Title of Invention | HETEROAROYL-SUBSTITUTED SERINE AMIDES |
---|---|
Abstract | The present invention relates to heteroaroyl-substituted serineamides of the formula I in which the variables A and R1 to R6 are as defined in the description, and to their agriculturally useful salts, to processes and intermediates for their preparation, and to the use of these compounds or of the compositions comprising these compounds for controlling unwanted plants. |
Full Text | Description The present invention relates to heteroaroyl-substituted serineamides of formula I in which the variables are as defined below: A is 5- or 6-membered heteroaryl having one to four nitrogen atoms, or one to three nitrogen atoms and one oxygen or sulfur atom, or one oxygen or sulfur atom, which heteroaryl may be partially or fully halogenated and/or may carry 1 to 3 radicals from the group consisting of cyano, C1-C6-alkyl, C3-C6-cycloalkyl, C1-C6-haloalkyl, C1-C6-alkoxy, C1-C6-haloalkoxy and C1-C6-alkoxy-C1-C4alkyl; R1, R2 are hydrogen, hydroxyl or C1-C6-alkoxy; R3 is C1-C6-alkyl, C1-C4-cyanoalkyl or C1-C6-haloalkyl; R4 is hydrogen, C1-C6-alkyl, C3-C6-cycloalkyl, C3-C6-alkenyl, C3-C6-alkynyl, C3-C6- haloalkenyl, C3-C6-haloalkynyl, formyl, C1-C6-alkylcarbonyl, C3-C6-cycloalkyl- carbonyl, C2-C6-alkenylcarbonyl, C2-C6-alkynylcarbonyl, C1-C6-alkoxycarbonyl, C3-C6-alkenyloxycarbonyl, C3-C6-alkynyloxycarbonyl, C1-C6-alkylaminocarbonyl, C3-C6-alkenylaminocarbonyl, C3-C6-alkynylaminocarbonyl, C1-C6-alkylsulfonyl- aminocarbonyl, di-(C1-C6-alkyl)aminocarbonyl, N-(C3-C6-alkenyl)-N-(C1-C6-alkyl)- aminocarbonyl, N-(C3-C6-alkynyO-N-(C1-C6-alkyl)aminocarbonyl, N-(C1-C6- alkoxy)-N-(C1-C6-alkyl)aminocarbonyl, N-(C3-C6-alkenyl)-N-(C1-C6-alkoxy)- aminocarbonyl, N-(C3-C6-alkynyl)-N-(C1-C6-alkoxy)aminocarbonyl, di-(C1-C6- alkyl)aminothiocarbonyl, (C1-C6-alkyl)cyanoimino, (amino)cyanoimino, [(C1-C6- alkyl)amino]cyanoimino, [di(C1-C6-alkyl)amin6]cyanoimino, C1-C6-alkylcarbonyl- C1-C6-alkyl, C1-C6 alkoxylmino-C1-C6-alkyl, N-(C1-C6-alkylamino)imino-C1--C6- alkyl, N-(di-C1-C6-alkylamino)imino-C1-C6-alkyl or tri-C1-C4-alkylsilyl, where the alkyl, cycloalkyl and alkoxy radicals mentioned may be partially or fully halogenated and/or may carry one to three of the following groups: cyano, hydroxyl, C3-C6-cycloalkyl, C1-C6-alkoxy-C1-C4-alkyl, C1-C4-alkoxy- C1-C4-alkoxy-C1-C4-alkyl, C1-C4-alkoxy, C1-C4alkylthio, di-(C1-C4-alkyl)- amino, C1-C4-alkyl-C1-C4-alkoxycarbonylamino, C1-C4-alkylcarbonyl, hydroxycarbonyl, C1-C4-alkoxycarbonyl, aminocarbonyl, C1-C4alkylamino- carbonyl, di-(C1-C4-alkyl)aminocarbonyl or C1-C4-alkylcarbonyloxy; phenyl, phenyl-C1-C6-alkyl, phenylcarbonyl, phenylcarbonyl-C1-C6-alkyl, phenoxycarbonyl, phenylaminocarbonyl, phenylsulfonylaminocarbonyl, N-(C1-C6- alkyl)-N-(phenyl)aminocarbonyl, phenyl-C1-C6-alkylcarbonyl, where the phenyl radical may be partially or fully halogenated and/or may carry 1 to 3 of the following groups: nitro, cyano, C1-C4-alkyl, C1-C4- haloalkyl, C1-C4-alkoxy or C1-C4-haloalkoxy; or S02R7; R5 is hydrogen or C1-C6-alkyl; R6 is C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-haloalkyl, C2-C6-haloalkenyl, C2-C6-haloalkynyl, C1-C6-cyanoalkyl, C2-C6-cyanoalkenyl, C2-C6-cyanoalkynyl, C1-C6-hydroxyalkyl, C2-C6-hydroxyalkenyl, C2-C6-hydroxyalkynyl, C3-C6- cycloalkyl, C3-C6-cycloalkenyl, 3- to 6-membered heterocyclyl, 3- to 6-membered heterocyciyl-C1-C4-alkyl, where the cycloalkyl, cycloalkenyl or 3- to 6-membered heterocyclyl radicals mentioned above may be partially or fully halogenated and/or may carry one to three radicals from the group consisting of oxo, cyano, nitro, C1--C6-alkyl, C1-C6-haloalkyl, hydroxyl, C1-C6-alkoxy, C1-C6-haloalkoxy, hydroxycarbonyl, C1-C6-alkoxycarbonyl, hydroxycarbonyl-C1-C6-alkoxy, C1-C6-alkoxycarbonyl-C1-C6-alkoxy, amino, C1-C6-alkylamino, di(C1-C6- alkyl)amino, C1-C6-alkylsulfonylamino, C1-C6-haloalkylsulfonylamino, aminocarbonylamino, (C1-C6-alkylamino)carbonylamino, di(C1-C6-alkyl)- aminocarbonylamino, aryl and aryl(C1-C6-alkyl); C1-C6-alkoxy-C1-C6-alkyl, C2-C6-alkenyloxy-C1-C6-alkyl, C2-C6-alkynyloxy-C1-C4- alkyl, C1-C6-haloalkoxy-C1-C6-alkyl, C2-C6-haloalkenyloxy-C1-C4-alkyl, C2-C6- haloalkynyloxy-C1-C4-alkyl, C1-C6-alkoxy-C1-C6-alkoxy-C1-C6-alkyl, C1-C6- alkylthio-C1-C6-alkyl, C2-C6-alkenylthio-C1-C6-alkyl, C2-C6-alkynylthio-C1-C4-alkyl, C1-C6-haloalkyl-C1-C6-thioalkyl, C2-C6-haloalkenyl-C1-C6-thioalkyl, C2-C6- haloalkynyl-C1-C6-thioalkyl, C1-C6-alkylsulfinyl-C1-C4-alkyl, C1-C6-haloalkyl- sulfinyl-C1-C4-alkyl, C1-C6-alkylsulfonyl-C1-C6-alkyl, C1-C6-haloalkylsulfonyl- C1-C4-alkyl, amino-C1-C6-alkyl, C1-C6-alkylamino-C1-C6-alkyl, di(C1-C6- alkyl)amino-C1-C6-alkyl, C1-C6-alkylsulfonylamino-C1-C6-alkyl, C1-C6-alkyl- sulfonyl-(C1-C6-alkylamino)-C1-C4-alkyl, C1-C6-alkylcarbonyl, hydroxycarbonyl, C1-C6-alkoxycarbonyl, aminocarbonyl, C1-C6-alkylaminocarbonyl, di(C1-C6- alkyl)aminocarbonyl, C1-C6-alkylcarbonyl-C1-C6-alkyl, hydroxycarbonyl-C1-C6- alkyl, C1-C6-alkoxycarbonyl-C1-C6-alkyl, C1-C6-haloalkoxycarbonyl-C1-C6-alkyl, C1-C6-alkylcarbonyloxy-C1-C4-alkyl, aminocarbonyl-C1-C6-alkyl, C1-C6-alkyl- aminocarbonyl-C1-C6-alkyl, di(C1-C6-alkyl)aminocarbonyl-C1-C4-alkyl, d-dr alkylcarbonylamino-C1-C4-alkyl, formylamino-C1-C6-alkyl, C1-C6-alkoxycarbonyl- amino-C1-C6-alkyl, C1-C6-alkylcarbonyl-(C1-C6-alkylamino)-C1-C6-alkyl, [(C1-C6- alkyl)aminocarbonyloxyl-C1-C4-alkyl, [di(C1-C6-alkyl)aminocarbonyloxy]C1--C4 alkyl, {di[di(C1-C6-alkyl)amino]carbonyloxy}C1-C4-alkyl, [(C1-C6-alkyl)amino- carbonylamino]C1-C4-alkyl, [di(C1-C6-alkyl)aminocarbonylamino]-C1-C4-alkyl; phenyl-C1-C4-alkyl, phenyl-C2-C4-alkenyl, phenyl-C2-C4-alkynyl, phenyl-C1-C4- haloalkyl, phenyl-C2-C4-haloalkenyl, phenyl-C2-C4-haloalkynyl, phenyl-C1-C4 hydroxyalkyl, phenyl-C2-C4-hydroxyalkenyl, phenyl-C2-C4-hydroxyalkynyl, phenylcarbonyl-C1-C4-alkyl, phenylcarbonylamino-C1-C4-alkyl, phenylcarbonyl- oxy-C1-C4-alkyl, phenyloxycarbonyl-C1-C4-alkyl, phenyloxy-C1-C4alkyl, phenylthio-C1-C4alkyl, phenylsulfinyl-C1-C4-alkyl, phenylsulfonyl-C1-C4-alkyl, heteroaryl-C1-C4-alkyl, heteroaryl-C2-C4-alkenyl, heteroaryl-C2-C4-alkynyl, heteroaryl-C1-C4-haloalkyl, heteroaryl-C2-C4-haloalkenyl, heteroaryl-C2-C4- haloalkynyl, heteroaryl-C1-C4-hydroxyalkyl, heteroaryl-C2-C4-hydroxyaIkenyl, heteroaryl-C2-C4-hydroxyalkynyl, heteroarylcarbonyl-C1-C4alkyl, heteroarylcarbonyloxy-C1-C4alkyl, heteroaryloxycarbonyl-C1-C4-alkyl, heteroaryloxy-C1-C4-alkyl, heteroarylthio-C1-C6-alkyl, heteroarylsulfinyl-C1-C4- alkyl, heteroarylsulfonyl-C1-C4-alkyl, where the phenyl and heteroaryl radicals mentioned above may be partially or fully halogenated and/or may carry one to three radicals from the group consisting of cyano, nitro, C1-C6-alkyl, C1-C6-haloalkyl, hydroxy, C1-C6- alkoxy, C1-C6-haloalkoxy, hydroxycarbonyl, C1-C6-alkoxycarbonyl, hydroxycarbonyl-C1-C6-alkoxy, C1-C6-alkoxycarbonyl-C1-C6-alkoxy, amino, C1-C6-alkylamino, di(C1-C6-alkyl)amino, C1-C6-alkylsulfonylamino, C1C6- haloalkylsulfonylamino, (C1-CValkylaminoJcarbonylamino, di(C1-C6- alkyl)aminocarbonylamino, aryl and aryl(C1-C6-alkyl); R7 is C1-C6-alkyl, C1-C6-haloalkyl or phenyl, where the phenyl radical may be partially or fully halogenated and/or may carry one to three of the following groups: C1-C6-alkyl, C1-C6-haloalkyl or C1-C6-alkoxy; and their agriculturally useful salts. Moreover, the invention relates to processes and intermediates for preparing compounds of the formula I, to compositions comprising them and to the use of these derivatives or of the compositions comprising them for controlling harmful plants. Fungicidally effective thienyl-substituted amino acid derivatives which carry an optionally hydroxyl- or alkoxy-substituted alkyl radical in the α-position are described inter alia in EP 450 355. Also known from the literature, for example from US 5,346,907, WO 96/012499 and WO 02/069905, are serine derivatives having pharmaceutical activity which may carry in the α-position an optionally hydroxyl- or alkoxy-substituted alkyl radical, inter alia. However, the herbicidal properties of the prior-art compounds and/or their compatibility with crop plants are not entirely satisfactory. Accordingly, it is an object of the present invention to provide novel, in particular herbicidally active, compounds having improved properties. We have found that this object is achieved by the heteroaroyl-substituted serineamides of the formula I and their herbicidal action. Furthermore, we have found herbicidal compositions which comprise the compounds I and have very good herbicidal action. Moreover, we have found processes for preparing these compositions and methods for controlling unwanted vegetation using the compounds I. Depending on the substitution pattern, the compounds of the formula I comprise two or more centers of chiralty, in which case they are present as enantiomers or diastereomer mixtures. The invention provides both the pure enantiomers or diastereomers and their mixtures. The compounds of the formula I may also be present in the form of their agriculturally useful salts, the nature of the salt generally being immaterial. Suitable salts are, in general, the cations or the acid addition salts of those acids whose cations and anions, respectively, have no adverse effect on the herbicidal action of the compounds I. Suitable cations are in particular the ions of the alkali metals, preferably lithium, sodium and potassium, of the alkaline earth metals, preferably calcium and magnesium, and of the transition metals, preferably manganese, copper, zinc and iron, and also ammonium, where, if desired, one to four hydrogen atoms may be replaced by C1-C4- alkyl, hydroxy-C1-C4-alkyl, C1-C4-alkoxy-C1-C4-alkyl, hydroxy-C1-C4alkoxy-C1-C4alkyl, phenyl or benzyl, preferably ammonium, dimethylammonium, diisopropylammonium, tetramethylammonium, tetrabutylammonium, 2-(2-hydroxyeth-1 -oxy)eth-1 -yl- ammonium, di-(2-hydroxyeth-1-yl)ammonium, trimethylbenzylammonium, furthermore phosphonium ions, sulfonium ions, preferably tri(C1-C4-alkyl)sulfonium, and sulfoxonium ions, preferably tri(C1-C4alkyl)sulfoxonium. Anions of useful acid addition salts are primarily chloride, bromide, fluoride, hydrogensulfate, sulfate, dihydrogenphosphate, hydrogenphosphate, nitrate, bicarbonate, carbonate, hexafluorosilicate, hexafluorophosphate, benzoate, and the anions of C1-C4-alkanoic acids, preferably formate, acetate, propionate and butyrate. The organic moieties mentioned for the substituents R1-R6 or as radicals on phenyl, aryl, heteroaryl or heterocyclyl rings are collective terms for individual enumerations of the specific group members. All hydrocarbon chalns, i.e. all alkyl, alkylsilyl, alkenyl, alkynyl, cyanoalkyl, haloalkyl, haloalkenyl, haloalkynyl, alkoxy, haloalkoxy, alkoxyalkyl, alkoxyalkoxyalkyl, alkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, alkoxycarbonyl, alkenyloxycarbonyl, alkynyloxycarbonyl, alkylamino, alkylsulfonylamino, haloalkyl- sulfonylamino, alkylalkoxycarbonylamino, alkylaminocarbonyl, alkenylaminocarbonyl, alkynylaminocarbonyl, alkylsulfonylaminocarbonyl, dialkylaminocarbonyl, N-alkenyl- N-alkylaminocarbonyl, N-alkynyl-N-alkylamino-carbonyl, N-alkoxy-N-alkylamino- carbonyl, N-alkenyl-N-alkoxyaminocarbonyl, N-alkynyl-N-alkoxyaminocarbonyl, dialkylaminothiocarbonyl, alkylcarbonylalkyl, alkoximinoalkyl, N-(alkylamino)iminoalkyl, N-(dialkylamino)iminoalkyl, alkylcyanoimino, alkylaminocyanoimino, dialkylamino- cyanoimino, formylaminoalkyl, alkoxycarbonylaminoalkyl, (alkylamino)carbonyloxyalkyl, (alkylamino)carbonylaminoalkyl, (dialkylamino)carbonylaminoalkyl, phenylcarbonyl- aminoalkyl, phenylalkyl, phenylcarbonylalkyl, N-alkyl-N-phenylaminocarbonyl, phenylalkylcarbonyl, arylalkyl, heterocyciylalkyl, heterocyclylcarbonylalkyl, N-alkyl-N- heterocyclylaminocarbonyl, heterocyclylalkylcarbonyl, alkylthio and alkylcarbonyloxy moieties may be stralght-chaln or branched. Unless indicated otherwise, halogenated substituents preferably carry one to five identical or different halogen atoms. The term halogen denotes in each case fluorine, chlorine, bromine or iodine. Examples of other meanings are: - C1-C4-alkyl and also the alkyl moieties of tri-C1-C4-alkylsilyl, C1-C4-alkylcarbonyloxy, C1-C6-alkyl-C1-C6-alkoxycarbonylamino, C1-C6-alkyliminooxy-C1-C4alkyl, C1-C4- alkoxy-C1-C4-alkoxy-C1-C4-alkyl, C1-C6-alkoxy-C1-C6-alkyl, C2-C6-alkenyloxy-C1-C4- alkyl, C2-C6-alkynyloxy-C1-C4-alkyl, C1-C6-haloalkoxy-C1-C4-alkyl, C2-C6- haloalkenyloxy-C1-C4-alkyl, C2-C6-haloalkynyloxy-C1-C4-aIkyl, C1-C6-alkoxy-C1-C6- alkoxy-C1-C4-alkyl, C1-C6-alkylthio-C1-C6-alkyl, C2-C6-alkenylthio-C1-C4-alkyl, C2-C6- alkynylthio-C1-C6-alkyl, C1-C6-alkylsulfinyl-C1-C6-alkyl, C1-C6-haloalkylsulfinyl-C1-C4- alkyl, C1-C6-alkylsulfonyl-C1-C6-alkyl, C1-C6-ha!oalkylsurfonyl-C1-C6-alkyl, amino-C1- C4-alkyl, C1-C6-alkylamino-C1-C6-alkyl, di(C1-C6-alkyl)amino-C1-C4-alkyl, formyl- amino-C1-C6-alkyl, C1-C6-alkoxycarbonylamino-C1-C6-alkyl, C1-C6-alkylsulfonyl- amino-C1-C6-alkyl, C1-C6-alkylsulfonyl-(C1-C6-alkylamino)-C1-C6-alkyl, hydroxyl- carbonyl-C1-C6-alkyl, C1-C6-alkoxycarbonyl-C1-C6-alkyl, C1-C6-haloalkoxycarbonyl- C1-C6-alkyl, C1-C6-alkylcarbonyloxy-C1-C6-alkyl, aminocarbonyl-C1-C4-alkyl, C1-C6- alkylaminocarbonyl-C1-C6-alkyl, di(C1-C6-alkyl)aminocarbonyl-C1-C6-alkyl, [(C1-C6- alkyl)aminocarbonylamino]-C1-C4-alkyl, [di(C1-C6-alkyl)aminocarbonylamino]-C1-C6- alkyl, C1-C6-alkylcarbonylamino-C1-C6-alkyl, C1-C6-alkylcarbonyl-(C1-C6-alkylamino)- C1-C6-alkyl, [(C1-C6-alkyl)aminocarbonyloxy]C1-C6-alkyl, [di(C1-C6-alkyl)amino- carbonyloxy]C1-C4-alkyl, {di[di(C1-C6-alkyl)amino]carbonyloxy}C1-C4-alkyll hetero- cyclyl-C1-C4-alkyl, phenyl-C1-C4-alkyl, phenylcarbonylamino-C1-C4-alkyl, phenyl- C1-C4-alkyl, phenylcarbonyl-GrC4-alkyl, heteroarylcarbonyl-C1-C6-alkyl, heteroaryl- carbonyloxy-C1-C4-alkyl, heteroaryloxycarbonyl-C1-C6-alkyl, heteroaryloxy-C1-C6- alkyl, heteroarylthio-Ct-C4-alkyl, heteroarylsulfinyl-C1-C4-alkyl, heteroarylsulfonyl- C1-C6-alkyl, and aryl-(C1-C4-alkyl): for example methyl, ethyl, n-propyl, 1-methyl- ethyl, n-butyl, 1-methylpropyl, 2-methylpropyl and 1,1-dimethylethyl; C1-C6-alkyl and also the alkyl moieties of C1-C6-cyanoalkyl, d-d>-alkoxycarbonyl- C1-C6-alkyl, C1-C6-alkylsulfonylamino, C1-C6-alkylsulfonylaminocarbonyl, N-(C3-C6- alkenyl)-N-(C1-C6-alkyl)aminocarbonyl, (C3-C6-alkynyl)-N-(C1-C6-alkyl)- aminocarbonyl, N-(C-,-C6-alkoxy)-N-(C1-C6-alkyl)aminocarbonyl, C1-C6-alkyl- carbonyl-C1-C6-alkyl, C1-C6-alkoxylmino--C1--C6--alkyl, N-(C1-C6-alkylamino)- imino-C1-C6-alkyl, N-(di-C1-C6-alkylamino)imino-C1-C6-alkyl, (C1-C6-alkyl)- cyanoimino, phenyl-C1-C6-alkyl, phenylcarbonyl-C1-C6-alkyl, N-(C1-C6-alkyl)-N- phenylaminocarbonyl, heterocyclyl-C1-C6-alkyl, heterocyclylcarbonyl-C1-C6-alkyl and N-(C1-C6-alkyl)-N-heterocyclylaminocarbonyl: C1-C6-alkyl as mentioned above, and also, for example, n-pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, n-hexyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 1-methylpentyl, 2-methylpentyl, 3-methyl- pentyl, 4-methylpentyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-di-methylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-ethylbutyl, 2-ethylbutyl, 1,1,2-trimethylpropyl, 1-ethyl-1-methylpropyl and 1-ethyl-3-methylpropyl; C1-C4-alkylcarbonyl: for example methylcarbonyl, ethylcarbonyl, propylcarbonyl, 1-methylethylcarbonyl, butylcarbonyl, 1-methylpropylcarbonyl, 2-methylpropyl- carbonyl or 1,1-dimethylethylcarbonyl; C1-C6-alkylcarbonyl and also the alkylcarbonyl radicals of C1-C6-alkylcarbonyl-C1-C6- alkyl, Ct-Ce-alkylcarbonyloxy-C1-C6-alkyl, C1-C6-alkylcarbonylamino-C1-C4-alkyl, phenyl-C1-C6-alkylcarbonyl and heterocyclyl-C1-C6-alkylcarbonyl, C1-C6- alkylcarbonyl-(C1-C6-alkylarnino)-C1-C6-alkyl: C1-C6-alkylcarbonyl as mentioned above, and also, for example, pentylcarbonyl, 1-methylbutylcarbonyl, 2-methylbutylcarbonyl, 3-methylbutylcarbonyI, 2,2- dimethylpropylcarbonyl, 1-ethylpropylcarbonyl, hexylcarbonyl, 1,1- dimethylpropylcarbonyl, 1,2-dimethylpropylcarbonyl, 1-methylpentylcarbonyl, 2- methylpentylcarbonyl, 3-methylpentylcarbonyl, 4-methylpentylcarbonyl, 1,1- dimethylbutylcarbonyl, 1,2-dimethylbutylcarbonyl, 1,3-dimethylbutylcarbonyl, 2,2- dimethylbutylcarbonyl, 2,3-dimethylbutylcarbonyl, 3,3-dimethylbutylcarbonyl, 1- ethylbutylcarbonyl, 2-ethylbutylcarbonyl, 1,1,2-trimethylpropylcarbonyl, 1,2,2- trimethylpropylcarbonyl, 1-ethyl-1-methylpropylcarbonyl or 1-ethyl-2- methylpropylcarbonyl; C3-C6-cycloalkyl and also the cycloalkyl moieties of C3-C6-cycloalkylcarbonyl: monocyclic saturated hydrocarbons having 3 to 6 ring members, such as cyclopropyl, cyciobutyl, cyclopentyl and cyclohexyl; C3-C6-cycloalkenyl: for example 1-cyclopropenyl, 2-cyclopropenyl, 1-cyclobutenyl, 2- cyclobutenyl, 1-cyclopentenyl, 2-cyclopentenyl, 1,3-cyclopentadienyl, 1,4- cyclopentadienyl, 2,4-cyciopentadienyl, 1-cyclohexenyl, 2-cyclohexenyl, 3- cyclohexenyl, 1,3-cyclohexadienyl, 1,4-cyclohexadienyl, 2,5-cyclohexadienyl; C3-C6-alkenyl and also the alkenyl moieties of C3-C6-alkenyloxycarbonyl, C3-C6- alkenylaminocarbonyl, N-(C3-C6-alkenyl)-N-(C1-C6-alkyl)aminocarbonyl and N-(C3-C6-alkenyl)-N-(C1-C6-alkoxy)aminocarbonyl: for example 1-propenyl, 2-propenyl, 1-methylethenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2- methyl-1-propenyl, 1-methyl-2-propenyl, 2-methyl-2-propenyl, 1-pentenyl, 2- pentenyl, 3-pentenyl, 4-pentenyl, 1-methyl-1-butenyl, 2-methyl-1-butenyl, 3-methyl- 1-butenyl, 1-methyl-2-butenyl, 2-methyl-2-butenyl, 3-methyl-2-butenyl, 1-methyl-3- butenyl, 2-methyl-3-butenyl, 3-methyl-3-butenyl, 1,1-dimethyl-2-propenyl, 1,2- dimethyl-1-propenyl, 1,2-dimethyl-2-propenyl, 1-ethyl-1-propenyl, 1 -ethyl-2- propenyl, 1-hexenyl, 2-hexenyl, 3-hexenyI, 4-hexenyl, 5-hexenyl, 1-methyl-1- pentenyl, 2-methyl-1-pentenyl, 3-methyl-1-pentenyl, 4-methyl-1-pentenyl, 1-methyl- 2-pentenyl, 2-methyl-2-pentenyl, 3-methyl-2-pentenyl, 4-methyl-2-pentenyl, 1- methyl-3-pentenyl, 2-methyl-3-pentenyl, 3-methyl-3-pentenyl, 4-methyl-3-pentenyl, 1-methyl-4-pentenyl, 2-methyl-4-pentenyl, 3-methyl-4-pentenyl, 4-methyl- 4-pentenyl, 1,1-dimethyl-2-butenyl, 1,1-dimethyl-3-butenyl, 1,2-dimethyl-1-butenyl, 1,2-dimethyl-2-butenyl, 1,2-dimethyl-3-butenyl, 1,3-dimethyl-1-butenyl, 1,3-dimethyl- 2-butenyl, 1,3-dimethyl-3-butenyl, 2,2-dimethyl-3-butenyl, 2,3-dimethyl-1-butenyl, 2,3-dimethyl-2-butenyl, 2,3-dimethyl-3-butenyl, 3,3-dimethyl-l-butenyl, 3,3-dimethyl- 2-butenyl, 1-ethyl-1-butenyl, 1-ethyl-2-butenyl, 1-ethyl-3-butenyl, 2-ethyl-1-butenyl, 2-ethyl-2-butenyl, 2-ethyl-3-butenyl, 1,1,2-trimethyl-2-propenyl, 1-ethyl-1-methyl- 2-propenyl, 1-ethyl-2-methyl-1-propenyl and 1-ethyl-2-methyl-2-propenyl; C2-C6-alkenyl and also the alkenyl moieties of C2-C6-alkenylcarbonyl, C2-C6- alkenyloxy-C1-C4-alkyl, C2-C6-alkenylthio-C1-C4-alkyl, phenyl-C2-C4-alkenyl, heteroaryl-C2-C4-alkenyl: C3-C6-alkenyl as mentioned above, and also ethenyl; - C3-C6-alkynyl and also the alkynyl moieties of C3-C6-alkynyloxycarbonyl, C3-C6- alkynylaminocarbonyl, N-(C3-C6-alkynyl)-N-(C1-C6-alkyl)aminocarbonyl, N-(C3-C6- alkynyl)-N-(C1-C6-alkoxy)aminocarbonyl: for example 1-propynyl, 2-propynyl, 1- butynyl, 2-butynyl, 3-butynyl, 1-methyl-2-propynyl, 1-pentynyl, 2-pentynyl, 3- pentynyl, 4-pentynyl, 1-methyl-2-butynyl, 1-methyl-3-butynyl, 2-methyl-3-butynyl, 3- methyl-1-butynyl, 1,1-dimethyl-2-propynyl, 1-ethyl-2-propynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 5-hexynyl, 1-methyl-2-pentynyl, 1-methyl-3-pentynyl, 1-methyl-4-pentynyl, 2-methyl-3-pentynyl, 2-methyl-4-pentynyl, 3-methyl-1-pentynyl, 3-methyl-4-pentynyl, 4-methyl-1-pentynyl, 4-methyl-2-pentynyl, 1,1 -dimethyl- 2-butynyl, 1,1-dimethyl-3-butynyl, 1,2-dimethyl-3-butynyl, 2,2-dimethyl-3-butynyl, 3,3-dimethyl-1-butynyl, 1-ethyl-2-butynyl, 1-ethyl-3-butynyl, 2-ethyl-3-butynyl and 1 -ethyl-1 -methyl-2-propynyl; C2-C6-alkynyl and also the alkynyl moieties of C2-C6-alkynylcarbonyl, C2-C2- alkynyloxy-C1-C4-alkyl, C2-C6-alkynylthio-C1-C4-alkyl, phenyl-C2-C4-alkynyl, heteroaryl-C2-C4-alkynyl: C3-C6-alkynyl as mentioned above, and also ethynyl; C1-C4-cyanoalkyl: for example cyanomethyl, 1-cyanoeth-1-yl, 2-cyanoeth-1-yl, 1-cyanoprop-1-yl, 2-cyanoprop-1-yl, 