Title of Invention

A DEVICE USED IN FOR EVACUATION OF MAMMALIAN INTERVERTEBRAL DISC

Abstract A method of positioning an arcuate catheter against an inner annular wall of the disc, and particularly on the posterior and postero-lateral portions of the inner annulus of the disc, by anthroscopy is presented. The arcuate catheter retains its predetermined arcuate shape when no pressure or force is applied to the catheter. This present device and method require no forward tip pressure on the inner annular wall of a mammalian intervertebral disc. An arcuate sheath having a cutter is used to remove tissue from the inner annulus of the disc. In another embodiment an arcuate sheath is used progressively remove material from the interior of the mammalian intervertebral disc. In yet another embodiment, an arcuate sheath and catheter are used to remove the entire intervertebral disc and place supports to maintain a disc space.
Full Text FORM 2
THE PATENTS ACT, 1970
(39 of 1970)
AND
THE PATENTS RULES, 2003
COMPLETE SPECIFICATION
(See Section 10; rule 13)
TITLE
"A DEVICE USED IN FOR EVACUATION OF MAMMALIAN INTERVERTEBRAL DISC"
APPLICANT
FORREST, Leonard, Edward,
Nationality: USA
813 Post Oak Drive, Mount Pleasant,
SC 29464, USA
PREAMBLE TO THE DESCRIPTION
The following specification particularly describes the invention and the manner in which it is to be performed

A DEVICE USED IN FOR EVACUATION OF MAMMALIAN INTERVERTEBRAL DISC
Applicant claims the benefit of U. S. Provisional Application Serial No. 60/564,838 filed April 23, 2004.
Applicant claims the benefit of U. S. Provisional Application Serial No. 60/572,930 filed May 20, 2004.
Applicant claims the benefit of U. S. Provisional Application Serial No. 60/586,627 filed July 9, 2004.
Applicant claims the benefit of U. S. Provisional Application Serial No. 60/ 588,582 filed July 16, 2004.
Applicant claims the benefit of U. S. Provisional Application Serial No. 60/588,587 filed July 16, 2004.
FIELD OF INVENTION
[0001] This invention relate to the treatment or evacuation of an intervertebral disc,
BACKGROUND OF THE INVENTION
[0002] The intervertebral disc is comprised of an outer annulus fibrosis and an internal nucleus pulposus. The healthy annulus is comprised of 10-20 lamellae forming a concentric ring of collagen and elastic fibers around the nucleus while the healthy nucleus pulposus is ovoid and composed of a gelatinous mucoprotein within the confines of the annulus fibrosis.
[0003] In the healthy normal disc, the annulus is thick and the internal wall is strong and without significant defects. Aging and trauma cause multiple and varied defects of the annulus as well as changes in the nucleus. These defects are a source of pain for many individuals. It is widely accepted that the defects which actually do cause pain are either posterior or posterolateral. By far, it is most common that symptomatic defects are posterior

and/or unilateral posterolateral. Symptomatic defects which are posterior and bilateral postero-lateral certainly do exist but are definitely less common. On the other hand, degenerative changes with defects along the inner annular wall can be found commonly in various other segments of the inner annular wall (anteriorally, antero-laterally on either or both sides, and laterally on either or both sides. These defects are understood to be asymptomatic, but nevertheless are common.
[0004] Radiofrequency is used to treat internal intervertebral disc disruption. Forward pressure is applied to circumvent the nucleus adjacent to the inner annular wall, leverage with the forward pressure against the annular wall opposite to the portion attempting to be treated, or drive through the annular tissue which is intended to be treated.
[0005] The elongated tool/catheter is advanced around the inside of the nucleus pulposus adjacent to the inner annular wall. However, in the spectrum of discs requiring treatment, ideal discs are infrequently encountered. The result is that the tip of the elongated tool/catheter, even with a bent and/or capped tip gets caught in defects in the wall, making the advancement difficult or impossible. This frequently results in kinking of the elongated tool/catheter (which then typically must be removed), lodging into the defect (presumably worsening the defect), going through the annular wall (obviously creating a through and through defect in the annular wall and even potentially puncturing or damaging nerve or vascular structures), and ultimately making the intended treatment suboptimal or even impossible. Additionally, in such situations there has been further damage caused to the disc by the elongated tool/catheter. The defects into which the elongated tool/catheter can inadvertently probe can be the defect, or defects, intended to be treated. Alternately, a defect in the anterior, antero-lateral, or lateral wall can equally be entered inadvertently and cause a disruption of the procedure. Degenerative disc walls commonly contain multiple such defects, as well as thinning of the wall, which are all too frequently penetrated.

