3.57 (s, 3H), 1.83 (s,3H), 1.22 (t,3H). Example 81 (Figure Removed) 4_(4-Chloro-2-fluorophenylamino)-l,5-dimethyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid cyclopropylmethoxy-amide [00375] MS APCI (-) m/z 378, 380 (M-, Cl pattern) detected; *H NMR (400 MHz, CD3OD) d 7.88 (s, IH), 7.20 (d, IH), 7.07 (d, IH), 6.72 (t, IH), 3.58 (d, 2H), 3.57 (s, 3H), 1.83 (s, 3H), 1.10 (m, IH), 0.54 (q, 2H), 0.26 (q, 2H). I O 4-(2-FIuoro-4-iodoplienylamino)-l,5-dimethyl-6-oxo-l,6-dihydropyridine-3- carboxylic acid (2-hydroxyethoxy)-amide [00376] MS APCI (-) m/z 460 (M-l) detected; !H NMR (400 MHz, CD3OD) d 7.92 (s, IH), 7.46 (d, IH), 7.37 (d, IH), 6.50 (t, IH), 3.86 (t, 2H), 3.68 (t, 2H), 3.57 (s, 3H), 1.83(s, 3H). Example 83 (Figure Removed) I O (R)_4_(2-Fluoro-4-iodophenylamino)-l,5-dimethyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid (2,3-dihydroxypropoxy)-amide [00377] MS APCI (-) m/z 490 (M-l) detected; 1H NMR (400 MHz, CD3OD) d 7.93 (s, IH), 7.47 (d, IH), 7.37 (d, IH), 6.50 (t, IH), 3.90 (m, IH), 3.80 (m, 2H), 3.57 (s, 3H), 3.56 (m,2H), 1.82 (s,3H). Example 84 (Figure Removed) 4_(2,4-Dichiorophenylamino)-l,5-dimethyl-6-oxo-l,6-dihydropyridine-3-carboxyIic acid cyclopropylmethoxy-amide [00378] MS APCI (-) m/z 394, 396 (M-, Cl pattern) detected; !H NMR (400 MHz, CD3OD) 5 7.93 (s, IH), 7.45 (s, IH), 7.1S (d, IH), 6.60 (d, IH), 3.65 (d, 2H), 3.58 (s, 3H), 1.75 (s, 3H), 1.12 (m, IH), 0.53 (q, 2H), 0.25 (q, 2H). Example 85(Figure Removed) 4-(2,4-DichlorophenyIamino)-l,5-dimethyl-6-oxo-l,6-dihydropyridme-3-carboxylic acid ethoxy-amide [00379] MS APCI (-) m/z 36S, 370 (M-, Cl pattern) detected; *H NMR (400 MHz, CD3OD) 5 7.93 (s, IH), 7.42 (d, IH), 7.17 (dd, IH), 6.58 (d, IH), 3.92 (q, 2H), 3.59 (s, 3H), 1.75 (s,3H), 1.26 (t, 3H). Example 86 (Figure Removed) dimethyl-6-oxo-l ,6-dihydropyridine-3- carboxylic acid (2-cyano-ethyl)-amide [00380] MS APCI (-) m/z 405, 407 (M-, Br pattern) detected; 1H NMR (400 MHz, CD3OD) d 8.00 (s, IH), 7.33 (dd, IH), 7.20 (dd, IH), 6.65 (t, IH), 3.59 (s, 3H), 3.47 (t, 2H), 2.65 (t,2H), 1.80 (s,3H). Example (Figure Removed) -I O 4-(2-FIuoro-4-iodophenylamino)-l,5-dimethyI-6-oxo-l,6-dihydropyridine-3- carboxylic acid ethoxy-amide [00381] MS APCI (-) m/z 444 (M-l) detected; 'H NMR (400 MHz, CD3OD) 8 7.89 (s, IH), 7.46 (dd, IH), 7.37 (dd, IH), 6.50 (t, IH), 3.82 (q, 2H), 3.57 (s, 3H), 1.84 (s, 3H), 1.22(t,3H). (Figure Removed) O 4-(2-Fluoro-4-iodophenyIamino)-l,5-dimethyl-6-oxo-l,6-dihydropyridine-3- carboxylic acid methoxy-amide [00382] MS APCI (-) m/z 430 (M-l) detected; *H NMR (400 MHz, CD3OD) 5 7.89 (s, IH), 7.47 (dd, IH), 7.37 (dd, IH), 6.50 (t, IH), 3.64 (s, 3H), 3.57 (s, 3H), 1.83 (s, 3H). Example 89 (Figure Removed) 4-(4-Bromo-2-fluorophenylamino)-l,5-diniethyl-6-oxo-l,6-dihydropyridine-3- carboxylic acid hydroxyamide [00383] 4-(4-Bromo~2-fiuorophenylamino)-l ,5-dimethyl-6-oxo-l ,6- dihydropyridine-3-carboxylic acid hydroxyamide was prepared from 4-(4-bromo-2-fluorophenylamino)-l,5-dimethyl-6-oxo-l ,6-dihydropyridine-3-carboxylic acid tert-butoxy-amide by TFA deprotection as described in Example 37. MS APCI (+) mh 370, 372 (M+, Br pattern) detected; 1H NMR (400 MHz, CD3OD) 5 7.88 (s, IH), 7.32 (dd, IH), 7.20 (dd, IH), 6.61 (t, IH), 3.56 (s, 3H), 1.77 (s, 3H). Example 90 H 4-(4-Bromo-2-fluorophenylamino)-5-fluoro-6-oxo-l-pyridin-3-ylmethyl-l,6-(Figure Removed) dihydropyridine-3-carboxylic acid [00384] Step A: Preparation of 4-(4-bromo-2-fluorophenYlamnoV6-chloro-5- fluoro-nicotinic acid: nBuLi (14.7 mL, 36.7 mmol, 2.5 M solution in hexanes) was added to a stirred solution of diisopropylamine (5.15 mL, 36.7 mmol) in THF (20 mL) at O^C. After 20 minutes, the reaction mixture was cooled to -78 °C and a solution of 4-bromo-2-fluorophenylamine (4.65 g, 24.5 mmol) in THF (10 mL) was added. After 20 minutes, a solution of 4,6-dichloro-5-fluoro-nicotinic acid (Sanchez et al J Heterocylc. Chem. 1993, 30 (4), 855-9) (2.57 g, 12.25 mmol) in THF (10 mL) was added. After 10 minutes, the reaction mixture was allowed to warm to room temperature and stirred for 1 hour. After quenching the reaction mixture with 10% HC1 (20 mL), it was extracted with ethyl acetate. The combined organic extracts were dried (MgSO^t) and concentrated under reduced pressure. Trituration with methylene chloride yielded 3.21 g (72%) of clean desired product. [00385] Step B: Preparation of 4-(4-bromo-2-fluorophenylaminoV6-chloro-5- fluoro-nicotinic acid methyl ester: A hexanes solution of TMSCH2N2 (9.46 mL, 18,9 mmol) was added to 4-(4-bromo-2-fluorophenylamino)-6-chloro-5-fluoro-nicotinic acid (4.59g, 12.62 mmol) in a solution of 3:1 THF:MeOH (48 mL) at 0 °C. The reaction mixture was warmed to room temperature and stirred for 1 hour. After quenching with AcOH, the reaction mixture was diluted with ethyl acetate and water. The layers were separated and the organic layer was washed with water, saturated NaHCO3 solution and brine. The organic layer was dried (MgSO4) and concentrated to give 4.40 g (92%) clean desired product. [00386] Step C: Preparation of 4-(4-bromo-2-fluorophenvlaminoV5-fiuoro-6- methoxv-nicotinic acid methyl ester: Sodium methoxide (2.20 g, 40.8 mmol) was slowly added to a stirred solution of 4-(4-bromo-2-fluorophenylamino)-6-chloro-5-fluoro- nicotinic acid methyl ester in 4:1 MeOH:THF (20 mL) at 0 °C. The reaction mixture was warmed to room temperature, stirred for 17 hours and then warmed to 40 °C and stirred for 5 hours. After cooling to room temperature, the reaction mixture was quenched with water and extracted with ethyl acetate. The combined organic extracts were dried (MgSO4) and concentrated under reduced pressure. The desired product, contaminated with some starting material, was carried forward without purification. [00387] Step D: Preparation of 4-(4-bromo-2-fluorophenvlaminoV5-fluoro-6-oxo- L6-dihvdropvridine-3-carboxylic acid methyl ester: Hydrobromic acid (5.S2 mL, 51.5 mmol) was added to a mixture of 4-(4-bromo-2-fluorophenylamino)-5-fluoro-6-methoxy-nicotinic acid methyl ester (0.64 g, 1.72 mmol) and acetic acid (5.9 mL, 103 mmol). The reaction mixture was stirred at 90 °C for 20 minutes and then cooled to room temperature. Vv After water was added to the mixture, a white precipitate formed. The white solid was collected by filtered and washed with water and diethyl ether to yield 0.60 g (97%) clean desired product. [00388] Step E: Preparation of 4-(4-bromo-2-fluorophenvlaminoV5-fluoro-6-oxo- l-pvridin-3-vhnethvl-1.6-dihvdropvridine-3-carboxvlic acid: Lithium hydride (14 mg, 1.64 mniol) was added to a stirred solution of 4-(4-bromo-2-fluorophenylamino)-5-fluoro-6-oxo-l,6-dihydropyridine-3-carboxylic acid methyl ester (0.190 g, 0.529 inmol) in DMF (5 mL) at 0 °C. After stirring for 30 minutes, 3-bromomethyl-pyridine hydrobromide (0.14 g, 0.53 mmol) was added. The reaction mixture was warmed to room temperature and stirred for 16 hours. After quenching with ice water, the reaction mixture was extracted with ethyl acetate. The combined organic extracts were dried (MgSC^) and concentrated under reduced pressure. Purification by flash column chromatography (1% MeOH in methylene chloride) yielded 4-(4-bromo-2-fluorophenylamino)-5 -fiuoro-6-oxo-1 -pyridin-3 -ylmethyl-1,6-dihydropyridine-3 -carboxylic acid methyl ester. The methyl ester was dissolved in 4:1 THF:MeOH (5 mL) and 1 M LiOH solution (1.1 mL) was added. After 1 hour, the reaction mixture was acidified to pH 1 with 10% aqueous HC1 solution and extracted with ethyl acetate. The combined organic extracts were washed with brine, dried (MgSO4) and concentrated under reduced pressure. Trituration with diethyl ether gave 0.160 g (69% two step yield) clean desired product. MS APCI (-) m/z 434, 436 (M-, Br pattern) detected; *H NMR (400 mHz, DMSO-dg) 5 9.40 (bs, IH), 8.65 (s, IH), 8.61 (s, IH), 8.51 (d, IH), 7.74 (d, IH), 7.58 (d, IH), 7.39 (m, IH), 7.34 (s, IH), 7.16 (m, IH), .525 (s, IH). Example 91 (Figure Removed) 4_(4_Bromo-2-fluorophenylamino)-5-fluoro-6-oxo-l-pyridin-3-yImethyl-l,6-dihydropyridine-3-carboxylic acid cyclopropylmethoxy-amide [00389] Prepared as described in Example 2 from 4-(4-bromo-2- fluorophenylarruno)-5-fluoro-6-oxo4-pyridin-3-yhnethyl-l,6-dihydropyridine-3- carboxylic acid. MS APCI (+) m/z 505, 507 (M+, Br pattern) detected; 1H NMR (400 mlfe^DMSO) 5 11.75 (bs, IH), 8.97 (bs, IH), 8.63 (s, IH), 8.53 (d, IH), 8.13 (s, IH), 7.78 (d, IH), 7.55 (dd, IH), 7.40 (dd, IH), 7.31 (d, IH), 7.07 (td, IH), 5.14 (s, 2H), 3.64 (d, 2H)31.08 (m, IH), 0.52 (d, 2H), 0.25 (d, 2H). [003901 The following compounds were prepared as described in Examples 1, 2, 3, 90 and 91 using the appropriate alkyl halide. Example 92 \(Figure Removed) (4_Bromo-2-fluorophenylamino)-5-fluoro-6-oxo-l-pyridin-3-ylmethyl-l,6- dihydropyridine-3-carboxylic acid propoxy-amide [00391] MS APCI (+) m/z 493, 495 (M+, Br pattern) detected; 1H NMR (400 mHz, CD3OD) 6 8.62 (s, IH), 8.51 (d, IH), 8.03 (s, IH), 7.88 (d, IH), 7.44 (dd, IH), 7.36 (dd, IH), 7.27 (d, IH), 7.02 (td, IH), 5.24 (s, 2H), 3.82 (t, 2H), 1.68 (m, 2H), 0.97 (t, 3H). Example 93 (Figure Removed) 4_(4_Bromo-2-fluorophenylamino)-5-fluoro-6-oxo-l-pyridin-2-ylmethyl-l,6- dihydropyridine-3-carboxylic acid [00392] MS APCI (-) m/z 434, 436 (M-, Br pattern) detected; TH NMR (400 mHz, DMSO) § 9.40 (s, IH), 8.56 (s, IH), 8.51 (d, IH), 7.79 (t, IH), 7.59 (d, IH), 7.34 (m, 3H), 7.15 (m, IH), 5.29 (s, 2H). (4-Bromo-2-fluorophenyIamino)-l-cycIopropylmethyl-5-fluoro-6-oxo-l,6-dihydropyridine-3-carboxylic acid [00393] MS APCI (-) mfz 397, 399 (M-, Br pattern) detected; 1H NMR (400 mHz, DMSO) 8 9.35 (bs, IH), 8.46 (s, IH), 7.59 (d, IH), 7.36 (d, IH), 7.13 (td, IH), 3.85 (d, 2H), 1.23 (m, IH), 0.50 (d, 2H), 0.39 (d, 2H). Example 95 (Figure Removed) 4-(4-Bromo-2-fluorophenylamino)-l-cyclopropylmethyl-5-fluoro-6-oxo-l,6-dihydropyridine-3-carboxylic acid(2-hydroxy-l,l-dimethylethoxy)-amide [00394] MS APCI (+) m/z 486, 488 (M+, Br pattern) detected; JH NMR (400 mHz, DMSO) 6 8.02 (s, IH), 7.56 (d, IH), 7.32 (d, IH), 7.04 (td, IH), 3.79 (d, 2H), 3.28 (s, 2H), 1.28 (m, IH), 1.17 (s. 6H), 0.52 (d, 2H), 0.43 (d, 2H). Example 96 (Figure Removed) 4-(4-Bromo-2-fluorophenyIamino)-l-cycIopropyImethyl-5-fluoro-6-oxo-l,6-dihydropyridine-3-carboxylic acid amide 00395] MS APCI (+) m/z 398, 400 (M+, Br pattern) detected; JH NMR (400 mHz, DMSO) 8 10.04 (s, IH), 8.22 (s, IH), 8.05 (bs, IH), 7.66 (bs, IH), 7.56 (d, IH), 7.33 (d, H), 7.04 (td, IH), 3.75 (d, 2H), 1.27 (m, IH), 0.51 (d, 2H), 0.43 (d, 2H). 