Title of Invention

AN ELECTRICAL INSTALLATION ASSEMBLY FOR COOLING COMPONENTS OF WIND- ENERGY INSTALLATIONS

Abstract The invention relates to a system which utilizes the flow of a medium for cooling an installation, especially a transformer. The invention utilizes the fact that the flow of the medium, e.g. wind, automatically increases with increasing load of the transformer. The inventive transformer is designed in such a manner that its outer shape and the cooling elements are impinged upon by the natural air flow to a maximum degree. For this purpose, the cooling elements across their length are adapted to have a large cross-sectional area for the flowing medium. The depth of the cooling elements is chosen such that the flow resistance is not too high and so as to achieve a turbulent flow of the cooling air. Distance and arrangement of the cooling elements are chosen suchthat the transformer tank itself is reached by the flowing medium and serves for cooling.
Full Text PCT/DE2005/000919 - 1 -
2004P10181WOUS
Description
Arrangement for cooling of components of wind energy installations
The invention relates to an arrangement for cooling of components of wind energy installations.
The prior art is the use of conventional transformers in which the losses to be dissipated are reduced by means of radiators and fans. These are generally fitted alongside one another on the tank wall of the transformer. A large number of radiators are required for this purpose. Fans are fitted to these radiators, for vertical or horizontal air circulation. In the case of wind-park transformers on land, it is also necessary to comply with noise regulations, and this leads to the use of slowly rotating, relative low-noise fans. In order nevertheless to achieve the cooling performance 2, a greater number of fans are therefore required with he greater procurement and operating costs associated with them.
A further serious disadvantage i represented by the need to ensure corrosion protection and a grass protection because of the aggressive environmental conditions, and particularly in the off-shore area. The fans generally have an opening for condensed water and, in the as of the environmental conditions over sea, this leads to problems and thus to failures. Furthermore, the fans require large amounts of energy, which must be provided by the installation and thus likewise cause costs.
A switching cabinet with switching devices, motor protection switches and monitoring appliances is required at the transformer, in order to control the fans.

PCT/DE2005/000919 - la -
2004P10181WOUS
The external wiring between the fan switching cabinet and the fans results in further complexity. The fan control cabinet, and the

PCT/DE2005/000919 - 2 -
2004P10181WOUS
fans themselves also require inspection and maintenance effort (possibly repair effort), and this is associated with considerable costs, particularly in the case of off-shore installations. Since maintenance work cannot be carried out at any time, because of the weather conditions in the off-shore area, the use of low-maintenance and high-availability components is particularly important.
For the purposes of the present invention, the expression "transformer" is used only by way of example for any electrical and/or mechanical installation.
The object of the invention is to provide effective and simple cooling for transformers.
The aim of the invention is to avoid the abovementioned disadvantages . Effective and simple dissipation of the thermal energy produced in the transformer can be achieved by use, according to the invention, of the wind which is always present during operation of wind energy installations, and by the design according to the invention of the transformer and its components. This likewise reduces the production costs and operating costs of the transformer. The use of the wind for blowing purposes not only avoids the need for the fan switching cabinet, the wiring and the fans themselves, but also the temperature measurement devices for control and the control mechanism. All that is now required is a temperature measurement device (PT100 adequate), for warning monitoring and disconnection.
The operation of wind energy installations is dependent on the presence of a relatively strong air flow. For transformers in wind parks and for off-shore substations, this results in the particular feature for transformers that a natural air flow is always present when the transformer is on load.