3-cyanoprop-1-yl, 1-cyanoprop-2-yl, 2-cyano- prop-2-yl, 1-cyanobut-1-yl, 2-cyanobut-1-yl, 3-cyanobut-1-yl, 4-cyanobut-1-yl, 1-cyanobut-2-yl, 2-cyanobut-2-yl, 1-cyanobut-3-yl, 2-cyanobut-3-yl, 1-cyano- 2-methylprop-3-yl, 2-cyano-2-methylprop-3-yl, 3-cyano-2-methylprop-3-yl and 2-cyanomethylprop-2-yl; C1-C4-hydroxyalkyl and also the C1-C4-hydroxyalkyl moieties of phenyl-C1-C4- hydroxyalkyl, heteroaryl-C1-C4-hydroxyalkyl: for example hydroxymethyl, 1- hydroxyeth-1-yl, 2-hydroxyeth-1-yl, 1-hydroxyprop-1-yl, 2-hydroxyprop-1-yl, 3- hydroxyprop-1-yl, 1-hydroxyprop-2-yl, 2-hydroxyprop-2-yl, 1-hydroxybut-1-yl, 2- hydroxybut-1-yl, 3-hydroxybut-1-yl, 4-hydroxybut-1-yl, 1-hydroxybut-2-yl, 2- hydroxybut-2-yl, 1-hydroxybut-3-yl, 2-hydroxybut-3-yl, 1-hydroxy-2-methylprop-3-yl, 2-hydroxy-2-methylprop-3-yl, 3-hydroxy-2-methylprop-3-yl and 2-hydroxymethyl- prop-2-yl, 1,2-dihydroxyethyl, 1,2-dihydroxyprop-3-yl, 2,3-dihydroxyprop-3-yl, 1,2-dihydroxyprop-2-yl, 1,2-dihydroxybut-4-yl, 2,3-dihydroxybut-4-yl, 3,4-dihydroxy- but-4-yl, 1,2-dihydroxybut-2-yl, 1,2-dihydroxybut-3-yl, 2,3-dihydroxybut-3-yl, 1,2-dihydroxy-2-methylprop-3-yl, 2,3-dihydroxy-2-methylprop-3-yl; C1-C6-hydroxyalkyl: C1-C4-hydroxya!kyl as stated above, and also for example 1-hydroxypent-5-yl, 2-hydroxypent-5-yl, 3-hydroxypent-5-yl, 4-hydroxypent-5-yl, 5-hydroxypent-5-yl, 1-hydroxypent-4-yl, 2-hydroxypent-4-yl, 3-hydroxypent-4-yl, 4-hydroxypent-4-yl, 1-hydroxypent-3-yl, 2-hydroxypent-3-yl, 3-hydroxypent-3-yl, 1 -hydroxy-2-methylbut-3-yl, 2-hydroxy-2-methylbut-3-yl, 3-hydroxy-2-methylbut-3-yl, 1 -hydroxy-2-methylbut-4-yl, 2-hydroxy-2-methylbut-4-yl, 3-hydroxy-2-methylbut-4-yl, 4-hydroxy-2-methylbut-4-yl, 1 -hydroxy-3-methylbut-4-yl, 2-hydroxy-3-methylbut-4-yl, 3-hydroxy-3-methylbut-4-yl, 4-hydroxy-3-methylbut-4-yl, 1 -hydroxyhex-6-yl, 2-hydroxyhex-6-yl, 3-hydroxyhex-6-yl, 4-hydroxyhex-6-yl, 5-hydroxyhex-6-yl, 6-hydroxyhex-6-yl, 1-hydroxy-2-methylpent-5-yl, 2-hydroxy-2-methylpent-5-yl, 3-hydroxy-2-methylpent-5-yl, 4-hydroxy-2-methylpent-5-yl, 5-hydroxy-2-methylpent- 5-yI, 1-hydroxy-3-methylpent-5-yl, 2-hydroxy-3-methylpent-5-yl, 3-hydroxy-3-methyl- pent-5-yl, 4-hydroxy-3-methylpent-5-yl, 5-hydroxy-3-methylpent-5-yl, 1-hydroxy-4- methylpent-5-yl, 2-hydroxy-4-methylpent-5-yl, 3-hydroxy-4-methylpent-5-yl, 4-hydroxy-4-methylpent-5-yl, 5-hydroxy-4-methylpent-5-yl, 1 -hydroxy-5-methylpent- 5-yl, 2-hydroxy-5-methylpent-5-yl, 3-hydroxy-5-methylpent-5-yl, 4-hydroxy-5-methyl- pent-5-yl, 5-hydroxy-5-methylpent-5-yl, 1-hydroxy-2,3-dimethylbut-4-yl, 2-hydroxy- 2,3-dimethylbut-4-yl, 3-hydroxy-2,3-dimethylbut-4-yl, 4-hydroxy-2,3-dimethylbut-4-yl, 1,2-dihydroxypent-5-yl, 2,3-dihydroxypent-5-yl, 3,4-dihydroxypent-5-yl, 4,5- dihydroxypent-5-yl, 1,2-dihydroxypent-4-yl, 2,3-dihydroxypent-4-yl, 3,4-dihydroxy- pent-4-yl, 4,5-dihydroxypent-4-yl, 1,2-dihydroxypent-3-yl, 2,3-dihydroxypent-3-yl, 1,2-dihydroxy-2-methylbut-3-yl, 2,3-dihydroxy-2-methylbut-3-yl, 3,4-dihydroxy-2- methylbut-3-yl, 2-hydroxy-2-hydroxymethylbut-3-yl, 1,2-dihydroxy-2-methylbut-4-yl, 2,3-dihydroxy-2-methylbut-4-yl, 3,4-dihydroxy-2-methylbut-4-yl, 1,2-dihydroxy-3- methylbut-4-yl, 2,3-dihydroxy-3-methylbut-4-yl, 3,4-dihydroxy-3-methylbut-4-yl, 3- hydroxy-3-hydroxymethylbut-4-yl, 1,2-dihydroxyhex-6-yl, 2,3-dihydroxyhex-6-yl, 3,4- dihydroxyhex-6-yl, 4,5-dihydroxyhex-6-yl, 5,6-dihydroxyhex-6-yl, 1,2-dihydroxy-2- methylpent-5-yl, 2,3-dihydroxy-2-methylpent-5-yl, 3,4-dihydroxy-2-methylpent-5-yl, 4,5-dihydroxy-2-methylpent-5-yl, 2-hydroxy-2-hydroxymethylpent-5-yl, 1,2- dihydroxy-3-methylpent-5-yl, 2,3-dihydroxy-3-methylpent-5-yl, 3,4-dihydroxy-3- methylpent-5-yl, 4,5-dihydroxy-3-methylpent-5-yl, 3-hydroxy-3-hydroxymethylpent-5- yl, 1,2-dihydroxy-4-methylpent-5-yl, 2,3-dihydroxy-4-methylpent-5-yl, 3,4-dihydroxy- 4-methylpent-5-yl, 4,5-dihydroxy-4-methylpent-5-yl, 4-hydroxy-4-hydroxymethylpent- 5-yl, 1,2-dihydroxy-5-methylpent-5-yl, 2,3-dihydroxy-5-methylpent-5-yl, 3,4- dihydroxy-5-methylpent-5-yl, 4,5-dihydroxy-5-methylpent-5-yl, 5-hydroxy-5- hydroxymethylpent-5-yl, 1,2-dihydroxy-2,3-dimethylbut-4-yl, 2,3-dihydroxy-2,3- dimethylbut-4-yl, 3,4-dihydroxy-2,3-dimethylbut-4-yl, 2-hydroxy-2-hydroxymethyl-3- methylbut-4-yl, 3-hydroxy-3-hydroxymethyl-2-methylbut-4-yl; C1-C4haloalkyl and also the haloalkyl moieties of phenyl-C1-C4-haloalkyl, heteroaryl-C1-C4-haloalkyl: a C1-C4-alkyl radical as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, i.e., for example, chloromethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, bromomethyl, iodomethyl, 2-fluoroethyl, 2-chloroethyl, 2-bromoethyl, 2-iodoethyl, 2,2-difluoroethyI, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2,2-difluoro- ethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2-trichloroethyl, pentafluoroethyl, 2-fluoropropyl, 3-fluoropropyl, 2,2-difluoropropyl, 2,3-difluoropropyl, 2-chloropropyl, 3-chloropropyl, 2,3-dichloropropyl, 2-bromopropyl, 3-bromopropyl, 3,3,3-trifluoropropyl, 3,3,3-trichloropropyl, 2,2,3,3,3-pentafluoropropyl, heptafluoropropyl, 1-(fluoromethyl)-2-fluoroethyl, 1-(chloromethyl)-2-chloroethyl, l-(bromomethyl)- 2-bromoethyl, 4-fluorobutyl, 4-chlorobutyl, 4-bromobutyl, nonafluorobutyl, 1,1,2,2,- tetrafluoroethyl and 1-trifluoromethyl-1,2,2,2-tetrafluoroethyl; C1-CVhaloalkyl and also the haloalkyl moieties of C1-C6-haloalkylsulfonylamino, C1-C6-haloalkyl-C1-C4-thioalkyl: C1-C4-haloalkyl as mentioned above, and also, for example, 5-fluoropentyl, 5-chloropentyl, 5-bromopentyl, 5-iodopentyl, undecafluoropentyl, 6-fluorohexyl, 6-chlorohexyl, 6-bromohexyl, 6-iodohexyl and dodecafluorohexyl; C3-C6-haloalkenyl: a C3-C6-alkenyl radical as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, for example 2-chloro- prop-2-en-1-yl, 3-chloroprop-2-en-1 -yl, 2,3-dichloroprop-2-en-1-yl, 3,3-dichioroprop- 2-en-1-yl, 2,3,3-trichloro-2-en-1-yl, 2,3-dichlorobut-2-en-1-yl, 2-bromoprop-2-en-1-yl, 3-bromoprop-2-en-1-yl, 2,3-dibromoprop-2-en-1-yl, 3,3-dibromoprop-2-en-1-yl, 2,3,3-tribromo-2-en-1-yl or 2,3-dibromobut-2-en-1-yl; C2-C6-haloalkenyl and also the C2-C6-haloalkenyl moieties of C2-C6-haloalkenyloxy- C1-C4-alkyl, C2-C6-haloalkenyl-C1-C4-thioalkyl, phenyl-C2-C4-haloalkenyI, heteroaryl- C2-C4-haIoalkenyl: a C2-C6-alkenyl radical as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, for example 2-chloro- vinyl, 2-chloroallyl, 3-chloroallyl, 2,3-dichloroallyl, 3,3-dichloroallyl, 2,3,3- trichloroallyl, 2,3-dichlorobut-2-enyl, 2-bromovinyl, 2-bromoallyl, 3-bromoallyl, 2,3- dlbromoallyl, 3,3-dibromoallyl, 2,3,3-tribromoallyl or 2,3-dibromobut-2-enyl; C2-C6-cyanoalkenyl: for example 2-cyanovinyl, 2-cyanoallyl, 3-cyanoallyl, 2,3- dicyanoallyl, 3,3-dicyanoallyl, 2,3,3-tricyanoallyl, 2,3-dicyanobut-2-enyl; C2-C6-hydroxyalkenyl and also the hydroxy moieties of phenyl-C1-C4- hydroxyalkenyl, heteroaryl-C1-C4-hydroxyalkenyr. for example 2-hydroxyvinyl, 2- hydroxyallyl, 3-hydroxyallyl, 2,3-dihydroxyallyl, 3,3-dihydroxyallyl, 2,3,3- trihydroxyallyl, 2,3-dihydroxybut-2-enyl; C3-C6-haloalkynyl: a C3-C6-alkynyl radical as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, for example 1,1-difluoroprop-2-yn-1-yl, 3-iodoprop-2-yn-1-yl, 4-fluorobut-2-yn-1-yl, 4-chlorobut- 2-yn-1-yl, 1,1-difluorobut-2-yn-1-yl, 4-iodobut-3-yn-1-yl, 5-fluoropent-3-yn-1-yl, 5-iodopent-4-yn-1-yl, 6-fluorohex-4-yn-1-yl or 6-iodohex-5-yn-1-yl; C2-C6-haloalkynyl and also the C2-C6-haloalkynyl moieties of C2-C6-haloalkynyloxy- C-,-C4-alkyl, C^-Ce-haloalkynyl-C^-thioalkyl, phenyl-C2-C4-haloalkynyl, heteroaryl- C2-C4-haloalkynyl: a C2-C6-alkynyl radical as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, for example 1,1-di- fluoroprop-2-yn-1-yl, 3-iodoprop-2-yn-1-yl, 4-fluorobut-2-yn-1-yl, 4-chlorobut-2-yn-1- yl, 1,1-difluorobut-2-yn-1-yl, 4-iodobut-3-yn-1-yl, 5-fluoropent-3-yn-1-yl, 5-iodopent- 4-yn-1-yl, 6-fluorohex-4-yn-1-yl or 6-iodohex-5-yn-1-yl; - C2-C6-cyanoalkynyl: for example 1,1-dicyanoprop-2-yn-1-yl, 3-cyanoprop-2-yn-1-yl, 4-cyano-but-2-yn-1-yl, 1,1-dicyanobut-2-yn-1-yl, 4-cyanobut-3-yn-1-yl, 5-cyanopent- 3-yn-1-yl, 5-cyanopent-4-yn-1-yl, 6-cyanohex-4-yn-1-yl or6-cyanohex-5-yn-1-yl; - C2-C6-hydroxyalkynyl and also the hydroxy moieties of phenyl-C2-C4-hydroxyalkynyl for example 1,1-dihydroxyprop-2-yn-1-yl, 3-hydroxyprop-2-yn-1-yl, 4-hydroxybut-2- yn-1-yl, 1,1-dihydroxybut-2-yn-1-yl, 4-hydroxybut-3-yn-1-yl, 5-hydroxypent-3-yn-1-yl 5-hydroxypent-4-yn-1-yl, 6-hydroxyhex-4-yn-1-yl or 6-hydroxyhex-5-yn-1-yl; - C1-C6-alkylsulfinyl (C1-C6-akyl-S(=0)-) and also the d-dr-alkylsulfinyl moieties of C1-C6-alkylsulfinyl-C1-C6-alkyl: for example methylsulfinyl, ethylsulfinyl, propylsulfinyl, 1-methylethylsulfinyl, butylsulfinyl, 1-methylpropylsulfinyl, 2- methylpropylsulfinyl, 1,1-dimethylethylsulfinyl, pentylsulfinyl, 1-methylbutylsulfinyl, 2-methylbutylsutfinyl, 3-methylbutylsuifinyl, 2,2-dimethylpropylsuIfinyl, 1- ethylpropylsulfinyl, 1,1-dimethylpropylsulfinyl, 1,2-dimethylpropylsulfinyl, hexyl- sulfinyl, 1-methylpentylsulfinyl, 2-methylpentylsulfinyI, 3-methylpentylsulfinyl, 4- methylpentylsulfinyl, 1,1-dimethylbutylsulfinyl, 1,2—dimethylbutylsulfinyl, 1,3- dimethylbutylsulfinyl, 2,2-dimethylbutylsulfinyl, 2,3-dimethylbutylsulfinyl, 3,3- dimethylbutylsulfinyl, 1-ethylbutylsu!finyl, 2-ethylbutylsulfinyl, 1,1,2-trimethyl- propylsulfinyl, 1,2,2-trimethylpropylsulfinyl, 1-ethyl-1-methylpropylsulfinyl and 1- ethyl-2-methylpropylsulfinyl; C1-C6-haloalkylsulfinyl and also the C1-C6-haloalkylsulfinyl moieties of C1-C6- haloalkylsulfinyl-C1-C6-alkyl: Cn—C6—alkylsulfinyl radical as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, i.e. for example fluoromethylsulfinyl, difluoromethylsulfinyl, trifluoromethylsulfinyl, chlorodifluoromethylsulfinyl, bromodifiuoromethylsulfinyl, 2-fluoroethylsulfinyl, 2- chloroethylsulfinyl, 2-bromoethylsulfinyl, 2-iodoethylsulfinyl, 2,2- difluoroethylsuifinyl, 2,2,2—trifluoroethylsuifinyl, 2,2,2-trichloroethylsulfinyl, 2- chloro-2-fluoroethylsulfinyl, 2-chloro-2,2-difluoroethylsulfinyl, 2,2-dichioro-2- fluoroethylsulfinyl, pentafluoroethylsulfinyl, 2-fluoropropylsulfinyl, 3- fluoropropylsulfinyl, 2-chloropropylsu!finyl, 3-chloropropylsulfinyl, 2- bromopropylsulfinyl, 3-bromopropylsulfinyl, 2,2-difluoropropylsulfinyl, 2,3-difluoro- propylsulfinyl, 2,3-dichloropropylsulfinyl, 3,3,3-trifluoropropylsulfinyl, 3,3,3-trichloro- propylsulfinyl, 2,2,3,3,3-pentafluoropropylsulfinyl, heptafluoropropylsulfinyl, 1- (fluoromethyl)-2-fluoroethylsulfiny(, 1-(chloromethyl)-2-chloroethylsulfinyl, 1- (bromomethyl)-2-bromoethylsulfinyl, 4-fluorobutylsulfinyl, 4-chlorobutylsuIfinyl, 4- bromobutylsulfinyl, nonafiuorobutylsulfinyl, 5-fluoropentylsulfinyl, 5-chloropentyl- sulfinyl, 5-bromopentylsulfinyl, 5-iodopentylsulfinyl, undecafluoropentylsulfinyl, 6- fluorohexylsulfinyl, 6-chlorohexylsulfinyl, 6-bromohexylsulfinyl, 6-iodohexylsulfinyl and dodecafluorohexylsulfinyl; C1--Ce-alkylsulfonyl (C1-C6-alkyl-S(0)2-) and also the C1-C6-alkylsulfonyl moieties of C1-C6-alkylsulfonyl-C1-C6-alkyl, C1-C6-alkylsulfonylamino, C1-C6- alkylsulfonylamino-C1-C4-alkyl, C1-C6-alkylsulfonyl-(C1-C6-alkylamino)-C1-C4-alkyl: for example methylsulfonyl, ethylsulfonyl, propylsulfonyl, 1-methylethylsulfonyl, butylsulfonyl, 1-methylpropylsulfonyl, 2-methylpropylsulfonyl, 1,1- dimethylethytsulfonyt, pentylsulfonyl, 1-methylbutylsulfonyl, 2-methylbutylsulfonyl, 3-methylbutylsulfonyl, 1,1-dimethylpropylsulfonyl, 1,2-dimethylpropylsulfonyl, 2,2- dimethylpropylsulfonyl, 1-ethylpropylsulfonyl, hexylsulfonyl, 1-methylpentylsulfonyl, 2-methylpentylsulfonyl, 3-methylpentylsulfonyl, 4-methylpentylsulfonyl, 1,1- dimethylbutylsulfonyl, 1,2-dimethylbutylsulfonyl, 1,3-dimethylbutylsulfonyl, 2,2- dimethylbutylsulfonyl, 2,3-dimethylbutylsulfonyl, 3,3-dimethylbutylsulfonyl, 1- ethylbutylsulfonyl, 2-ethylbutylsulfonyl, 1,1,2-trimethylpropylsulfonyl, 1,2,2- trimethylpropylsulfonyl, 1-ethyl-1-methylpropylsulfonyl and 1 —ethyl—2— methylpropylsulfonyl; C1-C6-haloalkylsulfonyl and also the C1-C6-haloalkylsulfonyl moieties of C-,-C6- haloalkylsulfonyl-C1-C6-alkyl, C1-C6-haloalkylsulfonylamino: a C1-C6-alkylsulfonyl radical as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, i.e. for example fiuoromethylsulfonyl, difluoromethylsulfonyl, trifluoromethylsulfonyl, chlorodifluoromethylsulfonyl, bromodifluoromethylsulfonyl, 2-fluoroethylsulfonyl, 2-chloroethylsulfonyI, 2- bromoethylsulfonyl, 2-iodoethylsulfonyl, 2,2-difluoroethyl-sulfonyl, 2,2,2- trifluoroethylsulfonyl, 2-chloro-2-fluoroethylsulfonyl, 2-chloro-2,2- difluoroethylsulfonyl, 2,2-dichloro-2-fluoroethylsulfonyl, 2,2,2-trichloroethylsulfonyl, pentafluoroethylsulfonyl, 2-fluoropropylsulfonyl, 3-fluoropropylsulfonyl, 2- chloropropylsulfonyl, 3-chloropropylsulfonyl, 2-bromopropylsulfonyl, 3- bromopropylsulfonyl, 2,2-difiuoropropylsuifonyl, 2,3-difluoropropylsulfonyl, 2,3- dichloropropylsulfonyl, 3,3,3-trifiuoropropylsulfonyl, 3,3,3-trichloropropylsulfonyl, 2,2,3,3,3-pentafluoropropylsulfonyl, heptafluoropropylsulfonyl, 1-(fluoromethyl)-2- fluoroethylsulfonyl, 1-(chloromethyl)-2-chloroethylsulfonyI, 1-(bromomethyl)-2- bromoethylsulfonyl, 4-fluorobutylsulfonyl, 4-chlorobutylsulfonyl, 4- bromobutylsulfonyl, nonafluorobutylsulfonyl, 5-fluoropentylsulfonyl, 5- chloropentylsulfonyl, 5-bromopentylsulfonyl, 5-iodopentylsulfonyl, 6- fluorohexylsulfonyl, 6-bromohexylsulfonyl, 6-iodohexylsulfonyl and dodecafluorohexylsulfonyl; C^d-a'koxy and also the alkoxy moieties of hydroxycarbonyl-C1-C6-a'koxy, crd- alkoxycarbonyl-C1-C6-alkoxy, C1-C6-alkoxy-C1-C6-alkoxy-C1-C6-alkyl and C1--C4- alkyl-C1-C6-alkoxycarbonylamino: for example methoxy, ethoxy, propoxy, 1- methylethoxy, butoxy, 1-methylpropoxy, 2-methylpropoxy and 1,1-dimethylethoxy; C1-C6-alkoxy and also the alkoxy moieties of hydroxycarbonyl-CVCValkoxy, C1-C6- alkoxycarbonyl-C1-C6-alkoxy, N-(C1-C6-alkoxy)-N-(C1-C6-alkyl)aminocarbonyl, N-(C3-C6-alkenyl)-N-(C1-C6-alkoxy)aminocarbonyl, N-(C3-C6-alkynyl)-N-(C1-C6- alkoxy)aminocarbonyl and CVCfralkoxylmino-C-rCValkyl: C1-C4-alkoxy as mentioned above, and also, for example, pentoxy, 1-methylbutoxy, 2-methylbutoxy, 3-methoxylbutoxy, 1,1-dimethylpropoxy, 1,2-dimethylpropoxy, 2,2-dimethylpropoxy, 1-ethylpropoxy, hexoxy, 1-methylpentoxy, 2-methylpentoxy, 3-methylpentoxy, 4-methylpentoxy, 1,1-dimethylbutoxy, 1,2-dimethylbutoxy, 1,3-dimethylbutoxy, 2,2-dimethylbutoxy, 2,3-dimethylbutoxy, 3,3-dimethylbutoxy, 1-ethylbutoxy, 2-ethylbutoxy, 1,1,2-trimethylpropoxy, 1,2,2-trimethylpropoxy, 1-ethyl-1-methyl- propoxy and 1-ethyl-2-methylpropoxy; C1-C4-haloalkoxy: a C1-C4-alkoxy radical as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, i.e., for example, fluoromethoxy, difluoromethoxy, trifluoromethoxy, chlorodifluoromethoxy, bromo- difluoromethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2-bromomethoxy, 2-iodoethoxy, 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy, 2-chloro-2-fluoroethoxy, 2-chloro- 2,2-difluoroethoxy, 2,2-dichloro-2-fluoroethoxy, 2,2,2-trichloroethoxy, pentafluoro- ethoxy, 2-fluoropropoxy, 3-fluoropropoxy, 2-chloropropoxy, 3-chloropropoxy, 2-bromopropoxy, 3-bromopropoxy, 2,2-difluoropropoxy, 2,3-difluoropropoxy, 2,3-dichloropropoxy, 3,3,3-trifluoropropoxy, 3,3,3-trichloropropoxy, 2,2,3,3,3-penta- fluoropropoxy, heptafluoropropoxy, 1 -(fluoromethyl)-2-fluoroethoxy, 1 -(chloromethyl)-2-chloroethoxy, 1 -(bromomethyl)-2-bromoethoxy, 4-fluorobutoxy, 4-chlorobutoxy, 4-bromobutoxy and nonafluorobutoxy; C^-Ce-haloalkoxy and also the C-pCe-haloalkoxy moieties of C1-CVhaloalkoxy-Cr C4-alkyl, C1-C6-haloalkoxycarbonyl-C1-C4-alkyl: C1-C4-haloalkoxy as mentioned above, and also, for example, 5-fiuoropentoxy, 5-c'nioropentoxy, 5-bromopentoxy, 5- iodopentoxy, undecafluoropentoxy, 6-fluorohexoxy, 6-chlorohexoxy, 6- bromohexoxy, 6-iodohexoxy and dodecafluorohexoxy; C1-C6-alkoxy-C1-C4-alkyl and also the C1-C6-alkoxy-C1-C4-alkyl moieties of C1-C6- alkoxy-C1-C4-alkoxy-C1-C4-alkyr. C1-C4-alkyl which is substituted by C1-C6-alkoxy as mentioned above, i.e., for example, methoxymethyl, ethoxymethyl, propoxymethyl, (l-methylethoxy)methyl, butoxymethyl, (l-methylpropoxy)methyl, (2-methyl- propoxy)methyl, (1,1-dimethylethoxy)methyl, 2-(methoxy)ethyl, 2-(ethoxy)ethyl, 2-(propoxy)ethyl, 2-(1-methylethoxy)ethyl, 2-(butoxy)ethyl, 2-(1-methylpropoxy)- ethyl, 2-(2-methylpropoxy)ethyl, 2-(1,1-dimethylethoxy)ethyl, 2-(methoxy)propyl, 2-(ethoxy)propyl, 2-(propoxy)propyl, 2-(1-methylethoxy)propyl, 2-(butoxy)propyl, 2-(1-methylpropoxy)propyl, 2-(2-methylpropoxy)propyl, 2-(1,1-dimethylethoxy)- propyl, 3-(methoxy)propyl, 3-(ethoxy)propyl, 3-(propoxy)propyl, 3-(1-methylethoxy)- propyl, 3-(butoxy)propyl, 3-(1-methylpropoxy)propyl, 3-(2-methylpropoxy)propyl, 3-(1,1-dimethylethoxy)propyl, 2-(methoxy)butyl, 2-(ethoxy)butyl, 2-(propoxy)butyl, 2-(1-methylethoxy)butyl, 2-(butoxy)butyl, 2-(1-methylpropoxy)butyl, 2-(2-methyl- propoxy)butyl, 2-(1,1-cSimethylethoxy)butyl, 3-(methoxy)butyl, 3-(ethoxy)butyl, 3-(propoxy)butyl, 3-(1-methylethoxy)butyl, 3-(butoxy)butyl, 3-(1-methylpropoxy)- butyl, 3-(2-methylpropoxy)butyl, 3-(1,1-dimethylethoxy)butyl, 4-(methoxy)butyl, 4-(ethoxy)butyl, 4-(propoxy)butyl, 4-(1-methylethoxy)butyl, 4-(butoxy)butyl, 4-(1-methylpropoxy)butyl, 4-(2-methylpropoxy)butyl and 4-(1,1-dimethylethoxy)butyl; C1-C4-alkoxycarbonyl and also the alkoxycarbonyl moieties of C1-C4-alkoxycarbonyl- C1-CA-alkoxy, C1-C4alkoxy-C1-C4alkoxycarbonyl and di^C1-C4alkyl)amino-C^C^ alkoxycarbonyl: for example methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, 1-methylethoxycarbonyl, butoxycarbonyl, 1-methylpropoxycarbonyl, 2- methylpropoxycarbonyl or 1,1-dimethylethoxycarbonyl; C1-C6-alkoxycarbonyl and also the alkoxycarbonyl moieties of C1-C6-alkoxycarbonyl- CTC6-alkoxy and C1-C6-alkoxycarbonylamino-C1-C4-alkyl: C1-C4-alkoxycarbonyl as mentioned above, and also, for example, pentoxycarbonyl, 1-methylbutoxycarbonyl, 2-methylbutoxycarbonyl, 3-methylbutoxycarbonyl, 2,2-dimethylpropoxycarbonyl, 1- ethylpropoxycarbonyl, hexoxycarbonyl, 1,1-dimethylpropoxycarbonyl, 1,2- dimethylpropoxycarbonyl, 1-methylpentoxycarbonyl, 2-methylpentoxycarbonyl, 3- methylpentoxycarbonyl, 4-methylpentoxycarbonyl, 1,1-dimethylbutoxycarbonyl, 1,2- dimethylbutoxycarbonyl, 1,3-dimethylbutoxycarbonyl, 2,2-dimethylbutoxycarbonyl, 2,3-dimethylbutoxycarbonyl, 3,3-dimethylbutoxycarbonyl, 1-ethylbutoxycarbonyl, 2- ethylbutoxycarbonyl, 1,1,2-trimethylpropoxycarbonyl, 1,2,2- trimethylpropoxycarbonyl, 1-ethyl-1-methylpropoxycarbonyl or 1-ethyl-2- m ethyl propoxyca rbony I ; C^-C^-alkylthio and also the C1-C4-alkylthio moieties of C1-C6-haloalkyl-C^C^ thioalkyl, C2-C6-haloalkenyl-C1-C4-thioalkyl, C2-C6-haloalkynyl-C1-C4-thioalkyl: for example methylthio, ethylthio, propylthio, 1-methylethylthio, butylthio, 1- methylpropylthio, 2-methylpropylthio and 1,1-dimethylethylthio; C1-C6-alkylthio and also the C1-C6-alkylthio moieties of C1-C6-alkylthio-C1-C4-alkyl: C^C^alkylthio as mentioned above, and also, for example, pentylthio, 1- methylbutylthio, 2-methylbutylthio, 3-methylbutylthio, 2,2-dimethylpropylthio, 1- ethylpropylthio, hexylthio, 1,1-dimethylpropylthio, 1,2-dimethylpropylthio, 1- methylpentylthio, 2-methylpentylthio, 3-methylpentylthio, 4-methylpentylthio, 1,1- dimethylbutylthio, 1,2-dimethylbutylthio, 1,3-dimethylbutylthio, 2,2-dimethylbutyI- thio, 2,3-dimethylbutylthio, 3,3-dimethylbutylthio, 1-ethylbutylthio, 2-ethylbutylthio, 1,1,2-trimethylpropylthio, 1,2,2-trimethylpropylthio, 1-ethyl-1-methylpropylthio and 1 -ethyl-2-methylpropylthio; C1-C6-alkylamino and also the C1-C6-alkylamino radicals of N-(C1-C6-alkylamino)- imino-C1-C6-alkyl, C1-C6-alkylamino-C1-C4-alkyl, C1-C6-alkylsulfonyl-(C1-C6- alkylamino)-C1-C4-alkyl, C1-C6-alkylcarbonyl-(C1-C6-alkylamino)-C1-C4-alkyl and [(C1-C6-alkyl)amino-cyanoimino: for example methylamino, ethylamino, propylamino, 1-methylethylamino, butylamino, 1-methylpropylamino, 2-methylpropylamino, 1,1- dimethylethylamino, pentylamino, 1-methylbutylamino, 2-methylbutylamino, 3- methylbutylamino, 2,2-dimethylpropylamino, 1-ethylpropylamino, hexylamino, 1,1- dimethylpropylamino, 1,2-dimethylpropylamino, 1-methylpentylamino, 2- methylpentylamino, 3-methylpentylamino, 4-methylpentylamino, 1,1- dimethylbutylamino, 1,2-dimethylbutylamino, 