SUMMARY OF THE INVENTION
[0006] The invention is about device of positioning an arcuate elongated
tool/catheter against an inner annular wall of the disc, and particularly on the posterior and postero-lateral portions of the inner annulus of the disc, by arthroscopy. The apparatus used requires no forward tip pressure on the inner annular wall of a mammalian intervertebral disc. An arcuate elongated tool/catheter is positioned against the inner annular wall of the disc, and particularly on the posterior and postero-lateral portions of the inner annulus of the disc, which are specifically the portions which need to be treated. The arcuate elongated tool/catheter retains its predetermined arcuate shape when no pressure or force is applied to the elongated tool/catheter. In another embodiment an arcuate sheath is used to progressively remove material from the interior of the mammalian intervertebral disc. In yet another embodiment, an arcuate sheath and elongated tool/catheter are used to remove the entire intervertebral disc and place supports to maintain a disc space.
DESCRIPTION OF THE DRAWINGS
[0007] Figure 1 shows a partial lateral view of a portion of a human spine.
[0008] Figure 2 is a sectioned view taken essentially along line 2-2 of Figure
1.
[0009] Figure 4 is an exploded view showing the introducer needle, non-
conductive sheath, stylet and elongated tool/catheter.
[0010] Figure 5 shows the introducer needle with stylet in place and having
penetrated the annular wall of the disc.
[0011] Figure 6 shows the introducer needle with the stylet removed.
[0012] Figure 7 shows the non-conductive sheath inserted into and through
the introducer needle, with the S-shaped elongated tool/catheter advanced through the sheath.

[0013] Figure 8 shows the S-shaped elongated tool/catheter extended as
required through the sheath.
[0014] Figure 9 demonstrates the introducer needle and sheath being
retracted to position the elongated tool/catheter.
[0015] Figure 10 shows the introducer needle and sheath retracted, and the
elongated tool/catheter positioned against the inner annular wall defect.
[0016] Figure 11 demonstrates the device being withdrawn from the disc
and the iatrogenecally created defect being sealed.
[0017] Figure 12 demonstrates a range of permissive angles of insertion of
the introducer needle relative to the disc.
[0018] Figure 13 demonstrates the introducer needle penetrating the annular
wall at a different angle from that shown in Figures 5 through 11.
[0019] Figure 14 demonstrates another angle of entry of the introducer
needle into the disc.
[0020] Figure 15 demonstrates a elongated tool/catheter having multiple
orifices therein through which materials may be dispensed.
[0021] Figure 16 is a sectioned view of an introducer needle inserted into a
sheath having ports therein.
[0022] Figure 17 is a sectioned view of an introducer needle having ports
through which materials may be inserted into the disc, or from which
materials may be removed, such as by vacuuming, and also showing a cutter
therein.
[0023] Figure 18 demonstrates an introducer needle and stylet penetrating a
disc.
[0024] Figure 19 demonstrates the flexible tip bending on contact with the
inner annular wall.
[0025] Figure 20 demonstrates a cutter which may be used to remove
material from the disc.

[0026] Figure 21 demonstrates removal of a path of disc material using a
cutter and a lavage/suction.
[0027] Figure 22 demonstrates a progressive step in removing material from
the disc.
[0028] Figure 23 demonstrates an additional progressive step in removing
material from the disc.
[0029] Figure 24 demonstrates yet an additional step in removing material
from the disc.
[0030] Figure 25 is a sectioned view of an introducer with a trocar present
therein.
[0031] Figure 26 is a sectioned view of the introducer with a retractor
therein.
[0032] Figure 27 is an oblique partial view of a mammalian spine.
[0033] Figure 28 is an oblique partial view of the mammalian spine with a
retractor in position.
[0034] Figure 29 is a sectioned view of a sheath.
[0035] Figure 30 is a sectioned view of a sheath and introducer with a cutter,
fiber optic source and lavage and suction in place.
[0036] Figure 31 is plan view of a mammalian intervertebral disc showing a
portion of the disc evacuated according to the invention.
[0037] Figure 32 shows placement of a support member within the
intervertebral disc.
[0038] Figure 33 shows a progressive step of the disc being evacuated
according to the invention.
[0039] Figure 34 shows an additional support being positioned within the
disc.
[0040] Figure 35 shows an additional progressive step of the disc being
evacuated according to the invention.
[0041] Figure 36 shows an additional support being positioned within the
disc.