4-(4-Bromo-2-fluorophenylamino)-5-fluoro-6-oxo-l-pyridin-2-ylmetiiyl-l,6- dihydropyridine-3-carboxylic acid cyclopropylmethoxy-amide [00396] MS APCI (+) m/z 505, 507 (M+, Br p atteni) detected; JH NMR (400 mHz, DMSO) 8 11.71 (bs, IH), 9.04 (bs, IH), 8.52 (d, IH), 8.07 (s, IH), 7.80 (t, IH), 7.56 (d, IH), 7.31 (m, 3H), 7.07 (td, IH), 5.21 (s, 2H), 3.63 (d, 2H), 1.07 (m, IH), 0.51 (q, 2H), 0.24 (q,2H). Example 98 (Figure Removed) 4-(4-Bromo-2-fluoropheQylamino)-5-fluoro-6-oxo-l-pyridin-2-yImethyI-l,6- dihydropyridine-3-carboxy!icacid(2-hydrox:y-l,l-dimetliylethoxy)-amide [00397] MS APCI'(+) m/z 523, 525 (M+, Br pattern) detected; *H NMR (400 mHz, DMSO) 8 11.23 (bs, IH), 8.86 (bs, IH), 8.53 (d, IH), 8.18 (s, IH), 7.80 (t, IH), 7.56 (d, IH), 7.31 (m, 3H), 7.08 (td, IH), 5.25 (s, 2H), 3.28 (s, 2H), 1.56 (s, 6H). Example 99 (Figure Removed) l-Benzyl-4-(4-bromo-2-fluorophenylamino)-5-fluoro-6-oxo-l,6-dihydropyridine-3- carboxylic acid [00398] MS APCI (+) m/z 433,435 (M+, Br pattern) detected; *H NMR (400 mHz, DMSO-D6) d 9.35 (s, IH), 8.54 (s, IH), 7.59 (dd, IH), 7.35 (m, 6H), 7.15 (m, IH), 5.22 Example 100 H2N^O (Figure Removed) l-Benzyl-4-(4-bromo-2-fluorophenylamino)-5-fluoro-6-oxo-l,6-dihydropyridine-3- carboxylic acid amide [00399] MS APCI (-) m/z 432, 434 (M-, Br pattern) detected; 1H NMR (400 mHz, CD3OD) 5 7.18 (s, IH), 7.36 (m, 6H), 7.27 (d, IH), 7.02 (m, IH), 5.20 (s, 2H). Example(Figure Removed) enzyl-4-(4-bromo-2-fluorophenylamino)-5-fluoro-6-oxo-l,6-dihydropyridine-3-carboxylic acid cyclopropylmethoxy-amide [00400] MS APCI (-) m/z 502, 504 (M-, Br pattern) detected; ]H NMR (400 mHz, CD3OD) 8 7.89 (s, IH), 7.34 (m, 7H), 7.27 (d, IH), 7.02 (m, IH), 5.19 (s, 2H), 3.65 (d, 2H), 1.11 (m, IH), 0.55 (m, 2H), 0.26 (m, 2H). Example 102 (Figure Removed) l-Benzyl-4-(4-bromo-2-fluorophenylamijio)-5-fluoro-6-oxo-l,6-dihydropyridine-3- carboxylic acid (2-hydroxyethoxy)-amide [00401] MS APCI (-) m/z 492, 494 (M-, Br pattern) detected; 'H NMR (400 mHz, CD3OD) d 7.96 (s, IH), 7.36 (m, 7H), 7.27 (d, IH), 7.04 (m, IH), 5.19 (s, 2H), 3.96 (t, (Figure Removed) BenzyI-4-(4-bromo-2-fluorophenylamino)-5-fluoro-6-oxo-l,6-dihydropyridine-3-carboxylic acid (2-amino-ethoxy)-amide hydrogen chloride [00402] 1 -Benzyl-4-(4-bromo-2-fluorophenylamirio)-5-fluoro-6-oxo-1,6- dihydropyridine-3-carboxylic acid (2-amino-ethoxy)-aniide was prepared by deprotecting 4(2-{[l-benzyl-4-(4-bromo-2-fluorophenylamino)-5-fluoro-6-oxo-l,6-dihydropyridine-3-carbonyl]-aminooxy}-ethyl)-carbamic acid tert-butyl ester under standard conditions; MS APCI (+) m/z 493, 495 (M+, Br pattern) detected; 'HNMR. (400 mHz, CD3OD) 5 8.03 (s, IH), 7.36 (m, 6H), 7.29 (d, IH), 7.04 (td, IH), 5.20 (s, 2H), 4.12 (t, 2H), 3.17 (t, 2H). Example 104 HCX (Figure Removed) 4-(4-Bromo-2-fluorophenyIamino)-l-cyclohexylmethyl-5-fluoro-6-oxo-l,6-dihydropyridine-3-carboxylic acid [00403] MS APCI (-) m/z 439, 441 (M-, Br pattern) detected; JH NMR (400 mHz, CD3OD) 6 8.21 (s, IH), 7.32 (dd, IH), 7.27 (d, IH), 7.05 (td, IH), 3.88 (d, 2H), 1.85 (m, IH), 1.79 (m, 2H), 1.69 (m, 3H), 1.25 (m, 3H), 1.05 (q, 2H). Example 105 (Figure Removed) 4-(4-Bromo-2-fluorophenylamino)-l-cycIohexyImethyl-5-fluoro-6-oxo-l,6- dihydropyridine-3-carboxylic acid (2-hydroxy-l,l-dimetliyletlioxy)-amide [00404] MS APCI (+) m/z 528, 530 (M+, Br pattern) detected; !H NMR (400 mHz,£D3OD) 6 7.85 (s, IH), 7.36 (d, IH), 7.28 (d, IH), 7.02 (td, IH), 3.86 (d, 2H), 3.42 (s, 2H), 1.88 (m, IH), 1.76 (m, 2H), 1.67 (m, 3H), 1.29 (m, 3H), 1.26 (s, 6H), 1.06 (m, 2H), 0.90 (m, 2H). (Figure Removed) 4-(4-Bromo-2-fluorophenyIammo)-l-cycIohexyImethyI-5-fluoro-6-oxo-l,6- dmydropyridine-3-carboxyKc acid cyclopropylmethoxy-amide [00405] MS APCI (+) m/z 510, 512 (M+, Br pattern) detected; 'H NMR (400 mHz, CD3OD) 8 7.76 (s, IH), 7.36 (d, IH), 7.28 (d, IH), 7.02 (td, IH), 3.84 (d, 2H), 3.69 (d, 2H), 1.86 (m, IH), 1.75 (m, 2H), 1.66 (m, 2H), 1.26 (m, 3H), 1.07 (m, 2H), 0.90 (m, 2H), 0.58 (d, 2H), 0.29 (d, 2H). Example 107 (Figure Removed) O 4-(4-Bromo-2-fluorophenylamino)-5-fluoro-l-(2-methoxyethyl)-6-oxo-l,6- dihydropyridine-3-carboxylic acid [00406] MS APCI (-) m/z 401, 403 (M-, Br pattern) detected; 'H NMR (400 mHz, CD3OD) 6 8.32 (s, IH), 7.38 (dd, IH), 7.31 (d, IH), 7.10 (td, IH), 4.21 (t, 2H), 3.66 (t, 2H), 3.35 (s, 3H). Example 108 (Figure Removed) 4_(4_Bromo-2-fluorophenylamino)-5-fluoro-l-(2-methoxyethyl)-6-oxo-l,6-dihydropyridine-3-carboxylic acid cyclopropylmethoxy-amide [OQ407] MS APCI (+) m/z 472, 474 (M+, Br pattern) detected; !H NMR (400 mHz, Clfe>D) 5 7.79 (s, IH), 7.36 (dd, IH), 7.28 (dd, IH), 7.03 (td, IH), 4.18 (t, 2H), 3.68 (m, 4H), 3.35 (s, 3H), 1.15 (m, IH), 0.59 (q, 2H), 0.30 (q, 2H). Example 109 (Figure Removed) 4-(4-Bromo-2-fluorophenylamino)-5-fluoro-l-(2-hydroxyethyl)-6-oxo-l,6-dihydropyridine-3-carboxylic acid cyclopropylmethoxy-amide [00408] 4-(4-Bromo-2-fluorophenylamino)-5-fluoro-1 -(2-hydroxyethyl)-6-oxo- l,6-dihydropyridine-3-carboxylic acid cyclopropylmethoxy-amide was prepared by deprotecting 4-(4-bromo-2-fluorophenylamino)-1 -[2-(tert-butyl-dimethylsilanyloxy)-ethyl]-5-fluoro-6-oxo-l,6-dihydropyridine-3-carboxylic acid cyclopropylmethoxy-amide under standard conditions. MS APCI (+) m/z 458, 460 (M+, Br pattern) detected; *H NMR (400 mHz, CD3OD) 8 7.82 (s, IH), 7.35 (dd, IH), 7.27 (d, IH), 7.02 (m, IH), 4.11 (t, 2H), 3.84 (t, 2H), 3.72 (m, 2H), 1.16 (m, IH), 0.59 (m, 2H), 0.31 (m, 2H). Example 110 (Figure Removed) 4-(4-Bromo-2-fluorophenylamino)-l-(2-cyclopropylethyl)-5-fluoro-6-0x0-1,6- dihydropyridine-3-carboxylic acid [00409] MS APCI (-) m/z 411, 413 (M-, Br pattern) detected; 1H NMR (400 mHz, CD3OD) 8 8.37 (s, IH), 7.34 (dd, IH), 7.27 (d, IH), 7.04 (td, IH), 4.10 (t. 2H), 1.62 (q, 2H), 0.67 (m, IH), 0.43 (q, 2H), 0.01 (q, 2H). Figure Removed) 4-(4-Bromo-2-fluorophenyIamino)-5-fluoro-l-(2-morphoIin-4-yI-ethyl)-6-oxo-l,6- dihydropyridine-3-carboxyIic acid [00410] MS ESI (+) m/z 458, 460 (M+, Br pattern) detected; 'H NMR (400 mHz, DMSO) 5 8.34 (s, IH), 7.58 (d, IH), 7.35 (d, IH), 7.10 (td, IH), 4.1O (t, 2H), 3.56 (m, 4H), 3.17 (m, 2H), 2.62 (m, 2H). Example 112 O 4-(4-Bromo-2-fluorophenylamino)-5-fluoro-l-(l-methyl-lH-imidazol-4-yImethyI)-6- oxo-l,6-dihydropyridine-3-carboxylicacid ;00411] 'H NMR (400 mHz, DMSO) 6 9.37 (s, IH), 8.68 (bs, IH), 8.60 (s, IH), 7.60 (d, IH), 7.56 (s, IH), 7.37 (d, IH), 7.14 (td, IH), 5.20 (s, 2H), 3.77 (s, 3H). Example 113 (Figure Removed) 4-(4-Bromo-2-fluorophenyIamino)-l-(2-cycIopropylethyl)-5-fluoro-6-oxo-l,6- dmydropyridine-3-carboxylic acid amide [00412] MS APCI (+) m/z 412, 414 (M+, Br pattern) detected; *H NMR (400 mHz, CD3OD) 6 8.12 (s, IH), 7.35 (dd, IH), 7.28 (d, IH), 7.02 (td, IH), 4.10 (t, 2H), 1.76 (q, 2H), 0.72 (m, IH), 0.47 (q, 2H), 0.05 (q, 2H). (Figure Removed) 4_(4-Bromo-2-fluorophenylamino)-5-fluoro-l-(2-morpholin-4-yl-ethyl)-6-oxo-l,6- dihydropyridine-3-carboxylic acid cyclopropylmethoxy-amide [00413] MS APCI (+) m/z 527, 529 (M+, Br pattern) detected; TH NMR (400 mHz, CD3OD) 5 7.85 (s, IH), 7.36 (d, IH), 7.28 (d, IH), 7.03 (td, IH), 4.13 (t, 2H), 3.68 (m, 6H), 2.71 (t, 2H), 2.55 (m, 4H), 1.17 (m, IH), 0.59 (q, 2H), 0.31 (q, 2H). Example 115 (Figure Removed) _(4_Bromo-2-fluorophenylamino)-5-fluoro-l-(l-methyl-lH-iinidazol-4-ylmethyl)-6- oxo-l,6-dihydropyridine-3-carboxy!ic acid cyclopropylmethoxy-amide [00414] MS APCI (+) m/z 508, 510 (M+, Br pattern) detected; *H NMR (400 mHz, CD3OD) 6 7.98 (s, IH), 7.62 (s, IH), 7.34 (dd, IH), 7.26 (dd, IH), 7.16 (s, IH), 7.0 (td, IH), 5.04 (s, 2H), 3.72 (d, 2H), 3.70 (s, 3H), 1.18 (m, IH), 0.59 (q, 2H), 0.31 (q, 2H). Example 116 (Figure Removed) O 4-(4-Bromo-2-fluorophenylamino)-l-(2-cyclopropylethyl)-5-fluoro-6-oxo-l,6- dihydropyridine-3-carboxylic acid (2-hydroxyethoxy)-amide [00415] MS APCI (+) m/z 472, 474 (M+, Br pattern) detected; 1H NMR (400 mHz, CD3OD) 6 7.90 (s, IH), 7.36 (d, IH), 7.28 (d, IH), 7.02 (td, IH), 4.09 (t, 2H), 3.98 (t, 2H), 3.75 (t, 2H), 1.66 (q, 2H), 0.72 (m, IH), 0.47 (q, 2H), 0.06 (q, 2H). Example 117 (Figure Removed) 4-(4-Bromo-2-fluorophenylamino)-5-fluoro-l-(lH-imidazol-4-ylmethyl)-6-oxo-l,6- dihydropyridine-3-carboxylic acid cyclopropylmethoxy-amide [00416] MS APCI (+) m/z 494, 496 (M+, Br pattern) detected; !H NMR (400 mHz, CD3OD) 8 7.99 (s, IH), 7.70 (s, IH), 7.35 (dd, IH), 7.26 (d, IH), 7.20 (s, IH), 7.0 (td, IH), 5.10 (s, 2H), 3.72 (d, 2H), 1.16 (m, IH), 0.59 (q, 2H), 0.31 (q, 2H). Example 118 (Figure Removed) 6 4-(4-Bromo-2-fluorophenylamino)-5-fluoro-6-oxo-l-pyridin-2-ylmethyl-l,6- dihydropyridine-3-carboxylic acid (2-hydroxyethoxy)-amide [00417] MS APCI (+) m/z 495,497 (M+, Br pattern) detected; !H NMR (400 mHz, CD3OD) 8 8.52 (d, IH), 8.08 (s, IH), 7.84 (t, IH), 7.44 (d, IH), 7.36 (m, 2H), 7.27 (d, IH), 7.04 (td, IH), 5.27 (s, 2H), 4.0 (t, 2H), 3.75 (t, 2H). Example 119 (Figure Removed) 4-(4-Bromo-2-fluorophenylamino)-5-fluoro-l-(6-methylpyridm-2-ylmethyl)-6-oxo- l,6-dihydropyridine-3-carboxylic acid cyclopropylmethoxy-amide [00418] MS APCI (+) m/z 519, 521 (M+, Br pattern) detected; 'H NMR (400 mHz, CD3OD) 8 8.03 (s, IH), 7.70 (t, IH), 7.36 (d, IH), 7.28 (d, IH), 7.21 (d, IH), 7.16 (d, IH), 7.04 (td, IH), 5.22 (s, 2H), 3.70 (d, 2H), 2.52 (s, 3H), 1.17 (m, IH), 0.58 (q, 2H), Example 120 (Figure Removed) 4-(4-Bromo-2-fluorophenylamino)-5-fluoro-l-(6-methyl-pyridin-2-ylmethyl)-6-oxo- l,6-dihydropyridine-3-carboxylic acid methoxy-amide [00419] MS APCI (+) m/z 479, 481 (M+, Br pattern) detected; *H NMR (400 raHz, CD3OD) 5 8.05 (s, IH), 7.69 (t, IH), 7.36 (dd, IH), 7.28 (d, IH), 7.21 (d, IH). 7.14 (d, IH), 7.04 (td, IH), 5.22 (s, 2H), 3.75 (s, 3H), 2.52 (s, 3H). Example 121 (Figure Removed) 4-(4-Bromo-2-fluorophenylamino)-5-fluoro-6-oxo-l-pyridin-3-ylmethyI-l,6-dihydropyridine-3-carboxylic acid (3-aminopropoxy)-amide hydrogen chloride [00420] 4-(4-Bromo-2-fluorophenylamino)-5-fluoro-6-oxo-l-pyridm-3-yknethyl- l,6-diliydropyridine-3-carboxylic acid (3-aminopropoxy)-amide was prepared by deprotecting (3- {[4-(4-bromo-2-fluorophenylamino)-5-fluoro-6-oxo-1 -pyridin-3- ylmethyl-1,6-dihydropyridine-3-carbonyl]-aminooxy}-propyl)-carbamic acid tert-butyl ester under standard conditions. MS APCI (+) m/z 508, 510 (M+, Br pattern) detected; !H NMR (400 mHz, DMSO) 6 9.01 (s, IH), 8.92 (m, 2H), 8.61 (d, IH), 8.29 (s, IH), 8.12 (m, IH), 7.81 (m, 2H), 7.57 (d, IH), 7.35 (d, IH), 7.22 (td, IH), 5.34 (s, 2H), 3.97 (t, 2H), 3.01 (q, 2H), 1.91 (m, 2H). 4-(4-Bromo-2-fluoropheDylamino)-5-fluoro-6-oxo-l-pyrazin-2-ylmethyl-l,6-dihydropyridine-3-carboxylic acid [00421] MS APCI (-) m/z 435, 437 (M-, Br pattern) detected; !H NMR (400 mHz, DMSO) 5 9.42 (bs, IH), 8.71 (s, IH), 8.63 (s, IH), 8.58 (s, 2H), 7.59 (dd, IH), 7.36 (d, lH),7.15(td, IH), 5.39 (s, 2H). Example 123 (Figure Removed) 4-(4-Bromo-2-fluorophenylamino)-5-fluoro-6-oxo-l-pyrazin-2-ylmethyl-l,6-dihydropyridine-3-carboxyIic acid cyclopropylmethoxy-amide [00422] MS APCI (+) m/z 506, 508 (M+, Br pattern) detected; *H NMR (400 mHz, CD3OD) 6 8.72 (s, IH), 8.57 (s, IH), 8.55 (s, IH), 8.05 (s, IH), 7.36 (dd, IH), 7.28 (d, IH), 7.04 (td, IH), 5.33 (s, 2H), 3.70 (d, 2H), 1.56 (m, IH), 0.59 (q, 2H), 0.30 (q, 2H). Example 124 (Figure Removed) 4-(4-Bromo-2-fluorophenylamino)-5-fluoro-6-oxo-l-pyrazin-2-ylmethyI-l,6-dihydropyridine-3-carboxylic acid ethoxy-amide [00423] MS APCI (+) m/z 480, 482 (M+, Br pattern) detected; *H NMR (400 mHz, CD3OD) 6 8.71 (s, IH), 8.57 (s, IH), 8.55 (s, IH), 8.07 (s, IH), 7.36 (dd, IH), 7.28 (d, IH), 7.04 (td, IH), 5.33 (s, 2H), 3.95 (q, 2H), 1.28 (t, 3H). (Figure Removed) 4-(4-Bromo-2-fluorophenylamino)-5-fluoro-6-oxo-l-pyrazin-2-ylmethyI-l,6- dihydropyridine-3-carboxylic acid propoxy-amide [00424] MS APCI (+) m/z 494, 496 (M+, Br pattern) detected; !H NMR (400 mHz, CD3OD) 8 8.72 (s, IH), 8.58 (s, IH), 8.55 (s, IH), 8.07 (s, IH), 7.36 (dd, IH), 7.28 (d, IH), 7.04 (td, IH), 5.34 (s, 2H), 3.84 (t, 2H), 1.69 (m, 2H), 0.98 (t, 3H). Example 126 (Figure Removed) 4-(4-Bromo-2-fluorophenylammo)-5-fluoro-6-oxo-l-pyridazin-3-ylmethyl-l,6- dihydropyridine-3-carboxylic acid cyclopropylmethoxy-amide [00425] MS APCI (+) m/z 506, 508 (M+, Br pattern) detected; 'H NMR (400 mHz, CD3OD) 8 9.14 (d, IH), 8.10 (s, IH), 7.80 (m, IH), 7.74 (m, IH), 7.36 (dd, IH), 7.27 (d, IH), 7.05 (td, IH), 5.46 (s, 2H), 3.70 (d, 2H), 1.17 (m, IH), 0.58 (q, 2H), 0.30 (q, 2H). Example 127 (Figure Removed) 4-(4-Bromo-2-fluorophenylamino)-5-fluoro-6-oxo-l-pyrimidin-4-ylmethyl-l,6- dihydropyridine-3-carboxylic acid cyclopropylmethoxy-amide [00426] MS APCI (+) m/z 506, 508 (M+, Br pattern) detected; ]H NMR (400 mHz, CD3OD) 8 9.09 (s, IH), 8.75 (d, IH), 8.0 (s, IH), 7.48 (d, IH), 7.38 (d, IH), 7.29 (d, IH), 7.07 (td, IH), 5.30 (s, 2H), 3.69 (d, 2H), 1.16 (m, IH), 0.58 (q, 2H), 0.30 (q, 2H). (Figure Removed) 4_(4_Bromo-2-fluorophenylamino)-5-fluoro-l-methanesulfonylmethyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid cyclopropylmethoxy-amide [00427] Step A: 4-(4-Bromo-2-fluorophenylamino)-5-fluoro-l- methylsulfanylmetliyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid methyl ester was prepared as previously described using chloromethylsulfanylmethan.e as the electrophile. [00428] Step B: 4-(4-Bromo-2-fluorophenylamino)-5-fluoro-l- niethanesulfonylmethyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid methyl ester was prepared from 4-(4-bromo-2-fluorophenylamino)-5-fluoro-l-methylsulfanylmethyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid methyl ester as follows. A solution of Oxone® (84 mg, 0.14 mmol) in water (2 mL) was added dropwise to a stirred solution of 4_(4_bromo-2-fluorophenylamino)-5-fluoro-l-methylsulfaiiyhTiethyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid methyl ester (38 mg, 0.091 mmol) in MeOH (2 mL) at room temperature. After 4 days stirring, the reaction mixture was diluted with water (20 mL), extracted with ethyl acetate, dried (MgSO4) and concentrated under reduced pressure. Purification by flash column chromatography (0.5% MeOH in methylene chloride) gave clean desired product (25 mg, 61%). [00429] Step C: 4-(4-Bromo-2-fluorophenylamino)-5-fluoro-l- methanesulfonylmethyl-6-oxo-1,6-dihydropyridine-3-carboxylic acid cyclopropylmethoxy-amide was prepared from 4-(4-bromo-2-fluorophenylamino)-5- fiuoro-l-methanesulfonylmethyl-6-oxo-1,6-dihydropyridine-3-carboxylic acid methyl ester as previously described. MS APCI (+) m/z 506, 508 (M+, Br pattern) detected; ;H NMR (400 mHz, CD3OD) 5 7.84 (s, 1H), 7.31 (dd, 1H), 7.27 (d, 1H), 7.04 (td, 1H), 5.37 (s, 2H), 3.78 (d, 2H), 3.06 (s, 3H), 1.21 (m, 1H), 0.63 (q, 2H), 0.33 (q, 2H). [00430] Example 129 4-(4-Bromo-2-fluorophenylamiao)-5-fluoro-6-oxo-l,6-dihydropyridine-3-carboxylic acid [00432] A stirred solution of 4-(4-bromo-2-fluorophenylamino)-5-fluoro-6-oxo- l,6-dihydropyridine-3-carboxylic acid methyl ester (0.10 g, 0.278 rnmol) in 4:1 THFrMeOH (5 mL) was treated with 1 M LiOH solution (0.75 mL). After 8 hours, the reaction mixture was acidified to pH 1 with 1 N HC1 and extracted with ethyl acetate. The combined organic extracts were washed with brine, dried (MgSO4) and concentrated under reduced pressure to give 0.095 g (99%) of desired product as a white solid. MS APCI (-) m/z 343, 345 (M-, Br pattern) detected; !H NMR (400 mHz, DMSO) 5 12.34 (bs, IH), 9.39 (bs, IH), 7.95 (s, IH), 7.59 (d, IH), 7.36 (d, IH), 7.12 (td, IH). [00433] Example 130 [00434] (Figure Removed) 4-(4-Bromo-2-fluorophenylamino)-5-fluoro-6-oxo-l,6-dihydropyridine-3-carboxylic acid cyclopropylmethoxy-amide [00435] Prepared as described in Example 2 from 4-(4-bromo-2- fluorophenylamino)-5-fluoro-6-oxo-l,6-dihydropyridine-3-carboxylic acid. MS APCI (+) m/z 414, 416 (M+, Br pattern) detected; JH NMR (400 mHz, DMSO) 6 9.15 (bs, IH), 7.59 (s, IH), 7.55 (dd, IH), 7.32 (d, 2H), 7.02 (td, IH), 3.64 (d, 2H), 1.07 (m, IH), 0.50 (q,2H),0.24(q,2H). [00436] Example 131 Br [00437] 5-(5-Amino-[l,3,4]oxadiazol-2-yI)-4-(4-bromo-2-fluorophenylamino)-3-fluoro-l- methy 1-1 H-pyridin-2-one [00438] Step A: Preparation of 4-(4-bromo-2-fluorophenylamino)-5-fluoro-l- methyl-6-oxo-1.6-dihvdropvridine-3-carboxylic acid hydrazide: A mixture of 4-(4-bromo-2-fluorophenylamino)-5-fluoro-l-methyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid (70 mg, 0.195 mmol), EDCI (112 mg, 0.585 mniol), and HOBt (79 mg, 0.5S5 mmol) in DMF (3 mL) was stirred for 30 minutes. Hydrazine (19 mg, 0.585 mmol) was added followed by EtsN (0.082 mL, 0.585 mmol). After 3 hours, the reaction mixture was diluted with EtOAc and washed with saturated NHUC1 solution, saturated NaHCOs solution and brine. The organic layer was dried (MgSO.0 and concentrated to yield 64 mg (89%) desired product. [00439] Step B: Preparation of 5-(5-amino-[1.3.41oxadiazol-2-yl)-4-(4-bromo-2- fluorophenvlaminoV3-fluoro-1 -methyl-1 H-pyridin-2-one: Cyanogen bromide (36 mg, 0.31 mmol) was added to a suspension of 4-(4-bromo-2-fluorophenylamino)-5-fluoro-l-methyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid hydrazide (63 mg, 0.169 mmol) in dioxane (2 mL) followed by an aqueous NaHCO3 (2 mL of a 0.09 M solution) solution. After 17 hours, additional cyanogen bromide (14 mg) was added. After 19 hours, the reaction mixture was diluted with water and extracted with ethyl acetate. The combined organic extracts were washed with brine, dried (MgSC>4) and concentrated under reduced pressure. Crystallization (MeOH:THF) followed by trituration (Ei2O:MeOH 5:1) gave clean desired product as a white solid (60 mg, 89%). MS APCI (+) 772/2 398, 400 (M+, Br pattern) detected; *H NMR (400 mHz, CD3OD) 8 8.06 (s, 1H), 7.37 (d, 1H), 7.31 (d, 1H), 7.10 (td, 1H), 3.64 (s, 3H). [00440] The following compounds were prepared similarly using the appropriate carboxylic acid. [00441] Example 132 (Figure Removed) [00442] 5-(5-Amino-[l,3,4]oxadiazoI-2-yl)-4-(4-chIoro-2-fluorophenylamino)-3-fluoro-l- methyl-lH-pyridin-2-one [00443] MS APCI (+) m/z 354, 356 (M+, Cl pattern) detected; *H NMR (400 mHz, CD3OD) 5 8.06 (s, IH), 7.23 (d, IH), 7.16 (s, 2H), 3.64 (s, 3H). [00444] Example 133 (Figure Removed) [00445] [00446] 5-(5-Amino-[l,3,4]oxadiazol-2-yl)-4-(4-bromo-2-fluorophenylamino)-3- fluoro-1 -pyrazin-2-ylmethyl- lH-pyridin-2-one [00447] MS APCI (+) m/z 476, 478 (M+, Br pattern) detected; *H NMR (400 mHz, CD3OD) 5 8.75 (s, IH), S.58 (s, IH), 8.55 (s, IH), 8.26 (s, IH), 7.35 (dds IH), 7.29 (d, IH), 7.09 (td, IH), 5.40 (s, 2H). Example 134 H2N, (Figure Removed) [00448] [00449] [00450] 5-(5-Amino-[l,3,4]oxadiazol-2-yl)-4-(4-bromo-2-fluorophenylamino)-l,3- dimethyl-lH-pyridin-2-one [00451] MS APCI (-) m/z 392, 394 (M-, Br pattern) detected; !H NMR (400 MHz, CD3OD) 5 8.14 (s, IH), 7.36 (d, IH), 7.23 (d, IH), 6.72 (t, IH), 3.63 (s, 3H), 1.78 (s, 3H). [00452] Example 135 (Figure Removed) [00453] [00454] 5 -(5-Amino-[ 1,3)4]oxadiazol-2-yl)-4-(4-bromo-2-metliylphenylamino)-3- fluoro-1 -methyl- lH-pyridin-2-one [00455] MS APCI (+) m/z 394, 396 (M+, Br pattern) detected; !H NMR (400 mHz, CD3OD) 5 8.05 (s, 1H), 7.39 (s, 1H), 7.30 (d, 1H), 6.95 (dd, 1H), 3.62 (s, 3H), 2.31 (s, 3H). [00456] Example 136 (Figure Removed) [00457] [00458] 4-(4-Bromo-2-fluorophenylamino)-1,3 -dimemyl-5-(5-oxo-4,5-dihydro- [ 1,3,4]oxadiazol-2-yl)-1 H-pyridin-2-one [00459] l,l'-Carbonyldiimidazole (275 mg, 1.70 mmol) was added to a stirred solution of 4-(4-bromo-2-fluorophenylamino)-1,5-dimethyl-6-oxo-1,6-dihydropyridine-3- carboxylic acid hydrazide (728 mg, 1.62 mmol (82% pure material)) in DMF (2 mL). After 1 hour, the reaction mixture was diluted with ethyl acetate and washed with brine. Some of the product precipitated and was collected by filtration. The filtrate was diluted with 1 N HC1 and the layers separated. The aqueous layer was extracted with ethyl acetate. The combined organic extracts were washed with brine, dried (MgSO4) and concentrated under reduced pressure. The resulting residue was triturated with diethyl ether to give the desired product which was combined with the earlier obtained product. The combined yield of clean desired product was 482 mg (75%); MS APCI (-) m/z 393, 395 (M-, Br pattern) detected; JH NMR (400 MHz, DMSO-d6) 5 8.22 (s, 1H), 7.88 (s, 1H), 7.50 (dd, 1H), 7.21 (d, 1H), 6.59 (t 1H), 3.52 (s, 3H), 1.76 (s, 3H). [00460] Example 137 (Figure Removed) [00461] [00462] 4-(4-Bromo-2-fluorophenylamino)-5-[5-(2-hydroxyethylamino)- [l,3,4]oxadiazol-2-yl]-l,3-dimethyl-lH-pyridin-2-one [00463] Ethanolamine (0.037 mL, 0.61 mmol) was added to a suspension of 4-(4- bromo-2-fluorophenylamino)-l,3-dimethyl-5-(5-oxo-4,5-dihydro-[l,3J4]oxadiazol-2-yl)-lH-pyridin-2-one (81 mg, 0.20 mmol) in EtOH (2 mL). The reaction mixture was heated to 90 °C with stirring for 17 hours. After cooling to room temperature, the reaction mixture was concentrated under reduced pressure and purified by flash column cnromatography (5% MeOH in methylene chloride increasing to 20% MeOH in 5% steps) to give the desired intermediate adduct (58 mg, 62%). The intermediate (56 mg, 0.12 mmol) was suspended in 2:1 methylene chloride:MeCN (4.5 mL) and PPh3 (98 mg, 0.37 mmol), Et3N (0.14 mL, 1.0 mmol) and CCU (0.036 mL, 0.37 mmol) were added. The resulting mixture was heated to 55 °C with stirring for 30 minutes. After cooling to room temperature, the reaction mixture was diluted with ethyl acetate and washed with brine. The aqueous layer was extracted with ethyl acetate. The organic layers were combined, washed with brine, dried (MgSC>4) and concentrated under reduced pressure. Purification by flash column cnromatography (ethyl acetate) gave clean desired product (24 mg, 45%); MS APCI (-) m/z 436, 438 (M-, Br pattern) detected; 1H NMR (400 MHz, CD3OD) 5 8.14 (s, 1H), 7.36 (dd, 1H), 7.22 (dd, 1H), 6.71 (t, 1H), 3.71 (t, 2H), 3.63 (s, 3H), 3.41 (t,2H), 1.79 (s, 3H). [00464] The following compounds were prepared similarly using the appropriate amine. In some instances a final standard deprotection step was required. [00465] Example 138 (Figure Removed) [00466] [00467] 4-(4-BTomo-2-fluorophenylamino)-l53-dimethyl-5-[5-(2- methylaminoethylamino)-[l,3,4]oxadiazol-2-yl]-lH-pyridin-2-one [00468] MS APCI (-) m/z 449, 451 (M-, Br pattern) detected; 'H NMR (400 MHz, CD3OD) d 8.18 (s, IH), 7.37 (dd, IH), 7.23 (d, IH), 6.71 (t, IH), 3.66 (t, 2H), 3.64 (s, 3H), 3.29 (t, 2H), 2.75 (s, 3H), 1.80 (s, 3H). Example 139 H2N (Figure Removed) [00469] [00470] [00471] 5-[5-(2-Amino-ethylaniino)-[l,3,4]oxadiazol-2-yl]-4-(4-bromo-2- fluorophenylamino)-l,3-dimethyl-lH-pyridin-2-one [00472] MS APCI (+) m/z 437,439 (M+, Br pattern) detected; *H NMR (400 MHz, CD3OD) 5 8.20 (s, IH), 7.37 (dd, IH), 7.23 (dd, IH), 6.71 (t, IH), 3.65 (s, 3H). 3.63 (t, 2H), 3.22 (t, 2H), 1.80(s,3H). xample 140 HO (Figure Removed) [00473] [00474] [00475] 4-(4-Bromo-2-fluorophenylammo)-3-fluoro-5-[5-(2-hydroxyeth\iarnino)- [ 1,3,4]oxadiazol-2-yl]-l -methyl-1 H-pyridin-2-one [00476] MS APCI (+) m/z 442, 444 (M+, Br pattern) detected; *H NMR (400 mHz,D3OD) 6 8.06 (s, 1H), 7.35 (dd, 1H), 7.29 (d, 1H), 7.08 (td, 1H), 3.75 (t, 2H), 3.65 (s, 3H),%:47 (t, 2H). [00477] Example 141 H2N- (Figure Removed) [00478] [00479] 5-[5-(2-Amino-ethylamino)-[l,3,4]oxadiazol-2-yl]-4-(4-bromo-2- fluorophenylamino)-3-fluorp-1 -methyl-1 H-pyridin-2-one hydrogen chloride [00480] MS APCI (+) m/z 441, 443 (M+, Br pattern) detected; LH NMR (400 mHz, DMSO) 8 8.94 (s, 1H), 8.17 (s, 1H), 8.06 (t, 1H), 7.95 (bs, 3H), 7.59 (dd, 1H), 7.36 (d, 1H), 7.12 (td, 1H), 3.57 (s, 3H), 3.51 (q, 2H), 3.05 (q, 2H). [00481] Example 142 (Figure Removed) [00482] [00483] 4-(4-Bromo-2-fluorophenylamino)-l ,3-dimethyl-5-(lH-tetrazol-5-yl> 1H- pyridin-2-one [00484] Step A: Preparation of 3-(5~[4-(4-bromo-2-fluorophenylamino)-1.5- dimethyl-6-oxo-l,6-dihvdro-pyridin-3-yn-tetrazol-l-vU-propionitrile: PPb.3 (83 mg, 0.32 mmol) was added to a stirred suspension of 4-(4-bromo-2-fluorophenylamino)-l,5- dimethyl-6-oxo-_l,6-dihydropyridine-3-carboxylic acid (2-cyano-ethyl)-amide (51 mg, 0.12 mmol) in MeCN (1.5 mL). DIAD (0.065 mL, 0.31 mmol) and TMSN3 (0.045 mL, 0.32) were added dropwise. After 22 hours, the reaction mixture was diluted with ethyl acetate and washed with water. The aqueous layer was extracted with ethyl acetate. The combined organic extracts were dried (MgSCH) and concentrated under reduced pressure. Purification by flash column chromatography gave clean desired product (33 mg, 61%). [00485] StepB: Preparation of 4-(4-bromo-2-fluorophenylamrno)-1.3-dimethvl-5- (lH-tetrazol-5-vl)-lH-pMidin-2-one: DBU (0.030 mL, 0.21 mmol) was added to a solution of 3-{5-[4-(4-bromo-2-fluorophenylamino)-l,5-dimethyl-6-oxo-l ,6-dihydro- py3Sdin-3-yl]-tetrazol-l-yl}-propionitrile (30 mg, 0.069 mmol) in methylene chloride (1.5 mL). After 2 hours, the reaction mixture was diluted with ethyl acetate and washed with 1 N HC1. The aqueous layer was extracted with ethyl acetate. The combined organic extracts were washed with brine, dried (MgSO4) and concentrated under reduced pressure. Trituration with diethyl ether gave clean desired product (20 mg, 77%); MS APCI (-) m/z 377, 379 (M-, Br pattern) detected; 1H NMK (400 MHz, CD3OD) 5 8.20 (s, 1H), 7.29 (dd, 1H), 7.13 (dd, 1H), 6.63 (t, 1H), 3.65 (s, 3H), 1.91 (s, 3H). [00486] Example 143 (Figure Removed) [00487] [00488] 4-(4-Bromo-2-fluorophenylamino)-3-fluoro-l-methyl-5-(5-methyl-4H- [ 1,2,4]triazol-3-yl)-1 H-pyridin-2-one [00489] Step A: Preparation of 4-(4-bromo-2-fluorophenylamino)-5-fluoro-l- methyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid N'-(l-imino-ethyl)-hydrazide: Ethyl acetimidate HC1 salt (40 mg, 0.32 mmol) and Et3N (0.049 mL, 0.35 mmol) were added to a stirred suspension of 4-(4-bromo-2-fluorophenylamino)-5-fluoro-l-methyl-6-oxo-l,6- dihydropyridine-3-carboxylic acid hydrazide (0.10 g, 0.27 mmol) in 2:1 THF:DMF (3 