1,3-dimethylbutylamino, 2,2- dimethylbutylamino, 2,3-dimethylbutylamino, 3,3-dimethylbutylamino, 1- ethylbutylamino, 2-ethylbutylamino, 1,1,2-trimethylpropylamino, 1,2,2- trimethylpropylamino, 1-ethyl-1-methylpropylamino or 1-ethyl-2-methylpropylamino; di-(C1-C4-alkyl)amino: for example N,N-dimethylamino, N,N-diethylamino, N,N-dipropylamino, N,N-di-(1-methylethyl)amino, N,N-dibutylamino, N,N-di-(1-methylpropyl)amino, N,N~di-(2-methylpropyl)amino, N,N-di-(1,1-dimethyl- ethyl)amino, N-ethyl-N-methylamino, N-methyl-N-propylamino, N-methyl- N-(1-methylethyl)amino, N-butyl-N-methylamino, N-methyl-N-(l-methylpropyl)- amino, N-methyl-N-(2-methylpropyl)amino, N-(1,1-dimethylethyl)-N-methylamino, N-ethyl-N-propylamino, N-ethyl-N-(1 -methylethyl)amino, N-butyl-N-ethylamino, N-ethyl-N-(1 -methylpropyl)amino, N-ethyl-N-(2-methylpropyl)amino, N-ethyl- N-(1,1-dimethylethyl)amino, N-(1-methylethyl)-N-propylamino, N-butyl-N-propyl- amino, N-(1-methylpropyl)-N-propylamino, N-(2-methylpropyl)-N-propylamino, N-( 1,1 -dimethylethyl)-N-propylamino, N-butyl-N-(1 -methylethyl)amino, N-(1 -methyl- ethyl)-N-(1 -methylpropyl)amino, N-(1 -methylethyl)-N-(2-methylpropyl)amino, N-(1,1-dimethylethyl)-N-(1-methylethyl)amino, N-butyl-N-(1-methylpropyl)amino, N-butyl-N-(2-methylpropyl)amino, N-butyl-N-(1,1-dimethylethyl)amino, N-(1-methyl- propyI)-N-(2-methylpropyl)amino, N-(1,1-dimethylethyl)-N-(1-methylpropyl)amino and N-(1,1-dimethylethyl)-N-(2-methylpropyl)amino; di(C1-C6-alkyl)amino and also the dialkylamino radicals of N-(di-C1-C6- alkylamino)imino-C1-C6-alkyl, di(C1-C6-alkyl)amino-C1-C4-alkyl, [di(C1-C6- alkyl)aminocabonyloxy]-C1-C4-alkyl, {di[di(C1-C6-alkyl)amino]cabonyloxy}-C1-C4-alkyl and ^((C1-C6-alkyl)aminoJcyanoimino: di(C1-C4-alkyl)amino as mentioned above, and also, for example, N,N-dipentylamino, M,N-dihexylamino, N-methyl-N- pentylamino, N-ethyl-N-pentylamino, N-methyl-N-hexylamino and N-ethyl-N- hexylamino; (C1-C4-alkylamino)carbonyl: for example methylaminocarbonyl, ethylaminocarbonyl, propylaminocarbonyl, 1 -methylethylaminocarbonyl, butylaminocarbonyl, 1-methylpropylaminocarbonyl, 2-methylpropylaminocarbonyl or 1,1-dimethylethylaminocarbonyl; (C^CValkylamino^arbonyl and also the (C1-C4-alkylamino)carbonyl moieties of (C1-C4-alkylamino)carbonylamino: for example methylaminocarbonyl, ethylaminocarbonyl, propylaminocarbonyl, 1-methylethylaminocarbonyl, butylaminocarbonyl, 1-methylpropylaminocarbonyl, 2-methylpropylaminocarbonyl or 1,1 -dimethylethylaminocarbonyl; di(C1-C4-alkyl)aminocarbonyl and also the di(C1-C4-alkyl)aminocarbonyl moieties of di(C1-C4-alkyl)aminocarbonylamino: for example N,N-dimethylaminocarbonyl, N,N-diethylaminocarbonyl, N,N-di-(1-methylethyl)aminocarbonyl, N,N-dipropyl- aminocarbonyl, N,N-dibutylaminocarbonyl, N,N-di-(1-methylpropyl)aminocarbonyl, N,N-di-(2-methylpropyl)aminocarbonyl, N,N-di-(1,1-dimethylethyl)aminocarbonyl, N-ethyl-N-methylaminocarbonyl, N-methyl-N-propylaminocarbonyl, N-methyl- N-( 1 -methylethyl)aminocarbonyl, N-butyl-N-methylaminocarbonyl, N-methyl- N-(1-methylpropyl)aminocarbonyl, N-methyl-N-(2-methylpropyl)aminocarbonyl, N-(1,1-dimethylethyl)-N-methylaminocarbonyl, N-ethyl-N-propylaminocarbonyl, N-ethyl-N-(1-methylethyl)aminocarbonyl, N-butyl-N-ethylaminocarbonyl, N-ethyl- N-(1-methylpropyl)aminocarbonyl, N-ethyl-N-(2-methylpropyl)aminocarbonyl, N-ethyl-N-(1,1-dimethylethyl)aminocarbonyl, N-(1-methylethyl)-N-propylamino- carbonyl, N-butyl-N-propylaminocarbonyl, N-(1-methylpropyl)-N-propylamino- carbonyl, N-(2-methylpropyl)-N-propylaminocarbonyl, N-(1,1-dimethylethyl)- N-propylaminocarbonyl, N-butyl-N-(1-methylethyl)aminocarbonyl, N-(l-methylethyl)- N-(1-methylpropyl)aminocarbonyl, N-(1-methylethyl)-N-(2-methylpropyl)amino- carbonyl, N-(1,1-dimethylethyl)-N-(1-methylethyl)aminocarbonyl, N-butyl- N-(1-methylpropyl)aminocarbonyl, N-butyl-N-(2-methylpropyl)aminocarbonyl, N-butyl-N-(1,1-dimethylethyl)aminocarbonyl, N-(1-methylpropyl)-N-(2-methyl- propyl)aminocarbonyl, N-(1,1-dimethylethyl)-N-(1-methylpropyl)aminocarbonyl or N-(1,1 -dimethylethyl)-N-(2-methylpropyl)aminocarbonyl; (C1-C6-alkylamino)carbonyl and also the (C1-C6-alkylamino)carbonyl moieties of (C1-C6-alkylamino)carbonylamino, (C1-C6-alkylamino)carbonyloxy-C1-C4-alkyl, C1-C6-alkylaminocarbonyl-C1-C4-alkyl and [(C1-C6-alkyl)aminocarbonylaminol-C1-C,,- alkyl: (C1-C4alkylaminoJcarbonyl as mentioned above, and also, for example, pentylaminocarbonyl, 1 -methylbutylaminocarbonyl, 2-methylbutylaminocarbonyl, 3-methylbutylaminocarbonyl, 2,2-dimethylpropylaminocarbonyl, 1 -ethylpropylamino- carbonyl, hexylaminocarbonyl, 1,1-dimethylpropylaminocarbonyl, 1,2-dimethyl- propylaminocarbonyl, 1 -methylpentylaminocarbonyl, 2-methylpentylaminocarbonyl, 3-methylpentylaminocarbonyl, 4-methylpentylaminocarbonyl, 1,1-dimethylbutyl- aminocarbonyl, 1,2-dimethylbutylaminocarbonyl, 1,3-dimethylbutylaminocarbonyl, 2,2-dimethylbutylaminocarbonyl, 2,3-dimethylbutylaminocarbonyl, 3,3-dimethylbutyl- aminocarbonyl, 1-ethylbutylaminocarbonyl, 2-ethylbutylaminocarbonyl, 1,1,2- trimethylpropylaminocarbonyl, 1,2,2-trimethylpropylaminocarbonyl, 1-ethyl-1- methylpropylaminocarbonyl or 1 -ethyl-2-methylpropylaminocarbonyl; ■ di(C1-C6-alky[)aminocarbonyl and also the di(C1-C6-alkyl)aminocarbonyl moieties of di(C1-C6-alkyl)aminocarbonylamino, di^rCe-alkyl)aminocarbonyl-C1-CA-alkyl and [di(C1-C6-alkyl)aminocarbonylamino]-C1-C4-alkyl: dKC1-C4alkyl)aminocarbonyl as mentioned above, and also, for example, N-methyl-N-pentylaminocarbonyl, N- methyl-N-(1-methylbutyl)aminocarbonyl, N-methyl-N-(2-methylbutyl)aminocarbonyl, N-methyl-N-(3-methylbutyl)aminocarbonyl, N-methyl-N-(2,2-dimethylpropyl)amino- carbonyl, N-methyl-N-(1-ethylpropyl)aminocarbonyl, N-methyl-N-hexylamino- carbonyl, N-methyl-N-(1,1-dimethylpropyl)aminocarbonyl, N-methyl-N-(1,2-dirnethyl- propyl)aminocarbonyl, N-methyl-N-(1-methylpentyl)aminocarbonyl, N-methyl- N-(2-methylpentyl)aminocarbonyl, N-methyl-N-(3-methylpentyl)aminocarbonyl, N-methyl-N-(4-methylpentyl)aminocarbonyl, N-methyl-N-(1,1-dimethylbutyl)amino- carbonyl, N-methyl-N-(1,2-dimethylbutyl)aminocarbonyl, N-methyl-N-(1,3-dimethyl- butyl)aminocarbonyl, N-methyl-N-(2,2-dimethylbutyl)aminocarbonyl, N-methyl- N-(2,3-dimethylbutyl)aminocarbonyl, N-methyl-N-(3,3-dimethylbutyl)aminocarbonyl, N-methyl-N-(1-ethylbutyl)aminocarbonyl, N-methyl-N-(2-ethylbutyl)aminocarbonyl, N-methyl-N-(1,1,2-trimethylpropyl)aminocarbonyl, N-methyl-N-(1,2,2-trimethyl- propyl)aminocarbonyl, N-methyl-N-(1-ethyl-1-methylpropyl)aminocarbonyl, N-methyl-N-(1-ethyl-2-methylpropyl)aminocarbonyl, N-ethyl-N-pentylaminocarbonyl, N-ethyl-N-(1-methylbutyl)aminocarbonyl, N-ethyl-N-(2-methylbutyl)aminocarbonyl, N-ethyl-N-(3-methylbutyl)aminocarbonyl, N-ethyl-N-(2,2-dimethylpropyl)amino- carbonyl, N-ethyl-N-(1-ethylpropyl)aminocarbonyl, N-ethyl-N-hexylaminocarbonyl, N-ethyl-N-(1,1-dimethylpropyl)aminocarbonyl, N-ethyl-N-(1,2-dimethylpropyl)amino- carbonyl, N-ethyl-N-(1-methylpentyl)aminocarbonyl, N-ethyl-N-(2-methylpentyl)- aminocarbonyl, N-ethyl-N-(3-methylpentyl)aminocarbonyl, N-ethyl-N-(4-methyl- pentyl)aminocarbonyl, N-ethyl-N-(1,1-dimethylbutyl)aminocarbonyl, N-ethyl- N-(1,2-dimethylbutyl)aminocarbonyl, N-ethyl-N-(1,3-dimethylbutyl)aminocarbonyl, N-ethyl-N-(2,2-dimethylbutyl)aminocarbonyl, N-ethyl-N-(2,3-dimethylbutyl)amino- carbonyl, N-ethyl-N-(3,3-dimethylbutyl)aminocarbonyl, N-ethyl-N-(l-ethylbutyl)- aminocarbonyl, N-ethyl-N-(2-ethylbutyl)aminocarbonyl, N-ethyl-N-(1,1,2-trimethyl- propyl)aminocarbonyl, N-ethyl-N-(1,2,2-trimethylpropyl)aminocarbonyI, N-ethyl- N-(1-ethyl-1-methylpropyl)aminocarbonyl, N-ethyl-N-(1-ethyl-2-methylpropyl)- aminocarbonyl, N-propyl-N-pentylaminocarbonyl, N-butyl-N-pentylaminocarbonyl, N,N-dipentylaminocarbonyl, N-propyl-N-hexylaminocarbonyl, N-butyl-N-hexylamino- carbonyl, N-pentyl-N-hexylaminocarbonyl or N,N-dihexylaminocarbonyl; di(C1-C6-alkyl)aminothiocarbonyl: for example N,N-dimethylaminothiocarbonyl, N,N-diethylaminothiocarbonyl, N,N-di-(1-methylethyl)aminothiocarbonyl, N.N-dipropylaminothiocarbonyl, N,N-dibutylaminothiocarbonyl, N,N-di-(1-methyl- propyl)aminothiocarbonyl, N,N-di-(2-methylpropyl)aminothiocarbonyl, N,N-di-(1,1-dimethylethyl)aminothiocarbonyl, N-ethyl-N-methylaminothiocarbonyl, N-methyl-N-propylaminothiocarbonyl, N-methyl-N-(1-methylethyl)aminothiocarbonyl, N-butyl-N-methylaminothiocarbonyl, N-methyl-N-(1-methylpropyl)aminothiocarbonyl, N-methyl-N-(2-methylpropyl)aminothiocarbonyl, N-(1,1-dimethylethyl)-N-methyl- aminothiocarbonyl, N-ethyl-N-propylaminothiocarbonyl, N-ethyl-N-(1 -methylethyl)- aminothiocarbonyl, N-butyl-N-ethylaminothiocarbonyl, N-ethyl-N-(l-methylpropyl)- aminothiocarbonyl, N-ethyl-N-(2-methylpropyl)aminothiocarbonyI, N-ethyl- N-(1,1-dimethylethyl)aminothiocarbonyl, N-(1-methylethyl)-N-propylaminothio- carbonyl, N-butyl-N-propylaminothiocarbonyl, N-(1-methylpropyl)-N-propylamino- thiocarbonyl, N-(2-methylpropyl)-N-propylamino-thiocarbonyl, N-(1,1-dimethylethyl)- N-propylaminothiocarbonyl, N-butyl-N-(1-methylethyl)aminothiocarbonyl, N-(1-methylethyl)-N-(1-methylpropyl)aminothiocarbonyl, N-(1-methylethyl)-N-(2- methylpropyl)aminothiocarbonyl, N-(1,1-dimethylethyl)-N-(1-methylethyl)amino- thiocarbonyl, N-butyl-N-(1 -methylpropyl)aminothiocarbonyl, N-butyl-N-(2-methyl- propyl)aminothiocarbonyl, N-butyl-N-(1,1-dimethylethyl)aminothiocarbonyl, N-(1-methylpropyl)-N-(2-methylpropyl)aminothiocarbonyl, N-(1,1-dimethylethyl)- N-(1-methylpropyl)aminothiocarbonyl, N-(1,1-dimethylethyl)-N-(2-methylpropyl)- aminothiocarbonyl, N-methyl-N-pentylaminothiocarbonyl, N-methyl-N-(1 -methyl- butyl)aminothiocarbonyl, N-methyl-N-(2-methylbutyl)aminothiocarbonyl, N-methyl- N-(3-methylbutyl)aminothiocarbonyl, N-methyl-N-(2,2-dimethylpropyl)amino- thiocarbonyl, N-methyl-N-(1 -ethylpropyl)aminothiocarbonyl, N-methyl-N-hexylamino- thiocarbonyl, N-methyl-N-(1,1-dimethylpropyl)aminothiocarbonyl, N-methyl- N-(1,2-dimethylpropyl)aminothiocarbonyl, N-methyl-N-(l-methylpentyl)- aminothiocarbonyl, N-methyl-N-(2-methylpentyl)aminothiocarbonyI, N-methyl- N-(3-methylpentyl)aminothiocarbonyl, N-methyl-N-(4-methylpentyl)aminothio- carbonyl, N-methyl-N-(1,1-dimethylbutyl)aminothiocarbonyl, N-methyl- N-(1,2-dimethylbutyl)aminothiocarbonyl, N-methyl-N-(1,3-dimethylbutyl)amino- thiocarbonyl, N-methyl-N-(2,2-dimethylbutyl)aminothiocarbonyl, N-methyl- N-(2,3-dimethylbutyl)aminothiocarbonyl, N-methyl-N-(3,3-dimethylbutyl)aminothio- carbonyl, N-methyl-N-(i-ethylbutyl)aminothiocarbonyl, N-methyl-N-(2-ethylbutyl)- aminothiocarbonyl, N-methyl-N-ethyl-N-(1,1,2-trimethylpropyl)aminothiocarbonyl, N-methyl-N-(1,2,2-trimethylpropyl)aminothiocarbonyl, N-methyl-N-(1-ethyl-1-methyl- propyl)aminothiocarbonyl, N-methyl-N-(1-ethyl-2-methylpropyl)aminothiocarbonyl, N-ethyl-N-pentylaminothiocarbonyl, N-ethyl-N-(1-methylbutyl)aminothiocarbonyl, N-ethyl-N-(2-methylbutyl)aminothiocarbonyl, N-ethyl-N-(3-methylbutyl)aminothio- carbonyl, N-ethyl-N-(2,2-dimethylpropyl)aminothiocarbonyl, N-ethyl-N-(1-ethyl- propyl)aminothiocarbonyl, N-ethyl-N-hexylaminothiocarbonyl, N-ethyl- N-(1,1-dimethylpropyl)aminothiocarbonyl, N-ethyl-N-(1,2-dimethylpropyl)amino- thiocarbonyl, N-ethyl-N-(1 -methylpentyl)aminothiocarbonyl, N-ethyl-N-(2-methyl- pentyl)aminothiocarbonyl, N-ethyl-N-(3-methylpentyl)aminothiocarbonyl, N-ethyl- N-(4-methylpentyl)aminothiocarbonyl, N-ethyl-N-(1,1 -dimethylbutyl)aminothio- carbonyl, N-ethyl-N-(1,2-dimethylbutyl)aminothiocarbonyl, N-ethyl-N-(1,3-dimethyl- butyl)aminothiocarbonyl, N-ethyl-N-(2,2-dimethylbutyl)aminothiocarbonyl, N-ethyl- N-(2,3-dimethylbutyl)aminothiocarbonyl, N-ethyl-N-(3,3-dimethylbutyl)amino- thiocarbonyl, N-ethyl-N-(1 -ethylbutyl)aminothiocarbonyl, N-ethyl-N-(2-ethylbutyl)- aminothiocarbonyl, N-ethyl-N-(1,1,2-trimethylpropyl)aminothiocarbonyl, N-ethyl- N-(1,2,2-trimethylpropyl)aminothiocarbonyl, N-ethyl-N-(1 -ethyl-1 -methylpropyl)- aminothiocarbonyl, N-ethyl-N-(1 -ethyl-2-methylpropyl)aminothiocarbonyl, N-propyl- N-pentylaminothiocarbonyl, N-butyl-N-pentylaminothiocarbonyl, N,N-dipentyl- aminothiocarbonyl, N-propyl-N-hexylaminothiocarbonyl, N-butyl-N-hexylaminothio- carbonyl, N-pentyl-N-hexylaminothiocarbonyl or N,N-dihexylaminothiocarbonyl; three- to six-membered heterocyclyl and also the three- to six-membered heterocyclyl moieties of three- to six-membered heterocyclyl-C1-C4-alkyl: monocyclic saturated or partially unsaturated hydrocarbons having three to six ring members as mentioned above which, in addition to carbon atoms, may contaln one to four nitrogen atoms or one to three nitrogen atoms and one oxygen or sulfur atom or one to three oxygen atoms or one to three sulfur atoms and which may be attached via a carbon atom or a nitrogen atom, for example for example 2-oxrianyl, 2-oxetanyl, 3-oxetanyl, 2-aziridinyl, 3-thiethanyl, 1-azetidinyl, 2-azetidinyl, for example 2-tetrahydrofuranyl, 3-tetrahydrofuranyl, 2-tetrahydrothienyl, 3-tetra- hydrothienyl, 2-pyrrolidinyl, 3-pyrrolidinyl, 3-isoxazolidinyl, 4-isoxazolidinyl, 5- isoxazolidinyl, 3-isothiazolidinyl, 4-isothiazolidinyl, 5-isothiazolidinyl, 3-pyrazolidinyl, 4-pyrazolidinyl, 5-pyrazolidinyl, 2-oxazolidinyl, 4-oxazolidinyl, 5-oxazolidinyl, 2- thiazolidinyl, 4-thiazolidinyl, 5-thiazolidinyl, 2-imidazoiidinyl, 4-imidazolidinyl, 1,2,4- oxadiazolidin-3-yl, 1,2,4-oxadiazolidin-5-yl, 1,2,4-thiadiazolidin-3-yl, 1,2,4- thiadiazolidin-5-yl, 1,2,4-triazolidin-3-yl, 1,3,4-oxadiazolidin-2-yl, 1,3,4-thiadiazolidin- 2-yl, 1,3,4-triazolidin-2-yl, 1,2,3,4-tetrazolidin-5-yl; for example 1-pyrrolidinyl, 2-isothiazolidinyl, 2-isothiazolidinyl, 1-pyrazolidinyl, 3- oxazolidinyl, 3-thiazolidinyl, 1-imidazolidinyl, 1,2,4-triazolidin-1-yl, 1,2,4- oxadiazoiidin-2-yl, 1,2,4-oxadiazolidin-4-yl, 1,2,4-thiadiazolidin-2-yl, 1,2,4- thiadiazolidin-4-yl, 1,2,3,4-tetrazolidin-1-yl, for example 2,3-dihydrofur-2-yl, 2,3-dihydrofur-3-yl, 2,4-dihydrofur-2-yl, 2,4- dihydrofur-3-yl, 2,3-dihydrothien-2-yl, 2,3-dihydrothien-3-yl, 2,4-dihydrothien-2-yl, 2,4-dihydrothien-3-yl, 4,5-dihydropyrrol-2-yl, 4,5-dihydropyrrol-3-yl, 2,5- dihydropyrrol-2-yl, 2,5-dihydropyrrol-3-yl, 4,5-dihydroisoxazol-3-yl, 2,5- dihydroisoxazol-3-yl, 2,3-dihydroisoxazol-3-yl, 4,5-dihydroisoxazol-4-yl, 2,5- dihydroisoxazol-4-yl, 2,3-dihydroisoxazol-4-yl, 4,5-dihydroisoxazol-5-yl, 2,5- dihydroisoxazol-5-yl, 2,3-dihydroisoxazol-5-yl, 4,5-dihydroisothiazol-3-yl, 2,5- dihydroisothiazol-3-yl, 2,3-dihydroisothiazol-3-yl, 4,5-dihydroisothiazol-4-yl, 2,5- dihydroisothiazol-4-yl, 2,3-dihydroisothiazol-4-yl, 4,5-dihydroisothiazol-5-yl, 2,5- dihydroisothiazol-5-yl, 2,3-dihydroisothiazol-5-yl, 2,3-dihydropyrazol-2-yl, 2,3- dihydropyrazol-3-yl, 2,3-dihydropyrazol-4-yl, 2,3-dihydropyrazol-5-yl, 3,4- dihydropyrazol-3-yl, 3,4-dihydropyrazol-4-yl, 3,4-dihydropyrazol-5-yl, 4,5- dihydropyrazol-3-yl, 4,5-dihydropyrazol-4-yl, 4,5-dihydropyrazol-5-yl, 2,3- dihydroimidazol-2-yl, 2,3-dihydroimidazol-3-yl ,2,3-dihydroimidazol-4-yl, 2,3- dihydroimidazol-5-yl, 4,5-dihydroimidazol-2-yl, 4,5-dihydroimidazol-4-yl, 4,5- dihydroimidazol-5-yl, 2,5-dihydroimidazol-2-yl, 2,5-dihydroimidazol-4-yl, 2,5- dihydroimidazol-5-yl, 2,3-dihydrooxazol-3-yl, 2,3-dihydrooxazol-4-yl, 2,3- dihydrooxazol-5-yl, 3,4-dihydrooxazol-3-yl, 3,4-dihydrooxazol-4-yl, 3,4- dihydrooxazol-5-yl, 2,3-dihydrothiazol-3-yl, 2,3-dihydrothiazol-4-yl, 2,3-di- hydrothiazol-5-yl, 3,4-dihydrothiazol-3-yl, 3,4-dihydrothiazol-4-yl, 3,4-dihydrothiazol- 5-yl, 3,4-dihydrothiazol-2-yl, 3,4-dihydrothiazol-3-yl, 3,4-dihydrothiazol-4-yl, for example 4,5-dihydropyrrol-1-yl, 2,5-dihydropyrrol-1-yl, 4,5-dihydroisoxazol-2-yl, 2,3-dihydroisoxazoi-1-yl, 4,5-dihydroisothiazol-1-yl, 2,3-dihydroisothiazoi-1-yl, 2,3- dihydropyrazol-1-yl, 4,5-dihydropyrazol-1-yl, 3,4-dihydropyrazol-1-yl, 2,3-dihydro- imidazol-1-yl, 4,5-dihydroimidazol-1-yl, 2,5-dihydroimidazol-1-yl, 2,3-dihydrooxazol- 2-yl, 3,4-dihydrooxazol-2-yl, 2,3-dihydrothiazol-2-yl, 3,4-dihydrothiazol-2-yl; for example 2-piperidinyI, 3-piperidinyl, 4-piperidinyl, 1,3-dioxan-2-yl, 1,3-dioxan-4- yl, 1,3-dioxan-5-yl, 1,4-dioxan-2-yl, 1,3-dithion-2-yl, 1,3-dithion-3-yl, 1,3-dithion-4- yl, 1,4-dithion-2-yl, 1,3-dithian-5-yl, 2-tetrahydropyranyl, 3-tetrahydropyranyl, 4-tetrahydropyranyl, 2-tetrahydrothiopyranyl, 3-tetrahydrothiopyranyl, 4-tetrahydro- thiopyranyl, 3-hexahydropyridazinyl, 4-hexahydropyridazinyl, 2-hexahydropyrimidi- nyl, 4-hexahydropyrimidinyl, 5-hexahydropyrimidinyl, 2-piperazinyl, 1,3,5-hexa- hydrotriazin-2-yl, 1,2,4-hexahydrotriazin-3-yl, tetrahydro-1,3-oxazin-2-yl, tetrahydro- 1,3-oxazin-6-yl, 2-morpholinyl, 3-morpholinyl, 1,3,5-trioxan-2-yl; for example 1-piperidinyl, 1-hexahydropyridazinyl, 1-hexahydropyrimidinyl, 1- piperazinyl, 1,3,5-hexahydrotriazin-1-yl, 1,2,4-hexahydrotriazin-1-yl, tetrahydro-1,3- oxazin-1-yl, 1-morpholinyl; for example 2H-pyran-2-yl, 2H-pyran-3-yl, 2H-pyran-4-yl, 2H-pyran-5-yl, 2H-pyran- 6-yl, 3,6-dihydro-2H-pyran-2-yl, 3,6-dihydro-2H-pyran-3-yl, 3,6-dihydro-2H-pyran-4- yl, 3,6-dihydro-2H-pyran-5-yl, 3,6-dihydro-2H-pyran-6-yl, 3,4-dihydro-2H-pyran-3-yl, 3,4-dihydro-2H-pyran-4-yl, 3,4-dihydro-2H-pyran-6-yl, 2H-thiopyran-2-yl, 2H- thiopyran-3-yl, 2H-thiopyran-4-yl, 2H-thiopyran-5-yl, 2H-thiopyran-6-yl, 5,6-dihydro- 4H-1,3-oxazin-2-yl; aryl and the aryl moiety of aryl-(C1-C6-alkyl): a monocyclic to tricyclic aromatic carbocycle having 6 to 14 ring members, such as, for example, phenyl, naphthyl and anthracenyl; heteroaryl and also the heteroaryl radicals in heteroaryl-C1-C4-alkyl, heteroaryl-d- C4-alkyl, heteroaryl-C2-C4-alkenyl, heteroaryl-C2-C4-alkynyl, heteroaryl-C1-C4- halogenalkyl, heteroaryl-C2-C4-halogenalkenyl, heteroaryl-C2-C4-halogenalkynyl, heteroaryl-C1-C4hydroxyalkyl, heteroaryl-C2-C4-hydroxyalkenyl, heteroaryl-C2-C4- hydroxyalkynyl, heteroarylcarbonyl-C1-C4-alkyl, heteroarylcarbonyloxy-C1-C4-alkyl, heteroaryloxycarbonyl-C1-C4-alkyl, heteroaryloxy-C1-C4-alkyl, heteroarylthio-C1-C4- alkyl, heteroarylsulfinyl-C1-C4-alkyl, heteroarylsulfonyl-C1-C4-alkyl: mono- or bicyclic aromatic heteroaryl having 5 to 10 ring members which, in addition to carbon atoms, contalns 1 to 4 nitrogen atoms, or 1 to 3 nitrogen atoms and an oxygen or sulfur atom, or an oxygen or a sulfur atom, for example monocycles, such as furyl (for example 2-furyl, 3-furyl), thienyl (for example 2- thienyl, 3—thienyl), pyrrolyl (for example pyrrol—2—yl, pyrrol-3-yl), pyrazolyl (for example pyrazol-3-yl, pyrazol-4-yl), isoxazolyl (for example isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl), isot'niazolyl (for example isothiazol-3-yl, isothiazol- 4-yl, isothiazol-5-yl), imidazolyl (for example imidazol-2-yl, imidazol-4-yl), oxazolyl (for example oxazol-2-yl, oxazol-4-yl, oxazol-5-yl), thiazolyl (for example thiazol-2-yl, thiazol-4-yl, thiazol-5-yl), oxadiazolyl (for example 1,2,3-oxadiazol- 4—yl, 1,2,3-oxadiazol-5-yl, 1,2,4-oxadiazol-3-yl, 1,2,4,-oxadiazol-5-yl, 1,3,4- oxadiazoi-2-yl), thiadiazolyl (for example 1,2,3-thiadiazol-4-yl, 1,2,3-thiadiazol-5- yl, 1,2,4-thiadiazol-3-yl, 1,2,4-thiadiazol-5-yl, 1,3,4-thiadiazolyl-2-yl), triazolyl (for example 1,2,3-triazol-4-yI, 1,2,4-triazol-3-yl), tetrazol-5-yl, pyridyl (for example pyridin-2-yl, pyridin-3-yl, pyridin-4-yl), pyrazinyl (for example pyridazin- 3-yl, pyridazin-4-yl), pyrimidinyl (for example pyrimidin—2-yl, pyrimidin-4-yl, pyrimidin-5-yl), pyrazin-2-yl, triazinyl (for example 1,3,5—triazin—2—yl, 1,2,4- triazin-3-yl, 1,2,4—triazin-5-yl, 1,2,4-triazin—6—yl), tetrazinyl (for example 1,2,4,5- tetrazin-3-yl); and also bicycles such as the benzo-fused derivatives of the abovementioned monocycles, for example quinolinyl, isoquinolinyl, indolyl, benzothienyl, benzofuranyl, benzoxazolyl, benzothiazolyl, benzisothiazolyl, benzimidazoiyl, benzopyrazolyl, benzothiadiazolyl, benzotriazolyl. 5- or 6-membered heteroaryl having one to four nitrogen atoms or one to three nitrogen atoms and one oxygen or sulfur atom or having one oxygen or sulfur atom: for example aromatic 5-membered heterocycles which are attached via a carbon atom and which, in addition to carbon atoms, may contaln one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom or one sulfur or oxygen atom as ring members, for example 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyrrolyl, 3-pyrrolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 3-isothiazolyl, 4-isothiazolyl, 5-isothiazolyl, 3-pyrazolyl, 4-pyrazolyl, 5-pyrazolyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 2-imidazolyl, 4-imidazolyl, 1,2,4-oxadiazol-3-yl, 1,2,4-oxadiazol-5-yl, 1,2,4-thiadiazol-3-yl, 1,2,4-thiadiazol-5-yl, 1,2,4-triazol-3-yl, 1,3,4-oxadiazo!