[0042] Figure 37 shows an additional progressive step of the disc being
evacuated according to the invention.
[0043] Figure 38 shows an additional progressive step of the disc being
evacuated according to the invention.
DESCRIPTION OF PREFERRED EMBODIMENTS
[0044] Turning now to the drawing figures, Figure 1 shows a partial view of
a mammalian spine, and more particularly, a human spine 2. Figure 2 is a sectioned view taken essentially along line 2-2 of Figure 1, and shows an annular wall of a disc 4 of a human spine. The inner annular wall is rough, or jagged, due to trauma, aging and/or disease. Treatment of the portion of the disc labeled 6 is indicated due to its condition. Advancement of a elongated tool/catheter into the disc, and around the wall of the disc to the area to be treated is difficult, since the tip of the elongated tool/catheter is likely to engage the rough, jagged inner annular wall. The elongated tool/catheter is preferred to be laid against the portion of the disc intended to be treated, minimizing the course of the elongated tool/catheter within the disc, yet assuring good contact of the elongated tool/catheter with the portion of the disc to be treated. The angle of entry into the disc should be maximized to accommodate a spectrum of operative conditions and needle placements. The portion of the disc requiring treatment as contemplated in this embodiment is postero-lateral (one side or both), plus or minus a portion of the posterior wall.
[0045] Figure 4 shows the primary elements of the apparatus of the present
invention. A stylet 8 is inserted into an introducer needle 10. A lumen in the form of a sheath 12 is subsequently inserted into the introducer needle, and a elongated tool/catheter 14 having a preformed S shape is advanced through the sheath.

[0046] The stylet and introducer needle form a passage into the disc through
the posterior wall of the disc on the side opposite that requiring treatment. The stylet is intended to keep the tissue from accumulating within the advancing introducer needle.
[0047] The introducer needle is advanced under fluoroscopic guidance
lateral to the superior articular process. The annulus is punctured and the introducer needle may be advanced initially approximately one-third to one-half of the distance of the disc, as can be judged by operators skilled in performing such procedures.
[0048] Figure 5 shows the introducer needle with stylet in position. The
sharp point of the stylet is driven through the wall of the disc, along with the introducer needle. The stylet is then removed. Figure 6.
[0049] After the stylet and introducer needle pierce the annular wall of the
disc and access the interior of the disc, the stylet is removed and is replaced with a lumen, which may be a sheath. A pre-formed, S-shaped elongated tool/catheter having memory retention properties is contained within the straight sheath. The straight sheath is inserted through the introducer needle for introduction into the disc. The elongated tool/catheter is straightened by the pressure from the walls of the sheath, but the elongated tool/catheter regains its S-shape as it exits the sheath.
[0050] The sheath locks into place at the external end of the introducer
needle. When locked into place, the elongated tool/catheter sheath will protrude from the tip of the introducer needle. The sheath remains well contained within the disc nucleus and not in the proximity of the opposing annular wall but may be advanced or retracted as necessary for elongated tool/catheter positioning.
[0051] The sheath is preferred to be made of nonconductive material having
thermal insulative properties sufficient to avoid undesired heating of tissues and structures outside of the disc, even if the heating portion of the elongated tool/catheter comes into close proximity or even contact with this sheath. The

sheath may be straight, or slightly curved, and capable of advancing through the introducer needle once the stylet is removed. It has sufficient rigidity to maintain a portion of the elongated tool/catheter in a straight position while that portion of the elongated tool/catheter is in the sheath. The sheath is capable of externally locking at an upper portion into the introducer needle at the hub.
[0052] The non-conductive elongated tool/catheter sheath ensures that no
inadvertent heating of the introducer needle occurs. Heating may cause significant unwanted damage to skin, subcutaneous tissue, fat, muscle, and even nerve.
[0053] The sheath is inserted into the lumen of the introducer needle, while
the introducer needle remains in position within the disc as shown in Figure 6. In Figure 7, the elongated tool/catheter is advanced through the sheath. As the S-shaped elongated tool/catheter exits the sheath within the interior of the disc, the elongated tool/catheter, due to memory retention properties, and with no pressure applied, assumes its S-shape, as shown in Figure 7. In Figure 8, the elongated tool/catheter continues to advance and contacts the lateral inner annular wall of the side on which the postero-lateral wall is to be treated. Elongated tool/catheter advancement may be fluoroscopically monitored.
[0054] Figure 9 demonstrates the introducer needle being retracted from the
disc as the elongated tool/catheter is advanced. This combination of movements causes the elongated tool/catheter to move toward the posterolateral and posterior wall which is the intended side of treatment. As shown, the introducer needle and sheath are retracted until the elongated tool/catheter is in position against the site to be treated. Positioning of the sheath and the elongated tool/catheter may be monitored fluoroscopically.
[0055] As shown in Figure 10, the introducer needle is retracted until the
elongated tool/catheter rests against the lateral posterior wall to be treated. The lateral posterior wall to be treated is opposite the side of the posterior