mL) at 0 °C. After 1.5 hours at 0 °C and 17 hours at room temperature, the reaction mixture was poured onto water, neutralized with dilute aqueous HC1 and extracted with ethyl acetate. The combined organic extracts were dried (MgSO4) and concentrated under reduced pressure. Trituration with methylene chloride gave the desired product. [00490] Step B: Preparation of 4-(4-bromo-2-fluorophenylamino)-3-fluor_o-l- methvl-5-(5-methvl-4H-\ 1.2.41triazol-3-vlV 1 H-pyridin-2-one: PPh3 (0.12 g, 0.45 mmol), Et3N (0.17 mL, 1.21 mmol), and CCL; (0.044 mL, 0.45 mmol) were added to a stirred suspension of 4-(4-bromo-2-fluorophenylamino)-5 -fiuoro-1 -methyl-6-oxo-1,6-dihydropyridine-3-carboxylic acid N'-(l-imino-ethyl)-hydrazide (0.073 g, 0.1S mmol) in methylene chloride (2 mL). The reaction mixture was stirred at 50 °C for 2 hours. After cooling to room temperature, the reaction mixture was diluted with ethyl acetate, washed with water, dried (MgSCU) and concentrated. Purification by flash column cht4patography (4% MeOH in methylene chloride) gave clean desired product (30 mg, 50%); MS APCI (-) mfz 394,396 (M-, Br pattern) detected; JH NMR (400 mHz, CD3OD) 5 8.16 (s, 1H), 7.31 (dd, 1H), 7.25 (d, 1H), 7.01 (td, 1H), 3.67 (s, 3H), 2.51 (s, 3H). [00491] Example 144 [00492] (Figure Removed) [00493] 5-(5-Amino-[l,3,4]thiadiazol-2-yl)-4-(4-bromo-2-fluorophenylamino)-3- fluoro-1 -methyl- lH-pyridin-2-one [00494] A mixture of 4-(4-bromo-2-fluorophenylamino)-5-fluoro-l-methyl-6-oxo- l,6-dihydropyridine-3-carboxylic acid (200 mg, 0.557 mmol), EDCI (214 mg, 1.11 mmol) and HOBt (151 mg, 1.11 mol) were stirred in DMF (10 mL) for 30 minutes. Thiosemicarbazide (51 mg, 0.562 mmol) and EtaN (0.116 mL, 1.5 mmol) were added. After 1 hour, the reaction mixture was diluted with saturated aqueous NHUCl, and extracted with ethyl acetate. The combined organic extracts were dried (MgSO4) and concentrated under reduced pressure. Purification by flash column chromatography (5% to 10% MeOH in methylene chloride) gave 70 mg partially pure intermediate adduct. PPh3 (78 mg, 0.30 mmol), Et3N (0.10 mL, 0.74 mmol), and CCU (0.029 mL, 0.30 mmol) were added to a stirred suspension of intermediate adduct (40 mg, 0.093 mmol) in 1:1 methylene chloride:MeCN (4 mL). The reaction mixture was heated to 50 °C for 5 hours. After cooling to room temperature, the reaction mixture was diluted with ethyl acetate, washed with water, dried (MgSCU) and concentrated under reduced pressure. Purification by flash column chromatography (twice) (4% MeOH in methylene chloride) gave clean desired product (10 mg, 33%); MS APCI (+) m/z 414, 416 (M+, Br pattern) detected; 1H NMR (400 mHz, CD3OD) 5 7.80 (s, 1H), 7.31 (dd, 1H), 7.25 (d, 1H), 7.02 (td, 1H), 3.64 (s, 3H). [00495] Example 145 (Figure Removed) [00496] [00497] 5-(5-Amino-4H-[ 1,2,4]triazol-3-yl)-4-(4-bromo-2-fluorophenylamino)-3- fluoro-1 -methyl-1 H-pyridin-2-one [00498] A mixture of 4-(4-bromo-2-fluorophenylamino)-5-fluoro-l-methyl-6-oxo- l,6-dihydropyridine-3-carboxylic acid hydrazide (100 mg, 0.268 mmol), 10% aqueous HC1 (0.19 mL) and cyanamide (0.04 mL, 0.515 mmol) was heated to reflux for 3 days. The reaction mixture was concentrated under reduced pressure, diluted with water and washed with water. DMF (10 mL) was added to the aqueous layer and it was extracted with methylene chloride. The combined organic extracts were dried (MgSO-t) and concentrated under reduced pressure to give the desired intermediate adduct (35 mg). PPh3 (76 mg, 0.29 mmol), Et3N (0.10 mL, 0.74 mmol), and CCLi (0.028 mL, 0.29 mmol) were added to a stirred suspension of intermediate adduct (30 mg, 0.072 mmol) in methylene chloride (2 mL). The reaction mixture was heated to 50 °C for 5 hours. After cooling to room temperature, the reaction mixture was diluted with ethyl acetate, washed with water, dried (MgSCU) and concentrated under reduced pressure. Purification by flash column chromatography (4% MeOH in methylene chloride) followed by methylene chloride triruration gave clean desired product (1 mg, 4%); MS APCI (+) m/z 397, 399 (M+, Br pattern) detected. [00499]Example 146 (Figure Removed) [00500] [00501] N-[4-(4-Bromo-2-fluorophenylamino)-l ,5-dimethyl-6-oxo-l ,6- dihydropyridine-3-carbonyl]-C-phenyl-methanesulfonamide [00502] W-[4-(4-Bromo-2-fluorophenylamino)-l ,5-dimethyl-6-oxo-l ,6- dihydropyridine-3-carbonyl]-C-phenyl-methanesulfonamide was prepared from 4-(4-bromo-2-fluorophenylamino)-l ,5-dimethyl-6-oxo-1,6-dihydropyridine-3-carboxylic acid as fallows. To a solution of 4-(4-bromo-2-fluorophenylamino)-l,5-dimetliyl-6-oxo-l,6- dihydropyridine-3-carboxylic acid (0.040 mg, 0.113 mmol) in DMF (1.5 mL) was added l,r-carbonyldiimidazole (0.074 mg, 0.456 mmol). After stirring for two hours, a- toluenesulfonamide (0.079 mg, 0.461 mmol) was added, followed by DBU (0.070 mL, 0.459 mmol). After stirring for 16 hours at room temperature, the reaction mixture was diluted with EtOAc and IN HC1 solution. The organic layer was separated and washed with brine. The aqueous layer was extracted with EtOAc (2x) and washed with brine. The combined organic extracts were dried (MgSO4) and concentrated under reduced pressure. Purification by flash column chromatography (2% MeOH in methylene chloride) gave 0.039 g (68%) clean desired product; MS APCI (-) m/z 506, 508 (M-, Br pattern) detected; !H NMR (400 MHz, CD3OD) 5 8.29 (s, 1H), 7.27 (m, 3H), 7.18 (d, 1H), 7.11 (m, 3H), 6.56 (t, 1H), 4.44 (s, 2H), 3.54 (s, 3H), 1.62 (s, 3H). [00503] Example 147 [00504] (Figure Removed) [00505] N-[4-(4-Bromo-2-fluorophenylamino)-1,5 -dimethyl-6-oxo-1,6- dihydropyridine-3 -carbonyl] -methanesulfonamide [00506] N- [4-(4-Bromo-2-fluorophenylamino)-1,5-dimethyl-6-oxo-1,6- dihydropyridine-3-carbonyl]-methanesulfonamide was prepared from 4-(4-bromo-2-fiuorophenylamino)-1,5 -dimethyl-6-oxo-1,6-dihydropyridine-3 -carboxylic acid as follows. To a solution of 4-(4-bromo-2-fluorophenylamino)-l,5-dimethyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid (0.041 mg, 0.115 mmol) in DMF (1 mL) was added l,r-carbonyldiimidazole (0.039 mg, 0.241 mmol). After stirring for two hours, methanetoluenesulfonamide (0.023 mg, 0.242 mmol) was added, followed by DBU (0.035 mL, 0.230 mmol). After stirring 16 hours at room temperature, the reaction mixture was diluted with EtOAc and IN HC1 solution. The organic layer was separated and washed with brine. The aqueous layer was extracted with EtOAc (2x) and washed with brine. The combined organic extracts were dried (MgSO4) and concentrated under reduced pressure. Purification by flash column chromatography (15% MeOH in met&ylene chloride) gave 0.028 g (57%) clean desired product; MS APCI (-) m/z 430, 432 (M-, Br pattern) detected; JH NMR (400 MHz, DMSO-d6) 5 11.13 (s, 1H), 8.25 (s, 1H), 7.49 (dd, 1H), 7.23 (d, 1H), 6.55 (t, 1H), 3.46 (s, 3H), 2.83 (s, 3H), 1.56 (s, 3H). [00507] Example 148 (Figure Removed) [00508] [00509] 4-(2-Fluoro-4-methylphenylamino> 1,2,5-trimethyl-6-oxo-l ,6- dihydropyridine-3-carboxylic acid cyclopropyhnethoxy-aniide [00510] Step A: Preparation of 4-hvdroxv-l,2.5-trimethvl-6-oxo-1.6- dihydropvridine-3-carboxylic acid ethyl ester: A mixture of 2-methyl-3-oxo-pentanedioic acid diethyl ester (10.0 g, 46.3 mmol), 1,1-diethoxy-ethene (12.8 mL, 92.5 mmol) and sodium methoxide (0.026 mg, 0.481 mmol) was heated to 85 °C for nine hours. The reaction mixture was cooled to room temperature and concentrated. To the resulting residue was added methylamine (1.91 mL, 55.5 mmol, 40% H2O). After stirring at room temperature for 16 hours, the reaction mixture was diluted with diethyl ether and washed with water. The aqueous phase was acidified to pH 1 with 10% HC1 solution and extracted with EtOAc. The organic layer was dried (MgSCU) and concentrated. Trituration of the resulting residue with diethyl ether and flash column chromatography (3% MeOH in methylene chloride) gave 3.55 g (34%) desired product. [00511] Step B: Preparation of 4-Chloro-1.2.5-trimethvl-6-oxo-1.6- dihydropvridine-3-carboxylic acid ethyl ester: Phosphorous oxychloride (20.0 mL, 216 mmol) was added to 4-hydroxy-l,2,5-trimethyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid ethyl ester and heated to 80 °C. After two hours, the reaction mixture was concentrated under reduced pressure. The resulting residue was poured onto ice and, carefully neutralized with saturated NaHCOa, and diluted with EtOAc. After stirring for 16 hours, the organic layer was separated and the aqueous layer was reextracted with EtOAc repeatedly. The pH of the aqueous layer was adjusted to pH 11 with saturated K2CO3 and extracted with EtOAc (2x). The combined organic extracts were dried (MgSO4) and concentrated under reduced pressure to give 3.42 g (89%) clean desired product. [0«|12] StepC: Preparation of 4-(2-fluoro-4-methvbhenvlaminoV 1.2.5-trimethvl- 6-oxo-l,6-dihvdropyridine-3-carboxvlic acid ethyl ester: 2-Fluoro-4-rnethylphenylamine (0.259 g, 2.07 mmol), palladium (H) acetate (0.046 g, 0.205 mmol), rac-2,2-bis(diphenylphosphino)-l,r-binaphthyl (0.192 g, 0.308 mmol), and cesium carbonate (1.00 g, 3.08 mmol) were added to a solution of 4-chloro-l,2,5-trimethyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid ethyl ester (0.50 g, 2.05 mmol) in toluene (7 mL) in a sealed vial. After stirring 10 minutes, the mixture was heated to 80 °C. After 24 hours, the reaction mixture was cooled to room temperature and diluted with EtOAc. The resulting precipitate was filtered and washed with EtOAc. The filtrate was diluted with EtOAc and washed with water. The aqueous layer was reextracted with EtOAc. The combined organic layers were washed with brine, dried (Na2SO4) and concentrated. Purification by flash column chromatography (20:1 methylene chloride/MeOH) gave 0.048 g (71 %) desired product. [00513] Step D: Preparation of 4-(2-fluoro-4-methylphenylamino)-l,2,5-triniethyl- 6-oxo-l,6-dihydropyridine-3 -carboxylic acid cyclopropylrnethoxy-amide: 0- cyclopropyhnethyl-hydroxylamine (0.046 g, 0.527 mmol) was added to a solution of 4- (2-fluoro-4-methylphenylamino)-1,2,5-trimethyl-6-oxo-1,6-dihydropyridine-3 -carboxylic acid ethyl ester (0.070 g, 0.211 mmol) in THF (2 mL). The solution was cooled to 0 °C and lithium bis(trimethylsilyl)amide (1.05 mL, 1 M solution in hexanes) was added dropwise. The reaction mixture was warmed to room temperature. After stirring for 1 hour, the reaction was quenched by addition of a saturated aqueous solution of NaHCOs and partitioned between EtOAc and brine. The aqueous layer was reextracted with EtOAc. The combined organic extracts were dried (Na2SO4) and concentrated. Purification by flash column chromatography (30:1 methylene chloride/MeOH) gave 0.032 g (40%) desired product as a yellow solid; MS ESI (+) m/z 374 (M+l) detected; 1H NMR (400 MHz, CD3OD) 8 6.91 (d,lH), 6.83 (d, 1H), 6.63 (t, 1H), 3.59 (s, 3H), 3.47 (d, 2H), 2.41 (s, 3H), 2.27 (s, 3H), 1.86 (s, 3H) 0.99 (m, 1H) 0.48 (m, 2H) 0.18 (m, 2H). 19F (376 MHz, CD3OD) -132.1 (s, IF). [00514] Example 149 (Figure Removed) [00515] O [00516] 4-(2-Fluoro-4-methylphenylamino)-1,2..5-trimethyl-6-oxo-1,6- dihydropyridine-3-carboxylic acid (2-hydroxyethoxy)-amide [00517] 4-(2-Fluoro-4-methylphenylamino)-l,2,5-trimethyl-6-oxo-l,6- dihydropyridine-3-carboxylic acid (2-hydroxyethoxy)-amide was prepared as described in Example 148 using the appropriate hydroxylamine, followed by deprotection using standard literature methods. MS ESI (+) m/z 364 (M+l) detected; *H NMR (400 MHz, CD3OD) 6 6.91 (d,lH), 6.83 (d, 1H), 6.63 (t, 1H), 3.80 (m, 2H), 3.63 (m, 2H), 3.60 (s, 3H), 2.42 (s, 3H), 2.27 (s, 3H) 1.85 (s, 3H). 