-2-yl, 1,3,4-thiadiazoi-2-yl and 1,3,4-triazo!-2-yl; for example aromatic 6-membered heterocycles which are attached via a carbon atom and which, in addition to carbon atoms, may contaln one to four, preferably one to three, nitrogen atoms as ring members, for example 2-pyridinyl, 3-pyridinyl, 4-pyridinyl, 3-pyridazinyl, 4-pyridazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 2-pyrazinyl, 1,3,5-triazin-2-yl and 1,2,4-triazin-3-yl. All phenyl and aryl rings or heterocyclyl and heteroaryl radicals and all phenyl components in phenyl-C1-C6-alkyl, phenylcarbonyl, phenylcarbonyl-C1-C6-alkyl, phenyl- carbonylamino-C1--C4-alkyl, phenoxycarbonyl, phenylaminocarbonyl, phenylsulfonyl- aminocarbonyl, N-(C1-C6-alkyl)-N-phenylaminocarbonyl and phenyl-C1-C6-alkyl- carbonyl, all aryl components in aryKC1-C4alkyl), all heteroaryl components in mono- or bicyclic heteroaryl and all heterocyclyl components in heterocyclyl, heterocyclyl- C1-C6-alkyl, heterocyclylcarbonyl, heterocyclylcarbonyl-C1-C6-alkyl, heterocyclyloxy- carbonyl, heterocyclylaminocarbonyl, heterocyclylsulfonylaminocarbonyl, N-(C1-C6- alkyl)-N-heterocyclylaminocarbonyl and heterocyclyl-C1-C6-alkylcarbonyl are, unless indicated otherwise, preferably unsubstituted or carry one to three halogen atoms and/or one nitro group, one cyano radical and/or one or two methyl, trifluoromethyl, methoxy or trifluoromethoxy substituents. In a particular embodiment, the variables of the heteroaroyl-substituted serineamides of the formula I are as defined below, these definitions being, both on their own and in combination with one another, particular embodiments of the compounds of the formula I: Preference is given to the heteroaroyl-substituted serineamides of the formula I in which A is 5-membered heteroaryl having one to four nitrogen atoms or one to three nitrogen atoms and one oxygen or sulfur atom or having one oxygen or sulfur atom; particularly preferably 5-membered heteroaryl selected from the group consisting of thienyl, furyl, pyrazolyl, imidazolyl, thiazolyl and oxazolyl; especially preferably 5-membered heteroaryl selected from the group consisting of thienyl, furyl, pyrazolyl and imidazolyl; where the heteroaryl radicals mentioned are substituted by a C1-C6-haloalkyl radical, preferably in the 2-position by a C1-C6-haloalkyl radical, and may carry 1 to 3 radicals from the group consisting of halogen, cyano, C1-C6-alkyl, C3-C6- cycloalkyl, C1-C6-alkoxy, C1-C6-haloalkoxy and C1--Ce-alkoxy-CVC^alkyl. Preference is likewise given to the heteroaroyl-substituted serineamides of the formula I in which A is 5-membered heteroaryl having one to four nitrogen atoms or one to three nitrogen atoms and one oxygen or sulfur atom or having one oxygen or sulfur atom; particularly preferably 5-membered heteroaryl selected from the group consisting of thienyl, furyl, pyrazolyl, imidazotyl, thiazolyl and oxazolyl; especially preferably 5-membered heteroaryl selected from the group consisting of thienyl, furyl, pyrazolyl and imidazolyl; where the heteroaryl radicals mentioned may be partially or fully halogenated and/or may carry 1 to 3 radicals from the group consisting of cyano, C1-C6-alkyl, C3-C6-cycloalkyl, C1-C6-haloalkyl, C1-C6-alkoxy, Cr C6-haloalkoxy and C1-C6-alkoxy-C1-C4-alkyl. Preference is likewise given to the heteroaroyl-substituted serineamides of the formula I in which A is 5-membered heteroaryl having one to four nitrogen atoms or one to three nitrogen atoms and one oxygen or sulfur atom or having one oxygen atom; particularly preferably 5-membered heteroaryl selected from the group consisting of furyl, pyrazolyl, imidazolyl, thiazolyl and oxazolyl; especially preferably 5-membered heteroaryl selected from the group consisting of furyl, pyrazolyl and imidazolyl; where the heteroaryl radicals mentioned may be partially or fully halogenated and/or may carry 1 to 3 radicals from the group consisting of cyano, C1-C6-alkyl, C3-C6-cycloalkyl, C1-C6-haloalkyl, C1-C6-alkoxy, Cr C5-haloalkoxy and C1-C6-alkoxy-C1-C4-alkyl. Preference is likewise given to the heteroaroyl-substituted serineamides of the formula I in which A is 6-membered heteroaryl having one to four nitrogen atoms; particularly preferably pyridyl or pyrimidyl; especially preferably pyrimidyl; where the heteroaryl radicals mentioned may be partially or fully halogenated and/or may carry 1 to 3 radicals from the group consisting of cyano, C^Cg-alkyl, C3-C6-cycloalkyl, C1-C6-haloalkyl, C1-C6-alkoxy, d- C6-haloalkoxy and C1-C6-alkoxy-C1-C-alkyl. Preference is likewise given to the heteroaroyl-substituted serineamides of the formula I in which A is 5- or 6-membered heteroaryl having one to four nitrogen atoms or one to three nitrogen atoms and one oxygen or sulfur atom or having one oxygen or sulfur atom which is substituted by a C1-C6-haloalkyl radical, preferably in the 2- position by a C1-C6-haloalkyl radical, and may carry 1 to 3 radicals from the group consisting of cyano, C1-C6-alkyl, C3-C6-cycloalkyl, (VC6- alkoxy, C1-C6-haloalkoxy and C1-C6-alkoxy-C1-C4alkyl. Preference is likewise given to the heteroaroyl-substituted serineamides of the formula I in which A is 5- or 6-membered heteroaryl selected from the group consisting of pyrrolyl, thienyl, furyl, pyrazolyl, imidazolyl, thiazolyl, oxazolyl, tetrazolyl, pyridyl and pyrimidinyl; where the heteroaryl radicals mentioned may be partially or fully halogenated and/or may carry 1 to 3 radicals from the group consisting of cyano, C1-C6-alkyl, C3-C6-cycloalkyl, C1-C6-haloalkyl, C1-C6-alkoxy, Cr C6-haloalkoxy and C1-CValkoxy-C1-C4alkyl; particularly preferably 5- or 6-membered heteroaryl selected from the group consisting of thienyl, furyl, pyrazolyl, imidazolyl, thiazolyl, oxazolyl and pyridyl; where the heteroaryl radicals mentioned may be partially or fully halogenated and/or may carry 1 to 3 radicals from the group consisting of C1-C6-alkyl, C3-C6-cycloalkyl and C1--C6-haloalkyl; especially preferably 5-membered heteroaryl selected from the group consisting of thienyl, furyl, pyrazolyl, imidazolyl, thiazoiyl and oxazolyl; where the heteroaryl radicals mentioned may be partially halogenated and/or may carry 1 to 2 radicals from the group consisting of C1-C6-alkyl and C1-C4-haloalkyl; most preferably 5-membered heteroaryl selected from the group consisting of thienyl, furyl, pyrazolyl and imidazolyl; where the heteroaryl radicals mentioned may be partially halogenated and/or may carry 1 to 2 radicals from the group consisting of C1-C6-alkyl and C1-C4-haloalkyl. Preference is likewise given to the heteroaroyl-substituted serineamides of the formula I in which A is 5- or 6-membered heteroaryl selected from the group consisting of pyrrolyl, furyl, pyrazolyl, imidazolyl, thiazolyl, oxazolyl, tetrazolyl, pyridyl and pyrimidinyl; where the heteroaryl radicals mentioned may be partially or fully halogenated and/or may carry 1 to 3 radicals from the group consisting of cyano, C1-C6-alkyl, C3-C6-cycloalkyl, C1-C6-haloalkyl, C1-C6-alkoxy, Cr C6-haloalkoxy and C1-C6-alkoxy-C1-C4alkyl; particularly preferably 5- or 6-membered heteroaryl selected from the group consisting of furyl, pyrazolyl, imidazolyl, thiazolyl, oxazolyl and pyridyl; where the heteroaryl radicals mentioned may be partially or fully halogenated and/or may carry 1 to 3 radicals from the group consisting of C1-C6-alkyl, C3-C6-cycloalkyl and C1-C6-haloalkyl; especially preferably 5-membered heteroaryl selected from the group consisting of furyl, pyrazolyl, imidazolyl, thiazolyl and oxazolyl; where the heteroaryl radicals mentioned may be partially halogenated and/or may carry 1 to 2 radicals from the group consisting of C1-C6-alkyl and C1-C4-haloalkyl; most preferably 5-membered heteroaryl selected from the group consisting of furyl, pyrazolyl and imidazolyl; where the heteroaryl radicals mentioned may be partially halogenated and/or may carry 1 to 2 radicals from the group consisting of C.|-C6-alkyl and C1-C4-haloalkyl. Preference is likewise given to the heteroaroyl-substituted serineamides of the formula I in which A is 5- or 6-membered heteroaryl which is attached via carbon and selected from the group consisting of Ai to A14 where where the arrow indicates the point of attachment and R8 is hydrogen, halogen, C1-C6-alkyl or C1-C6-haloalkyl; particularly preferably hydrogen, C1-C4-alkyl or C1-C4-haloalkyl; especially preferably hydrogen or C1-C4-alkyl; most preferably hydrogen; R9 is halogen, C1-C6-alkyl, C1-C6-haloalkyI or C1-C6-haloalkoxy; particularly preferably halogen, C1-C4alkyl or C1-C6-haloalkyl; especially preferably halogen or C1-C6-haloalkyl; very preferably C1-C6-haloalkyl; most preferably C1--C4-haloalkyl; with utmost preference CF3; R10 is hydrogen, halogen, C1-C6-alkyl or C1-C6-haloalkyl; particularly preferably hydrogen, halogen or C1-C4-haloalkyl; especially preferably hydrogen or halogen; most preferably hydrogen; and R11 is hydrogen, C1-C6-alkyl, C3-C6-cycloalkyl, C1-C6-haloalkyl or C1-C6- alkoxy-C1-C4-alkyl; particularly preferably C1-C4-alkyl, C3-C6-cycloalkyl, C1-C4-haloalkyl or C1-C4-alkoxy-C1-C4-alkyl; especially preferably C1-C4-alkyl or C1-C4-haloalkyl; most preferably C1-C4-alkyl; with utmost preference CH3; particularly preferably A1, A2, A3, A4, A5, A6, A8 or A9; where R8 to R11 are as defined above; most preferably A1, A2, A5 or A6; where R8 to R11 are as defined above. Preference is likewise given to the heteroaroyl-substituted alanines of the formula I in which R1 is hydrogen. Preference is likewise given to the heteroaroyl-substituted alanines of the formula I in which R2 is hydrogen or hydroxyl; particularly preferably hydrogen. Preference is likewise given to the heteroaroyl-substituted serineamides of the formula I in which R1 is hydrogen; and R2 is hydrogen or hydroxyl; particularly preferably hydrogen. Preference is likewise given to the heteroaroyl-substituted serine amides of the formula I in which R3 is C1-C6-alkyl or C1-C6-haloalkyl; particularly preferably C1-C6-alkyl; especially preferably C-rC4-alkyl; most preferably CH3. Preference is likewise given to the heteroaroyl-substituted serineamides of the formula I in which R4 is hydrogen, C1-C6-alkyl, C3-C6-alkenyl, C3-C6-alkynyl, formyl, C1-C6-alkyl- carbonyl, C2-C6-alkenylcarbonyl, C3-C6-cycloalkylcarbonyl, C1-C6-alkoxycarbonyl, C1-C6-alkylaminocarbonyl, C1-C6-alkylsulfonylaminocarbonyl, di-(C1-C6- alkyl)aminocarbonyl, N-(C1-C6-alkoxy)-N-(C1-C6-alkyl)aminocarbonyl, di-(C1-C6- alkyl)-aminothiocarbonyl, C1-CValkoxylmino-CVCe-alkyl, where the alkyl, cycloalkyl and alkoxy radicals mentioned may be partially or fully halogenated and/or may carry one to three of the following groups: cyano, hydroxyl, C3-C6-cycloalkyl, C1-C4alkoxy, C1-C4-alkylthio, di-(C1--C4- alkyl)amino, C1-C4-alkylcarbonyl, hydroxycarbonyl, C1-C4-alkoxycarbonyl, aminocarbonyl, C1--C4-alkylaminocarbonyl, di-(C1-C4-alkyl)aminocarbonyl, or C1-C4-alkylcarbonyloxy; phenyl, phenyl-C1-CValkyl, phenylcarbonyl, phenylcarbonyl-C1-C6-alkyl, phenylsulfonylaminocarbonyl or phenyl-C1-C6-alkylcarbonyl, where the phenyl radical may be partially or fully halogenated and/or may carry one to three of the following groups: nitro, cyano, C1-C4-alkyl, C1-C4- haloalkyl, C1-C4-alkoxy or C1-C4-haloalkoxy; or S02R7; particularly preferably hydrogen, C1-C6-alkyl, C3-C6-alkenyl, C3-C6-alkynyl, formyl, C1-CB-alkylcarbonyl, C2-C6-alkenylcarbonyl, C1-C6-alkoxycarbonyl, C1-C6-alkyl- sulfonylaminocarbonyl, di-(C1-C6-alkyl)aminocarbonyl, N-(C1-C6-alkoxy)- N-(C1-C6-alkyl)aminocarbonyl or di-(C1-C6-alkyl)aminothiocarbonyl, where the alkyl or alkoxy radicals mentioned may be partially or fully halogenated and/or may carry one to three of the following groups: cyano, C1-C4-alkoxy, C1--CValkaxycarbonyl, C1-C4-alkylaminocarbonyl, di-(C.|-C4- alkyl)aminocarbonyl or C1-C4-alkylcarbonyloxy; phenyl-C1-C6-alkyl, phenylcarbonyl, phenylcarbonyl-C1-C6-alkyl, phenylsulfonyl- aminocarbonyl or phenyl-C1-C6-alkylcarbonyl, where the phenyl ring may be partially or fully halogenated and/or may carry one to three of the following groups: nitro, cyano, C1-C4-alkyl, C1-C4-halo- alkyl, C1-C4-alkoxy or C1-C4-halooxy; or S02R7; especially preferably hydrogen, C.rC6-alkyl, C3-C6-alkenyl, C3-C6-alkynyl, formyl, C1-C6-alkylcarbonyl, C2-C6-alkenylcarbonyl, C1-C6-alkoxycarbonyl, di-(C1-C6- alkyl)aminocarbonyl, N-(C1-C6-alkoxy)-N-(C1-C6-alkyl)aminocarbonyl, di-(C1--C6- alkyl)aminothiocarbonyl, phenyl-CVCe-alkyl, phenylcarbonyl, phenylcarbonyl-Cr C6-alkyl or phenyl-C1-C6-alkylcarbonyl where the phenyl ring may be partially or fully halogenated and/or may carry one to three of the following groups: nitro, cyano, C1-C4-alkyl, C1-C4- haloalkyl, C1-C4-alkoxy or C1-C4-haloalkoxy; or S02R7. Preference is likewise given to the heteroaroyl-substituted serineamides of the formula I in which R4 is hydrogen, C1-C6-alkyl, C3-C6-alkenyl, C3-C6-alkynyl, formyl, C1-C6- alkylcarbonyl, C2-C6-alkenylcarbonyl, C3-C6-cycloalkylcarbonyl, C1-C6- alkoxycarbonyl, C1-CB-alkylaminocarbonyl, di-(C1-C6-alkyl)aminocarbonyl, N-(Cr C6-alkoxy)-N-(C1-C6-alkyl)aminocarbonyl, di-(C1-C6-alkyl)aminothiocarbonyl, Cr C6-alkoxylmino-C1-C5-alkyl, where the alkyl, cycloalkyl or alkoxy radicals mentioned may be partially or fully halogenated and/or may carry one to three of the following groups: cyano, hydroxyl, C3-C6-Cycioalkyl, C1-C4-alkoxy, C1-C4-alkylthio, di-(C1-C4- alkyl)amino, C1-C4-alkylcarbonyl, hydroxycarbonyl, C1-C4-alkoxycarbonyl, aminocarbonyl, C1-C4-alkylaminocarbonyl, di-(C1-C4-alkyl)aminocarbonyl or C1-C4-alkylcarbonyloxy; or S02R7. Preference is likewise given to the heteroaroyl-substituted serineamides of the formula I in which R4 is hydrogen, C1-C6-alkyl, C3-C6-alkenyl, C3-C6-alkynyl, formyl, C1-C6-alkyl- carbonyl, C1-C6-alkoxycarbonyl, C1-C6-alkylaminocarbonyl, dKC1-C6-alkyl)- aminocarbonyl, N-(C1-C6-alkoxy)-N-(C1-C6-alkyl)aminocarbonyl, where the alkyl and alkoxy radicals mentioned may be partially or fully halogenated and/or may carry one to three of the following groups: cyano, C1-C4-alkoxy, C1-C4-alkylaminocarbonyl or di-(C1-C4-alkyl)aminocarbonyl; phenyl-C1-CValkyl, phenylcarbonyl, phenylcarbonyl-C1-C6-alkyl, phenyl- aminocarbonyl or N-(C1-C6-alkyl)-N-(phenyl)aminocarbonyl, where the phenyl ring may be partially or fully halogenated and/or may carry one to three of the following groups: cyano, C1-C4-alkyl or C1-C4-haloalkyl; or S02R?; particularly preferably hydrogen, formyl, CVC^alkylcarbonyl, C1-C4-alkylamino- carbonyl, di^Ci^-alkyl)aminocarbonyl, phenylaminocarbonyl, N-(C1-C4-alkyl)- N-(phenyl)aminocarbonyl, S02CH3, S02CF3 or S02(C6H5). Preference is likewise given to the heteroaroyl-substituted serineamides of the formula I in which R5 is hydrogen or C1-C4-alkyl; preferably hydrogen or CH3; especially preferably hydrogen. Preference is likewise given to the heteroaroyl-substituted serineamides of the formula I in which R6 is C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-haloalkyl, C2-C6-haloalkenyl, C2-C6-haloalkynyl, C1-C6-cyanoalkylt C1-C6-hydroxyalkyl, C2-C6-hydroxyalkenyl, C2-C6-hydroxyalkynyl, C3-C6-cycloalkyl, C3-C6-cycloalkenyl, 3- to 6-membered heterocyclyl-C1-C4-alkyl, where the cycloalkyl, cycloalkenyl or 3- to 6-membered heterocycyl radicals mentioned above may be partially or fully halogenated and/or may carry one to three radicals from the group consisting of oxo, C1-C6-alkyl, C1-C6- haloalkyl, hydroxycarbonyl and C1-C6-alkoxycarbonyl, C1-C6-alkoxy-C1-C4-alkyl, C1-C6-haloalkoxy-C1-C4-alkyl, C1-C6-alkoxy-C1-C4- alkoxy-C1-C4-alkyl, C1-C6-alkylthio-C1-C4-alkyl, C1-CB-alkylsulfonylamino-C1-C4- alkyl, hydroxycarbonyl, C-pCe-alkoxycarbonyl, hydroxycarbonyl-C1-C4-alkyl, Cr C6-alkoxycarbonyl-C1-C4-alkyl, C1-C6-haloalkoxycarbonyl-C1-C4-alkyl, C-,-C6- alkylcarbonyloxy-C1-C4-alkyl, C1-C6-alkylcarbonylamino-C1-C4-alkyl, di(C1-C6- alkyl)carbonylamino-C1-C4-alkyl, di(C1-C6-alkyl)aminocarbonyl-amino-C1-C4-alkyl, [(C1-C6-alkyl)aminocarbonyHamino-Ci^-alkyl, [di(C1-C6-alkyl)aminocarbonyl- oxy]-C1-C4-alkyl, {di[di(C1-C6-alkyl)amino]carbonyloxy}-C1-C4-alkyl, formylamino- C1-C4-alkyl, phenyl-C1-C4-alkyl, phenyl-C2-C4-alkenyl, phenyl-C2-C4-alkynyl, phenyl-C1-C4- haloalkyl, phenyl-C2-C4-haloalkenyl, phenyl-C1-C4-hydroxyalkyl, phenyloxy-C1-C4- alkyl, phenylthio-C1-C4-alkyl, phenylsulfinyl-C1-C4alkyl, phenylsulfonyl-C1-C4- alkyl, heteroaryl-C1-C4-alkyl, heteroaryl-C1-C4-hydroxyalkyl, heteroaryloxy-C1-C4-alkyl, heteroarylthio-C1-C4-alkyl, heteroarylsulfinyl-C1-C4-alkyl or heteroarylsulfonyl-Cr C4-alkyl, where the phenyl and heteroaryl radicals mentioned above may be partially or fully halogenated and/or may carry one to three radicals from the group consisting of cyano, nitro, C1-C6-alkyl, C1-C6-haloalkyl, hydroxy, C^-Ce;- alkoxy, C1-C6-haloalkoxy, hydroxycarbonyl, C1-C6-alkoxycarbonyl, hydroxycarbonyl-C1-C6-alkoxy, C1-C6-alkylsulfonylamino and C1-C6- haloalkylsulfonylamino; particularly preferably C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-haloalkyl, C2-C6-haloalkenyl, C1-C6-hydroxyalkyl, C1-C6-alkoxy-C1-C4-alkyl, crC6- haloalkoxy-C1-C4-alkyl, hydroxycarbonyl-C1-C4-alkyl, C1-CB-alkoxycarbonyl- CVCValkyl, C^Ce-alkylcarbonyloxy-C1-C4alkyl, C1-C6-alkylcarbonylamino-C1-C4- alkyl, [di(C1-C6-alkyl)aminocarbonyloxy]-C1-C4-alkyl, {di[di(C1-C6-alkyl)amino]- carbonyloxy}-C1-C4-alkyl, forrnylamino-C1-C4-alkyl; phenyl-C1-C4-alkyl, phenyl-C2-C4-alkenyl, phenyl-C2-C4-alkynyl, phenyl-C^Cr haloalkyl, phenyl-C2-C4-haloa!kenyl, phenyl-C1-C4-hydroxyalkyl, phenyloxy-C1-C4- alkyl, phenylthio-C1-C4-alkyl, phenylsulfinyl-C1-C4-alkyl or phenylsulfonyl-C1-C4- alkyl, where the phenyl radicals mentioned above may be partially or fully halogenated and/or may carry one to three radicals from the group consisting of C1-C6-alkyl, C1-C6-haloalkyl, C1-C6-alkoxy, hydroxycarbonyl, C1-C6-alkoxycarbonyl, C1-C6-alkylsulfonylamino and C1-C6-haloalkyl- sulfonylamino; especially preferably C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-CB-haloalkyl, C2-C5-haloalkenyl, C1-C6-hydroxyalkyl, hydroxycarbonyl-C1-C4-alkyl, C1-C6- alkoxycarbonyl-C1-C4-alkyl, [di(C1-C6-alkyl)aminocarbonyloxy]-C1-C4-alkyl, {di[di(C1-C6-alkyl)amino]carbonyloxy}-C1-C4-alkyl, formylamino-C1-C4-alkyl; phenyl-C1-C4-alkyl, phenyl-C2-C4-alkenyl, phenyl-C1-C4-hydroxyalkyl or phenylthio-C1-C4-alkyl; most preferably C1-C6-alkyl, C2-C6-alkenyl, C1-C6-haloalkyl, C2-C6-haloalkenyl, C1-C6-hydroxyalkyl, hydroxycarbonyl-C1-C4-alkyl, formylamino-C1-C4-alkyl, phenyl-C1-C6-alkyl or phenyl-C1-C4-hydroxyalkyl. Preference is likewise given to the heteroaroyl-substituted serineamides of the formula I in which R6 is C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-haloalkyl, C2-C6-haloalkenyl, C2-C6-haloalkynyl, C1-C6-cyanoalkyl, C1-C6-hydroxyalkyl, C2-C6-hydroxyalkenyl, C2-C6-hydroxyalkynyl, C3-C6-cycloalkyl, C3-C6-cycloalkenyl, 3-to 6-membered heterocyclyl, where the cycloalkyl, cycloalkenyl or 3- to 6-membered heterocycyl radicals mentioned above may be partially or fully halogenated and/or may carry one to three radicals from the group consisting of oxo, C1-C6-alkyl, C1-C6- haloalkyl, hydroxycarbonyl and C1-C8-alkoxycarbonyl, C1-C6-alkoxy-C1-C4-alkyl, C1-C6-haloalkoxy-C1-C6-alkyl, C1-C6-alkoxy-C1-C4- alkoxy-C1-C4-alkyl, C1-C6-alkylthio-C1-C6-alkyl, C1-C6-a!kylsulfonylamino-C1-C6- alkyl, hydroxycarbonyl, C1-C6-alkoxycarbonyl, hydroxycarbonyl-C1-C4-alkyl, Cr C6-alkoxycarbonyl-C1-C4-alkyl, C1-C6-haloalkoxycarbonyl-C1-C6-alkyl, C1-C6- alkylcarbonyloxy-C1-C6-alkyl, C1-C6-alkylcarbonylamino-C1-C6-alkyl, di(C1-C6- alkyl)carbonylamino-Ci-d-alkyl, di(C1-C6-alkyl)aminocarbonylamino-C1-C4-alkyl, [(C1-C6-alkyl)aminocarbonyl]amino-Ci-d-alkyl, [di(C1-C6-alkyl)aminocarbonyl- oxy]-C1-C4-alkyl, formylamino-C1-C4-alkyl, phenyl-C1-C6-alkyl, phenyl-C2-C4-alkenyl, phenyl-C2-C4-alkynyl, phenyl-C1-C4- haloalkyl, phenyl-C1-C6-haloalkenyl, phenyl-C1-C4-hydroxyalkyl, phenyloxy-C1-C6- alkyl, phenylthio-C1-C6-alkyl, phenylsulfinyl-C1-C6-alkyl, phenylsulfonyl-C1-C4- alkyl, heteroaryl-C1-C4-alkyl, heteroaryl-C1-C4-hydroxyalkyl, heteroaryloxy-C1-C4-alkyl, heteroarylthio-C1-C6-alkyl, heteroarylsulfinyl-Ci-d-alkyl