wall that the introducer needle has penetrated. Heat or radio frequency can be applied to the disc wall by means of the elongated tool/catheter. Other therapeutic procedures may be applied by use of an appropriate elongated tool/catheter. The elongated tool/catheter may then be retracted, and the introducer needle is retracted from the disc as shown in Figure 11. Either the tip of this elongated tool/catheter can be differentially heated to seal the needle entry defect, or the S shaped elongated tool/catheter is removed and replaced with a straight elongated tool/catheter with a heating element at the tip. Heating of the tip as the needle-sheath-elongated tool/catheter complex is withdrawn seals the entry defect. Alternately, a elongated tool/catheter with a portal at the tip to inject a sealant of this entry defect may be used.
[0056] For needle positions between the extremes of acute and obtuse, the
length of sheath versus disbursed elongated tool/catheter will determine the position at which the elongated tool/catheter tip will come into contact with the opposite lateral wall. Recognition of the goal of having the elongated tool/catheter contact the mid portion of the lateral wall of the side to be treated, and monitoring progress under fluoroscopy will facilitate ideal elongated tool/catheter placement.
[0057] The portion of the elongated tool/catheter intended to be within the
disc has an S shape when no material pressure or force is applied to the elongated tool/catheter. The elongated tool/catheter may be formed of nitinol, which is sufficiently flexible to be advanced through a straight lumen or sheath, but will regain the preformed arcuate or S-shape when present within the interior of the disc. The elongated tool/catheter should also be sufficiently flexible to conform to the shape of the disc wall, such as the posterior wall of the inner disc, when positioned against the wall. Figure 10.
[0058] The S-shaped elongated tool/catheter allows the physician to treat the
posterior wall, and particularly the lateral posterior wall, of a defective disc without the necessity of first contacting the anterior wall with the elongated tool/catheter. The device and process prevent the end or tip of the elongated

tool/catheter from catching or hanging against the rough interior annular wall, which may have many crevices that make it difficult to advance the elongated tool/catheter along the wall. The S-shaped elongated tool/catheter allows the elongated tool/catheter to be introduced into the interior of the disc, and then positioned by manipulation of the introducer needle and elongated tool/catheter, without subjecting the elongated tool/catheter to being snagged by defects in the disc. The S shape facilitates good contact of the elongated tool/catheter with the postero-lateral segment of the disc even if the angle of the needle entry is suboptimal. Additionally, the S shape retards the elongated tool/catheter traversing through any large segment of the interior of the disc which is typically filled with debris. This minimizes "shoveling" of the debris toward the segment of the inner annular wall to be treated.
[0059] Elongated tool/catheters may contain heating segments of various
lengths. A final heating element, which is contained in each of these types of elongated tool/catheters, may be present directly at the tip, and is used for the spot sealing on exit from the inner annular wall. An additional embodiment has a straight elongated tool/catheter with a heating element at the tip.
[0060] On withdrawal of the elongated tool/catheter, the end or tip of the
elongated tool/catheter straightens as it is exiting the annular wall. Spot heating at this position by tip 16 seals the defect that was created by the introducer and elongated tool/catheter.
[0061] Figure 12 demonstrates an acceptable range of angles of needle
insertion 18 when driving the introducer needle into the disc. The acceptable range of angles is within about 70 degrees, but is not less than forty five degrees. Due to the S shaped configuration of the elongated tool/catheter, a precise entry of the introducer needle is not required.
[0062] As shown in Figure 13, acceptable results are achieved with the S-
shaped elongated tool/catheter, even though the angle of needle insertion varies from that shown in figure 10. Likewise, the angle of needle insertion may be varied as shown in Figure 14. The introducer needle may be

withdrawn from the position shown in Figure 14 to the interior, posterior annular wall, and Sshaped elongated tool/catheter is capable of being positioned against the lateral posterior wall of the disc as stated above.
[0063] The elongated tool/catheter may provide heat or radio frequency for
the purpose of treatment of the disc. Other therapeutic applications may be used with the device. Further, a elongated tool/catheter 20 may have multiple orifices for the purpose of delivering materials such as adhesives, sealants or fillers into the disc. Figure 15. A substance 22 may be injected through the elongated tool/catheter to the affected site to seal chemically, or otherwise, as opposed to thermally, defects including fissures and tears in the annular wall. Pressure manometery or fibro-optical viewing are also possible uses of this elongated tool/catheter system.
[0064] Figure 16 shows a second embodiment of the device, wherein the
sheath has ports 32, 34 formed therein. The stylet is shown in position in the introducer needle of this embodiment. The stylet and introducer needle are used to access the interior annulus of the disc and shown in Figure 18.
[0065] After entry into the disc, the stylet is withdrawn. The ports of the
sheath may be used to insert materials into the disc, or remove materials from the disc. A vacuum may be applied to the ports for the purpose of removal of material.
[0066] Figure 19 shows a flexible deformable tip of the sheath. Deformation
of the tip, which may be visualized fluoroscopically, defines hitting the inner annular wall. In one embodiment, 5mm is sufficient protrusion of the sheath, such that it can be observed to bend when it contacts opposite inner annular wall. The bending of the tip of the sheath defines the limit of the inner annular wall immediately across from the entrance of the introducer needle complex into the disc. The limit of the inner annular wall opposite to the needle insertion may be defined when fluoroscopically viewed.