19F (376 MHz, CD3OD) -127.8 (s, IF). [00518] Example 150 [00519] (Figure Removed) [00520] 4-(2-Fluoro-4-methylphenylamino)-l,3-dimethyl-6,7-dihydro-lH- pyrrolo[3,4-b]pyridine-2,5-dione [00521] Step A: Preparation of 2-bromomethyl-4-(2-fluoro-4-methylphenylamino)- l,5-dimethyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid ethyl ester: To a solution of 4-(2-fluoro-4-methylphenylamino)-l,2,5-trimethyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid ethyl ester (0.150 g, 0.451 mmol) in DMF (5 mL) was added //-bromosuccinimide (0.084 g, 0.474 mmol). After stirring for 30 minutes, the reaction mixture was diluted with EtOAc, washed with water, and brine, dried (NaaSCU) and concentrated under reduced pressure to yield a yellow residue. Purification by flash column chromatography (methylene chloride) gave 0.122 g (66%) of a yellow residue. [00522] Step B: Preparation of 4-(2-fiuoro-4-methvlphenylamino)-1.3-dimethyl- 6,7-dihydro-l#-pyiTolo[3,4-b]pvridine-2,5-dione: To a solution of 2-bromomethyl-4-(2-fluoro-4-methylphenylamino)-l,5-dimethyl-6-oxo-l)6-dihydropyridine-3-carboxylic acid ethyl ester (0.016 g, 0.040 mmol) in MeOH (0.50 mL) was added ammonia (0.006 mL, 0.040 mmol, 7 M solution in MeOH). After stirring for 2 hours at room temperature, the reagion mixture was heated to 40 °C for 8 hours. The resulting white precipitate w^ filtered to yield clean desired product (0.005 g, 46 %). MS ESI (+) m/z 303 (M+lj detected; ]H NMR (400 MHz, DMSO) 5 8.16 (br s,lH), 8.04 (br s, 1H), 6.81-6.94 (m, 3H), 4.33 (s, 2H), 3.45 (s, 3H), 2.33 (s, 3H), 1.63 (s, 3H). 19F (376 MHz, DMSO) -127.1 (s, IF). [00523] Example 151 (Figure Removed) 4-(4-Bromo-2-fluorophenylamino)-6-oxo-l-phenyl-l,6-dihydropyridazine-3- carboxylic acid cyclopropylmethoxy-amide [00524] Step A: Preparation of 3-oxo-2-(phenvl-hvdrazonoVpentanedioic acid dimethyl ester: 3-oxo-2-(phenyl-hydrazono)-pentanedioic acid dimethyl ester was prepared from 3-oxo-pentanedioic acid dimethyl ester (7.02 mL, 45.9 mmol) according to the procedure of Schober et al. ( J. Heterocylic Chem. 1989, 26, 169) to give 8.81 g (72%) of the desired product. [00525] Step B: Preparation of 4-hvdroxv-6-oxo-l-phenvl-l,6-dihvdropvridazine- 3-carboxvlic acid methyl ester: A mixture of 3-oxo-2-(phenyl-hydrazono)-pentanedioic acid dimethyl ester (4.38 g, 15.7 mmol) in 1,2-dichlorobenzene (15 mL) was refluxed. After 20 hours, the reaction mixture was concentrated under reduced pressure to give 3.83 g (99%) of the desired product. [00526] Step C: Preparation of 4-cMoro-6-oxo-l-phenvl-l,6-dihydropvridazine-3- carboxvlic acid methyl ester: A mixture of 4-hydroxy-6-oxo-l-phenyl-l,6- dihydropyridazine-3-carboxylic acid methyl ester (3.83 g, 15.6 mmol) and phosphorous oxychloride (50 mL) was heated to 85 °C. After 20 hours, the reaction mixture was concentrated under reduced pressure. The resulting residue was quenched with water. The precipitate was filtered and dissolved in EtOAc, dried (MgSO4) and concentrated under reduced pressure to yield 3.44 g (84%) of desired product. [00527] Step D: Preparation of 4-(4-bromo-2-fluorophenylamino)-6-oxo-l- (Figure Removed) phenvl-1,6-dihvdropvridazine-3 -carboxylic acid: To a mixture of 4-chloro-6-oxo-l-pHlsyl4,6-dihydropyridazine-3-carboxylic acid methyl ester (0.250 g, 0.944 mmol) in 1,2-dichlorobenzene (3.8 rnL) was added 4-bromo-2-fluoro aniline (0.561 g, 3.78 mmol), and cesium carbonate (0.615 mg, 1.89 mmol). The reaction mixture was heated to reflux. After 1 hour, the reaction mixture was cooled to room temperature. Water was added and the mixture was diluted with EtOAc. The aqueous layer was separated, acidified with 10% HC1 solution, and extracted with EtOAc. The combined organic layers were dried (MgSO4), concentrated under reduced pressure, and triturated to give 0.153 g (43%) of the desired product. [00528] Step E. Preparation of 4-(4-Bromo-2-fluorophenvlaminoV6-oxo-l- phenyl-1,6-dihydrQpyridazine-3-carboxylic acid cyclopropylmethoxy-amide. 4-(4-Bromo-2-fluorophenylamino)-6-oxo-1 -phenyl-1,6-dihydropyridazine-3-carboxylic acid cyclopropylmethoxy-amide was prepared from 4-(4-bromo-2-fluorophenylamino)-6-oxo-l-phenyl-l,6-dihydropyridazine-3-carboxylic acid as described hi Example 2. MS APCI (-) mlz 471, 473 (M-, Br pattern) detected; JH NMR (400 MHz, CD3OD-CDC13) d 7.50 (m, 8H), 6.12 (s, 1H), 3.78 (d, 2H), 1.18 (m, 1H), 0.59 (q, 2H), 0.32 (q, 2H). Example 152 (Figure Removed) 4-(4-Bromo-2-fluorophenylamino)-6-oxo-l-phenyl-l,6-dihydropyridazine-3- carboxylic acid (2-hydroxyethoxy)-amide [00529] Prepared from 4-(4-bromo-2-fluorophenylamino)-6-oxo-l -phenyl-1,6- dihydropyridazine-3-carboxylic acid as described in Example 3. MS APCI (-) m/z 461, 463 (M-, Br pattern) detected; 1H NMR (400 MHz, CD3OD) 5 7.51 (m, 8H), 6.09 (s, 1H), 4.04(t,2H),3.77(t,2H). Example 153 Figure Removed) -(4-Bromo-2-fluorophenylamino)-l-methyl-6-oxo-l,6-dihydropyridine-3-carboxylic * acid [00530] Step A. Preparation of 2-chloro-6-oxo-1.6-dihvdropvridine-3-carboxvlic acid: 2-Chloro-6-oxo-l,6-dthydropyridine-3-carboxylic acid was prepared from dichloronicotinic acid (3.00 g, 15.6 mmol, Aldrich) according to the procedure described in US3682932 (1972) to yield 1.31 g (48%) of the desired product. [00531] Step B. Preparation of 2-chloro-l-methvl-6-oxo-1.6-dihvdropvridine-3- cafboxylic acid methyl ester: To a solution of 2-chloro-6-oxo-l,6-dihydropyridine-3-carboxylic acid (0.644 g, 3.71 mmol) hi DMF (20 mL) was added lithium hydride (95%, 0.078 g, 9.28 mmol) and the reaction mixture was stirred for 40 minutes under N2. Methyl iodide (0.508 mL, 1.16 g, 8.16 mmol) was then added and the reaction mixture was stirred for an additional 45 minutes. The reaction mixture was quenched with 2 M HC1 until the pH was 6-7. The reaction mixture was diluted with EtOAc and saturated Nad and the layers separated. The aqueous layer was back extracted with EtOAc (Ix). The combined organic layers were dried (NaaSO^ and concentrated under reduced pressure to yield a crude yellow solid. HPLC analysis showed two products in a 4:1 ratio that were separated by flash column chromatography (methylene chloride/EtOAc, 15:1 to 10:1) to give 0.466 g (62%) pure desired product as a white crystalline solid. The minor product was also isolated as a pale yellow crystalline solid and identified as the regioisomer 2-chloro-6-methoxy-nicotinic acid methyl ester. [00532] Step C. Preparation of 2-(4-bromo-2-fluorophenylamino)-l -methvl-6-oxo- 1.6-dihydropvridine-3-carboxylic acid methyl ester: To a solution of 4-bromo-2-fluorophenylamine (0.192 g, 1.01 mmol) hi THF (5 mL) at -78 °C under N2 was added lithium bis(trimethylsilyl)amide (1.50 mL, 1.50 mmol, 1 M solution in hexanes) dropwise. The reaction mixture was stirred for one hour at -78 °C. 2-Chloro-l-methyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid methyl ester (0.202 g, 1.00 mmol) was then added dropwise as a solution in THF (5 mL) and the reaction mixture was stirred for one hour at -78 °C. The reaction mixture was quenched by the addition of F^O and the pH was adjusted to pH 7 with saturated NUtCl and then diluted with EtOAc. The organic layer was separated and washed with saturated NaCl, dried (NaiSC^), and concentrated under reduced pressure. Purification by flash column chromatograpliy (methylene chloride/EtOAc, 15:1) gave 0.232 g (65%) pure desired product as a white crystalline lid. [OGK33] Step D. Preparation of 2-(4-bromo-2-fluorophenvlaminoVl-methyl-6- oxo-1.6-dihvdropyridrne-3 -carboxvlic acid: To a solution of 2-(4-bromo-2-fluorophenylamino)-l-methyl-6-oxo-l,6-diliydropyridine-3-carboxylic acid methyl ester in MeOH (1.5 mL) was added 1 M NaOH (800 uL, 0.902 mmol). The reaction mixture was stirred at 60 °C for 4 hours and then at room temperature for 16 hours. The reaction mixture was diluted with H2O, acidified with 2 M HC1 until the pH was 1-2, and then diluted with EtOAc. The organic layer was separated and washed with saturated NaCl, dried (Na2SO4), and concentrated under reduced pressure to yield 0.053 g (97%) desired product as a pale orange solid. MS ESI (+) m/z 341, 343 (M+, Br pattern) detected; 'H NMR (400 MHz, DMSO-d6) 5 13.08 (s, 1H), 10.0 (s, 1H), 7.87 (d, 1H), 7.65 (d, 1H), 7.35 (d, 1H), 6.95 (t, 1H), 6.16 (d, 1H), 3.19 (s, 3H). [00534] hi the foregoing examples, a variety of anilines can be used in place of 4- bromo-2-fiuorophenylamine in Step C of Example 153. Example 154 (Figure Removed) o 2-(4-Bromo-2-fluorophenylamiao)-l-methyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid cyclopropylmethoxy-amide [00535] A mixture of 2-(4-bromo-2-fluorophenylamino)-l-methyl-6-oxo-l,6- dihydropyridine-3-carboxylic acid (0.022 g, 0.064 mmol), EDCI (0.019 g, 0.097 mmol), and HOBt (0.019 g, 0.097 mmol) in DMA (1 mL) was stirred for 30 minutes at room temperature under N2. O-Cyclopropylmethyl-hydroxylamine (0.017 g, 0.19 mmol) was added followed by EtsN (0.022 mL, 0.016 g, 0.16 mmol). After the reaction mixture was stirred for 16 hours at room temperature, it was diluted with EtOAc and washed with saturated NFLiCl solution, saturated NaHCOa solution and saturated NaCl. The organic layer was dried (Na^SC^) and concentrated under reduced pressure. Purification by flash column chromatography (methylene chloride/methanol, 20:1) gave 0.015 g (57%) pure desired product as a yellow solid. MS APCI (-) m/z 410, 411 (M-, Br pattern) detected; 'H NMR (400 MHz, DMSO-de) 8 11.4 (s, 1H), 9.81 (s, 1H), 7.58 (m, 2H), 7.28 (d, 1H), 6.82 (t^H), 6.17 (d, 1H), 3.46 (d, 2H), 3.22 (s, 3H), 0.99 (m, 1H), 0.48 (m, 2H), 0.18 (m, 2H). (Figure Removed) o 2-(2-Fluoro-4-methylphenylamino)-l-methyl-6-oxo-l,6-dihydropyridine-3- carboxylic acid (2-hydroxyethoxy)-amide [00536] Step A. Preparation of 2-(2-fluoro-4-methylphenvlaminoH-methyl-6- oxo-1 n6-dihvdropyridine-3 -carboxylic acid (2-vinyloxyethoxyVamide: To a solution of 2-(2-fluoro-4-methylphenylamino)-1 -methyl-6-oxo-1,6-dihydropyridine-3 -carboxylic acid methyl ester (0.050 g, 0.17 mmol) in THF (1.5 mL) under N2 was added O-(2-vinyloxy-ethyl)-hydroxylamine (0.044 g, 0.43 mmol). The solution was cooled to 0 °C and lithium bis(trimethylsilyl)amide (0.86 mL, 0.86 mmol, 1 M solution in hexanes) was added dropwise. The reaction mixture was warmed to room temperature. After stirring for 40 minutes, the reaction mixture was quenched by the addition of NaHCOs and partitioned between EtOAc and saturated NaCl. The layers were separated and the aqueous layer was reextracted with EtOAc. The combined organic extracts were dried (Na2SO4) and concentrated under reduced pressure. Purification by flash column chromatography (methylene chloride/memanol, 20:1) gave 0.048 g (77%) pure desired product as an off-white foamy solid. [00537] Step B. Preparation of 2-(2-fluoro-4-meihvlphenylaminoVl-methyl-6- oxo-1.6-dihvdronyridine-3-carboxvlic acid (2-hvdroxvethoxy)-amide: To a solution of 2-(2-fluoro-4-methylphenylamino)-l-methyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid (2-vinyloxyethoxy)-amide (0.048 g, 0.13 mmol) in ethanol (5 mL) was added aqueous 2 M HC1 (0.332 mL, 0.664 mmol). The reaction mixture was stirred for 16 hours at room temperature. The pH of the reaction mixture was adjusted with 1 M NaOH until 7. The reaction mixture was diluted with EtOAc and H^O. The organic layer was separated and washed with saturated NaCl, dried (NaaSC^), and concentrated under reduced pressure to yield 0.044 g (100%) pure desired product as a pale yellow foamy solid. MS ESI (+) m/z 336^M+1) detected; *H NMR (400 MHz, CDC13) 8 10.3 (s, 1H), 8.46 (s, 1H), 7.38 (d, 1H), 6.96-6.87 (m, 2H), 6.76 (t, 1H), 6.18 (d, 1H), 4.04 (m, 2H), 3.93 (br s, 1H), 3.75 (br s, 2H), 3.20 (s, 3H), 2.33 (s, 3H). [00538] Any of the hydroxylamines used in the foregoing examples can be coupled as described in Example 154 or Example 155. In some instances, a final deprotection step may be required. These deprotections can be accomplished by standard literature methods. Example 155 is one such example in which a final deprotection step is required. Example 156 (Figure Removed) 2-(4-Bromo-2-fiuorophenylamino)-l-methyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid (2-hydroxyethoxy)-amide [00539] Step A. Preparation of 2-(4-bromo-2-fluorophenylamino)-l-methyl-6- oxo-1,6-dihvdropvridine-3-carboxylic acid (2-vinyloxvethoxy)-amide: 2-(4-Bromo-2-fluorophenylamino)-l-methyl-6-oxo-l,6-dihydropyridrne-3-carboxyhc acid (0.020 g, 0.059 mmol) was coupled as described previously in Example 154 using O-(2-vinyloxy-ethyl)-hydroxylamine to yield 0.015 g (60%) pure desired product as a yellow solid. [00540] Step B. Preparation of 2-(4-Bromo-2-fluorophenylamino)-l-methyl-6- oxo-1,6-dihvdropyridme-3-carboxylic acid (2-hydroxvethoxyVamide: 2-(4-Bromo-2-fluorophenylamino)-1 -methyl-6-oxo-1,6-dihydropyridine-3-carboxylic acid (2-vinyloxyethoxy)-amide (0.015 g, 0.035mmol) was deprotected as described previously in Step B of Example 155 to yield 0.010 g (70%) pure desired product as a dark yellow solid. MS ESI (+) m/z 400, 402 (M+, Br pattern) detected; 'H NMR (400 MHz, CDC13) 6 10.3 (s, 1H), 9.11 (s, 1H), 7.47 (d, 1H), 7.32 (d, 1H), 7.23 (d, 1H), 6.70 (t, 1H), 6.22 (d, 1H), 4.04 (br s, 2H), 3.75 (br s, 2H) 3.24 (s, 3H). Figure Removed) 2-(2-Fluoro-4-iodophenyIamino)-l-methyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid methoxy-aniide [00541] 2-(2-Fluoro-4-iodophenylamino)-l-methyl-6-oxo-l,6-dihydropyridine-3- carboxylic acid methyl ester was coupled as described previously in Example 155 using O-methyl-hydroxylamine. MS ESI (+) mlz 418 (M+l) detected. Example 158 (Figure Removed) 2-(4-Bromo-2-fluorophenylamino)-l-ethyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid (2-hydroxyethoxy)-amide [00542] 2-Chloro-6-oxo-l,6-dihydropyridine-3-carboxylic acid was converted to 2- (4-bromo-2-fluorophenylamino)-l -ethyl-6-oxo-l ,6-dihydropyridine-3-carboxylic acid methyl ester following the procedures described in Steps B-C of Example 153 using ethyl iodide in Step B of Example 153. 