or heteroarylsulfonyl-d- d-alkyl, where the phenyl and heteroaryl radicals mentioned above may be partially or fully halogenated and/or may carry one to three radicals from the group consisting of cyano, nitro, C1-C6-alkyl, C1-C6-haloalkyl, hydroxy, C1-C6- alkoxy, C1-C6-haloalkoxy, hydroxycarbonyl, C1-C6-alkoxycarbonyl, hydroxycarbonyl-C1-C6-alkoxy, C1-C6-alkylsulfonylamino and C1-C6- haloalkylsulfonylamino; particularly preferably C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-haloalkyl, C2-Cs-haloalkenyl, C1--C6-hydroxyalkyl, 3-to 6-membered heterocyclyl, C1-C6- alkoxy-C1-C4-alkyl, C1-C6-alkoxy-C1-C6-alkoxy-C1-C6-alkyl, C1-C6-haloalkoxy- C1-C6-alkyl, hydroxycarbonyl-C1-C4-alkyl, C1-C6-alkoxycarbonyl-C1-C6-alkyl, CT-Ce-alkylcarbonyloxy-C1-C6-alkyl, C1-C6-alkylcarbonylamino-C-rd-alkyl, [di(C1-C6-a!kyl)aminocarbonyloxy]C1-C6-alkyl, formylamino-C1-C4-alkyl; phenyl-C1-C4-alkyl, phenyl-C2-C4-alkenyl, phenyl-C2-C4-alkynyl, phenyl-C1-C4- haloalkyl, phenyl-C2-C4-haloalkenyl, phenyl-C1-C4-hyciroxyalkyl, phenyloxy-CVCr alkyl, phenylthio-C1-C4-alkyl, phenylsulfinyl-C-rCU-alkyl or phenylsuIfonyl-C1-C4- alkyl, where the phenyl radicals mentioned above may be partially or fully halogenated and/or may carry one to three radicals from the group consisting of C1-C6-a!kyl, C1-C6-haloalkyl, C1-C6-alkoxy, hydroxycarbonyl, C1-C6-alkoxycarbonyl, C1-C6-alkylsulfonylamino and C1-CB-haloalkyl- sulfonylamino; especially preferably C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-haloalkyl, C2-C6-haloalkenyl, CVCB-hydroxyalkyl, 3- to 6-membered heterocyclyl, C1-C6- alkoxy-C1-C4-alkyl, CVCe-alkoxy-C1-CXralkoxy-C1-CA-alkyI, hydroxycarbonyl- C1-C4-alkyl, (VCe-alkoxycarbonyl-C-rCValkyl, [di(C1-C6-alkyl)aminocarbonyl- oxyJC1-C4alkyl, formylamino-C1-C4-alkyl; phenyl-C1-C4-alkyl, phenyl-C2-C4-alkenyl, phenyl-C1-C4-hydroxyalkyl or phenylthio-C1-C4-alkyl; most preferably C1-C6-alkyl, C2-C6-alkenyl, C1-C6-haloalkyl, C2-C6-haloalkenyl, C1-C6-hydroxyalkyl, 3- to 6-membered heterocyclyl, C1-C6-alkoxy-C1-C4-alkyl, C1-C6-alkoxy-C1-C4-alkoxy-C1-C4-alkyl, hydroxycarbonyl-C1-C4-alkyl, formylamino-C-rCU-alkyl, phenyl-C1-CA-alkyI or phenyl-C1-C4-hydroxyalkyl. Preference is likewise given to the heteroaroyl-substituted serineamides of the formula I in which R7 is C^CValkyl, C1-C6-haloalkyl or phenyl, where the phenyl radical may be partially or partially halogenated and/or may be substituted by C1-C4-alkyl; particularly preferably C1-C4-alkyl, C1-C4-haloalkyl or phenyl; especially preferably methyl, trifluoromethyl or phenyl. Particular preference is given to the heteroaroyl-substituted serineamides of the formula I in which A is 5- or 6-membered heteroaryl selected from the group consisting of thienyl, furyl, pyrazolyl, imidazolyl, thiazolyl, oxazolyl and pyridyl; where the heteroaryl radicals mentioned may be partially or fully halogenated and/or may carry 1 to 3 radicals from the group consisting of C1-C6-alkyl, C3-C6-cycloalkyl and C-pCVhaloalkyl; R1 and R2 are hydrogen; R3 is C1-C4alkyl, particularly preferably CH3; R4 is hydrogen, formyl, C1-C4-alkylcarbonyl, C1-C4-alkylaminocarbonyl, di-(C1-C4- alkyl)aminocarbonyl, phenylaminocarbonyl, N-(C1-C4-alkyl)-N- (phenyl)aminocarbonyl, S02CH3, S02CF3or S02(C6H5); and R5 is hydrogen; and R6 is C1-C6-alkyl, C2-C6-alkenyl, C1-C6-haloalkyl, C2-C6-haloalkenyl, C1-C6- hydroxyalkyl, C1-C6-alkoxy-C-rC^alkyl, C1-C6-alkoxy-C1-C4alkoxy-C1-C4alkyl, 3- to 6-membered heterocyclyl, hydroxycarbonyl-C1-C4-alkyl, phenyl-C1-C4-alkyl, phenyl-C1-C4-hydroxyalkyl. Most preference is given to the compounds of the formula I.a (corresponds to formula I where A = A-1 where R8 = H, R9 = CF3, R1, R2 and R6 = H; R3 = CH3), in particular to the compounds of the formulae l.a.1 to l.a.138 of Table 1, where the definitions of the variables A and R1 to R6 are of particular importance for the compounds according to the invention not only in combination with one another, but in each case also on their own. Most preference is given to the compounds of the formula l.b, in particular to the compounds of the formulae l.b.1 to l.b. 138, which differ from the corresponding compounds of the formulae l.a.1 to l.a.138 in that A is A1 where RB = CH3 and R9 = CF3. Most preference is given to the compounds of the formula l.c, in particular to the compounds of the formulae l.c. 1 to l.c. 138, which differ from the corresponding compounds of the formulae l.a.1 to l.a.138 in that A is A2 where R8 = H and R9 =CF3. Most preference is given to the compounds of the formula l.d, in particular to the compounds of the formulae l.d.1 to l.d.138, which differ from the corresponding compounds of the formulae l.a.1 to l.a.138 in that A is A3 where RB = H and R9 = CF3. Most preference is given to the compounds of the formula I.e. in particular to the compounds of the formulae l.e.1 to l.e.138, which differ frorti the corresponding compounds of the formulae l.e.1 to l.e.138 in that A is A3 where R8 = CH3 and R9 = CF3. Most preference is given to the compounds of the formula l.f, in particular to the compounds of the formulae l.f.1 to l.f.138, which differ from the corresponding compounds of the formulae l.a.1 to I.a.138 in that A is A4 where R8 = H and R9 = CF3. Most preference is given to the compounds of the formula l.g, in particular to the compounds of the formulae l.g.1 to l.g.138, which differ from the corresponding compounds of the formulae l.a.1 to I.a.138 in that A is A5 where R11 = H, R9 = CF3 and R10 = H. Most preference is given to the compounds of the formula I.h, in particular to the compounds of the formulae l.h.1 to I.h.138, which differ from the corresponding compounds of the formulae l.a.1 to l.a.138 in that A is A5 where R11 = CH3, Ra = CF3 and R10 = H. Most preference is given to the compounds of the formula l.j, in particular to the compounds of the formulae l.j.1 to l.j.138, which differ from the corresponding compounds of the formulae l.a.1 to I.a.138 in that A is A8 where R8 = H and R9 = CF3. Most preference is given to the compounds of the formula l.k, in particular to the compounds of the formulae l.k.1 to l.k. 138, which differ from the corresponding compounds of the formulae l.a.1 to l.a.138 in that A is A8 where R8 = CH3 and R9 = CF3. The heteroaroyl-substituted serineamides of the formula I can be obtalned by different routes, for example by the following processes: Process A Serine derivatives of the formula V are initially reacted with heteroaryl acids/heteroaryl acid derivatives of the formula IV to give the corresponding heteroaroyl derivatives of the formula III which are then reacted with amines of the formula II to give the desired heteroaroyl-substituted serineamides of the formula I: L1 is a nucleophilically replaceable leaving group, for example hydroxyl or C1-C6-alkoxy. L2 is a nucleophilically replaceable leaving group, for example hydroxyl, halogen, C1-C6-alkylcarbonyl, C1-C6-alkoxycarbonyl, C1-C4alkylsulfonyf, phosphoryl or isoureyl. The reaction of the serine derivatives of the formula V with heteroaryl acids/heteroaryl acid derivatives of the formula IV where L2 is hydroxyl to give heteroaroyl derivatives of the formula III is carried out in the presence of an activating reagent and a base, usually at temperatures of from 0°C to the boiling point of the reaction mixture, preferably from 0°C to 110°C, particularly preferably at room temperature, in an inert organic solvent [cf. Bergmann, E. D.; et al., J Chem Soc 1951, 2673; Zhdankin, V. V.; et al., Tetrahedron Lett. 2000, 41 (28), 5299-5302; Martin, S. F. et al., Tetrahedron Lett.1998, 39 (12), 1517-1520; Jursic, B. S. et al., Synth Commun 2001, 31 (4), 555-564; Albrecht, M. et al., Synthesis 2001, (3), 468-472; Yadav, L. D. S. et al., Indian J. Chem B. 41(3), 593-595(2002); Clark, J. E. et al., Synthesis (10), 891-894 (1991)]. Suitable activating reagents are condensing agents, such as, for example, polystyrene- bound dicyclohexylcarbodiimide, diisopropylcarbodiimide, carbonyldiimidazole, chloroformic esters, such as methyl chloroformate, ethyl chloroformate, isopropyl chloroformate, isobutyl chloroformate, sec-butyl chloroformate or allyl chloroformate, pivaloyl chloride, polyphosphoric acid, propanephosphonic anhydride, bis(2-oxo- 3-oxazolidinyl)phosphoryl chloride (BOPCI) or sulfonyl chlorides, such as methane- sulfonyl chloride, toluenesulfonyl chloride or benzenesulfonyl chloride. Suitable solvents are aliphatic hydrocarbons, such as pentane, hexane, cyclohexane and mixtures of C5-CB-alkanes, aromatic hydrocarbons, such as benzene, toluene, o-, m- and p-xylene, halogenated hydrocarbons, such as methylene chloride, chloroform and chlorobenzene, ethers, such as diethyl ether, diisopropyl ether, tert-butyl methyl ether, dioxane, anisole and tetrahydrofuran (THF), nitriles, such as acetonitrile and propionitrile, ketones, such as acetone, methyl ethyl ketone, diethyl ketone and tert- butyl methyl ketone, and also dimethyl sulfoxide, dimethylformamide (DMF), dimethyl- acetamide (DMA) and N-methylpyrrolidone (NMP), or else in water; particular preference is given to methylene chloride, THF and water. It is also possible to use mixtures of the solvents mentioned. Suitable bases are, in general, inorganic compounds, such as alkali metal and alkaline earth metal hydroxides, such as lithium hydroxide, sodium hydroxide, potassium hydroxide and calcium hydroxide, alkali metal and alkaline earth metal oxides, such as lithium oxide, sodium oxide, calcium oxide and magnesium oxide, alkali metal and alkaline earth metal hydrides, such as lithium hydride, sodium hydride, potassium hydride and calcium hydride, alkali metal and alkaline earth metal carbonates, such as lithium carbonate, potassium carbonate and calcium carbonate, and also alkali metal bicarbonates, such as sodium bicarbonate, moreover organic bases, for example tertiary amines, such as trimethylamine, triethylamine, diisopropylethylamine, N-methyl- morpholine and N-methylpiperidine, pyridine, substituted pyridines, such as collidine, lutidine and 4-dimethylaminopyridine, and also bicyclic amines. Particular preference is given to sodium hydroxide, triethylamine and pyridine. The bases are generally employed in equimolar amounts. However, they can also be used in excess or, if appropriate, as solvent. The starting materials are generally reacted with one another in equimolar amounts. It may be advantageous to use an excess of IV, based on V. The reaction mixtures are worked up in a customary manner, for example by mixing with water, separating the phases and, if appropriate, chromatographic purification of the crude products. Some of the intermediates and end products are obtalned in the form of viscous oils which are purified or freed from volatile components under reduced pressure and at moderately elevated temperature. If the intermediates and end products are obtalned as solids, purification can also be carried out by recrystallization or digestion. The reaction of the serine derivatives of the formula V with heteroaryl acids/heteroaryl acid derivatives of the formula IV where L2 is halogen, CVCe-alkylcarbonyl, CVC6- alkoxycarbonyl, C1-C4-alkylsulfonyl, phosphoryl or isoureyl to give heteroaroyl derivatives of the formula III is carried out in the presence of a base, usually at temperatures of from 0°C to the boiling point of the reaction mixture, preferably at from 0°C to 100°C, particularly preferably at room temperature, in an inert organic solvent [cf. Bergmann, E. D.; et al., J Chem Soc 1951, 2673; Zhdankin, V. V.; et al., Tetrahedron Lett. 2000, 41 (28), 5299-5302; Martin, S. F. et al., Tetrahedron Lett. 1998, 39 (12), 1517-1520; Jursic, B. S. et al., Synth Commun 2001, 31 (4), 555-564; Albrecht, M. et al., Synthesis 2001, (3), 468-472; Yadav, L. D. S. et al., Indian J. Chem B. 41(3), 593-595(2002); Clark, J. E. et al., Synthesis (10), 891-894 (1991)]. Suitable solvents are aliphatic hydrocarbons, such as pentane, hexane, cyclohexane and mixtures of C5-C8-alkanes, aromatic hydrocarbons, such as benzene, toluene, o-, m- and p-xylene, halogenated hydrocarbons, such as methylene chloride, chloroform and chiorobenzene, ethers, such as diethyl ether, diisopropyl ether, tert-butyl methyl ether, dioxane, anisole and tetrahydrofuran (THF), nitriles, such as acetonitrile and propionitrile, ketones, such as acetone, methyl ethyl ketone, diethyl ketone and tert- butyl methyl ketone, and also dimethyl sulfoxide, dimethylformamide (DMF), dimethylacetamide (DMA) and N-methylpyrrolidone (NMP), or else in water; particular preference is given to methylene chloride, THF and water. It is also possible to use mixtures of the solvents mentioned. Suitable bases are, in general, inorganic compounds, such as alkali metal and alkaline earth metal hydroxides, such as lithium hydroxide, sodium hydroxide, potassium hydroxide and calcium hydroxide, alkali metal and alkaline earth metal oxides, such as lithium oxide, sodium oxide, calcium oxide and magnesium oxide, alkali metal and alkaline earth metal hydrides, such as lithium hydride, sodium hydride, potassium hydride and calcium hydride, alkali metal and alkaline earth metal carbonates, such as lithium carbonate, potassium carbonate and calcium carbonate, and also alkali metal bicarbonates, such as sodium bicarbonate, moreover organic bases, for example tertiary amines, such as trimethylamine, triethylamine, diisopropylethylamine, N-methyl- morpholine and N-methylpiperidine, pyridine, substituted pyridines, such as collidine, lutidine and 4-dimethylaminopyridine, and also bicyclic amines. Particular preference is given to sodium hydroxide, triethylamine and pyridine. The bases are generally employed in equimolar amounts. However, they can also be used in excess or, if appropriate, as solvent. The starting materials are generally reacted with one another in equimolar amounts. It may be advantageous to use an excess of IV, based on V. Work-up and isolation of the products can be carried out in a manner known per se. It is, of course, also possible to initially react the serine derivatives of the formula V in an analogous manner with amines of the formula II to give the corresponding amides which are then reacted with heteroaryl acids/heteroaryl acid derivatives of the formula IV to give the desired heteroaroyl-substituted serineamides of the formula I. The serine derivatives of the formula V (for example where L1 = hydroxyl or C1-C6- alkoxy) required for preparing the heteroaroyl derivatives of the formula III are known from the literature, even in enantiomerically and diastereomerically pure form, or they can be prepared in accordance with the literature cited: - by condensation of glycine enolate equivalents with aldehydes or ketones [Blaser, D. et al., Liebigs Ann. Chem. 10, 1067-1078 (1991); Seethaler, T. et al., Liebigs Ann. Chem. 1, 11-17 (1991); Weltenauer, G. et al., Gazz. Chim. Ital. 81,162 (1951); Dalia Croce, P. et al., Heterocycles 52(3), 1337-1344 (2000); Van der Werf, A. W. et al., J. Chem. Soc. Chem. Commun. 100, 682-683 (1991); Caddick, S. et al., Tetrahedron 57 (30), 6615-6626 (2001); Owa, T. et al., Chem. Lett. 1, 83-86 (1988); Alker, D. et al., Tetrahedron 54 (22), 6089-6098 (1998); Rousseau, J. F. et al., J. Org. Chem. 63 (8), 2731-2737 (1998); Saeed, A. et al., Tetrahedron 48 (12), 2507- 2514 (1992); Dong, L. et al., J. Org. Chem. 67 (14), 4759-4770 (2002)]. - by aminohydroxylation of acrylic acid derivatives [Zhang, H. X. et al., Tetrahedron Asymmetr. 11(16), 3439-3447 (2000); Fokin, V. V. et al., Angew. Chem. Int. Edit. 40(18), 3455 (2001); Sugiyama, H. et al., Tetrahedron Lett. 43(19), 3489-3492 (2002); Bushey, M. L. et al., J. Org. Chem. 64(9), 2984-2985 (1999); Raatz, D. et al., Synlett (12), 1907-1910 (1999)]. - by nucleophilic substitution of leaving groups in the 2-position of 3-hydroxypropionic acid derivatives [Owa, T. et al., Chem. Lett. (11), 1873-1874 (1988); Boger, D. L et al., J. Org. Chem. 57(16), 4331-4333 (1992); Alcalde, B. et a!., Tetrahedron Lett. 36(30), 5417-5420(1995)]. - by condensation of aldehydes with nucleophiles with formation of oxazolines and subsequent hydrolysis [Evans, D. A. et al., Angew. Chem. Int. Edit. 40(10), 1884- 1888 (2001); Ito, Y. et al., Tetrahedron Lett. 26(47), 5781-5784 (1985); Togni, A. et al., J. Organomet. Chem. 381(1), C21-5 (1990); Longmire, J. M. et al., Organometallics 17(20), 4374-4379 (1998); Suga, H. et al., J. Org. Chem. 58(26), 7397-7405(1993)]. - by oxidative cyclization of 2-acylamino-propionic acid derivatives to give oxazoiines and subsequent hydrolysis (JP10101655). - by Diels-Alder reactions of vinylimines with aldehydes to give the oxazines and subsequent hydrolysis [Bongini, A. et al., Tetrahedron Asym. 12(3), 439-454 (2001)]. The heteroaryl acids/heteroaryl acid derivatives of the formula IV required for preparing the heteroaroyl derivatives of the formula III are commercially avallable or can be prepared analogously to procedures known from the literature from the corresponding halide by a Grignard reaction [for example A. Mannschuk et al., Angew. Chem. 100, 299(1988)]. The reaction of the heteroaroyl derivatives of the formula III where L1 = hydroxyl or salts thereof with amines of the formula II to give the desired heteroaroyl-substituted serineamides of the formula I is carried out in the presence of an activating reagent and, if appropriate, in the presence of a base, usually at temperatures of from 0°C to the boiling point of the reaction mixture, preferably at from 0°C to 100°C, particularly preferably at room temperature, in an inert organic solvent [cf. Perich, J. W., Johns, R. B., J. Org. Chem. 53 (17), 4103-4105 (1988); Somlal, C. et al., Synthesis (3), 285-287 (1992); Gupta, A. et al., J. Chem. Soc. Perkin Trans. 