[0067] As shown in Figure 17, a rotary cutter 36 is contained within the
sheath. The rotary cutter is used to cut away material as the introducer needle is withdrawn. Figure 21. Alternately, another type of cutter may be used.
[0068] When the introducer needle, sheath and cutter complex are in the
nucleus, the tip of the flexible sheath is advanced by external manipulation such that it protrudes from the introducer needle. The threaded probe protrudes from the sheath, such as by 2-3mm. The rotating threaded probe is activated to rotate within the inner annular wall. The initial "pass" of the rotating threaded probe is accomplished by withdrawing the introducer needle/sheath/probe linearly back to the position where the introducer/sheath tip is at the level of the opening into the inner annular wall as previously defined. The complex is then advanced back to its position at the opposite inner annular wall as previously defined fluoroscopically. The sheath/probe is kept in its current position while the introducer needle is withdrawn a predefined distance, such as 5mm in one embodiment. The complex is again withdrawn with probe rotating. An additional amount of material is removed, similarly to mowing a lawn. If an additional amount of material is present between the first and second probe withdrawals, the amount of insertional needle withdrawal can be modified to be less than, for example, 5mm. In successive fashion, the complex is advanced, the introducer needle 40 withdrawn, the rotation of the treaded probe is started, the sheath/probe, and then the introducer segment, is withdrawn until the final sheath/probe withdrawal is accomplished with the introducer needle tip at the level of the insertional inner annular wall. Since the sheath is S shaped, short lengths of sheath protruded from the needle will be arcuate. Incrementally longer segments of exposed sheath assume varying degrees of the S shape. This process very thoroughly evacuates the approximately half of the nucleus that is initially addressed. At this point, the sheath/probe is withdrawn into the introducer needle. The sheath/probe is rotated substantially 180 degrees within the introducer. The process is then repeated in the same fashion on the

opposite half of the nucleus. Infusion of a substance, which could be normal saline, via a side portal 32 into the sheath, alternating with suction at portal 34, may be performed at intervals to facilitate removal of the nuclear contents.
[0069] The sheath has a pre-formed S shape, and a memory for the S shape.
Accordingly, as the rotary cutter is extended from the introducer needle, the sheath will continue to curve slightly, which allows material 42 which is adjacent to the cut taken in Figure 21 to be removed. Figure 22. As the rotary cutter cuts material away, lavage/suction are applied through the ports 34 of the introducer needle. One port allows for infusion of a substance (which may be normal saline) into one port. The other port is for suction or other form of removal of material including debris from the disc. By increasing the length of the S shaped sheath from the needle 40, additional passes each take material from the disc, as the cutter is further extended from the sheath. Figure 23 demonstrates the cutter after the cutter has made six passes, and is beginning a seventh pass. In each pass, the arcuate shape of the sheath as it is extended which allows for progressively removing from the interior of the disc. Shorter segments of the sheath exposed from the introducer needle have an arcuate shape allowing for an infinite number of paths throughout the disc enabling the removal of nuclear material if needed.
[0070] After the material is removed from one side of the disc, the cutter is
retracted into the needle. The cutter and/or the sheath are rotated 180 degrees, so that the S shaped cutter is present on the opposite side of the disc. The sheath containing the cutter is extended from the introducer needle on each subsequent pass as needed, until material is removed as desired from the disc as shown in Figure 24.
[0071] Figure 25 shows a trocar 50 that is a present within an introducer 52.
The trocar may be a relatively large stylet. Figure 26 shows a retractor 54 that is present within the introducer. The retractor manipulates the nerve root 56.