2-(4-Bromo-2-fluorophenylamino)~l-ethyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid methyl ester was then coupled as described in Example 155 to yield the desired product as a tan solid. MS APCI (+) mlz 414, 416 (M+, Br pattern) detected; !H NMR (400 MHz, CD3OD) 8 7.59 (d, 1H), 7.38 (d, 1H), 7.24 (d, 1H), 6.77 (t, 1H), 6.33 (d, 1H), 4.16 (q, 2H), 3.73 (m, 2H), 3.59 (m, 2H), 1.21 (t, 3H). Example 159 (Figure Removed) -(4-Bromo-2-fluorophenylamino)-5-fluoro-l-metliyl-6-oxo-l,6-dihydropyridme-3- ^ carboxylic acid (2-hydroxyethoxy)-amide [00543] 2,6-Dichloro-5-fluoro-nicotinic acid (Lancaster Synthesis) was converted to 2-(4-bromo-2-fluorophenylamino)-5-fluoro-l-methyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid methyl ester following the procedures described in Steps A-C of Example 153. 2-(4-Bromo-2-fluorophenylamino)-5-fluoro-l-methyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid methyl ester was then coupled as described in Example 155 to yield the desired product as a yellow solid. MS ESI (+) m/z 418, 420 (M+, Br pattern) detected; !H NMR (400 MHz, CDC13) 6 7.32 (dd, 1H), 7.29-7.19 (m, 2H), 6.61 (t, 1H), 4.06 (m, 2H), 3.76 (m, 2H), 3.33 (s, 3H), 3.32 (s, 3H). Example 160 (Figure Removed) 5-Bromo-2-(4-bromo-2-fluorophenylamino)-l-methyl-6-oxo-l,6-dihydropyridine-3- carboxylic acid [00544] Step A. Preparation of 5-bromo-2-C4-bromo-2-fluorophenylaminoVl- raethyl-6-oxo-l,6-dihvdropyridine-3-carboxylic acid methyl ester: To a solution of 2-(4-bromo-2-fluorophenylammo)-l-methyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid methyl ester (0.390 g, 1.34 mmol) in DMF (10 mL) was added N-bromosuccinimide (0.263, 1.48 mmol). The reaction mixture was stirred at room temperature for 25 minutes and then quenched with saturated sodium bisulfite. The reaction mixture was diluted with H?O and partitioned between EtOAc/diethyl ether and saturated NaCl. The layers were separated and the aqueous layer was reextracted with EtOAc (Ix). The combined organic layers were dried (Na2SC>4) and concentrated under reduced pressure. Purification by flash column chromatography (methylene chloride/EtOAc, 15:1) gave 0.424 g (85%) pure desired product as a lavender foamy solid. [00545] Step B. Preparation of 5-bromo-2-(4-bromo-2-fluorophenvlaminoVl- methyl-6-oxo-l ,6-dihydropyridine-3-carboxvlic acid: To a suspension of 5-bromo-2-(4-bromo-2-fluorophenylamino)-l-methyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid methyl ester (0.030 g, 0.069 mmol) in methanol (1 mL) was added 1 M NaOH (0.346 mL, 0.346 mmol). The reaction mixture was heated to 60 °C for 12 hours. The reaction mixturgKwas diluted with H2O and the pH was adjusted with 1 M HC1 until 1-2. Solids precipitated out of solution, which were collected, washed with H20 and dried under vacuum to yield 0.021 g (72%) pure desired product as a pale yellow solid. MS ESI (+) m/z 421,423 (M+, Br pattern) detected; !H NMR (400 MHz, DMSO-d6) 8 13.3 (br s, 1H), 9.93 (s, 1H), 8.21 (s, 1H), 7.66 (d, 1H), 7.34 (d, 1H), 7.05 (t, 1H), 3.18 (s, 3H). Example 161 (Figure Removed) 5-Bromo-2-(4-bromo-2-fluorophenylamino)-l-metIiyl-6-oxo-l,6-dihydropyridiiie-3-. carboxylic acid (2-hydroxyethoxy)-amide [00546] 5-Bromo-2-(4-bromo-2-fluorophenylamino)-l-methyl-6-oxo-l,6- dihydropyridine-3-carboxyh'c acid (0.018 g, 0.043 mmol) was converted to the desired product following the procedures described in Example 156 to yield 0.009 g (45%) pure desired product as a dark yellow solid. MS ESI (+) m/z 480, 482 (M+, Br pattern) detected; ]H NMR (400 MHz, CDC13) 5 8.00 (s, 1H), 7.32 (m, 1H), 7.24 (d, 1H), 6.69 (t, 1H), 3.99 (m, 2H), 3.73 (m, 2H), 3.32 (s, 3H). Example 162 (Figure Removed) 2-(4-Bromo-2-iluoropheiiylamino)-6-oxo-l,6-dihydropyridine-3-carboxyIicacid [00547] Step A. Preparation of 2-(4-bromo-2-fluorophenylaminoV6-chloro- ru'cotinic acid: To a solution of 4-bromo-2-fluorophenylamine (10.4 g, 54.7 mmol) in IHF (25 mL) at -78 °C under N2 was added lithium bis(trimethylsilyl)amide (83.3 mL, 33.3 mmol, 1 M solution in hexanes) dropwise over 15 minutes. The reaction mixture was stirred for one hour at -78 °C. 2,6-Dichloro-nicotinic acid (5.00 g, 26.0 mmol) was iien added dropwise as a solution in THF (15 mL) and the reaction mixture was allowed ;o warm from -78 °C to room temperature and stir for 16 hours. The reaction mixture was quenched by the addition of HaO and the pH was adjusted to 0-2 with 6 N HC1 and then diluted^with EtOAc. The organic layer was separated and washed with E^O, saturated NaCl, dried (Na2SC>4), and concentrated under reduced pressure. The crude product was triturated several times with ethyl acetate and the resulting solid was collected, washed with dichloromethane and dried under vacuum to yield 7.50 g (83%) pure desired product as a dark pink solid. [00548] Step B. Preparation of 2-(4-bromo-2-fluorophenylammoV6-chloro- nicotinic acid methyl ester: To a suspension of 2-(4-bromo-2-fluorophenylamino)-6-chloro-nicotinic acid (5.00 g, 14.5 mmol) in methanol/benzene (1:1, lOOrnL) under N2 was added (trimethylsilyl)diazomethane (2.0 M solution in hexanes) dropwise until the bubbling caused by gas evolution ceased. Solids precipitated out of solution. The reaction was allowed to stir for 1 hour. Excess (trimethylsilyl)diazomethane was quenched by the dropwise addition of glacial acetic acid. The precipitated solids were filtered and washed with methanol. The filtrate was concentrated to a smaller volume and additional solids precipitated out of solution that were filtered and washed with methanol. The solids were combined and dried under vacuum to yield 4.82 g (93%) of pure desired product as a dark pink solid. [00549] Step C. Preparation of 2-(4-bromo-2-fluorophenvlaminoV6-methoxy- nicotinic acid methyl ester: To a mixture of 2-(4-bromo-2-fluorophenylamino)-6-chloro- nicotinic acid methyl ester (2.00 g, 5.56 mmol) and sodium methoxide (0.791 g, 13.9 mmol) was added MeOH (50 mL) to give a slurry that was stirred at 60-65 °C for 16 hours under N2. Additional sodium methoxide (0.791 g, 13.9 mmol) was added and the reaction mixture was allowed to stir another 3 days at 60-65 °C. The reaction mixture was cooled to room temperature and glacial acetic acid was added dropwise until the pH was 7. The resulting suspension was filtered and washed with H2O to yield a pink solid that was collected and dried under vacuum to yield 1.74 g (88%) pure desired product. [00550] Step D. Preparation of 2-f4-bromo-2-fiuorophenylaminoV6-oxo-1.6- dihydropvridine-3-carboxylic acid methyl ester: To 2-(4-bromo-2-fluorophenylamino)-6-methoxy-nicotinic acid methyl ester (1.00 g, 2.82 mmol) in a sealed flask was added glacial acetic acid (10 mL) and HBr (10 mL, 48 wt% in H20). The reaction mixture was stirred at 90-95 °C for 2 hours and then cooled to room temperature. The reaction mixture was diluted with EtOAc and washed with H2O, saturated NaHCO3, saturated NaCl, dried and concentrated under reduced pressure. The crude product was triturated twice ^fith dichloromethane/methanol and the resulting solid was collected and dried under vacuum to yield 0.756 g (79%) pure desired product as a white solid. [00551] Step E. Preparation of 2-(4-bromo-2-fluorophenylaminoV6-oxo-l,6- dihydropvridine-3-carboxylic acid: To a suspension of 2-(4-bromo-2- fluorophenylamino)-6-oxo-l,6-dihydropyriduie-3-carboxyhc acid methyl ester (0.050 g, 0.147 mmol) in methanol (1.5 mL) was added 1 M NaOH (1.47 mL, 1.47 mmol). The reaction mixture was stirred at 75-80 °C for 2 days. The reaction mixture was diluted with H2O and the pH was adjusted with 1 M HC1 until 1-2. The reaction mixture was diluted with EtOAc and washed with saturated Nad, dried (Na2SC>4), and concentrated under reduced pressure. The crude product was triturated with diethyl ether/dichloromethane and the resulting solid was collected and dried under vacuum to yield 0.033 g (69%) pure desired product as a yellow solid. MS ESI (+) m/z 327, 329 (M-H, Br pattern) detected; 1R NMR (400 mHz, DMSO-de) 6 13.1 (br s, 1H), 11.5 (s, 1H), 10.9 (s, 1H), 8.77 (br s, 1H), 8.10 (d, 1H), 7.59 (d, 1H), 7.35 (d, 1H) 6.16 (m, 1H). Example 163 (Figure Removed) o 2-(4-Bromo-2-fluorophenylamino)-6-oxo-l,6-dihydropyridine-3-carboxyIic acid cyclopropylmetkoxy-amide [00552] 2-(4-Bromo-2-fluorophenylamino)-6-oxo-1,6-dihydropyridine-3- carboxylic acid (0.025 g, 0.076 mmol) was converted to the desired product following the procedure described in Example 154 to yield 0.023 g (76%) pure desired product as a pale yellow solid. MS ESI (+) m/z 396, 398 (M+, Br pattern) detected; !H NMR (400 mHz, DMSO-de) 8 11.6 (s, 1H), 11.3 (s, 1H), 11.2 (s, 1H), 9.74 (br s, 1H), 7.90 (d, 1H), 7.56 (d, 1H), 7.32 (d, 1H), 6.13 (d, 1H) 3.70 (d, 2H) 1.10 (m, 1H), 0.54 (m, 2H), 0.27 (m, 2H). Example 164 (Figure Removed) 4-(2-Fluoro-4-methylphenyIamino)-l33-dimethyl-7,8-dihydro-lH,6H-pyrido[2,3- d]pyridazine-2,5-dione [00553] To a solution of 2-broinomethyl-4-(2-fluoro-4-methylphenylamino)-l,5- dimethyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid ethyl ester (1 equivalent) in MeOH is added hydrazine (1.10 equivalents). After stirring for 2 hours at room temperature, the reaction mixture is heated to 40 °C for 8 hours. The reaction mixture is diluted with EtOAc and washed with water. The organic layer is dried over MgSO4, filtered, and concentrated in vacuo to give the crude material that is purified by trituration * or flash column chromatography to afford the desired product as necessary. Example 165 (Figure Removed) 4-(2-Fluoro-4-methylphenylamino)-l,3,8-trimethyl-lH,6H-pyrido[2,3-d]pyridazine- 2,5-dione [00554] Step A: Preparation of 2-bromo-4-chloro-l,5-dimethyl-6-oxo-U- dihvdropyridine-3-carboxvlic acid ethyl ester: To a solution of 4-chloro-l,5-dimethyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid ethyl ester (1,00 equivalent) in DMF is added NBS (1.20 equivalents) at room temperature. After stirring for 16 hours at room temperature, the reaction mixture is diluted with EtOAc and washed with water. The organic layer is dried over MgSdi, filtered, and concentrated in vacuo to give the crude material that is purified by trituration or flash column chromatography to afford the desired product as necessary. [00555] Step B: Preparation of 4-chloro-1.5-dimeth\-l-6-oxo-2- trimethylsilanylethvnvl-1.6-dihvdropvridine-3-carboxviic acid ethyl ester: To a mixture of 2-bromo-4-chloro-l,5-dimethyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid ethyl ester (1.00 equivalent), trimethylsilylacetylene (1.20 equivalents) and iPr2NH (2.00 equivalents) in THF is added Cul (0.10 equivalents) followed by Pd(PPh3)2Cl2 (0.10 equivalents). After stirring the reaction mixture at reflux for 16 hours, it is cooled to room temperature and diluted with ethyl acetate. The organic layer is washed with saturated NH4C1 solution and brine, dried (MgSO4) and concentrated under reduced pressure. The desired product is obtained by flash column chromatography as necessary. [00556] Step C: Preparation of 2-acetvl-4-cMoro-l.5-dimethvl-6-oxo-l.6- dihvdropyridine-3-carboxvlic acid ethyl ester: A mixture of 4-chloro-l,5-dimethyl-6-oxo-2-trimethylsilanylethynyl-l,6-dihydropyridine-3-carboxylic acid ethyl ester (1.00 equivalent), HgSC4 (1.00 equivalent) and H2SO4 (2.00 equivalents) in -6:1 acetone:water is refluxed for 3 hours. The reaction mixture is cooled to room temperature and concentrated under reduced pressure. The residue is diluted with a mixture of THF and ethyl acetate and washed with water and brine. The organic layer is dried (MgSO4) and concentrated under reduced pressure. The desired product is obtained by flash column chromatography as necessary. [00557] Step D: Preparation of 2-acetvl-4-chloro-l.5-dimethyl-6-oxo-l.6- dihvdropvridine-3-carboxylic acid: To a solution of 2-acetyl-4-chloro-l,5-dimethyl-6-oxo-l,6-dihydropyridine-3-carboxylic acid ethyl ester (1.00 equivalent) in THF:water (4:1) is added 1 M aqueous LiOH solution (2.05 equivalents). After 30 minutes, the reaction mixture is acidified to pH ~1 with 1 N HC1 solution and extracted with ethyl acetate. The combined organic extracts are dried (MgSCU) and concentrated under reduced pressure to give the desired product which is used directly without further purification. [00558] Step E: Preparation of 4-chloro-1.3,8-trimethvl-lH.6H-pvridor2.3- d]pyridazine-2,5-dione: To a solution of 2-acetyl-4-chloro-l,5-dimethyl-6-oxo-l56- dihydropyridine-3-carboxylic acid (1 equivalent) and hydrazine monohydrate (3.30 equivalents) in THF is added 1 N HC1 (0.80 equivalents). After 16 hours, the reaction mixture is diluted with ethyl acetate, washed with water and brine, dried (MgSC^) and concentrated under reduced pressure. The desired product purified by trituration or flash column chromatography to afford the desired product as necessary. [00559] Step F: Preparation of 4-(2-fluoro-4-methylphenvlaminoV1.3.S-trimethvl- lH.6H-pVTidor2,3-d1pvridazine-2,5-dione: 2-Fluoro-4-methylphenylamine (1.10EtOAc. The combined organic layers are washed with brine, dried (Na2SC4) and concentrated. Purification by flash column chromatography gives the desired product. [OW60] The foregoing description is considered as illustrative only of the principles of the invention. Further, since numerous modifications and changes will be readily apparent to those skilled in the art, it is not desired to limit the invention to the exact construction and process shown as described above. Accordingly, all suitable modifications and equivalents may be resorted to falling within the scope of the invention as defined by the claims that follow. [00561] The words "comprise," "comprising," "include," "including," and "includes" when used in this specification and in the following claims are intended to specify the presence of stated features, integers, components, or steps, but they do not preclude the presence or addition of one or more other features, integers, components, steps, or groups thereof.. We claim: 1. A compound including resolved enantiomers, diastereomers, solvates and pharmaceutically acceptable salts thereof, said compound having the formula: (Formula Removed) where X is N or CR10; R1, R2, R8, R9 and R10 are independently hydrogen, halogen, cyano, nitro, trifluoromethyl, difluoromethyl, fluoromethyl, fluoromethoxy, difluoromethoxy, trifiuoromethoxy, azido, -SR11, -OR3, -C(O)R3, -C(O)OR3, -NR4C(O)OR6, -OC(O)R3, -NR4SO2R6, -SO2NR3R4, -NR4C(O)R3, -C(O)NR3R4, -NR5C(O)NR3R4, -NR5C(NCN)NR3R4, -NR3R4, C1-C10 alkyl, C2-C10 alkenyl, C2- C10 alkynyl, C3-C10 cycloalkyl, C3-C10 cycloalkylalkyl, -S(O)j(C1-C6 alkyl), -S(O)j(CR4R5)m-aryl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, -O(CR4R5)m-aryl, -NR4(CR4R5)m-aryl, -O(CR4R5)m-heteroaryl, -NR4(CR4R5)m-heteroaryl, -O(CR4R5)m-heterocyclyl or -NR4(CR4R5)m-heterocyclyl, wherein any of said alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl portions are optionally substituted with one or more groups independently selected from oxo (with the proviso that it is not substituted on an aryl or heteroaryl), halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifiuoromethoxy, azido, -NR4SO2R6, -SO2NR3R4, -C(O)R3, -C(O)OR3, -OC(O)R3, -NR4C(O)OR6, -NR4C(O)R3, -C(O)NR3R4, -NR3R4, -NR5C(O)NR3R4, -NR5C(NCN)NR3R4, -OR3, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl, and wherein said aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl rings may be further substituted with one or more groups selected from halogen, hydroxyl, cyano, nitro, azido, fluoromethyl, difluoromethyl, trifluoromethyl, C1-C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C1-C6 cycloalkyl, C3-C6 heterocycloalkyl, NR3R4 and OR3; R7 is hydrogen, trifluoromethyl, C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C3-C10 cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, or heterocyclylalkyl, wherein any of said alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl portions are optionally substituted with one or more groups independently selected from oxo (with the proviso that it is not substituted on an aryl or heteroaryl), halogen, cyano, nitro, trifluoromethyl, difluoromethyl, fluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NR11SO2R14, -SO2NR11R12, -C(O)R11, C(O)OR11, -OC(O)R11, -NR11C(O)OR14, -NR11C(O)R12, -C(O)NR11R12, -SR11, -S(O)R14, -SO2R14, -NR11R12, -NR11C(O)NR12R13, -NR11C(NCN)NR12R13, -OR11, C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl, and wherein said aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl rings may be further substituted with one or more groups selected from halogen, hydroxyl, cyano, nitro, azido, fluoromethyl, difluoromethyl, trifluoromethyl, C1-C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C3-C6 cycloalkyl, C3-C6 heterocycloalkyl, NR3R4 and OR3; R3 is hydrogen, trifluoromethyl, C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C3-C10 cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, phosphate or an amino acid residue, wherein any of said alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl portions are optionally substituted with one or more groups independently selected from oxo (with the proviso that it is not substituted on an aryl or heteroaryl), halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NR11SO2R14, -SO2NR11R12, -C(O)R11, C(O)OR11, -OC(O)R11, -NR11C(O)OR14, -NR11C(O)R12, -C(O)NR11R12, -SR11, -S(O)R14, -SO2R14, -NR11R12, -NR11C(O)NR12R13, -NR11C(NCN)NR12R13, -OR11, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl, or R3 and R4 together with the atom to which they are attached form a 4 to 10 membered heteroaryl or heterocyclic ring, wherein any of said heteroaryl or heterocyclic rings are optionally substituted with one or more groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NR11SO2R14, -SO2NR11R12, -C(O)R11, C(O)OR11, -OC(O)R11, -NR11C(O)OR14, -NR11C(O)R12, -C(O)NR11R12, -SR11, -S(O)R14, -SO2R14, -NR11R12, -NR11C(O)NR12R13, -NR11C(NCN)NR12R13, -OR11, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; R4 and R5 independently are hydrogen or C1-C6 alkyl, or R4 and R5 together with the atom to which they are attached form a 4 to 10 membered carbocyclic, heteroaryl or heterocyclic ring, wherein said alkyl or any of said carbocyclic, heteroaryl and heterocyclic rings are optionally substituted with one or more groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NR11SO2R14, -SO2NR11R12, -C(O)R11, C(O)OR11, -OC(O)R11, -NR11C(O)OR14, -NR11C(O)R12, -C(O)NR11R12, -SR11, -S(O)R14, -SO2R14, -NR11R12, -NR11C(O)NR12R13, -NR11C(NCN)NR12R13, -OR11, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; R6 is trifluoromethyl, C1-C10 alkyl, C3-C10 cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl, wherein any of said alkyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl portions are optionally substituted with one or more groups independently selected from oxo (with the proviso that it is not substituted on an aryl or heteroaryl), halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NR"SO2R14, -SO2NR11R12, -C(O)R11, C(O)OR11, -OC(O)R11, -NR11C(O)OR14, -NR11C(O)R12, -C(O)NR11R12, -SR11, -S(O)R14, -SO2R14, -NR11R12, -NR11C(O)NR12R13, -NR11C(NCN)NR12R13, -OR11, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; R11, R12 and R13 independently are hydrogen, lower alkyl, lower alkenyl, aryl and arylalkyl, and R14 is lower alkyl, lower alkenyl, aryl and arylalkyl; or any two of R11 , R12 , R13 or R14 together with the atom to which they are attached form a 4 to 10 membered heteroaryl or heterocyclic ring, wherein any of said alkyl, alkenyl, aryl, arylalkyl , heteroaryl rings or heterocyclic rings are optionally substituted with one or more groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; W is heterocyclyl, -C(O)OR3, -C(O)NR4OR3, -C(O)R4OR3, -C(O)NR4SO2R3, -C(O)(C3-C10 cycloalkyl), -C(O)(C1-C10 alkyl), -C(O)(aryl), -C(O)(heteroaryl), -C(O)(heterocyclyl) or CR3OR3, wherein any of said heterocyclyl, -C(O)OR3, -C(O)NR4OR3, -C(O)NR4SO2R3, -C(O)(C3-C10 cycloalkyl), -C(O)(C1-C10 alkyl), -C(O)(aryl), -C(O)(heteroaryl), -C(O)(heterocyclyl) and CR3OR3 are optionally substituted with one or more groups independently selected from halogen, cyano, nitro, azido, -NR3R4, -OR , C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, cycloalkyl and heterocycloalkyl, wherein any of said C1-C10 alkyl, C2-C10alkenyl, C2-C10 alkynyl, cycloalkyl and heterocycloalkyl are optionally substituted with 1 or more groups independently selected from -NR3R4 and -OR3; provided that when X is CH, W cannot be C(O)aryl or C(O)heteroaryl, and further provided that when X is CH, W is C(O)OR3 and R9 is F, R7 cannot be H; m is 0,1,2, 3,4 or 5; and j is 0,1 or 2; wherein aryl is a monovalent aromatic carbocyclic radical having a single ring, multiple rings , or multiple condensed rings in which at least one is aromatic; and wherein heteroaryl is a monovalent aromatic radical of 5-, 6-, or 7-membered rings which includes fused ring systems (at least one of which is aromatic) of 5-10 atoms containing at least one and up to four heteroatoms selected from nitrogen, oxygen, or sulfur. 2. The compound as claimed in claim 1, where X is CR10, and R10 is hydrogen, halogen, methyl, fluoromethyl, difluoromethyl, fluoromethyl or ethyl. 3. The compound as claimed in claim 2, where R9 is hydrogen, halogen, methyl, fluoromethyl, difluoromethyl, trifluoromethyl or ethyl. 4. The compound as claimed in claim 3, where W is selected from C(O)OR3, C(O)NR4OR3 and C(O)NR4S(O)2R3, wherein any of said C(O)OR3, C(O)NR4OR3 or C(O)NR4S(O)2R3 are optionally substituted with one or more groups selected from halogen, hydroxyl, cyano, nitro, azido, fluoromethyl, difluoromethyl, trifluoromethyl, methoxy, fluoromethoxy, difluoromethoxy, trifluoromethoxy, amino, aminomethyl, dimethylamino, aminoethyl, diethylamino, ethoxy, C1-C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C3-C6 cycloalkyl and C3-C6 heterocycloalkyl, wherein any of said C1-C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, cycloalkyl or heterocycloalkyl can be further optionally substituted with one or more groups selected from NR3R4 and OR3. 