2, 1911 (1990); Guan et al., J. Comb. Chem. 2, 297 (2000)]. Suitable activating reagents are condensing agents, such as, for example, polystyrene- bound dicyclohexylcarbodiimide, diisopropylcarbodiimide, carbonyldiimidazole, chloroformic esters, such as methyl chloroformate, ethyl chloroformate, isopropyl chloroformate, isobutyl chloroformate, sec-butyl chloroformate or allyl chloroformate, pivaloyl chloride, polyphosphoric acid, propanephosphonic anhydride, bis(2-oxo- 3-oxazolidinyl)phosphoryl chloride (BOPCI) or sulfonyl chlorides, such as methane- sulfonyl chloride, toluenesulfonyl chloride or benzenesulfonyl chloride. Suitable solvents are aliphatic hydrocarbons, such as pentane, hexane, cyclohexane and mixtures of C5-C8-alkanes, aromatic hydrocarbons, such as benzene, toluene, o-, m- and p-xylene, halogenated hydrocarbons, such as methylene chloride, chloroform and chlorobenzene, ethers, such as diethyl ether, diisopropyl ether, tert-butyl methyl ether, dioxane, anisole and tetrahydrofuran (THF), nitriles, such as acetonitrile and propionitrile, ketones, such as acetone, methyl ethyl ketone, diethyl ketone and tert- butyl methyl ketone, alcohols, such as methanol, ethanol, n-propanol, isopropanol, n-butanol and tert-butanol, and also dimethyl sulfoxide, dimethylformamide (DMF), dimethylacetamide (DMA) and N-methylpyrrolidone (NMP), or else in water; particular preference is given to methylene chloride, THF, methanol, ethanol and water. It is also possible to use mixtures of the solvents mentioned. Suitable bases are, in general, inorganic compounds, such as alkali metal and alkaline earth metal hydroxides, such as lithium hydroxide, sodium hydroxide, potassium hydroxide and calcium hydroxide, alkali metal and alkaline earth metal oxides, such as lithium oxide, sodium oxide, calcium oxide and magnesium oxide, alkali metal and alkaline earth metal hydrides, such as lithium hydride, sodium hydride, potassium hydride and calcium hydride, alkali metal and alkaline earth metal carbonates, such as lithium carbonate, potassium carbonate and calcium carbonate, and also alkali metal bicarbonates, such as sodium bicarbonate, moreover organic bases, for example tertiary amines, such as trimethylamine, thethylamine, diisopropylethylamine, N-methyl- morpholine and N-methylpiperidine, pyridine, substituted pyridines, such as collidine, lutidine and 4-dimethylaminopyridine, and also bicyclic amines. Particular preference is given to sodium hydroxide, triethylamine, ethyldiisopropylamine, N-methylmorpholine and pyridine. The bases are generally employed in catalytic amounts; however, they can also be employed in equimolar amounts, in excess or, if appropriate, as solvent. The starting materials are generally reacted with one another in equimolar amounts. It may be advantageous to use an excess of II, based on III. Work-up and isolation of the products can be carried out in a manner known per se. The reaction of the heteroaroyl derivatives of the formula III where L1 = C1-C6-alkoxy with amines of the formula II to give the desired heteroaroyl-substituted serineamides of the formula I is usually carried out at temperatures of from 0°C to the boiling point of the reaction mixture, preferably from 0°C to 100°C, particularly preferably at room temperature, in an inert organic solvent, if appropriate in the presence of a base [cf. Kawahata, N. H. et a!., Tetrahedron Lett. 43 (40), 7221-7223 (2002); Takahashi, K. et al., J. Org. Chem. 50 (18), 3414-3415 (1985); Lee, Y. et al., J. Am. Chem. Soc. 121 (36), 8407-8408(1999)]. Suitable solvents are aliphatic hydrocarbons, such as pentane, hexane, cydohexane and mixtures of C5-C8-alkanes, aromatic hydrocarbons, such as benzene, toluene, o-, m- and p-xylene, halogenated hydrocarbons, such as methylene chloride, chloroform and chlorobenzene, ethers, such as diethyl ether, diisopropyl ether, tert-butyl methyl ether, dioxane, anisole and tetrahydrofuran (THF), nitriles, such as acetonitriie and propionitrile, ketones, such as acetone, methyl ethyl ketone, diethyl ketone and tert- butyl methyl ketone, alcohols, such as methanol, ethanol, n-propanol, isopropanol, n-butanol and tert-butanol, and also dimethyl sulfoxide, dimethylformamide (DMF), dimethylacetamide (DMA) and N-methylpyrrolidone (NMP), or else in water; particular preference is given to methylene chloride, THF, methanol, ethanol and water. It is also possible to use mixtures of the solvents mentioned. If appropriate, the reaction can be carried out in the presence of a base. Suitable bases are, in general, inorganic compounds, such as alkali metal and alkaline earth metal hydroxides, such as lithium hydroxide, sodium hydroxide, potassium hydroxide and calcium hydroxide, alkali metal and alkaline earth metal oxides, such as lithium oxide, sodium oxide, calcium oxide and magnesium oxide, alkali metal and alkaline earth metal hydrides, such as lithium hydride, sodium hydride, potassium hydride and calcium hydride, alkali metal and alkaline earth metal carbonates, such as lithium carbonate, potassium carbonate and calcium carbonate, and also alkali metal bicarbonates, such as sodium bicarbonate, moreover organic bases, for example tertiary amines, such as trimethylamine, triethylamine, diisopropylethylamine, N-methyl- morpholine and N-methylpiperidine, pyridine, substituted pyridines, such as collidine, lutidine and 4-dimethylaminopyridine, and also bicyclic amines. Particular preference is given to sodium hydroxide, triethylamine, ethyldiisopropylamine, N-methylmorpholine and pyridine. The bases are generally employed in catalytic amounts; however, they can also be employed in equimolar amounts, in excess or, if appropriate, as solvent. The starting materials are generally reacted with one another in equimolar amounts. It may be advantageous to use an excess of II, based on 111. Work-up and isolation of the products can be carried out in a manner known per se. The amines of the formula II required for preparing the heteroaroyl-substituted serineamides of the formula I are commercially avallable. Process B Heteroaroyl derivatives of the formula III where R4 = hydrogen can also be obtalned by condensing acylated glycine derivatives of the formula VIII where the acyl group may be a cleavable protective group, such as benzyloxycarbonyl (cf. Villa where E = benzyl) or tert-butyloxycarbonyl (cf. Villa where I = tert-butyl), with carbonyl compounds VII to give the corresponding aldol products VI. The protective group is then cleaved and the resulting serine derivative of the formula V where R4= hydrogen is acylated using heteroaryl acid derivatives of the formula IV. Analogously, it is also possible to convert an acylated glycine derivative of the formula VIII where the acyl group is a substituted heteroaroyl radical (cf. Vlllb) in the presence of a base with a carbonyl compound VII into the heteroaroyl derivative III where R4 = hydrogen: L1 is a nucleophilically displaceable leaving group, for example hydroxyl or C1-C6- alkoxy. L2 is a nucleophilically displaceable leaving group, for example hydroxyl, halogen, C1-C6-alkylcarbonyl, C1-C6-alkoxycarbonyl, C1-C4-alkylsulfonyl, phosphoryl or isoureyl. The reaction of the glycine derivatives VIII with carbonyl compounds VII to give the corresponding aldol product VI or heteroaroyl derivative III where R4 = hydrogen is usually carried out at temperatures of from -100°C to the boiling point of the reaction mixture, preferably at from -80°C to 20°C, particularly preferably at from -80°C to -20°C, in an inert organic solvent in the presence of a base [cf. J.-F. Rousseau et al., J. Org. Chem. 63, 2731-2737 (1998)]. Suitable solvents are aliphatic hydrocarbons, such as pentane, hexane, cyclohexane and mixtures of C5-C8-alkanes, aromatic hydrocarbons, such as toluene, o-, m- and p-xylene, ethers, such as diethyl ether, diisopropyl ether, tert-butyl methyl ether, dioxane, anisole and tetrahydrofuran, and also dimethyl sulfoxide, dimethylformamide and dimethylacetamide, particularly preferably diethyl ether, dioxane and tetrahydrofuran. It is also possible to use mixtures of the solvents mentioned. Suitable bases are, in general, inorganic compounds, such as alkali metal and alkaline earth metal hydrides, such as lithium hydride, sodium hydride, potassium hydride and calcium hydride, alkali metal azides, such as lithium diisopropylamide, lithium hexamethyldisilazide, organometallic compounds, in particular alkali metal alkyls, such as methyllithium, butyllithium and phenyllithium, and also alkali metal and alkaline earth metal alkoxides, such as sodium methoxide, sodium ethoxide, potassium ethoxide, potassium tert-butoxide, potassium tert-pentoxide and dimethoxymagnesium, moreover organic bases, for example tertiary amines, such as trimethylamine, triethylamine, diisopropylethylamine and N-methylpiperidine, pyridine, substituted pyridines, such as collidine, lutidine and 4-dimethylaminopyridine, and also bicyclic amines. Particular preference is given to sodium hydride, lithium hexamethyldisilazide and lithium diisopropylamide. The bases are generally employed in equimolar amounts; however, they can also be used catalytically, in excess or, if appropriate, as solvents. The starting materials are generally reacted with one another in equimolar amounts. It may be advantageous to employ an excess of base and/or carbonyl compounds VII, based on the glycine derivatives VIII. Work-up and isolation of the products can be carried out in the manner known per se. The glycine derivatives of the formula VIII required for preparing the compounds I are commercially avallable, known from the literature [for example H. Pessoa-Mahana et al., Synth. Comm. 32, 1437 (2002)] or can be prepared in accordance with the literature cited. The protective group is cleaved off by methods known from the literature, giving serine derivatives of the formula V where R4 = hydrogen [cf. J.-F. Rousseau et al., J. Org. Chem. 63, 2731-2737 (1998); J. M. Andres, Tetrahedron 56, 1523 (2000)]; in the case of I = benzyl by hydrogenolysis, preferably using hydrogen and Pd/C in methanol; in the case of E = tert-butyl using acid, preferably hydrochloric acid in dioxane. The reaction of the serine derivatives V where R4 = hydrogen with heteroaryl acids/heteroaryl acid derivatives IV where R4 = hydrogen to give heteroaroyl derivatives III where R4 = hydrogen is usually carried out analogously to the reaction of the serine derivatives of the formula V with heteroaryl acids/heteroaryl acid derivatives of the formula III to give heteroaroyl derivatives III mentioned in process A. Analogously to process A, the heteroaroyl derivatives of the formula III where R4 = hydrogen can then be reacted with amines of the formula II to give the desired heteroaroyl-substituted serineamides of the formula I where R4 = hydrogen which can then be derivatized with compounds of the formula IX to give heteroaroyl-substituted serineamides of the formula I [cf., for example, Yokokawa, F.'et al., Tetrahedron Lett. 42 (34), 5903-5908 (2001); Arrault, A. et al., Tetrahedron Lett. 43 (22), 4041-4044 (2002)]. It is also possible to derivatize the heteroaroyl derivatives of the formula III where R4= hydrogen initially with compounds of the formula IX to give further heteroaroyl derivatives of the formula II! [cf., for example, Troast, D. et al., Org. Lett. 4 (6), 991-994 (2002); Ewing W. et al., Tetrahedron Lett., 30 (29), 3757-3760 (1989); Paulsen, H. et al., Liebigs Ann. Chem. 565 (1987)], followed by reaction with amines of the formula II analogously to process A, giving the desired heteroaroyl-substituted serineamides of the formula I: L1 is a nucleophilically displaceable leaving group, for example hydroxyl or C1-C6- alkoxy. L3 is a nucleophilically displaceable leaving group, for example halogen, hydroxyl, or CVCs-alkoxy. The reaction of the heteroaroyl derivatives of the formula III (where, if appropriate, R4= hydrogen) with amines of the formula II to give heteroaroyl-substituted serineamides of the formula I (where, if appropriate, R4 = hydrogen) is usually carried out analogously to the reaction of the heteroaroyl derivatives of the formula III with amines of the formula II described in process A. The reaction of the heteroaroyl derivatives of the formula III where R4 = hydrogen or of the heteroaroyl-substituted serineamides of the formula I where R4 = hydrogen with compounds of the formula IX to give heteroaroyl derivatives of the formula III or heteroaroyl-substituted serineamides of the formula I is usually carried out at temperatures of from 0°C to 100°C, preferably from 10°C to 50°C, in an inert organic solvent in the presence of a base [cf., for example, Troast, D. et al., Org. Lett. 4 (6), 991-994 (2002); Ewing W. et al., Tetrahedron Lett., 30 (29), 3757-3760 (1989); Paulsen, H. et al., Liebigs Ann. Chem. 565 (1987)]. Suitable solvents are aliphatic hydrocarbons, such as pentane, hexane, cyclohexane and mixtures of C5-C8-alkanes, aromatic hydrocarbons, such as toluene, o-, m- and p-xylene, halogenated hydrocarbons, such as methylene chloride, chloroform and chlorobenzene, ethers, such as diethyl ether, diisopropyl ether, tert-butyl methyl ether, dioxane, anisole and tetrahydrofuran, nitriles, such as acetonitrile and propionitrile, ketones, such as acetone, methyl ethyl ketone, diethyl ketone and tert-butyl methyl ketone, alcohols, such as methanol, ethanol, n-propanol, isopropanol, n-butanol and tert-butanol, and also dimethyl sulfoxide, dimethylformamide and dimethylacetamide, particularly preferably dichloromethane, tert-butyl methyl ether, dioxane and tetrahydrofuran. It is also possible to use mixtures of the solvents mentioned. Suitable bases are, in general, inorganic compounds, such as alkali metal and alkaline earth metal hydroxides, such as lithium hydroxide, sodium hydroxide, potassium hydroxide and calcium hydroxide, alkali metal and alkaline earth metal oxides, such as lithium oxide, sodium oxide, calcium oxide and magnesium oxide, alkali metal and alkaline earth metal hydrides, such as lithium hydride, sodium hydride, potassium hydride and calcium hydride, alkali metal amides, such as lithium amide, sodium amide and potassium amide, alkali metal and alkaline earth metal carbonates, such as lithium carbonate, potassium carbonate and calcium carbonate, and also alkali metal bicarbonates, such as sodium bicarbonate, organometallic compounds, in particular alkali metal alkyls, such as methyllithium, butyllithium and phenyllithium, alkylmagnesium halides, such as methylmagnesium chloride, and also alkali metal and alkaline earth metal alkoxides, such as sodium methoxide, sodium ethoxide, potassium ethoxide, potassium tert-butoxide, potassium tert-pentoxide and dimethoxymagnesium, moreover organic bases, for example tertiary amines, such as trimethylamine, triethylamine, diisopropylethylamine and N-methylpiperidine, pyridine, substituted pyridines, such as collidine, lutidine and 4-dimethylaminopyridine, and also bicyclic amines. Particular preference is given to sodium hydroxide, sodium hydride and triethylamine. The bases are generally employed in equimolar amounts; however, they can also be employed catalytically, in excess or, if appropriate, as solvents. The starting materials are generally reacted with one another in equimolar amounts. It may be advantageous to use an excess of base and/or IX, based on III or I. Work-up and isolation of the products can be carried out in a manner known per se. The required compounds of the formula VIII are commercially avallable. Process C Heteroaroyl derivatives of the formula III where R4 = hydrogen can also be obtalned by initially acylating aminomalonyl compounds of the formula XI with heteroaryl acids/heteroaryl acid derivatives of the formula IV to give the corresponding N-acyl- aminomalonyl compounds of the formula X, followed by condensation with a carbonyl compound of the formula VII with decarboxylation: L1 is a nucleophilically displaceable leaving group, for example hydroxyl or C1-C6- alkoxy. L2 is a nucleophilically displaceable leaving group, for example hydroxyl, halogen, C1-CValkylcarbonyl, C1-C6-alkoxycarbonyl, C1-C6-alkylsulfonyl, phosphoryl or isoureyl. L4 is a nucleophilically displaceable leaving group, for example hydroxyl or C1-C6- alkoxy. The acylation of the aminomalonyl compounds of the formula XI with heteroaryl acids/heteroaryl acid derivatives of the formula IV to give the corresponding N-acyl- aminomalonyl compounds of the formula X is usually carried out analogously to the reaction, mentioned in process A, of the serine derivatives of the formula V with heteroaryl acids/heteroaryl acid derivatives of the formula IV to give the corresponding heteroaroyl derivatives of the formula III. The reaction of the N-acylaminomalonyl compounds of the formula X with carbonyl compounds of the formula VII give heteroaroyl derivatives of the formula III where R4 = hydrogen is usually carried out at temperatures of from 0°C to 100°C, preferably from 10°C to 50°C, in an inert organic solvent in the presence of a base [cf., for example, US 4904674; Hellmann, H. et a!., Liebigs Ann. Chem. 631, 175-179 (1960)]. If L4 in the N-acylaminomalonyl compounds of the formula X is C1-C6-akoxy, it is advantageous to initially convert L4 by ester hydrolysis [for example Hellmann, H. et al., Liebigs Ann. Chem. 631, 175-179 (1960)] into a hydroxyl group. Suitable solvents are aliphatic hydrocarbons, such as pentane, hexane, cyclohexane and mixtures of C5-C8-alkanes, aromatic hydrocarbons, such as toluene, o-, m- and p-xylene, halogenated hydrocarbons, such as methylene chloride, chloroform and chlorobenzene, ethers, such as diethyl ether, diisopropyl ether, tert-butyl methyl ether, dioxane, anisole and tetrahydrofuran, nitriles, such as acetonitrile and propionitrile, ketones, such as acetone, methyl ethyl ketone, diethyl ketone and tert-butyl methyl ketone, alcohols, such as methanol, ethanol, n-propanoi, isopropanol, n-butanol and tert-butanol, and also dimethyl sulfoxide, dimethylformamide and dimethylacetamide, particularly preferably diethyl ether, dioxane and tetrahydrofuran. It is also possible to use mixtures of the solvents mentioned. Suitable bases are, in general, inorganic compounds, such as alkali metal and alkaline earth metal hydroxides, such as lithium hydroxide, sodium hydroxide, potassium hydroxide and calcium hydroxide, alkali metal and alkaline earth metal oxides, such as lithium oxide, sodium oxide, calcium oxide and magnesium oxide, alkali metal and alkaline earth metal hydrides, such as lithium hydride, sodium hydride, potassium hydride and calcium hydride, alkali metal amides, such as lithium amide, sodium amide and potassium amide, alkali metal and alkaline earth metal carbonates, such as lithium carbonate, potassium carbonate and calcium carbonate, and also alkali metal bicarbonates, such as sodium bicarbonate, organometallic compounds, in particular alkali metal alkyls, such as methyllithium, butyllithium and phenyllithium, alkylmagnesium halides, such as methylmagnesium chloride, and also alkali metal and alkaline earth metal alkoxides, such as sodium methoxide, sodium ethoxide, potassium ethoxide, potassium tert-butoxide, potassium tert-pentoxide and dimethoxymagnesium, moreover organic bases, for example tertiary amines, such as trimethylamine, triethylamine, diisopropylethylamine and N-methylpiperidine, pyridine, substituted pyridines, such as collidine, lutidine and 4-dimethylaminopyridine, and also bicyclic amines. Particular preference is given to triethylamine and diisopropylethylamine. The bases are generally employed in catalytic amounts; however, they can also be used in equimolar amounts, in excess or, if appropriate, as solvents. The starting materials are generally reacted with one another in equimolar amounts. It may be advantageous to employ an excess of base, based on X. Work-up and isolation of the products can be carried out in a manner known per se. According to the process A or B mentioned above, the resulting heteroaroyl derivatives of the formula III where R4 = hydrogen can then be converted into the desired heteroaroyl-substituted serineamides of the formula I. The required aminomalonyl compounds of the formula XI are commercially avallable and/or known from the literature [for example US 4904674; Hellmann, H. et al., Liebigs Ann. Chem. 631, 175-179 (1960)], or they can be prepared in accordance with the literature cited. The required heterocyclic compounds of the formula VII are commercially avallable. Process D Heteroaroyl derivatives of the formula III where R4 and R5 = hydrogen can also be obtalned by initially reducing keto compounds of the formula XIII with heteroaryl acids/heteroaryl acid derivatives of the formula IV to give the corresponding N-acyl keto compounds of the formula XII, followed by reduction of the keto group [Girard A, Tetrahedron Lett. 37 (44), 7967-7970(1996); Nojori R., J. Am. Chem. Soc. 111 (25), 9134-9135(1989); Schmidt U., Synthesis (12), 1248-1254 (1992); Bolhofer, A.; J. Am. Chem. Soc. 75, 4469 (1953)]: L1 is a nucleophilically displaceable leaving group, for example hydroxyl or C1-CV alkoxy. L2 is a nucleophilically displaceable leaving group, for example hydroxyl, halogen, C1-C6-alkylcarbonyl, C1-C6-alkoxycarbonyl, C1-C6-alkylsulfonyl, phosphoryl or isoureyl. The acylation of the keto compounds of the formula XIII with heteroaryl acids/heteroaryl acid derivatives of the formula IV to give N-acyl keto compounds of the formula XII is usually carried out analogously to the reaction, mentioned in process A, of the serine derivatives of the formula V with heteroaryl acids/heteroaryl acid derivatives of the formula IV to give the corresponding heteroaroyl derivatives of the formula III. The keto compounds of the formula XIII required for preparing the heteroaroyl derivatives of the formula III where R4 and R5 = hydrogen are known from the literature [WO 02/083111; Boto, A. et al., Tetrahedron