[0072] Figure 27 shows a vertebra 58 of a mammalian spine, an additional
vertebra 60 of a mammalian spine, with an intervertebral disc 62 between the vertebrae. Also shown are a pedicle 64, a superior articular facet 68 and an inferior articular facet 66. The nerve root 56 is shown as traversing the intervertebral disc. As shown, the position of the nerve root interferes with access to the intervertebral disc. Figure 27 is an oblique view demonstrating what is typically visualized flouriscopically for intradiscal procedures, except for the nerve root, which does not visualize under fluoroscopy, but whose position is known to an experienced operator.
[0073] The trocar is used to pierce and penetrate skin and other tissue. Upon
reaching the nerve root, the trocar is removed and the retractor is inserted. The retractor is used to lift the nerve root over the introducer needle, so that the nerve root is out of the way, and does not interfere with access to the intervertebral disc. Figure 28.
[0074] Once the retractor has repositioned the nerve root over the introducer,
the retractor may be removed from the introducer, and the trocar reinserted into the introducer. With the nerve root positioned over the introducer, the nerve root will not be damaged as the trocar and introducer are inserted into the intervertebral disc. The trocar pierces the intervertebral disc for access to the disc with the introducer.
[0075] Figure 29 demonstrates a cross section of a sheath 70 that is used to
evacuate a defective disc as described. The sheath has three lumens in the embodiment shown. A first lumen 72 is used as a conduit for a fiber optic cable. A second lumen 74 is provided through which a cutter is delivered to the work site within the intervertebral disc. The cutter could be a laser cutter, or a mechanical cutter, such as a rotary cutter.
[0076] A third lumen 76 is relatively larger, and provides a conduit for
levage and suction. Saline or other materials may be introduced to the work site in the disc through the lumen. Tissue that is removed, along with

attendant blood and other materials, may be suctioned and evacuated through lumen 76.
[0077] Figure 30 shows the fiber optic source 78, cutter 80 and the conduit
for levage and suction 82.
[0078] The introducer penetrates the wall of the disc as described above. The
introducer is shown as having penetrated the lateral posterior wall of the disc 84 in Figure 31. The sheath is positioned within the disc through the introducer. The sheath is initially positioned so that its forward end extends only slightly beyond the end of the introducer needle. The cutter, the fiber optic and the levage and suction are actuated, and the entire assembly, along with the introducer needle, are pushed to the opposite wall 86 of the disc, which in this case, is the lateral anterior portion of the disc so that the pulposa of the disc and the disc wall itself are removed, as shown in Figure 31. Since the materially extended sheath has an S-shape when no pressure is applied to the sheath, there will be a slight curvature of the sheath as it marginally extends from the introducer needle. Accordingly, the cut as shown in Figure 31 is somewhat conical in shape, rather than being straight, due to the arcuate shape of the sheath when the sheath is advanced slightly from the introducer.
[0079] The evacuation progresses outwardly. As the intervertebral disc is removed, support must be provided for the adjoining the vertebrae. Figure 32 shows the cutter removed from the sheath, and a support member or strut 88 placed in position using insertion or placement tool. The support member or strut may be capable of inflation using, for example, saline. Accordingly, the support member or strut may be a balloon or bladder.
[0080] The sheath is progressively extended, and progressive cuts are made
using the introducer to traverse generally linearly in and out of the disc. As shown in Figure 33, progressive cuts are made until the disc and associated pulposa 90 are substantially completely removed from one side of the introducer needle. The cutter may be removed from the sheath as required,

and the placement tool inserted for placement of the support members or struts within the intervertebral disc.
[0081] After one side of the disc is substantially removed, the sheath, and/or
the introducer needle and sheath, are rotated 180 degrees. Figure 35. The cutter is in position in the sheath. Additional progressive passes are made by steering and advancing the introducer and sheath, individually, or as a unit within the disc, and with the cutter in place. The sheath is progressively extended on each pass, so that the portion of the disc that is further away from the introducer is removed with each progressive pass.
[0082] The S-shape of the sheath permits the material of the disc to be removed which is offset to each side of the introducer, even though the introducer is advanced and retracted on what is generally a straight line dictated by the void formed in the disc through which the introducer passes. The S-shape of the sheath allows the cutter to reach progressively laterally as the sheath is progressively extended from the introducer. The sheath of this embodiment, and the elongated tool/catheter shown in Figure 4 through Figure 15, and the sheath shown in Figure 23 through Figure 24, each have an S-shape when no material pressure is applied to the elongated tool/catheter or sheath. The elongated tool/catheter or sheath in each embodiment of the invention shown herein has a memory property which returns the elongated tool/catheter or sheath to an S-shape when no material pressure is applied to the elongated tool/catheter or sheath. However, when the elongated tool/catheter or sheath is present within the introducer, or in the case of the elongated tool/catheter, within the sheath for the elongated tool/catheter, the S shaped element is reformed to be straight, but regains it S shape as it exits the straight lumen.
[0083] Continuing with the process of this preferred embodiment as shown
in the drawings, Figure 37 demonstrates the final cutting away of the disc by slight protrusion of the sheath from the introducer. Figure 38 uses the cutter with the cutter even more slightly extending from the needle to remove the disc. However, in practice, it may be necessary to remove the entire

intervertebral disc. It may be desirable to leave some of the intervertebral disc in place as a support, as long as the targeted defective portion of the intervertebral disc is removed by the device described herein.