PCT/DE2005/000919 - 3 -
2004P10181WOUS
However, the flowing medium may also be a liquid. The installation according to the invention can thus also be used in a flow field under water,. According to the present invention, a method is provided in which a flowing medium flows around an energy converter, for example a generator, which, as a result of increased power, develops a greater amount of heat associated with this, with the heat being dissipated effectively on the basis of the physical design of the transformer, and of the cooling elements which are connected to the transformer, with the aid of the medium flowing around it.
According to the invention, this air flow is used to cool the transformer. The invention also makes use of the fact that the air flow automatically increases as the load on the transformer increases. According to the invention, the transformer is designed such that the maximum amount of the natural air flow flows around the external surface of the transformer and the cooling elements. For this purpose, the lengths of the cooling elements are designed such that they form a large cross-sectional area for the medium (wind) flowing around them. Furthermore, the depth of the cooling element is designed such that the resistance to the air flow is not excessive, and the cooling air flows through them in a turbulent; manner. According to the invention, the cooling elements are arranged such that they are not in each other's wind shadows. The distance between and arrangement of the cooling elements are designed such that the air flow even reaches the transformer tank itself.
Furthermore, additional air is supplied to the cooling elements by means of suitable flow guidance devices. The outer skin of the transformer is designed such that it itself acts as a flow conductor for the cooling elements and for itself. According to the invention, the transformer is designed in such a way that the connections and accessories are

PCT/DE2005/000919 - 4 -
2004P10181WOUS
arranged such that they do not impede the flow of cooling air. In one particular embodiment of the invention, additional heat-emitting surfaces are fitted to the outer skin of the transformer, and are expediently placed in areas in which the coolant flow conditions are good. These surfaces may be fitted both horizontally and vertically, or at an angle, depending on the flow conditions.
The shape and arrangement of these surfaces are chosen such that, on the one hand, they result in maximum coverage of air as the cooling medium, and at the same time avoid any disturbance of the blowing of other heat-emitting parts. The mechanically required reinforcements in the tank are arranged such that they do not impede the natural blowing of the heat-emitting parts.
In one particular embodiment, the reinforcements and additional cooling surfaces can be designed in such a way that they act as a flow guidance device. The tank and the cooling elements are designed in such a manner that surfaces which radiate to one another are avoided or reduced, and virtually the entire area of the tank can emit heat by radiation.
Furthermore, the cooling elements are designed to ensure effective heat exchange within the cooling elements. The width of, distances between and diameters of the cooling channels, as well as the materials used, in particular, promote the exchange of thermal energy over as large a surface area as possible.
Furthermore, it is possible for the cooling elements to be fitted via compensators for oscillation damping/oscillation decoupling. The transformer is expediently installed

PCT/DE2005/000919 - 5 -
2004P10181WOUS
such that the air flows around it at a high speed. Raised installation on open terrain is particularly advantageous, in
which case there should be no buildings or obstructions in the
i prevailing wind direction. The invention is likewise suitable
for off-shore substations on the high sea's, allowing the cooling installation to be installed freely and at a high level.
Furthermore, the bottom of the platform is designed in such a manner as to achieve vertical air flow on all or parts of the cooling elements, and such that the flow within the cooling elements also makes use of the convection effect. The platform of an on-shore or off-shore substation is designed in such a manner that the supports for a wind turbine are used for the substation and/or for fitting of the cooling installation.
Furthermore, so-called flow guidance device's are provided on the cooling elements in order to channelize |the flowing medium onto the cooling elements. One advantageous factor in this case is that the flow speed is increased, and in the ideal case this leads to flow conditions which are always turbulent, and thus to improve heat dissipation. This likewise applies to the deflection of the air flow to the cooling elements and to the production of an additional air flow component. This reduces the influence of the direction of the air flow.
The flow guidance device makes it possible to achieve effective vertical blowing even in the case of a plate-type heat sink or a radiator when the wind direction is transverse with respect to the plate, by deflection of the horizontal air flow. The flow guidance devices result in an improvement of the flow of cooling air around the cooling installation, irrespective of the wind direction. The flow guidance device is in these exemplary embodiments designed so as to achieve an additional