Letters 39 (44), 8167-8170 (1988); von Geldem, T. et al., J. of Med. Chem. 39(4), 957-967 (1996); Singh, J. et al., Tetrahedron Letters 34 (2), 211-214 (1993); ES 2021557; Maeda, S: et al., Chem. & Pharm. Bull. 32 (7), 2536-2543 (1984); Ito, S. et al., J. of Biol. Chem. 256 (15), 7834-4783 (1981); Vinograd, L. et al., Zhurnal Organicheskoi Khimii 16 (12), 2594-2599 (1980); Castro, A. et a!., J. Org. Chem. 35 (8), 2815-2816 (1970); JP 02-172956; Suzuki, M. et al., J. Org. Chem. 38 (20), 3571-3575 (1973); Suzuki, M. et al, Synthetic Communications 2 (4), 237-242 (1972)] or can be prepared according to the literature cited. The reduction of the N-acyl keto compounds of the formula XII to heteroaroyl derivatives of the formula III where R4 and R5 = hydrogen is usually carried out at temperatures of from 0°C to 100°C, preferably from 20°C to 80°C, in an inert organic solvent in the presence of a reducing agent. Suitable solvents are aliphatic hydrocarbons, such as pentane, hexane, cyclohexane and mixtures of C5-C8-alkanes, aromatic hydrocarbons, such as toluene, o-, m- and p- xylene, halogenated hydrocarbons, such as methylene chloride, chloroform and chlorobenzene, ethers, such as diethyl ether, diisopropyl ether, tert-butyl methyl ether, dioxane, anisole and tetrahydrofuran, nitriles, such as acetonitrile and propionitrile, ketones, such as acetone, methyl ethyl ketone, diethyl ketone and tert-butyl methyl ketone, alcohols, such as methanol, ethanol, n-propanol, isopropanol, n-butanol and tert-butanol, and also dimethyl sulfoxide, dimethyl formamide and dimethyl acetamide, particularly preferably toluene, methylene chloride or tert-butyl methyl ether. It is also possible to use mixtures of the solvents mentioned. Suitable reducing agents are, for example, sodium borohydride, zinc borohydride, sodium cyanoborohydride, lithium triethylborohydride (Superhydrid®), lithium tri-sec- butylborohydride (L-Selectrid®), lithium aluminum hydride or borane [cf., for example, WO 00/20424; Marchi, C. et al., Tetrahedron 58 (28), 5699 (2002); Blank, S. et al., Liebigs Ann. Chem. (8), 889-896 (1993); Kuwano, R. et al., J. Org .Chem. 63 (10), 3499-3503 (1998); Clariana, J. et al., Tetrahedron 55 (23), 7331-7344 (1999)]. Furthermore, the reduction can also be carried out in the presence of hydrogen and a catalyst. Suitable catalysts are, for example, [Ru(BINAP)Ci2] or Pd/C [cf. Noyori, R. et al., J. Am. Chem. Soc. 111 (25), 9134-9135 (1989); Bolhofer, A. et al., J. Am. Chem. Soc. 75, 4469(1953)]. In addition, the reduction can also be carried out in the presence of a microorganism. The suitable microorganism is, for example, Saccharomyces rouxii [cf. Soukup, M. et a!., Helv. Chim. Acta 70, 232 (1987)]. The N-acyl keto compounds of the formula XII and the reducing agent in question are generally reacted with one another in equimolar amounts. It may be advantageous to employ an excess of reducing agent, based on XII. Work-up and isolation of the products can be carried out in the manner known per se. The resulting heteroaroyl derivatives of the formula III where R4 and R5 = hydrogen can then, according to the processes A and B mentioned above, be converted into the desired heteroaroyl-substituted serineamides of the formula I. Process E Heteroaroyl derivatives of the formula III where R4 = hydrogen and R6 = -C(OH)R'R" can also be obtalned by dihydroxylating vinylglycines of the formula XIV with an oxidizing agent such as osmium tetroxide or permanganate: L1 is a nucleophilically dispiaceable leaving group, for example hydroxyl or CVCer alkoxy. R' is hydrogen, C1-C6-alkyl, C1-C6-haloalkyl, C1-C6-hydroxyalkyl, phenyl or C1-C6- alkoxycarbonyl. R" is hydrogen, C1-C6-alkyl, C1-C6-haloalkyl, C1-C6-hydroxyalkyl, phenyl or C1-C6- alkoxycarbonyl. This reaction is usually carried out at temperatures of from -78 °C to the boiling point of the reaction mixture, preferably from -10 °C to 120 °C, particularly preferably from 0 °C to 50 °C, in an inert organic solvent, if appropriate in the presence of a reoxidazing agent, such as, for example, N-methylmorpholine N-oxide (D. Johnson et al., Tetrahedron 2000, 56, 5, 781). Suitable solvents are halogenated hydrocarbons, such as methylene chloride, chloroform and chlorobenzene, ethers, such as diethyl ether, diisopropyl ether, tert- butyl methyl ether, dioxane, anisole and tetrahydrofuran, nitriles, such as acetonitrile and propionitrile, ketones, such as acetone, methyl ethyl ketone, diethyl ketone and tert-butyl methyl ketone, alcohols, such as methanol, ethanol, n-propanol, isopropanoi, n-butanol and tert.- butanoi, and also dimethyl sulfoxide, dimethylformamide, dimethylacetamide and water; particularly preferably acetone or water. It is also possible to use mixtures of the solvents mentioned. The starting materials are generally reacted with one another in equimolar amounts. It may be advantageous to employ an excess of oxidizing agent, based on XIV. The reaction mixtures are worked up in a customary manner, for example by mixing with water, separation of the phases and, if required, chromatographic purification of the crude products. Some of the intermediates and end products are obtalned in the form of viscous oils which are purified or freed from volatile components under reduced pressure and at moderately elevated temperature. If the intermediates and end products are obtalned as solids, purification may also be carried out by recrystallization or digestion. The vinylglycines of the formula XIV required for preparing the heteroaroyl derivatives of the formula III where R4 = hydrogen and R6 = -C(OH)R'R" are known from the literature [ D. B. Berkowitz et al., J. Org. Chem. 2000, 65, 10, 2907; M. Koen et al., J. Chem. Soc. Perkin I 1997, 4, 487] or can be prepared in accordance to the literature cited. Analogously to process A, the heteroaroyl derivatives of the formula III where R4 = hydrogen and R6 = -C(OH)R'R" can then be reacted with amines of the formula II to give the desired heteroaroyl-substituted serineamides of the formula I where R4 = hydrogen and R6 = -C(OH)R'R", which can then be derivatized with compounds of the formula IX to give heteroaroyl-substituted serineamides of the formula I where R6 = - C(OR4)R!R" [cf., for example, Yokokawa, F. et al., Tetrahedron Lett. 42 (34), 5903- 5908 (2001); Arrault, A. et al., Tetrahedron Lett. 43( 22), 4041-4044 (2002)]; also, the heteroaroyl derivatives of the formula III where R4 = hydrogen can initially be derivatized analogously to process B with compounds of the formula IX to give further heteroaroyl derivatives of the formula III where R6 = -C(OR4)R'R" [cf., for example, Troast, D. et al., Org. Lett. 4 (6), 991-994 (2002); Ewing W. et al., Tetrahedron Lett., 30 (29), 3757-3760 (1989); Paulsen, H. et al., Liebigs Ann. Chem. 565 (1987)] and then be reacted analogously to process A with amines of the formula II to give the desired heteroaroyl-substituierted serineamides of the formula I where R6 = -C(OR4)R'R": I_1 is a nucleophilically displaceable leaving group, for example hydroxyl or C^Ce- alkoxy. L3 is a nucleophilically displaceable leaving group, for example halogen, hydroxyl or Cr C6-alkoxy. R' is hydrogen, C1-C6-alkyl, C1-C6-haloalkyl, C1-C6-hydroxyalkyl, phenyl or (VC6- alkoxycarbonyl. R" is hydrogen, C1-C6-alkyl, C1-C6-haloalkyl, C1-C6-hydroxyalkyl, phenyl or U1-U6- alkoxycarbonyl. Process F Heteroaroyl derivatives of the formula III where R4 = hydrogen and R6 = -C(Nuc)R'R" can also be obtalned by epoxidizing vinylglycines of the formula XIV with an epoxidizing agent to give epoxyglycines of the formula XV, followed by nucleophilic opening of the epoxide: L1 is a nucleophilically displaceable leaving group, for example hydroxyl or C1--C6- alkoxy. R' is hydrogen, C1-C6-alkyl, C1-C6-haloall R" is hydrogen, C1-C6-alkyl, C1-C6-haloalkyl, C1-C6-hydroxyalkyl, phenyl or C1C6- alkoxycarbonyl. Nuc_M+is, for example, a thiolate, such as, for example, sodium thiophenolate, an alcoxide, such as potassium phenoxide, or an amide, such as sodium imidazolate. The epoxidation is usually carried out at temperatures of from -78 °C to the boiling point of the reaction mixture, preferably from -20 °C to 50 °C, in particular from 0 °C to 30 °C, in an inert organic solvent [cf. P. Meffre et al., Tetrahedron Lett. 1990, 31, 16, 2291]. Suitable epoxidizings agent are peracids and peroxides (for example meta- chloroperbenzoic acid, peracetic acid, dimethyldioxirane, hydrogen peroxide). Suitable solvents are halogenated hydrocarbons, such as methylene chloride, chloroform and chiorobenzene, alcohols, such as methanol, ethanol, n-propanol, isopropanol, n-butanol and tert-butanol, and also water, particularly preferably halogenated hydrocarbons and water. It is also possible to use mixtures of the solvents mentioned. The starting materials are generally reacted with one another in equimolar amounts. It may be advantageous to employ an excess of epoxidizing agent, based on XIV. The reaction mixtures are worked up in a customary manner, for example by mixing with water, separation of the phases and, if required, chromatographic purification of the crude products. Some of the intermediates and end products are obtalned in the form of viscous oils which are purified or freed from volatile components under reduced pressure and at moderately elevated temperature. If the intermediates and end products are obtalned as solids, purification may also be carried out by recrystallization or digestion. The vinylglycines of the formula XIV required for preparing the heteroaroyl derivatives of the formula III where R4 = hydrogen and R6 = -C(OH)R'R" are known from the literature [D. B. Berkowitz et al., J. Org. Chem. 2000, 65, 10, 2907; M. Koen et al., J. Chem. Soc. Perkin I 1997, 4, 487] or can be prepared in accordance with the literature cited. The opening of the epoxide is usually carried out at temperatures of from -78 °C to the boiling point of the reaction mixture, preferably from -20 °C to 100 °C, particularly preferably from 0 °C to 50 °C, in an inert organic solvent, if appropriate in the presence of a catalyst [cf. P. Meffre et at., Tetrahedron Lett. 1990, 31, 16, 2291; M. R. Paleo et al., J. Org. Chem. 2003, 68, 1, 130]. Suitable solvents are alcohols, such as methanol, ethanol, n-propanol, isopropanol, n- butanol and tert-butanol, and also dimethyl sulfoxide, dimethylformamide and dimethylacetamide and water, particularly preferably methanol and water. It is also possible to use mixtures of the solvents mentioned. Suitable acid catalysts are Lewis acids, such as boron trifluoride, aluminum trichloride, iron(lll) chloride, tin(iV) chloride, titanium(IV) chloride, zinc(ll) chloride and magnesium perchlorate. The catalyst is usually employed in an amount of from 1 to 100 mol%, preferably from 1 to 10 mol%, based on the compound XV. The starting materials are generally reacted with one another in equimolar amounts. It may be advantageous to employ an excess of Nuc~M+, based on XV. The reaction mixtures are worked up in a customary manner, for example by mixing with water, separation of the phases and, if required, chromatographic purification of the crude products. Some of the intermediates and end products are obtalned in the form of viscous oils which are purified or freed from volatile components under reduced pressure and at moderateiy elevated temperature. If the intermediates and end products are obtalned as solids, purification may also be carried out by recrystallization or digestion. Analogously to process A, the heteroaroyl derivatives of the formula III where R4 = hydrogen and R6 = -C(Nuc)R'R" can then be reacted with amines of the formula II to give the desired benzoyl-substituted serineamides of the formula I where R4 = hydrogen and R6 = -C(Nuc)R'R", which can then be derivatized with compounds of the formula IX to give heteroaroyl-substituted serineamides of the formula I where R6 = - C(OR4)R'R" [cf., for example, Yokokawa, F. et al., Tetrahedron Lett. 42 (34), 5903- 5908 (2001); Arrault, A. et al., Tetrahedron Lett. 43( 22), 4041-4044 (2002)]; also, the heteroaroyl derivatives of the formula III where R4 = hydrogen can initially be derivatized analogously to process B with compounds of the formula IX to give further benzoyl derivatives of the formula III where R6 = -C(Nuc)R'R" [cf., for example, Troast, D. et al., Org. Lett. 4 (6), 991-994 (2002); Ewing W. et al., Tetrahedron Lett., 30 (29), 3757-3760 (1989); Paulsen, H. et al., Liebigs Ann. Chem. 565 (1987)] and then be reacted analogously to process A with amines of the formula II to give the desired heteroaroyl-substituierted serineamides of the formula I where R6 = -C(Nuc)R'R": L1 is a nucleophilically displaceable leaving group, for example hydroxyl or C1-C6- alkoxy. L3 is a nucleophilically displaceable leaving group, for example halogen, hydroxyl or Cr C6-alkoxy. R' is hydrogen, C1-C6-alkyl, C1-C6-haloalkyl, C1-C6-hydroxya!kyl, phenyl or C1-C6- alkoxycarbonyl. R" is hydrogen, C1-C6-alkyl, C1-C6-haloalkyl, C1-C6-hydroxyaIkyl, phenyl or C1-C6- alkoxycarbonyl. Nuc~M+ is, for example, a thiolate, such as, for example, sodium thiophenolate, an alcoxide, such as potassium phenoxide, or an amide, such as sodium imidazolate. The present invention also provides heteroaroyl derivatives of the formula 111 where A, R1 and R4, R5 and R6 are as defined above and L1 is hydroxyl or C1-C6- alkoxy. The particularly preferred embodiments of the intermediates with respect to the variables correspond to those of the radicals A, R1 and R4 to R6 of the formula I. Particular preference is given to heteroaroyl derivatives of the formula III in which A is 5- or 6-membered heteroaryl selected from the group consisting of thienyl, furyl, pyrazolyl, imidazolyl, thiazolyl, oxazolyl and pyridyl; where the heteroaryl radicals mentioned may be partially or fully halogenated and/or may carry 1 to 3 radicals from the group consisting of C1-C6-alkyl, C3-C6- cycloalkyl and C1-C6-haloalkyl; R1 is hydrogen; R4 is hydrogen, formyl, C1-C4-alkylcarbonyl, C1-C4alkylaminocarbonyl, di-(C1-C4- alkyl)-aminocarbonyl, phenylaminocarbonyl, N-(C1-C4-alkyl)-N- (phenyl)aminocarbonyl, S02CH3,S02CF3 or S02(C6H5); R5 is hydrogen; and R6 is C1-C6-alkyl, C2-C6-alkenyl, C1-C6-haloalkyl, C2-C6-haloalkenyl, C1-C6- hydroxyalkyl, hydroxycarbonyl-C.,-C4-alkyl, phenyl-C1-C4-alkyl or phenyl-C1-C4- hydroxyalkyl. The examples below serve to illustrate the invention. Preparation examples Example 1 l-dvlethvlcarbamovl-rd-methvl-S-trifiuoromethyl-IH-pyrazol-A-carbonvDaminolmethvll- allvl acetate (Tab. 3 No. 3.10) 1.1) Ethyl ff 1-methyl-3-trifluoromethvl-1 H-pyrazole-4-carbonvl)amino1acetate 3.63 g (25.8 mmol) of ethyl glycinate hydrochloride were dissolved in CH2CI2, and THF, 5.00 g (25.8 mmol) of 1-methyl-3-trifluoromethyl-4-carboxylic acid and 7.82 g of triethylamine (77.3 mmol) were added at RT and 6.56 g (25.8 mmol) of bis-(2-oxo)-3- oxazolidinyl)phosphonyl chloride were added at 0°C. The mixture was stirred at 0°C for 3 h and then at RT for 16 h. The solvents were then removed, the residue was taken up in ethyl acetate, washed and dried and the solvent was removed. This gave 3.88 g (54 % of theory) of the title compound as a red oil. 1H-NMR (DMSO): 5 = 1.20 (t,3H); 3.95 (s, 6H); 4.15 (q, 2H); 8.35 (s, 1H); 8.65 (t, 1H). 1.2) Ethyl 3-hydroxv-2-f(1-methvl-3-trifluoromethyl-1 H-pvrazole-4-carbonvl)aminolpent- 4-enoate (Tab. 2, No. 2.2) At -50°C, 3.45g (12.4 mmol) of ethyl [(1-methyl-3-trifluoromethyl-1H-pyrazole-4- carbonyl)amino]acetate dissolved in THF were added dropwise to 18.5 ml (37.0 mmol) of a 2M solution of lithium diisopropylamide in THF/heptane/ethylbenzene. After 1.5 h of stirring at -50°C, the mixture was cooled to -78 °C and 0.83 g (14.8 mmol) of acrolein dissolved in THF were added dropwise. After 2 h of stirring at -78 °C, the mixture was hydrolyzed with sat. NH4CI solution and warmed to RT. After separation of the phases, the organic phase was dried and the solvent was removed. The residue was purified chromatographicaliy (Si02, cyclohexane/ethyl acetate). This gave 1.65 g (40 % of theory) of the title compound as a colorless solid (about 1:1 diastereomer mixture) which was used without further purification. 1.3) N-(2-Hydroxy-1 -methvlcarbamoylbut-3-envl)-1 -methyl-3-trifluoromethyl-1 H- pyrazole-4-carboxamide (Tab. 3, No. 3.4) 1.65 g (4.92 mmol) of ethyl 3-hydroxy-2-[(1-methyl-3-trifluoromethyl-1 H-pyrazole-4- carbonyl)amino]pent-4-enoate were dissolved in methanol. At 0°C, methylamine gas was introduced for 1 h. After 16 h of stirring at RT, the solvent was removed and the residue was recrystallized from acetone. The precipitate gave 0.65 g of erythro title compound as a colorless powder, the filtrate contalned 0.75 g of isomer mixture. Accordingly, the total yleld was 1.40 g (89 % of theory). 'H-NMR (DMSO) (erythro isomer): 5 = 2.55 (d, 3H); 4.95 (s, 3H); 4.25 (m, 1H); 4.35 (t, 1H); 5.10 (d, 1H); 5.25 (d, 1H); 5.35 (d, 1H); 5.80 (m, 1H); 7.95 (d, 1H); 8.10 (d, 1H); 8.45 (s,1H). 1.4) 1-{Methvlcarbamovl-r(1-methvl-3-trifluoromethvl-1 H-pvrazole-4-carbonvl)amino1- methvDallyl acetate (Tab. 3 No. 3.10) 134 mg (0.42 mmol) of N-(2-hydroxy-1-methylcarbamoylbut-3-enyl)-1-methyl-3- trifluoromethyl-1H-pyrazole-4-carboxamide, 28 mg (0.46 mmol) of acetic acid and 20 mg (0.17 mmol) of dimethylaminopyhdine were dissolved in CH2CI2. At 0°C, 88 mg (0.46 mmol) of 1-(3-dimethylaminopropyl)-3-(ethylcarbodiimide) hydrochloride were added. After 16 h of stirring at RT, the reaction solution was washed and the solvent was removed. This gave 0.10 g (66 % of theory) of the title compound as a colorless powder (M+ (m/z)=362). In addition to the above compounds, further heteroaroyl derivatives of the formula III and heteroaroyl-substituted serineamides of the formula I which were prepared or are preparable in a manner analogously to the processes described above are listed in Tables 2 and 3 below. Biological activity The heteroaroyl-substituted serineamides of the formula I and their agriculturally useful salts are suitable, both in the form of isomer mixtures and in the form of the pure isomers, as herbicides. The herbicidal compositions comprising compounds of the formula I control vegetation on non-crop areas very efficiently, especially at high rates of application. They act agalnst broad-leaved weeds and grass weeds in crops such as wheat, rice, malze, soya and cotton without causing any significant damage to the crop plants. This effect is malnly observed at low rates of application. Depending on the application method in question, the compounds of the formula I, or herbicidal compositions comprising them, can additionally be employed in a further number of crop plants for eliminating undesirable plants. Examples of suitable crops are the following: Allium cepa, Ananas comosus, Arachis hypogaea, Asparagus officinalis, Beta vulgaris spec, altissima, Beta vulgaris spec, rapa, Brassica napus var. napus, Brassica napus var. napobrassica, Brassica rapa var. silvestris, Camellia sinensis, Carthamus tinctorius, Carya illinoinensis, Citrus limon, Citrus sinensis, Coffea arabica (Coffea canephora, Coffea liberica), Cucumis sativus, Cynodon dactylon, Daucus carota, Elaeis guineensis, Fragaria vesca, Glycine max, Gossypium hirsutum, (Gossypium arboreum, Gossypium herbaceum, Gossypium vitifolium), Helianthus annuus, Hevea brasiliensis, Hordeum vulgare, Humulus lupulus, Ipomoea batatas, Juglans regia, Lens culinaris, Linum usitatissimum, Lycopersicon lycopersicum, Malus spec, Manihot esculenta, Medicago sativa, Musa spec, Nicotiana tabacum (N.rustica), Olea europaea, Oryza sativa, Phaseolus lunatus, Phaseolus vulgaris, Picea abies, Pinus spec, Pisum sativum, Prunus avium, Prunus persica, Pyrus communis, Ribes sylvestre, Ricinus communis, Saccharum officinarum, Secale cereale, Solanum tuberosum, Sorghum bicolor (s. vulgare), Theobroma cacao, Trifolium pratense, Triticum aestivum, Triticum durum, Vicia faba, Vitis vinifera and Zea mays. In addition, the compounds of the formula I may