What is claimed is:
1. A device used in an interior of a mammalian inter-vertebral disc,
comprising:
a) an introducer for introducing an elongated tool into the interior of the mammalian intervertebral disc, said introducer comprising a guide; and
b) an elongated tool formed of shape memory material and comprising a preformed S-shape, wherein said elongated tool slidably engages said guide, and said elongated tool is transported into the interior of the mammalian intervertebral disc by said guide of said introducer, and said S-shape of said elongated tool is deformable and is deformed by said introducer as said elongated tool is transported along said guide, and said elongated tool regains its preformed S-shape upon exiting said guide of said introducer wherein said elongated tool is constructed and arranged to be rotatable relative to said introducer.

2. The device used in an interior of a mammalian intervertebral disc as claimed in Claim 1, wherein said elongated tool is a catheter configured to be advanced into said mammalian intervertebral disc through a lumen to acquire an S shape of said elongated tool/catheter on exit from said lumen to facilitate contact with a lateral posterior wall of said disc opposite said lumen.
3. The device used in an interior of a mammalian intervertebral disc as claimed in Claim 2, wherein said elongated tool/catheter is customized to be positioned against a predetermined area of the interior of said mammalian disc by retraction of an end of said guide/lumen toward said posterior wall of said mammalian intervertebral disc.

4. The device used in an interior of a mammalian intervertebral disc as
claimed in Claim 1, wherein said device is configured for advancing
and withdrawing said introducer provided for inserting an elongated
tool into an interior of said mammalian intervertebral disc.
5. The device used in an interior of a mammalian intervertebral disc as
claimed in Claim 1, wherein a forward tip on end of said elongated
tool/catheter is configured to deform upon striking a wall of said
mammalian intervertebral disc.
6. The device used in an interior of a mammalian intervertebral disc as described in Claim 1, wherein a said elongated tool/catheter is configured to apply heat to seal a void in a wall of said mammalian intervertebral disc.
7. The device used in an interior of a mammalian intervertebral disc as claimed in Claim 1, wherein a length of said elongated tool/catheter in said interior of said mammalian disc is configured to be formed in an S shape without any pressure applied on said elongated tool/catheter.

Documents:

1251-mumnp-2006-abstract.pdf

1251-MUMNP-2006-ANNEXURE TO FORM 3(2-12-2011).pdf

1251-MUMNP-2006-ANNEXURE TO FORM 3(25-1-2012).pdf

1251-MUMNP-2006-CLAIMS(AMENDED)-(17-7-2012).pdf

1251-MUMNP-2006-CLAIMS(AMENDED)-(2-8-2012).pdf

1251-MUMNP-2006-CLAIMS(AMENDED)-(24-3-2011).pdf

1251-MUMNP-2006-CLAIMS(AMENDED)-(28-4-2010).pdf

1251-MUMNP-2006-CLAIMS(AMENDED)-(4-4-2012).pdf

1251-MUMNP-2006-CLAIMS(AMENDED)-(5-7-2011).pdf

1251-MUMNP-2006-CLAIMS(AMENDED)-(6-1-2011).pdf

1251-mumnp-2006-claims.pdf

1251-mumnp-2006-correspondance (other).pdf

1251-mumnp-2006-correspondance received.pdf

1251-MUMNP-2006-CORRESPONDENCE(10-7-2012).pdf

1251-MUMNP-2006-CORRESPONDENCE(17-7-2012).pdf

1251-MUMNP-2006-CORRESPONDENCE(2-12-2011).pdf

1251-MUMNP-2006-CORRESPONDENCE(2-8-2012).pdf

1251-MUMNP-2006-CORRESPONDENCE(25-1-2012).pdf

1251-MUMNP-2006-CORRESPONDENCE(31-10-2011).pdf

1251-MUMNP-2006-CORRESPONDENCE(4-3-2011).pdf

1251-mumnp-2006-description (complete).pdf

1251-MUMNP-2006-DRAWING(28-4-2010).pdf

1251-MUMNP-2006-DRAWING(5-7-2011).pdf

1251-mumnp-2006-drawings0035.jpg

1251-mumnp-2006-drawings0036.jpg

1251-mumnp-2006-drawings0037.jpg

1251-mumnp-2006-drawings0038.jpg

1251-mumnp-2006-drawings0039.jpg

1251-mumnp-2006-drawings0040.jpg

1251-mumnp-2006-drawings0041.jpg

1251-mumnp-2006-drawings0042.jpg

1251-mumnp-2006-drawings0043.jpg

1251-mumnp-2006-drawings0044.jpg

1251-mumnp-2006-drawings0045.jpg

1251-mumnp-2006-drawings0046.jpg

1251-mumnp-2006-drawings0047.jpg

1251-mumnp-2006-drawings0048.jpg

1251-mumnp-2006-drawings0049.jpg

1251-mumnp-2006-drawings0050.jpg

1251-mumnp-2006-drawings0051.jpg

1251-mumnp-2006-drawings0052.jpg

1251-mumnp-2006-drawings0053.jpg

1251-mumnp-2006-drawings0054.jpg

1251-mumnp-2006-drawings0055.jpg

1251-MUMNP-2006-FORM 1(17-7-2012).pdf

1251-MUMNP-2006-FORM 1(2-8-2012).pdf

1251-MUMNP-2006-FORM 1(24-3-2011).pdf

1251-MUMNP-2006-FORM 13(17-7-2012).pdf

1251-MUMNP-2006-FORM 13(31-10-2011).pdf

1251-MUMNP-2006-FORM 13(4-4-2012).pdf

1251-mumnp-2006-form 13(5-7-2011).pdf

1251-mumnp-2006-form 13(6-1-2011).pdf

1251-MUMNP-2006-FORM 2(TITLE PAGE)-(17-7-2012).pdf

1251-MUMNP-2006-FORM 2(TITLE PAGE)-(24-3-2011).pdf

1251-MUMNP-2006-FORM 2(TITLE PAGE)-(28-4-2010).pdf

1251-MUMNP-2006-FORM 26(28-4-2010).pdf

1251-MUMNP-2006-FORM 26(6-1-2011).pdf

1251-MUMNP-2006-FORM 3(28-4-2010).pdf

1251-MUMNP-2006-FORM 3(6-1-2011).pdf

1251-MUMNP-2006-FORM 5(28-4-2010).pdf

1251-MUMNP-2006-FORM 5(6-1-2011).pdf

1251-mumnp-2006-form1.pdf

1251-mumnp-2006-form2.pdf

1251-mumnp-2006-form3.pdf

1251-mumnp-2006-form5.pdf

1251-MUMNP-2006-OTHER DOCUMENT(28-4-2010).pdf

1251-MUMNP-2006-PETITION UNDER RULE 137(25-1-2012).pdf

1251-MUMNP-2006-PETITION UNDER RULE 137(6-1-2011).pdf

1251-MUMNP-2006-PETITION UNDER RULE-137(2-12-2011).pdf

1251-MUMNP-2006-POWER OF ATTORNEY(21-10-2011).pdf

1251-MUMNP-2006-POWER OF ATTORNEY(31-10-2011).pdf

1251-MUMNP-2006-REPLY TO EXAMINATION REPORT(28-4-2010).pdf

1251-MUMNP-2006-REPLY TO EXAMINATION REPORT(5-7-2011).pdf

1251-MUMNP-2006-REPLY TO HEARING(21-10-2011).pdf

1251-MUMNP-2006-REPLY TO HEARING(24-3-2011).pdf

1251-MUMNP-2006-REPLY TO HEARING(4-4-2012).pdf

1251-MUMNP-2006-REPLY TO HEARING(6-1-2011).pdf

1251-MUMNP-2006-SPCIFICATION(AMENDED)-(2-8-2012).pdf

1251-MUMNP-2006-SPECIFICATION(AMENDED)-(17-7-2012).pdf

1251-MUMNP-2006-SPECIFICATION(AMENDED)-(28-4-2010).pdf

1251-MUMNP-2006-SPECIFICATION(AMENDED)-(4-4-2012).pdf

1251-MUMNP-2006-SPECIFICATION(AMENDED)-(5-7-2011).pdf

1251-MUMNP-2006-SPECIFICATION(MARKED COPY)-(17-7-2012).pdf

1251-MUMNP-2006-SPECIFICATION(MARKED COPY)-(4-4-2012).pdf

1251-mumnp-2006.doc

abstract1.jpg


Patent Number 253585
Indian Patent Application Number 1251/MUMNP/2006
PG Journal Number 31/2012
Publication Date 03-Aug-2012
Grant Date 02-Aug-2012
Date of Filing 23-Oct-2006
Name of Patentee FORREST, Leonard, Edward
Applicant Address 813 Post Oak Drive, Mount Pleasant, SC 29464,
Inventors:
# Inventor's Name Inventor's Address
1 FORREST, Leonard, Edward 813 Post Oak Drive, Mount Pleasant, SC 29464,
PCT International Classification Number A61M 25/00
PCT International Application Number PCT/US2005/014119
PCT International Filing date 2005-04-23
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 60/588,587 2004-07-16 U.S.A.
2 60/586,627 2004-07-09 U.S.A.
3 60/564,838 2004-04-23 U.S.A.
4 60/572,930 2004-05-20 U.S.A.
5 60/588,582 2004-07-16 U.S.A.