PCT/DE2005/000919 - 6 -
2004P10181WOUS
air flow without the flow being impeded by parts of the guidance device when the wind direction changes.
The invention will be explained in more detail with reference to the figure, which is illustrated in the drawing, and in which:
Figure 1 shows a schematic illustration of a previous transformer with cooling elements arranged in it;
Figure 2 shows a side view of a transformer, according to the invention for an off-shore substation with wind cooling;
Figure 3 shows a side view of a transformer according to the invention for an off-shore substatlion with wind and liquid cooling;
Figure 4 shows a side view of a transformer according to the invention for a wind park;
Figure 5 shows a side view of a transformer according to the invention for a wind park with flow guidance devices;
Figure 6 shows a plan view of a transformer according to the invention with four cooling elements and one flow guidance device;
Figure 7 shows a plan view of a transformer according to the invention with two rigid cooling elements and two cooling elements which configure,as well as two flow guidance devices;

PCT/DE2005/000919 - 7 -
2004P10181WOUS
Figures 8a, 8b show a flow guidance device according to the
invention;
Figure 9 shows schematic side views of a cooling element with flow guidance devices and a guided cooling medium;
Figure 10 shows a schematic side view and plan view of a circular cooling element according to the invention, with air and liquid cooling;
Figure 11 shows a schematic illustration of a platform according to the invention with cooling elements which are offset in height with respect to the transformer; and
Figure 12 shows a schematic illustration of |a cooling element according to the invention with internally and externally arranged flow guidance devices.

PCT/DE2005/000919 - 8 -
2004P10181WOUS
Patent Claims
1. An electrical installation, in particular a transformer,
having cooling elements, characterized in that the cooling
elements are arranged outside the electrical installation in
such a manner that they offer as large an area as possible for
a medium, in particular air, which is flowing around the
electrical installation.
2. The electrical installation as claimed in claim 1,
characterized in that flow guidance devices, provide focusing
and channelization for the medium flowing around the
installation.
3. The electrical installation as claimed in claim 2,
characterized in that the electrical installation is designed
in such a manner that it itself acts as a flow guidance device
for the cooling elements.
4. The electrical installation as claimed in one of claims 1
to 3, characterized in that the tank and the cooling elements
are designed in such a manner that radiate emission from the
cooling elements virtually at right angles with respect to one
another is avoided and the heat is emitted over virtually the
entire area of the tank and of the cooling elements.
5. The electrical installation as claimed in one of claims 1
to 4, characterized in that the tank is designed such that the
convection of the tank is increased by enlargement of the
heat-emitting area.
6. The electrical installation as claimed in one of claims 1
to 5, characterized in that the cooling elements are combined
to form a cooling installation, and/or are installed separately
from the transformer.
6.
PCT/DE2005/000919 - 9 -
2004P10181WOUS
7. The electrical installation as claimed in one of claims 1
to 6, characterized in that the surface of the electrical
installation is designed such that a large cross-sectional area
of the electrical installation is created in at least two
directions, in which case it is particularly preferable for the
electrical installation to have a hexagonal shape.
8. The electrical installation as claimed in one of claims 1
to 7, characterized in that the cooling elements can pivot.
9. A flow guidance device, characterized in that at least two
surfaces are arranged with respect to one another in such a
manner that a flowing medium is diverted and is channelized and
focused in a preferred direction.
10. The flow guidance device as claimed in claim 9,
characterized in that the surfaces can be plugged together.
11. The flow guidance device as claimed in claim 9 or 10,
characterized in that the surfaces have different profiles.


Documents:

03795-kolnp-2006-abstract-1.1.pdf

03795-kolnp-2006-abstract.pdf

03795-kolnp-2006-claims-1.1.pdf

03795-kolnp-2006-claims.pdf

03795-kolnp-2006-correspondence others-1.1.pdf

03795-kolnp-2006-correspondence others.pdf

03795-kolnp-2006-description (complete).pdf

03795-kolnp-2006-drawings.pdf

03795-kolnp-2006-form-1.pdf

03795-kolnp-2006-form-2.pdf

03795-kolnp-2006-form-3.pdf

03795-kolnp-2006-form-5.pdf

03795-kolnp-2006-general power of authority.pdf

03795-kolnp-2006-international publication.pdf

03795-kolnp-2006-international search authority report.pdf

03795-kolnp-2006-other document.pdf

03795-kolnp-2006-pct form.pdf

03795-kolnp-2006-priority document-1.1.pdf

03795-kolnp-2006-priority document.pdf

3795-KOLNP-2006-(22-09-2011)-ABSTRACT.pdf

3795-KOLNP-2006-(22-09-2011)-AMANDED CLAIMS.pdf

3795-KOLNP-2006-(22-09-2011)-CORRESPONDENCE.pdf

3795-KOLNP-2006-(22-09-2011)-DESCRIPTION (COMPLETE).pdf

3795-KOLNP-2006-(22-09-2011)-DRAWINGS.pdf

3795-KOLNP-2006-(22-09-2011)-FORM 1.pdf

3795-KOLNP-2006-(22-09-2011)-FORM 2.pdf

3795-KOLNP-2006-(22-09-2011)-OTHERS.pdf

3795-KOLNP-2006-ABSTRACT 1.1.pdf

3795-KOLNP-2006-ABSTRACT.pdf

3795-KOLNP-2006-AMANDED CLAIMS 1.1.pdf

3795-KOLNP-2006-AMANDED CLAIMS.pdf

3795-KOLNP-2006-CORRESPONDENCE 1.1.pdf

3795-KOLNP-2006-CORRESPONDENCE 1.2.pdf

3795-KOLNP-2006-CORRESPONDENCE.pdf

3795-KOLNP-2006-DESCRIPTION (COMPLETE) 1.1.pdf

3795-KOLNP-2006-DESCRIPTION (COMPLETE).pdf

3795-KOLNP-2006-DRAWINGS 1.1.pdf

3795-KOLNP-2006-DRAWINGS.pdf

3795-KOLNP-2006-EXAMINATION REPORT REPLY RECIEVED.pdf

3795-KOLNP-2006-EXAMINATION REPORT.pdf

3795-KOLNP-2006-FORM 1-1.1.pdf

3795-KOLNP-2006-FORM 1.pdf

3795-KOLNP-2006-FORM 18.pdf

3795-KOLNP-2006-FORM 2-1.1.pdf

3795-KOLNP-2006-FORM 2.pdf

3795-KOLNP-2006-FORM 3 1.2.pdf

3795-KOLNP-2006-FORM 3-1.1.pdf

3795-KOLNP-2006-FORM 3.pdf

3795-KOLNP-2006-FORM 5.pdf

3795-KOLNP-2006-GPA.pdf

3795-KOLNP-2006-GRANTED-ABSTRACT.pdf

3795-KOLNP-2006-GRANTED-CLAIMS.pdf

3795-KOLNP-2006-GRANTED-DESCRIPTION (COMPLETE).pdf

3795-KOLNP-2006-GRANTED-DRAWINGS.pdf

3795-KOLNP-2006-GRANTED-FORM 1.pdf

3795-KOLNP-2006-GRANTED-FORM 2.pdf

3795-KOLNP-2006-GRANTED-LETTER PATENT.pdf

3795-KOLNP-2006-GRANTED-SPECIFICATION.pdf

3795-KOLNP-2006-OTHERS 1.1.pdf

3795-KOLNP-2006-OTHERS 1.2.pdf

3795-KOLNP-2006-OTHERS.pdf

3795-KOLNP-2006-PETITION UNDER RULR 137.pdf

3795-KOLNP-2006-REPLY TO EXAMINATION REPORT.pdf

abstract-03795-kolnp-2006.jpg


Patent Number 253500
Indian Patent Application Number 3795/KOLNP/2006
PG Journal Number 30/2012
Publication Date 27-Jul-2012
Grant Date 25-Jul-2012
Date of Filing 18-Dec-2006
Name of Patentee SIEMENS AKTIENGESELLSCHAFT
Applicant Address Wittelsbacherplatz 2,80333 Munchen
Inventors:
# Inventor's Name Inventor's Address
1 FINDEISEN, JORG Wilsdruffer Ring 14,01169 Dresden
PCT International Classification Number F03D 1/04
PCT International Application Number PCT/DE2005/000919`
PCT International Filing date 2005-05-13
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 102004030522.6 2004-06-18 Germany