5. The compound as claimed in claim 3, where W is selected from C(O)OR and C(O)NHOR3, wherein any of said C(O)OR3 and C(O)NHOR3 are optionally substituted with one or more groups selected from halogen, hydroxyl, cyano, nitro, azido, fluoromethyl, difluoromethyl, trifluoromethyl, methoxy, fluoromethoxy, difluoromethoxy, trifluoromethoxy, amino, aminomethyl, dimethylamino, aminoethyl, diethylamino, ethoxy, C1-C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C3-C6 cycloalkyl and C3-C6 heterocycloalkyl, wherein any of said C1-C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, cycloalkyl or heterocycloalkyl can be further optionally substituted with one or more groups selected from NR10R11and OR11; and R3 is selected from hydrogen, C1-C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C3-C6 cycloalkyl and C3-C6 heterocycloalkyl, wherein any of said C1-C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, cycloalkyl or heterocycloalkyl are optionally substituted with one or more groups selected from NR3R4 and OR3. 6. The compound as claimed in claim 5 or claim 6, where R7 is C1-C4 alkyl, C2-C4 alkenyl or C2-C4 alkynyl, wherein said C1-C4 alkyl, C2-C4 alkenyl and C2-C4 alkynyl may be optionally substituted with one or more groups selected from halogen, hydroxyl, cyano, nitro, azido, fluoromethyl, difluoromethyl, trifluoromethyl, methoxy, fluoromethoxy, difluoromethoxy, amino, aminomethyl, dimethylamino, aminoethyl, diethylamino, ethoxy, cycloalkyl, heterocycloalkyl, aryl or heteroaryl, wherein said cycloalkyl, heterocycloalkyl, aryl or heteroaryl rings may be optionally substituted with one or more groups selected from halogen, hydroxyl, cyano, nitro, azido, fluoromethyl, difluoromethyl, trifluoromethyl, C1-C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C3-C6 cycloalkyl, C3-C6 heterocycloalkyl, NR3R4 and OR3. 7. The compound as claimed in claim 6, where R8 is halogen, hydroxyl, cyano, nitro, azido, methyl, fluoromethyl, difluoromethyl, trifluoromethyl, methoxy, fluoromethoxy, difluoromethoxy, trifluoromethoxy, amino, aminomethyl, dimethylamino, aminoethyl, diethylamino, ethyl, ethoxy or SR11. 8. The compound as claimed in claim 7, where R1 and R2 are independently hydrogen, halogen, methyl, fluoromethyl, difluoromethyl, trifluoromethyl or ethyl. 9. The compound as claimed in claim 6, where R1 is halogen or methyl, R2 is hydrogen and R8 is hydrogen, halogen, methyl, fluoromethyl, difluoromethyl, trifluoromethyl or SR11. 10. The compound as claimed in claim 9, where R1 is halogen, R8 is halogen, R9 is alkyl or halogen, and R2 is hydrogen. 11. The compound as claimed in claim 9, where R1 is halogen, R8 is halogen, R9 is alkyl or halogen, and R2 is hydrogen. 12. The compound as claimed in claim 1, where X is N. 13. The compound as claimed in claim 12, where R9 is hydrogen, halogen, methyl, fluoromethyl, difluoromethyl, trifluoromethyl or ethyl. 14. The compound as claimed in claim 13, where W is selected from C(O)OR3, C(O)NHR3, and C(O)NHOR3, wherein any of said C(O)OR3, C(O)NHR3, and C(O)NHOR3 are optionally substituted with one or more groups selected from halogen, hydroxyl, cyano, nitro, azido, fluoromethyl, difluoromethyl, trifluoromethyl, methoxy, fluoromethoxy, difluoromethoxy, trifluoromethoxy, amino, aminomethyl, dimethylamino, aminoethyl, diethylamino, ethoxy, C1-C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C3-C6 cycloalkyl and C3-C6 heterocycloalkyl, wherein any of said C1-C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, cycloalkyl or heterocycloalkyl can be further optionally substituted with one or more groups selected from NR3R4 and OR3; and R3 is selected from hydrogen, C1-C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C3-C6 cycloalkyl and C3-C6 heterocycloalkyl, wherein any of said C1-C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, cycloalkyl or heterocycloalkyl are optionally substituted with one or more groups selected from NR11R12and OR11. 15. The compound as claimed in claim 14, where R7 is C1-C4 alkyl, C2-C4 alkenyl or C2-C4 alkynyl, wherein said C1-C4 alkyl, C2-C4 alkenyl and C2-C4 alkynyl may be optionally substituted with one or more groups selected from halogen, hydroxyl, cyano, nitro, azido, fluoromethyl, difluoromethyl, trifluoromethyl, methoxy, fluoromethoxy, difluoromethoxy, amino, aminomethyl, dimethylamino, aminoethyl, diethylamino, ethoxy, cycloalkyl, heterocycloalkyl, aryl or heteroaryl, wherein said cycloalkyl, heterocycloalkyl, aryl or heteroaryl rings may be optionally substituted with one or more groups selected from halogen, hydroxyl, cyano, nitro, azido, fluoromethyl, difluoromethyl, trifluoromethyl, C1-C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C3-C6 cycloalkyl, C3-C6 heterocycloalkyl, NR3R4 and OR3. 16. The compound as claimed in claim 15, where R is halogen, hydroxyl, cyano, nitro, azido, methyl, fluoromethyl, difluoromethyl, trifluoromethyl, methoxy, fluoromethoxy, difluoromethoxy, trifluoromethoxy, amino, aminomethyl, dimethylamino, aminoethyl, diethylamino, ethyl, ethoxy or SR11. 17. The compound as claimed in claim 16, where R and R are independently hydrogen, halogen, methyl, fluoromethyl, difluoromethyl, trifluoromethyl or ethyl. 18. The compound as claimed in claim 15, where R1 is halogen or methyl, R2 is hydrogen and R8 is hydrogen, halogen, methyl, fluoromethyl, difluoromethyl, trifluoromethyl or SR11. 19. The compound as claimed in claim 18, where R1 is halogen, R8 is halogen, R9 is alkyl or halogen, and R2 is hydrogen. 20. A composition comprising a compound as claimed in any one of claims 1, 5, 6, 1 land 15 and a pharmaceutically acceptable carrier. 21. A method for preparing a compound of formula 56 (Formula Removed) wherein R1, R2 and R9are independently hydrogen, halogen, methyl, fluoromethyl, difluoromethyl, trifluoromethyl or ethyl; R4 is hydrogen or C1-C6 alkyl; R3 is alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl, wherein said alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl may be optionally substituted with one or more groups selected from halogen, hydroxyl, cyano, nitro, amino, azido, fluoromethyl, difluoromethyl, trifluoromethyl, methoxy, fluoromethoxy, difluoromethoxy, amino, aminomethyl, dimethylamino, aminoethyl, diethylamino, ethoxy, cycloalkyl, heterocycloalkyl, aryl or heteroaryl; R7 is alkyl; and R8 is halogen, hydroxyl, cyano, nitro, azido, methyl, fluoromethyl, difluoromethyl, trifluoromethyl, methoxy, fluoromethoxy, difluoromethoxy, trifluoromethoxy, amino, aminomethyl, dimethylamino, aminoethyl, diethylamino, SR1, ethyl or ethoxy, said method comprising: (a) reacting a compound of formula 53 or 58 (Formula Removed) with an alkyl halide and base followed by reacting with an aniline derivative to provide a compound of formula 54 (Formula Removed) (b) (i) reacting a compound of formula 54 with a hydroxylamine to provide a compound of formula 56 (ii) reacting a compound of formula 54 with aqueous base to provide a compound of formula 55 (Formula Removed) followed by reacting a compound of formula 55 with a hydroxylamine to provide a compound of formula 56. 22. A method for preparing a compound of formula 57 wherein R1, R2 and R9are independently hydrogen, halogen, methyl, fluoromethyl, difluoromethyl, trifluoromethyl or ethyl; R4 is hydrogen or C1-C6 alkyl; R3 is alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl, wherein said alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl may be optionally substituted with one or more groups selected from halogen, hydroxyl, cyano, nitro, amino, azido, fluoromethyl, difluoromethyl, trifluoromethyl, methoxy, fluoromethoxy, difluoromethoxy, amino, aminomethyl, dimethylamino, aminoethyl, diethylamino, ethoxy, cycloalkyl, heterocycloalkyl, aryl or heteroaryl; R7 is alkyl; and R8 is halogen, hydroxyl, cyano, nitro, azido, methyl, fluoromethyl, difluoromethyl, trifluoromethyl, methoxy, fluoromethoxy, difluoromethoxy, trifluoromethoxy, amino, aminomethyl, dimethylamino, aminoethyl, diethylamino, SR1, ethyl or ethoxy; said method comprising: (a) reacting a compound of formula 53 or 58 (Formula Removed) with an alkyl halide and base followed by reacting with an aniline derivative to provide a compound of formula 54 (Formula Removed) (b) reacting a compound of formula 54 with aqueous base to provide a compound of formula 55 (c) reacting a compound of formula 55 with an amine to provide a compound of formula 57. 23. A method for preparing a compound of formula 87 (Formula Removed) wherein X is CH or N; R1, R2 and R9 are independently hydrogen, halogen, methyl, fluoromethyl, difluoromethyl, trifluoromethyl or ethyl; R7 is alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl, wherein said alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl may be optionally substituted with one or more groups selected from halogen, hydroxyl, cyano, nitro, amino, azido, fluoromethyl, difluoromethyl, trifluoromethyl, methoxy, fiuoromethoxy, difluoromethoxy, amino, aminomethyl, dimethylamino, aminoethyl, diethylamino, ethoxy, cycloalkyl, heterocycloalkyl, aryl or heteroaryl; and R8 is halogen, hydroxyl, cyano, nitro, azido, methyl, fluoromethyl, difluoromethyl, trifluoromethyl, methoxy, fluoromethoxy, difluoromethoxy, trifluoromethoxy, amino, aminomethyl, dimethylamino, aminoethyl, diethylamino, SR1, ethyl or ethoxy; said method comprising: (a) reacting a compound of formula 55 or 62 (Formula Removed) with hydrazine to provide a compound of formula 86 (Formula Removed) (b) reacting a compound of formula 86 with cyanogen bromide to provide a compound of formula 87. 24. A compound selected from 2-(4-Bromo-2-fluoro-phenylamino)-1 -methyl-6-oxo-1,6-dihydro-pyridine-3 -carboxylic acid cyclopropylmethoxy-amide, 2-(4-Bromo-2-fluoro-phenylamino)-1 -methyl-6-oxo-1,6-dihydro-pyridine-3 -carboxylic acid (2- hydroxy-ethoxy)-amide, 2-(4-Bromo-2-fluoro-phenylamino)-5-fluoro-l-methyl-6-oxo-l,6-dihydro-pyridine-3-carboxylic acid (2-hydroxy-ethoxy)-amide, 2-(4-Bromo-2-fluoro-phenylamino)-1 -ethyl-6-oxo-1,6-dihydro-pyridine-3-carboxylic acid (2- hydroxy-ethoxy)-amide, 2-(2-Fluoro-4-methyl-phenylamino)-1 -methyl-6-oxo-1,6-dihydro-pyridine-3 -carboxylic acid (2-hydroxy-ethoxy)-amide, 2-(2-Fluoro-4-iodo-phenylamino)-1 -methyl-6-oxo-1,6-dihydro-pyridine-3-carboxylic acid methoxy-amide; 2-(4-Bromo-2-fluorophenylamino)-1 -methyl-6-oxo-1,6-dihydropyridine-3 -carboxylic acid; 5-Bromo-2-(4-bromo-2-fluorophenylamino)-1 -methyl-6-oxo-1,6-dihydropyridine-3 -carboxylic acid; 5-Bromo-2-(4-bromo-2-fluorophenylamino)-1 -methyl-6-oxo-1,6-dihydropyridine-3 -carboxylic acid (2-hydroxyethoxy)-amide; 2-(4-Bromo-2-fluorophenylamino)-6-oxo-l ,6-dihydropyridine-3-carboxylic acid; and 2-(4-Bromo-2-fluorophenylamino)-6-oxo-1,6-dihydropyridine-3-carboxylic acid cyclopropylmethoxy-amide. |
---|
3183-DELNP-2006-Abstract-(16-11-2011).pdf
3183-DELNP-2006-Claims-(16-11-2011).pdf
3183-DELNP-2006-Correspondence Others-(16-11-2011).pdf
3183-DELNP-2006-Correspondence Others-(17-01-2012).pdf
3183-DELNP-2006-Correspondence Others-(24-10-2011).pdf
3183-DELNP-2006-Correspondence Others-(31-10-2011).pdf
3183-delnp-2006-correspondence-others-1.pdf
3183-delnp-2006-correspondence-others.pdf
3183-delnp-2006-description (complete).pdf
3183-DELNP-2006-Drawings-(16-11-2011).pdf
3183-DELNP-2006-Form-13-(16-11-2011).pdf
3183-DELNP-2006-Form-2-(16-11-2011).pdf
3183-DELNP-2006-Form-3-(17-01-2012).pdf
3183-DELNP-2006-Form-3-(24-10-2011).pdf
3183-DELNP-2006-GPA-(16-11-2011).pdf
3183-DELNP-2006-Petition-137-(16-11-2011).pdf
3183-DELNP-2006-Petition-138-(16-11-2011).pdf
Patent Number | 250807 | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Indian Patent Application Number | 3183/DELNP/2006 | |||||||||||||||||||||
PG Journal Number | 05/2012 | |||||||||||||||||||||
Publication Date | 03-Feb-2012 | |||||||||||||||||||||
Grant Date | 30-Jan-2012 | |||||||||||||||||||||
Date of Filing | 02-Jun-2006 | |||||||||||||||||||||
Name of Patentee | ARRAY BIOPHARMA INC. | |||||||||||||||||||||
Applicant Address | 3200 WALNUT STREET, BOULDER, COLORADO 80301 USA. | |||||||||||||||||||||
Inventors:
|
||||||||||||||||||||||
PCT International Classification Number | A61K | |||||||||||||||||||||
PCT International Application Number | PCT/US2004/039060 | |||||||||||||||||||||
PCT International Filing date | 2004-11-18 | |||||||||||||||||||||
PCT Conventions:
|