also be used in crops which tolerate the action of herbicides owing to breeding, including genetic engineering methods. In addition, the compounds of the formula I may also be used in crops which tolerate attack by fungi or insects owing to breeding, including genetic engineering methods. The compounds of the formula I, or the herbicidal compositions comprising them, can be used for example in the form of ready-to-spray aqueous solutions, powders, suspensions, also highly concentrated aqueous, oily or other suspensions or dispersions, emulsions, oil dispersions, pastes, dusts, materials for broadcasting, or granules, by means of spraylng, atomizing, dusting, spreading or watering. The use forms depend on the intended purpose; in any case, they should guarantee the finest possible distribution of the active ingredients according to the invention. The herbicidal compositions comprise a herbicidally effective amount of at least one compound of the formula i or an agriculturally useful salt of I, and auxiliaries which are customary for the formulation of crop protection agents. Suitable as inert auxiliaries are essentially the following: mineral oil fractions of medium to high boiling point, such as kerosene and diesel oil, furthermore coal tar oils and oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, e.g. paraffin, tetrahydronaphthalene, alkylated naphthalenes and their derivatives, alkylated benzenes and their derivatives, alcohols such as methanol, ethanol, propanol, butanol and cyclohexanol, ketones such as cyclohexanone, strongly polar solvents, e.g. amines such as N-methylpyrrolidone, and water. Aqueous use forms can be prepared from emulsion concentrates, suspensions, pastes, wettable powders or water-dispersible granules by adding water. To prepare emulsions, pastes or oil dispersions, the substrates, either as such or dissolved in an oil or solvent, can be homogenized in water by means of a wetting agent, tackifier, dispersant or emulsifier. Alternatively, it is also possible to prepare concentrates comprising active substance, wetting agent, tackifier, dispersant or emulsifier and, if desired, solvent or oil, which are suitable for dilution with water. Suitable surfactants (adjuvants) are the alkali metal salts, alkaline earth metal salts and ammonium salts of aromatic sulfonic acids, e.g. ligno-, phenol-, naphthalene- and dibutylnaphthalenesulfonic acid, and of fatty acids, alkyl- and alkylarylsulfonates, alkyl sulfates, lauryl ether sulfates and fatty alcohol sulfates, and salts of sulfated hexa-, hepta- and octadecanols, and also of fatty alcohol glycol ethers, condensates of sulfonated naphthalene and its derivatives with formaldehyde, condensates of naphthalene or of the naphthalenesulfonic acids with phenol and formaldehyde, polyoxyethylene octylphenol ether, ethoxylated isooctyl-, octyl- or nonylphenol, alkylphenyl or tributylphenyl polyglycoi ether, alkylaryl polyether alcohols, isotridecyl alcohol, fatty alcohol/ethylene oxide condensates, ethoxylated castor oil, polyoxyethylene alkyl ethers or polyoxypropylene alkyl ethers, iauryl alcohol polyglycoi ether acetate, sorbitol esters, lignosulfite waste liquors or methylcellulose. Powders, materials for broadcasting and dusts can be prepared by mixing or grinding the active ingredients together with a solid carrier. Granules, e.g. coated granules, impregnated granules and homogeneous granules, can be prepared by binding the active ingredients to solid carriers. Solid carriers are mineral earths such as silicas, silica gels, silicates, talc, kaolin, limestone, lime, chalk, bole, loess, clay, dolomite, diatomaceous earth, calcium sulfate, magnesium sulfate and magnesium oxide, ground synthetic materials, fertilizers such as ammonium sulfate, ammonium phosphate, ammonium nitrate and ureas, and products of vegetable origin, such as cereal meal, tree bark meal, wood meal and nutshell meal, cellulose powders, or other solid carriers. The concentrations of the compounds of the formula I in the ready-to-use preparations can be varied within wide ranges. In general, the formulations comprise approximately from 0.001 to 98% by weight, preferably 0.01 to 95% by weight of at least one active ingredient. The active ingredients are employed in a purity of from 90% to 100%, preferably 95% to 100% (according to NMR spectrum). The formulation examples below illustrate the preparation of such compositions: I. 20 parts by weight of an active compound of the formula I are dissolved in a mixture composed of 80 parts by weight of alkylated benzene, 10 parts by weight of the adduct of from 8 to 10 mol of ethylene oxide to 1 mol of oleic acid N- monoethanolamide, 5 parts by weight of calcium dodecylbenzenesulfonate and 5 parts by weight of the adduct of 40 mol of ethylene oxide to 1 mol of castor oil. Pouring the solution into 100 000 parts by weight of water and finely distributing it therein gives an aqueous dispersion which comprises 0.02% by weight of the active ingredient of the formula I. II. 20 parts by weight of an active compound of the formula I are dissolved in a mixture composed of 40 parts by weight of cyclohexanone, 30 parts by weight of isobutanol, 20 parts by weight of the adduct of 7 mol of ethylene oxide to 1 mol of isooctylphenol and 10 parts by weight of the adduct of 40 mol of ethylene oxide to 1 mol of castor oil. Pouring the solution into 100 000 parts by weight of water and finely distributing it therein gives an aqueous dispersion which comprises 0.02% by weight of the active ingredient of the formula I. III. 20 parts by weight of an active compound of the formula I are dissolved in a mixture composed of 25 parts by weight of cyclohexanone, 65 parts by weight of a mineral oil fraction of boiling point 210 to 280°C and 10 parts by weight of the adduct of 40 mol of ethylene oxide to 1 mol of castor oil. Pouring the solution into 100 000 parts by weight of water and finely distributing it therein gives an aqueous dispersion which comprises 0.02% by weight of the active ingredient of the formula I. IV. 20 parts by weight of an active compound of the formula I are mixed thoroughly with 3 parts by weight of sodium diisobutylnaphthalenesulfonate, 17 parts by weight of the sodium salt of a lignosulfonic acid from a sulfite waste liquor and 60 parts by weight of pulverulent silica gel, and the mixture is ground in a hammer mill. Finely distributing the mixture in 20 000 parts by weight of water gives a spray mixture which comprises 0.1% by weight of the active ingredient of the formula I. V. 3 parts by weight of an active compound of the formula I are mixed with 97 parts by weight of finely divided kaolin. This gives a dust which comprises 3% by weight of the active ingredient of the formula I. VI. 20 parts by weight of an active compound of the formula I are mixed intimately with 2 parts by weight of calcium dodecylbenzenesulfonate, 8 parts by weight of fatty alcohol polyglycol ether, 2 parts by weight of the sodium salt of a phenol/urea/formaldehyde condensate and 68 parts by weight of a paraffinic mineral oil. This gives a stable oily dispersion. VII. 1 part by weight of an active compound of the formula I is dissolved in a mixture composed of 70 parts by weight of cyclohexanone, 20 parts by weight of ethoxylated isooctylphenol and 10 parts by weight of ethoxylated castor oil. This gives a stable emulsion concentrate. VIII. 1 part by weight of an active compound of the formula I is dissolved in a mixture composed of 80 parts by weight of cyclohexanone and 20 parts by weight of Wettol® EM 31 (= nonionic emulsifier based on ethoxylated castor oil). This gives a stable emulsion concentrate. The compounds of the formula I or the herbicidal compositions can be applied pre- or post-emergence. If the active ingredients are less well tolerated by certaln crop plants, application techniques may be used in which the herbicidal compositions are sprayed, with the ald of the spraylng equipment, in such a way that as far as possible they do not come into contact with the leaves of the sensitive crop plants, while the active ingredients reach the leaves of undesirable plants growing underneath, or the bare soil surface (post-directed, lay-by). The rates of application of the compound of the formula I are from 0.001 to 3.0, preferably 0.01 to 1.0, kg/ha of active substance (a.s.), depending on the control target, the season, the target plants and the growth stage. To widen the spectrum of action and to achieve synergistic effects, the heteroaroyl- substituted serineamides of the formula I may be mixed with a large number of representatives of other herbicidal or growth-regulating active ingredient groups and then applied concomitantly. Suitable components for mixtures are, for example, 1,2,4- thiadiazoles, 1,3,4-thiadiazoles, amides, aminophosphoric acid and its derivatives, aminotriazoles, anilides, (hetero)aryloxyalkanoic acids and their derivatives, benzoic acid and its derivatives, benzothiadiazinones, 2-(het)aroyl-1,3-cyclohexanediones, heteroaryl aryl ketones, benzylisoxazolidinones, meta-CF3-phenyl derivatives, carbamates, quinolinecarboxylic acid and its derivatives, chloroacetanilides, cyclohexenone oxime ether derivatives, diazines, dichloropropionic acid and its derivatives, dihydrobenzofurans, dihydrofuran-3-ones, dinitroanilines, dinitrophenols, diphenyl ethers, dipyridyls, halocarboxylic acids and their derivatives, ureas, 3- phenyluracils, imidazoles, imidazolinones, N-phenyl-3,4,5,6-tetrahydrophthalimides, oxadiazoles, oxiranes, phenols, aryloxy- and heteroaryloxyphenoxypropionic esters, phenylacetic acid and its derivatives, 2-phenylpropionic acid and its derivatives, pyrazoles, phenylpyrazoles, pyridazines, pyridinecarboxylic acid and its derivatives, pyrimidyl ethers, sulfonamides, sulfonylureas, triazines, triazinones, triazolinones, triazolecarboxamides and uracils. It may furthermore be beneficial to apply the compounds of the formula I alone or in combination with other herbicides, or in the form of a mixture with other crop protection agents, for example together with agents for controlling pests or phytopathogenic fungi or bacteria. Also of interest is the miscibility with mineral salt solutions, which are employed for treating nutritional and trace element deficiencies. Non-phytotoxic oils and oil concentrates may also be added. Use examples The herbicidal activity of the heteroaroyl-substituted serineamides of the formula I was demonstrated by the following greenhouse experiments: The culture contalners used were plastic flowerpots contalning loamy sand with approximately 3.0% of humus as the substrate. The seeds of the test plants were sown separately for each species. For the pre-emergence treatment, the active ingredients, which had been suspended or emulsified in water, were applied directly after sowing by means of finely distributing nozzles. The contalners were irrigated gently to promote germination and growth and subsequently covered with transparent plastic hoods until the plants had rooted. This cover causes uniform germination of the test plants, unless this has been impalred by the active ingredients. For the post-emergence treatment, the test plants were first grown to a height of 3 to 15 cm, depending on the plant habit, and only then treated with the active ingredients which had been suspended or emulsified in water. For this purpose, the test plants were either sown directly and grown in the same contalners, or they were first grown separately as seedlings and transplanted into the test contalners a few days prior to treatment. The rate of application for the post-emergence treatment was 1.0 kg/ha of a.s. (active substance). Depending on the species, the plants were kept at 10 - 25°C or 20 - 35°C. The test period extended over 2 to 4 weeks. During this time, the plants were tended, and their response to the individual treatments was evaluated. Evaluation was carried out using a scale from 0 to 100. 100 means no emergence of the plants, or complete destruction of at least the aerial parts, and 0 means no damage, or normal course of growth. The plants used in the greenhouse experiments belonged to the following species: At application rates of 1 kg/ha, the compound 3.7 (Table 3) showed very good post- emergence action agalnst the unwanted plants Amaranthus retroflexus and Chenopodium album. Furthermore, compound 3.12 (Table 3), applied by the post-emergence method, effected, at application rates of 1 kg/ha, very good control of the harmful plants Amaranthus retroflexus, Chenopodium album and Polygonum convolvulus. We Clalm: 1. A heteroaroyl-substituted serineamide of the formula I in which the variables are as defined below: A is 5- membered heteroaryl selected from the group consisting of thienyl, furyl, pyrazolyl, imidazolyl, thiazolyl and oxazolyl which heteroaryl may be partially or fully halogenated and/or may carry 1 to 2 substituents from the group C1-C6alkyl and C1-C4 halogenalkyl; R1, R2 are hydrogen, R3 is C1-C6-alkyl, R4 is hydrogen, C1-C6-alkylcarbonyl, C1-C6-alkoxycarbonyl, C1-C6-alkylaminocarbonyl, di(C1-C6- alkyl)aminocarbonyl, N-(C1-C6-alkoxy)-N-(C1-C6-alkyl)aminocarbonyl, tri- C1-C4-alkylsilyl, or phenylaminocarbonyl, R5 is hydrogen; R6 is C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-haloalkyl, C1-C6- hydroxyalkyl, C3-C6-cycloalkyl, 3 to 6-membered heterocyclyl, where the cycloalkyl or 3- to 6-membered heterocyclyl radicals mentioned above may be partially or fully halogenated and/or may carry one to three radicals from the group consisting of C1-C6-alkyl; C1-C6-alkoxy-C1-C4-alkyl, amino-C1-C4-alkyl, C1-C6-alkoxycarbonylamino- C1-C4-alkyl, C1-C6-alkylcarbonylamino-C1-C4-alkyl, {di[di(C1-C6-alkyl) amino]carbonyloxy}C1-C4-alkyl, [(C1-C6-alkylarnino)carbonylamino]-C1-C4- alkyl, phenyl-C1-C4-alkyl, phenyl-C2-C4-alkenyl, phenyl-C1-C4-hydroxyalkyl, phenylcarbonylamino-C1-C4-alkyl, phenyloxy-C1-C4-alkyl, heteroaryl-C2-C4- alkenyl, heteroaryl-C1-C4-hydroxyalkyl, where the phenyl and heteroaryl radicals mentioned above may be partially or fully halogenated and/or may carry one to three radicals from the group consisting of cyano, nitro, C1-C6-alkoxy, or an agriculturally useful salt thereof. 2. A process for preparing heteroaroyl-substituted serineamides of the formula I as clalmed in clalm 1, wherein serine derivatives of the formula V where R1, R4, R5 and R6 are as defined in clalm 1 and L1 is hydroxyl or C1-C6-al- koxy are reacted with heteroaryl acids/heteroaroyl acid derivatives of the formula IV where A is as defined in clalm 1 and L2 is a hydroxyl, halogen, C1-C6- alkylcarbonyl, C1-C6-alkoxycarbonyl, C1-C4-alkylsulfonyl, phosphoryl or isoureyl to give the corresponding heteroaroyl derivatives of the formula III where A, R1, R4, R5 and R6 are as defined in clalm 1 and L1 is hydroxyl or C1-C6- alkoxy, and the resulting heteroaroyl derivatives of the formula III are then reacted with an amine of the formula II HNR2R3 II, where R2 and R3 are as defined in clalm 1. 3. A process for preparing heteroaroyl-substituted serineamides of the formula I as clalmed in clalm 2 where R4 and R5 are hydrogen, wherein heteroaroyl derivatives of the formula III where R4 and R5 are hydrogen are prepared by acylation of keto compounds of the formula XIII where R1 is as defined in clalm 1 and L1 is hydroxyl or C1-C6-alkoxy with heteroaryl acids/heteroaroyl acid derivatives of the formula IV to give N-acyl keto compounds of the formula XII where A, R1 and R6 are as defined in clalm 1 and L1 is hydroxyl or C1-C6-alkoxy and subsequent reduction of the keto group. 4. A heteroaroyl derivative of the formula III in which A is 5- or 6-membered heteroaryl which is attached via carbon and selected from the group consisting of A1, A2, A3, A4, A5, A6, A8 and A9 where where the arrow indicates the point of attachment and R8 is hydrogen, halogen, C1-C6-alkyl or C1-C6-haloalkyl; R9 is halogen, C1-C6-alkyl, C1-C6-haloalkyl or C1-C6-haloalkoxy; R10 is hydrogen, halogen, C1-C6-alkyl or C1-C6-haloalkyl; and R11 is hydrogen, C1-C6-alkyl, C3-C6-cycloalkyl, C1-C6-haloalkyl orC1-C6- alkoxy-C1-C4-alkyl; 5. A composition, comprising a herbicidally effective amount of at least one heteroaroyl-substituted serineamide of the formula I or an agriculturally useful salt of I as clalmed in clalm 1 and auxiliaries customary for formulating crop protection agents. 6. A process for preparing compositions according to clalm 5, wherein a herbicidally effective amount of at least one heteroaroyl-substituted serineamide of the formula I or an agriculturally useful salt of I as clalmed in clalm 1 and auxiliaries customary for formulating crop protection agents are mixed. Abstract HETEROAROYL-SUBSTITUTED SERINE AMIDES The present invention relates to heteroaroyl-substituted serineamides of the formula I in which the variables A and R1 to R6 are as defined in the description, and to their agriculturally useful salts, to processes and intermediates for their preparation, and to the use of these compounds or of the compositions comprising these compounds for controlling unwanted plants. |
---|
04625-kolnp-2007-correspondence others.pdf
04625-kolnp-2007-description complete.pdf
04625-kolnp-2007-international exm report.pdf
04625-kolnp-2007-international publication.pdf
04625-kolnp-2007-international search report.pdf
04625-kolnp-2007-others pct form.pdf
04625-kolnp-2007-pct request form.pdf
04625-kolnp-2007-translated copy of priority document.pdf
4625-KOLNP-2007-(02-12-2011)-ABSTRACT.pdf
4625-KOLNP-2007-(02-12-2011)-AMANDED CLAIMS.pdf
4625-KOLNP-2007-(02-12-2011)-CORRESPONDENCE.pdf
4625-KOLNP-2007-(02-12-2011)-DESCRIPTION (COMPLETE).pdf
4625-KOLNP-2007-(02-12-2011)-FORM-1.pdf
4625-KOLNP-2007-(02-12-2011)-FORM-13.pdf
4625-KOLNP-2007-(02-12-2011)-FORM-2.pdf
4625-KOLNP-2007-(02-12-2011)-FORM-3.pdf
4625-KOLNP-2007-(02-12-2011)-OTHER PATENT DOCUMENT.pdf
4625-KOLNP-2007-(02-12-2011)-OTHERS.pdf
4625-KOLNP-2007-(02-12-2011)-PA-CERTIFIED COPIES.pdf
4625-KOLNP-2007-(19-04-2012)-EXAMINATION REPORT REPLY RECIEVED.PDF
4625-KOLNP-2007-CORRESPONDENCE 1.2.pdf
4625-KOLNP-2007-CORRESPONDENCE OTHERS 1.1.pdf
4625-KOLNP-2007-DESCRIPTION (COMPLETE).pdf
4625-KOLNP-2007-EXAMINATION REPORT.pdf
4625-KOLNP-2007-FORM 13 1.1.pdf
4625-KOLNP-2007-FORM 18 1.1.pdf
4625-KOLNP-2007-FORM 3 1.2.pdf
4625-KOLNP-2007-FORM 3-1.1.pdf
4625-KOLNP-2007-FORM 5 1.1.pdf
4625-KOLNP-2007-GRANTED-ABSTRACT.pdf
4625-KOLNP-2007-GRANTED-CLAIMS.pdf
4625-KOLNP-2007-GRANTED-DESCRIPTION (COMPLETE).pdf
4625-KOLNP-2007-GRANTED-FORM 1.pdf
4625-KOLNP-2007-GRANTED-FORM 2.pdf
4625-KOLNP-2007-GRANTED-SPECIFICATION.pdf
4625-KOLNP-2007-INTERNATIONAL PRELIMINARY EXAMINATION REPORT.pdf
4625-KOLNP-2007-INTERNATIONAL PUBLICATION.pdf
4625-KOLNP-2007-INTERNATIONAL SEARCH REPORT.pdf
4625-KOLNP-2007-OTHERS PCT FORM.pdf
4625-KOLNP-2007-PCT REQUEST FORM.pdf
4625-KOLNP-2007-REPLY TO EXAMINATION REPORT.pdf
4625-KOLNP-2007-SPECIFICATION.pdf
4625-KOLNP-2007-TRANSLATED COPY OF PRIORITY DOCUMENT 1.1.pdf
4625-KOLNP-2007-TRANSLATED COPY OF PRIORITY DOCUMENT.pdf
Patent Number | 253606 | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Indian Patent Application Number | 4625/KOLNP/2007 | ||||||||||||||||||||||||||||||||||||||||||
PG Journal Number | 32/2012 | ||||||||||||||||||||||||||||||||||||||||||
Publication Date | 10-Aug-2012 | ||||||||||||||||||||||||||||||||||||||||||
Grant Date | 06-Aug-2012 | ||||||||||||||||||||||||||||||||||||||||||
Date of Filing | 29-Nov-2007 | ||||||||||||||||||||||||||||||||||||||||||
Name of Patentee | BASF AKTIENGESELLSCHAFT | ||||||||||||||||||||||||||||||||||||||||||
Applicant Address | 67056 LUDWIGSHAFEN, GERMANY | ||||||||||||||||||||||||||||||||||||||||||
Inventors:
|
|||||||||||||||||||||||||||||||||||||||||||
PCT International Classification Number | C07D 231/14 | ||||||||||||||||||||||||||||||||||||||||||
PCT International Application Number | PCT/EP2006/061128 | ||||||||||||||||||||||||||||||||||||||||||
PCT International Filing date | 2006-03-29 | ||||||||||||||||||||||||||||||||||||||||||
PCT Conventions:
|